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abstract


This paper starts with a brief overview of radio channel models. The most important parameter in these models is the delay spread, since this is directly related to the complexity of a modem. Various measurement results reported in the literature are summarized, showing that for most office buildings, the delay spread is the range of 40 to 70 ns, while larger delay spreads up to 300 ns can be expected in large buildings like shopping centers and factories.








� SEQ cha  \* MERGEFORMAT �1�	Introduction


Fundamental work on modelling of the indoor radio channel is published in [�Seq ref ref_hashemi�1�,�Seq ref ref_saleh�2�]. One of the results of this work, which is also supported by many other measurements reported in the literature, is that the average received multipath power is an exponentially decaying function of the excess delay. Further, the amplitudes of individual multipath components are Rayleigh distributed. This observation has led to simplified channel models as used in [�Seq ref ref_halls�3�,�Seq ref ref_chayat�4�]. These models assume a fixed number of paths with equidistant delays. The path amplitudes are independent Rayleigh variables, while the path phases are uniformly distributed. Figure 1 shows an example of an average and an instantaneous power delay profile which were generated using this approach.





Compared to the more extensive models in [�Seq ref ref_hashemi�1�,�Seq ref ref_saleh�2�], the simplified model of [�Seq ref ref_halls�3�,�Seq ref ref_chayat�4�] may give somewhat optimistic results because the number of multipath component is fixed to the maximum possible amount. In the models of [�Seq ref ref_hashemi�1�,�Seq ref ref_saleh�2�], the number of paths is random. Paths arrive in clusters with Poisson distributed arrival times. Within a cluster, the path amplitudes are independent Rayleigh variables. The average power delay profile, averaged over a large number of channels, is an exponentially decaying function, just as for the models in [�Seq ref ref_halls�3�,�Seq ref ref_chayat�4�]. Thus, the only difference between the models is that the instantaneous power delay profiles have a slightly different shape, and channels generated by the method of [�Seq ref ref_halls�3�,�Seq ref ref_chayat�4�] generally show more multipath components than channels generated according to [�Seq ref ref_hashemi�1�,�Seq ref ref_saleh�2�]. This may give a somewhat optimistic diversity effect, because diversity is proportional to the number of paths. However, it probably does not make a difference when the models are used to determine the delay spread tolerance of a particular transmission system, since that is not depending on the number of paths, but rather on the amount of power in paths exceeding a certain excess delay. So, the channel models of [�Seq ref ref_halls�3�,�Seq ref ref_chayat�4�] seem a good basis for comparison of different modulations, also because their simulation complexity is much lower than the models of [�Seq ref ref_hashemi�1�,�Seq ref ref_saleh�2�]. One of the most important things that has to be sorted out is what the minimum delay spread value is that the modulation scheme must be able to cope with. To get an answer on this question, the next section presents some measurement results obtained from the literature. 
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Figure 1: Example of generated average and instantaneous power delay profiles for a 


delay spread of 10 sampling intervals.











� SEQ cha  \* MERGEFORMAT �2�	delay spread values


Tables 1 and 2 summarize some delay spread results obtained from literature for frequencies around 2 and 5 GHz. Two delay spread values are given; the median delay spread is the 50% value, meaning that 50% of all channels has a delay spread that is lower than the median value. Clearly, the median value is not so interesting for designing a wireless link, because there you want to guarantee that the link works for at least 90% or 99% of all channels. Therefore the second column gives the measured maximum delay spread values. The reason to use maximum delay spread instead of a 90% or 99% value is that many papers only mention the maximum value. From the papers that do present cumulative distribution functions of their measured delay spreads, it can be deduced that the 99% value is only a few percent smaller than the maximum delay spread.  














Median 


Delay Spread [ns]�
Maximum Delay Spread [ns]


�
Reference�
Remarks�
�
40�
120�
[�Seq ref ref_devasirvatham�5�]�
Large building (New York stock exchange)�
�
40�
95�
[�Seq ref ref_devasirvatham2 �6�]�
Office building�
�
40�
150�
[�Seq ref ref_devasirvatham3 �7�]�
Office building�
�
60


106�
200


270�
[�Seq ref ref_johnson�10�]�
Shopping center


Laboratory�
�
19�
30�
[�Seq ref ref_lahteenmaki �11�]�
Office building: single room only�
�
20


30


105�
65


75


170�
[�Seq ref ref_anderson�12�]�
Office building


Canteen


Shopping center�
�
30�
56�
[�Seq ref ref_bultitudeb�14�]�
Office building�
�
25�
30�
[�Seq ref ref_nobles�19�]�
Office building: single room only�
�



Table 1: Measured delay spreads in frequency range of 1.8 to 2.4 GHz








Median 


Delay Spread [ns]�
Maximum Delay Spread [ns]


�
Reference�
Remarks�
�
40�
120�
[�Seq ref ref_devasirvatham �5�]�
Large building (New York stock exchange)�
�
50


35


10�
60


55


35�
[�Seq ref ref_hafesi�8�]�
Office building


Meeting room (5mx5m) with metal walls


Single room with stone walls�
�
40�
130�
[�Seq ref ref_devasirvatham3 �7�]�
Office building�
�
40


65


25�
120


125


65�
[�Seq ref ref_hawbaker �9�]�
Indoor sports arena


Factory


Office building�
�
20�
30�
[�Seq ref ref_nobles�19�]�
Office building: single room only�
�



Table 2: Measured delay spreads in frequency range of 4 to 6 GHz.








Measurements done at several frequencies simultaneously show that there is no significant difference in the delay spreads when the frequency changes from 850 MHz to 4 GHz [�Seq ref ref_devasirvatham�5�, �Seq ref ref_devasirvatham3 �7�]. Therefore, below some additional results are included from measurements in the range of 800 MHz to 1.5 GHz. 





























Median 


Delay Spread [ns]�
Maximum Delay Spread [ns]


�
Reference�
Remarks�
�
25�
50�
[�Seq ref ref_saleh�2�]�
Office building�
�
30�
56�
[�Seq ref ref_bultitudeb�14�]�
Office building�
�
27�
43�
[�Seq ref ref_pahlavan�15�]�
Office building�
�
11�
58�
[�Seq ref ref_davies�16�]�
Office building�
�
35


40


80


120�
80


90


120


180�
[�Seq ref ref_zollinger�17�]�
Office building


Shopping mall


Airport


Factory�
�
50


120�
129


300�
[�Seq ref ref_rappaport�18�]�
Warehouse


Factory�
�



Table 3: Measured delay spreads in frequency range of 800 MHz to 1.5 GHz.











Interesting results that can be derived from the measurements and the references are:





The delay spread is related to the building size; largest delay spreads (up to 270 ns) were measured in large buildings like shopping centers and factories.


For most office buildings, the maximum delay spread is in the range of 40 to 70 ns. Smaller delay spreads around 30 ns occur when both transmitter and receiver are within the same room.


Even small rooms (5mx5m) can give significant delay spreads around 50 ns when there are metal walls [�Seq ref ref_hafesi�8�].
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