Run-Time Reallocation
of Heterogeneous Computing Resources

A submission to Navy SBIR NO1-79
by The Open Group Research Institute

10 January 2001
A. I dentification and Significance of Problem or Opportunity

A.1.Problem Description

Modern mission critical systems are complex and distributed, involving multiple
components on a heterogeneous mix of computer system platforms. The existence of
multiple environments inserts additional complexity into all life-stages of the system: the
original design must accommodate the processing model of each environment, separate
programming is often required for each environment, each such environment much be
individually tested, and separate distribution packages are required for each
environment. The result isincreased devel opment time and costs, and a higher error rate
during system operation.

On the other hand, the heterogeneous nature of the systemsis due to the value inherent in
specialization. Some computer systems are optimized for operating user interfaces; others
include special capabilities for real-time environments. Some network components
provide world-wide access; others provide high-bandwidth delivery that is uneconomical
except in local area networks.

One particular benefit of a distributed, multiple component system is that the multiple
components can be configured to provide redundancy in support of providing highly
available, fault-tolerant system services. Designing and implementing fault tolerant
systemsis a specialized skill, however, and most successful fault-tolerant applications are
built upon system tools that were designed and implemented by devel opers experienced
in fault-tolerant systems.

Identifying and eliminating unnecessary heterogeneity pays off in smpler, more effective
system operation. Identifying and enabling useful heterogeneity resultsin higher
performance and a more efficient system. The problem is to determine which iswhich,
and then to accomplish both. A middleware solution that accommodates necessary
heterogeneity while supporting fault-tolerant applications would be useful in both
military and civilian applications.

* * *
We begin with separate overviews of the various types of heterogeneity that occur in

modern systems and of some design issues that must be considered in the design of fault
tolerant systems.

Proposal Page 3 SBIR NO1-079



A.1.1. Heterogeneity

Multiple Processor Types

Theissue of dealing with heterogeneous systems arisesin several formsin modern
military (and civilian) systems. Thefirst form is the existence of computers with different
instruction set architectures (ISA). Most source code for large software systemsis written
in ahigh-level language. Compilers then trandate that source code into the low-level
machine code that can actually be executed by the processors within those computers.
Still, most languages and almost all implementations of those languages allow differences
to occur in the execution of the resulting programs. C and C++, for example, do not
require that all variables beinitialized and do not specify the value that is assigned to
those variablesif they are not initialized. Almost al implementations reuse space on a
common stack and smply allow a variable to take on whatever value happened to
previoudy exist in the memory location occupied by the variable. Some compilers
provide special modes to check for such uninitialized variables, but it is not possible, in
general, to detect all such cases.

Multiple Operating Systems

Another form of heterogeneity occurs due to the use of multiple operating systems. The
primary current example is the co-existence of both Microsoft Windows® and UNIX®
operating system families. Both systems have approximately equivalent capabilities and
both have similar execution models. Still, system code that attempts to operate on both
types of systemsisriddled with special cases, particularly #fdef's, in the case of C and
C++. On the other hand, the windowing models are significantly different, and graphics-
oriented code, such as GUI's, is amost impossible to make similar while adhering to each
system’s native windowing model.

Even common operating system families have significant differences. While a core set of
common support routines exists on all versions of Microsoft Windows, numerous
procedures that are useful for system programming tasks exist only on Windows NT and
not on Windows 95/98/ME, and vice versa. Also, there are variancesin various
subsystems. For example, Microsoft Windows 95/98/ME only supports 8-bit code sets
(primarily ASCII), while Microsoft Windows CE only supports the 16-bit UNICODE
code set.

A similar situation exists for UNIX and UNIX-like systems. Although POSIX definesa
useful common set of functions, many functions relative to systems programming tasks
were purposely omitted in order to enlarge the set of systems that could comply with the
standard. Even the more extensive and stringent UNIX standards (which are maintained
by The Open Group) do not cover all aspects of systems programming and do not attempt
to address differences in implementations. For example, some common UNIX
implementations are limited to using only 256 file descriptors in executing select calls,
while others allow over 10,000. Some UNIX implementations make it easy to receive
raw Ethernet packets (which might be used to effect automatic network configuration);

Proposal Page 4 SBIR NO1-079



others make it difficult. Finally, the Linux™ community is developing a set of standards
that largely conforms to the UNIX standards, but is dightly different.

Multiple Operating Versions

All of the above problems with heterogeneous systems are exacerbated by differences
between versions. The commercial chip and hardware manufacturersfind it necessary to
continually upgrade components to reduce manufacturing costs. Silicon chips are so
complex that the hardware bugs have begun to resembl e software bugs. Some Intel chips,
for instance, now include a capability to load a patch file into the processor at boot time,
in amanner very similar to what was used on 1960's mainframe computers. As periphera
chip manufacturers introduce new products, or phase out certain products or as those
manufacturers go out of business altogether, board manufacturers must track those
changes, often replacing multiple components with one new chip, or a specially designed
ASIC.

System vendors must modify their operating systems to include the changes that are
required by the modified hardware. Simultaneoudly, they are fixing bugs and otherwise
enhancing the operating system. Rarely are those changes, other than the security-
relevant ones, retrofitted into older versions of the operating systems. Middleware
vendors must maintain compatibility with the upgraded operating systems, and even
though they might attempt to not depend on new operating systems features, inevitably
some change will dlip by.

As older hardware fails and the repair store supply dwindles, only the latest versions of
the hardware are available as replacements. Often, in fact, the newer versions of the
hardware have higher throughput and lower power utilization, such that there is a benefit
to installing the newer versions. These newer hardware systems, of course, require newer
versions of software. All of thisleadsto version creep and generally guarantees that any
large distributed system will include multiple systems at different version levels.

Thus, large, complex systems, such as Navy battle management systems, will almost
certainly operate in a heterogeneous environment. The heterogeneity will encompass
disparate hardware, operating system, middleware and application systems. Successful
system deployment requires that this diversity be accommodated in the system design.

A.1.2. Fault Tolerance

Normal Operation w/ no State Information

Military battle management systems are similar in many respects to the information
systems in many commercial organizations in that the computer systems are mission-
critical. Any lapsein operation of the computer system resultsin afailure of the
organization to meet its objectives. Y et, these systems are complex and distributed,
incorporating thousands of components, each of which has alimited lifetime and can be
expected to fail according to a random, though statistical, pattern. If afailure of

Proposal Page 5 SBIR NO1-079



individual components were allowed to cause failure of the entire system, the overall
system would be so unreliable as to jeopardize the overall mission.

Instead, the computation and communication infrastructure in such large, complex
systems is designed to tolerate and isolate failures. If one computer node fails, other
computers eventually recognize that it has failed, pass that information on to applications
(perhaps as a communication failure), and continue to process other computation tasks. If
one network fails, routers and gateways between the networks will notice that the
network has failed, pass on that information to other parts of the system, and continue to
process other communication tasks. It is possible that neighboring computers and
networks will be affected by the failure, but generaly, the farther away afailureis, the
lesslikely it isto affect operation.

This mode of operation works because the separate components are largely self-contained
and have few dependencies on other components. A network router might depend upon a
nearby host to provideitsinitial parameters (such as the types of communications lines
and the static routes associated with the local network address ranges). Typically,
however, thisinformation is only needed at bootload time, and the supporting host can go
down and back up multiple timesin the interim.

In fact, this ability to tolerate smple failures is leveraged to support normal maintenance,
such as backups or system upgrades. Computer nodes can be taken off-line for normal
maintenance, either software or hardware. While the services provided by the node are no
longer available, other parts of the system continue otherwise normal operation. When
the maintenance is completed, the computer node is reintroduced into the network and
normal functioning can proceed.

Maintenance of Distributed State Information

The maintenance of information associated with multiple components is more difficult
and istypically left to the applications. Consider a web server with mostly static content,
for example, providing on-line access to recently released opinions from the U.S.
Supreme Court. Such aweb server can be provided with multiple DNS addresses (so-
called round robin addressing). In this case, if aweb browser fails to make a connection
to onetheoriginal address, it will eventually timeout and attempt to connect to the next
address, which will succeed. Assuming the second host has been supplied with the same
filesasthefirst, the user of the web browser often will not notice the switchover, other
than the one-time delay due to the timeout.

When dynamic state must be supported, however, the problem becomes harder. Consider
the same web browser, but now assume a banking application. Assume that a user has
used the web interface to transfer money from another bank to this bank. Now, if the
computer node goes down and another node replaces its function, the user will not be
pleased to find that his money is nowhere to be found. Thus, it is necessary, for many
applications, to maintain state across multiple machinesin a manner smilar to transaction
processing as provided by commercial DBMS's.

Proposal Page 6 SBIR NO1-079



Maintenance of the banking application data is relatively straightforward. The money
transfer activity can be described by 100 or 200 bytes of data, and the user iswilling to
delay his next activity for normal "human response” times of a few seconds. In fact, the
user probably won't even notice if his account is "frozen" for several seconds whilethe
information is transferred to a second system. Even if several thousand users are
performing such transfers smultaneoudy, the information can be transferred to the other
machine and acknowledgements can be returned within those few seconds that the user is
willing to wait.

Applications with larger data sets and/or shorter time constraints present a more difficult
situation, however. Consider atypical radar tracking application, for example. Assume
that there are 10,000 targets being tracked (as might happen in TBMD), with new reports
being received for each target every 10 seconds. Further assume that each report can be
characterized in 100 bytes and that the application maintains a history of the most recent
10 reports. If we design a solution that blindly copies over the entire data set (perhaps as
stored in atrack file object), we find that even a dedicated gigabit network will introduce
asgnificant delay in the processing. Also, processing of the target reportsislimited to
the capabilities of the one machine.

A smarter solution is to take advantage of application-specific knowledge. The first thing
to noteisthat the historical track reports are redundant. Since they are not going to
change, thereis probably no purpose in retransmitting them. The tradeoff for only
transferring the new track reportsis that the receiving system must repeat the origina
processing in order to regenerate state information, such as the Kalman error residue. The
choice of the more effective solution, however, depends on the resource constraints of the
processing system: it might be more effective to transmit the entire state—or it might be
better to duplicate the processing at the second node, or there might even be other
alternatives that are better.

A.2.An Analysis of the Problem in the Context of Navy Application

Although many aspects of military combat systems are ssimilar to commercial systems,
there are numerous differences that can affect the selection of solution patterns for Navy
battle management systems, such as are planned for DD-21,

A.2.1. Complex, Real-Time Systems

One distinguishing feature is the real-time nature of the systems. Generally, commercial
systems can be real-time or they can be complex, distributed systems. There are few
commercial systemsthat are both. Military systems, on the other hand, are often both
real-time and complex, distributed systems. The hallmark of future military systems will
be the capability of correctly operating in more complex contexts than the enemy can.

Proposal Page 7 SBIR NO1-079



The purpose of military weapons is to disable the enemy's fighting capacity, which is
usually performed by destroying the enemy's weapons and often by killing enemy forces.
Because the enemy has similar but opposing goals, military combat systems are often
life-critical. The AAW system contemplated for the DD-21 system, for example, must
process incoming radar target reports to monitor existing traffic and detect new threats,
follow the progress of several in-flight missiles, and manage the targeting of illumination
radar for each in-flight missile. If the real-time constraints are not met, the threats will not
be detected and/or the missiles will not destroy the threats. Successful incursion of the
missile into the ship will result in millions of dollars worth of damage and the loss of
human life. Perhaps even more importantly, the ship could be disabled and its defensive
capabilities eliminated. Thiswould imperil the next ship, and then the next, and then the
next.

Failure Characteristics

Most commercial systems are designed to recover from limited failures. Many
commercial DBMS's for example, log datato a special disk in support of transactions. If
the computer goes down for any reason, it can use the data on the disk when it comes
back up in order to determine the state of computation and continue from that state.
RAID disk controllers provide protection from disk driver failures. Still, these systems
typically only protect against one failure at atime. If the computer goes down and the
logging disk fails, the transactions are lost. If the RAID disk controller itself fails, access
to the data is unavailable until it isreplaced. If two disksfails, a subset of the datais also
lost.

Even commercial fault tolerant systems, such as Tandem and Stratus, do not protect
against certain situations with multiple failures. Stratus VOS system, for example, does
not (by itself) protect against physical damage to the system processor. Tandem's
Guardian system does not protect against concurrent failure of two (physically
collocated) processors that happen to contain any pair of primary and the backup
processes that are part of an application.

Navy combat systems, however, are expected to encounter such situations. Indeed, they
can be expected to maintain rated performance. Any incoming weapons that manage to
hit the ship can be expected to destroy most or all of the processing capability within the
immediate battle damage confinement area. Thus, for any particular application task, it is
useful to place the primary and backup processing capabilitiesin physically distant
locations, preferably separated by one or two bulkheads. These damage confinement
bulkheads, by their very nature, are likely to limit the incursions presented by
communication cables. In practice, thiswill likely mean that communication between
primary and backup processors will occur via shared, high-speed, routed networks, such
as Ethernet and its higher speed cousins, including gigabit network over fiber optic
cables.

A.2.2. Heterogeneity

Proposal Page 8 SBIR NO1-079



Several technical approaches should be considered to address the issues introduced by
heterogeneity. We will use the contemplated military systems as examplesin order to
provide a practical perspective. We will begin with areview of the current situation.

Separate Compilation

Most software today iswritten in a high-level language. Often the language is a standard,
commercially supported language, such as C, C++, or Ada. Sometimes the language is
special to the military. Usually, the source code is trand ated by a compiler into object
modules that contain processor-specific instructions. These object modules are then link-
edited, joined together and combined with object modules from common libraries, to
form executable programs. Finally, these executable programs must be distributed to each
ship and loaded on the appropriate computers. If a component isreplaced in thefield, the
appropriate executable programs much be identified, located and installed on the
replacement component.

Dueto differences in the compilation and link-edit tools and environments, each distinct
flavor of executable program must be specifically tested, both for individual correct
operation and for interoperability with other flavors. Some characteristics that indicate
that separate testing is required include:

processor type, such as HP's PA-RISC and Intd's Pentium
operating system type, such as HP's HP-UX and Microsoft's Windows NT

operating system release, such as HP-UX 10 and HP-UX 11,or Windows NT and
Windows 2000. Different Windows NT's service packs can also impact function.

These application executable programs also normally require common shared libraries,
which are typically installed as part of the vendor's operating system. They can also
require the presence of additional middleware, such as CORBA, DCOM, or Web servers.
The need for this additional software must also be identified and the appropriate software
must be located and installed on each system. (Variancesin versions of this software can
also beindicators of the need for additional testing configurations.)

Fat Binaries

So-called fat binaries are executable programs that contain machine code for multiple
different processor types. Perhaps the best known instance of this deployment strategy
was NeXT, which created executable files that contained machine code for both Motorola
680x0 and Intel ix86 processors. Typically these files were produced by a vendor-
produced compiler, which could use a common front-end and then separate compiler
back-ends to trand ate the intermediate code into the multiple machine-specific

instruction sets.

NeXT deployed these filesin order to ssimplify distribution of its own software. Several
problems remained, however. First, there were significant differences between the

Proposal Page 9 SBIR NO1-079



hardware platforms. NeXT had built special computers with the 680x0 processors with
specialized graphics and printer support components. The ix86 platforms were IBM-PC-
compatibles. The processors were also significantly different: the 680x0 was big-endian,
the ix96 was little-endian; alignment requirements were different, such that one machine
type would fault in Situations that the other would not. In the end, while this strategy
might have reduced NeXT's distribution costs, it did not seem to reduce the necessity of
separately testing multiple system flavors. In addition, third party suppliers did not
widely adopt this strategy. Thus, users had to separately identify, acquire and install
packages for each processor type. Finally, many customers were surprised and
complained about the need for significant amounts of additional disk storage.

Processor Emulation/Simulation in Software

The machine code instructions for one processor can be interpreted and executed by
another. Many such emulators exist, particularly in the open source world for various
historical systems. Only a few commercial versions, however, seem to have been
integrated into the standard execution environment. One example was Appl€'s conversion
from the Motorola 680x0 to the to the IBM/Motorola Power PC. When the PowerPC
version of the Mac operating system detected that it had been told to execute an
executable program in 680x0-form, it instead invoked a software interpreter for the
680x0 instruction set. This appears to have been an attempt to ease the devel opment
process at Apple as successive releases of the OS have eliminated more and more of the
680x0 code. This migration strategy seems to have worked well for Apple, but they
benefited by having moved to a significantly faster processor. Still, user benchmarks
indicated that 680x0 code executed between 5 and 100 times sl ower.

Digital Equipment Corporation used a similar strategy in converting from the VAX to the
Alpha processor. Digital, however, applied proprietary compiler technology to the
problem and trandated the VAX instructions to equivalent Alpha instructions. Because
the Alpha processor was significantly faster than the VAX, the emulated VAX code often
ran faster than the original. Digital also applied this compiler technology for its port of
Microsoft's Windows NT to the Alpha processor. In that case, the emulated ix86 code
was reported to run at rates from half speed to parity.

Processor Emulation/Simulation in Hardware or Microcode

Whereas the emulation strategy described above emulated other processor types using
ordinary programs usually running with no special privileges, some machines perform
execution using special hardware or using specially privileged code. Early examples
include IBM's emulation of its earlier 709x and 1401 processors on various models of its
newly introduced 360 processor family. The particular 360 model s had been specially
designed to provide the emulation, and the migration strategy seemed to have worked
well.

A modern instance is IBM's AS400. Thereisno "native' form of this processor type.

Instead, the defined instruction set is very high-level (very CISC), and IBM has
interpreted the AS/400 instruction set using various native processors. At least one

Proposal Page 10 SBIR NO1-079



current version of the AS/400 uses a variant of the PowerPC processor and pre-trand ates
the AS/400 instructions into Power PC instructions before execution. The result of the
trandation isnot visible externally, and the user of the system has no access to the
PowerPC level. To that user, the AS/400 executes its instructions natively, and the user
can move his programs from one member of the family to another without undue
difficulty.

Another modern instance is Crusoe from Transmeta. The Crusoe processor behavesin a
similar manner to the AS/400. The chip appearsto the user to be a clone of Intel's
Pentium line. In fact, the Crusoe chip "compiles’ the Pentium instructions to its native
format and actually executes those native instructions. The Crusoe chip isrelatively new
and Transmeta has only partially revealed its marketing strategy, but it appears that users
will have little or no access to the native level of the Crusoe chip.

Interpreted Code

Some languages can be executed from source, or from a minimally trandated version of
the source. Examplesinclude BASIC, Lisp, Smalltalk, FORTH, Perl, and several other
scripting languages. These languages are usually 2 to 10 times slower than equivalent
compiler code. Some these languages have devel oped large followings in specific areas.
BASIC remains popular for managing Windows, Lisp and Smalltalk remain very popul ar
in thefields of Artificial Intelligent and fast prototyping. Perl is very popular for common
system administration tasks. The usual problem with these languages is that their overall
popularity islimited and there is limited support for third-party packages and
middleware.

Most of the interpreted languages have associated compilers, which can boost their
performance to near that achievable with languages with separate compilation. In this
case, however, the compilers usually produce separate executable programs, and the same
problems arise as are encountered with today’ s separately compiled executabl es.

Virtual Machines

Another category is languages that require a significant compilation step, but which
produce instructions for a standardized virtual machine. An early example was p-code, as
produced by UCSD's Pascal compiler. The resulting module was machine-independent
and could be interpreted in many different environments. A more recent exampleis Sun's
Java. Also, Microsoft seems to be positioning its recently announced C# as an alternative
to Java. Interpreting Java byte code seems to operate at a similar speed to Apple's 680x0
emulator, but because the instructions used by the virtual machine were designed
specifically to ssimplify emulation, the worst cases have been eliminated, and interpreted
Java code appears to execute from 5 to 10 times slower than equivalent native code.

Java also includes a capahility for a flash compiler (a so-called Just-In-Time compiler).
This compiler works from the virtual machine instructions and produces native processor
instructions. Such code seems to execute only afactor of 1.5 to a factor of 5 dower than
equivalent native code. Recently, several organizations have announced significant

Proposal Page 11 SBIR N01-079



progressin "hot-spot” compilers. This dynamic compiler technology produces code that
promises to run with minimal speed differences from compiled native code. Each of these
compiler technologies works from machine-independent Java byte code files. Thus, there
need be only one form of executable module, which can then be run at near-native speeds
on multiple processor types.

There also exist standard compilers for Java, which compile Java source or Java byte
codes to native executable file format. This process produces executable programs similar
IS most respects to the separately compiled programs described originally. It should also
be noted that several groups have produced or are creating Java processors, which
execute Java byte codes as their native instruction set. So far, most of these processors
have targeted small embedded system environments, such as set-top boxes or robotic
systems.

A.2.3. Fault Tolerance

As noted previoudy, many commercially available systems that support fault tolerant
operation do not provide adequate support for systemsthat are likely to encounter severe
physical damage. There appear to be only a few systems that would support fault tolerant
operation for systems separated by a significant distance.

CORBA Fault Tolerance

Members of the Object Management Group (OMG) recently completed the Fault
Tolerant COBRA (FT-CORBA) specification, which implements an active replication
model and will allow the replication of objects as managed within the CORBA modd.
Although several implementations are underway, including a few commercial versions,
none are yet available.

Group Communications

Group communicationsisamodel of communicating between multiple computers.
Simplistically described, group communications provides the ability to do an atomic
broadcast within a group. Such an atomic broadcast in a distributed environment can be
compared to atransaction for traditional DBMS's. A group is a set of cooperating
processes that want to communicate with each other. An atomically broadcast messageis
directed toward a group, and is either delivered to all group members or none.
Applications can then leverage this basic function in order to easily implement
application-specific fault tolerant strategies.

One of the earliest implementations of group communications was the ISIS system,
which was developed at Cornell University. 1SIS was spun off into a commercial
company and was widely used on Wall Street for financial transactions systems. The
commercial product appears to have been discontinued. Cornell later devel oped
Ensemble, aresearch system similar to ISIS with additional capabilities. Ensembleis
available for general use.

Proposal Page 12 SBIR NO1-079



The Open Group has developed CORDS and GIPC. CORDS is ageneral purpose
framework for developing communication protocols. GIPC is a Group IPC system that
supports group communication. A distinguishing feature of CORDS and GIPC isthat
they were designed to support group communications in real-time applications. A
prototype demonstration systems that uses CORDS and GIPC to manipulate a ball sorting
apparatus can detect and recover from a node failure in less than 400 msecs'

A.3.Proposed Solution

A.4.Technical Approach

The Open Group Research Ingtitute believes that an opportunity existsto provide
middleware support for real-time, fault-tolerant distributed systems and proposes to
investigate this opportunity using Navy combat systems as prototype applications.

A.4.1. Overview

The proposed solution combines recent developmentsin the Java and CORBA
communities with the real-time capabilities of the CORDS/GIPC group communications
system. By enhancing those basic technol ogies with components that provide easily
accessible fault-tol erance methods, the resulting system would be useful in military
combat systems as well as commercial environments, such as factory floor automation
and stock exchanges.

The technology base of the proposed system comprises an implementation of real-time
Java combined with the CORDS/GIPC group communication system. The capability of
CORDS and GIPC would be made available via Java objects. In addition, additional
objects would be created that would utilize the basic GIPC capahilitiesto provide simple
methods for implementing object replication, and active and passive backup services. The
combination provides a productive environment that eliminates many of the problems
associated with mixing multiple hardware platforms and/or multiple operating
environments. It also provides an effective tool base for implementing efficient, fault-
tolerant applications.

We describe below each of the major building blocks that are expected to be in the
design.

A.4.2. Real-time Java
A fundamental part of the strategy is the use of areal-time version of Java. Java provides
an execution environment that is largely independent of both the underlying hardware
platform and of the operating system. The Java class object is machine independent: the

1 L.M. Feeney, P. Bernadat, F. Travostino, Characterizing Group Communication Middleware for Real-
time Distributed Systems, IEEE 1997 Real-Time Systems Symposium, Kyato, Japan.

Proposal Page 13 SBIR NO1-079



exact same executable object can run on any Java machine. Each object runsin the
context of a virtual machine that provides identical behavior for aimost all machine
characteristics, including integer ranges. The use of Java is becoming very popular, and
Java products now exist for many environments, ranging from constrained embedded
systems, such as set-top boxes, to World Wide Web server applications.

The creation of aversion of Java capable of supporting real-time applications with
specified time constraints was the first enhancement proposed for Java. The result was
recently published?, and several implementations of the real-time specification are
currently under development by members of the specification expert group. Substantial
portions of the reference implementation, which is being developed by IBM, have already
been released and the rest is expected soon.

Real -time Java incorporates an innovative method for dealing with the garbage collection
problem. Certain real-time threads can be declared to be higher priority than the garbage
collector and can, therefore, defer the execution of the garbage collector. To prevent
deadl ock, these threads must all ocate space only from certain reserved heaps, which are
not subject to garbage collection. A method is then provided to allow information from
the non-garbage collected heaps to normal processing space. Although this method is
highly promising, the ability for real-time application programmers to grasp the concepts
and use it effectively remainsto be proven.

A.43. CORDS/GIPC

CORDS was devel oped by The Open Group Research Ingtitute in the mid-1990’s. It was
originally adapted from the x-kernel, which is a communication framework that has been
created at the University of Arizona. A version of CORDS was acquired by DASCOM
and shipped commercially as part of a security router product created by DASCOM.
Subsequently, The Open Group Research Institute concelved and implemented the
concept of paths, which reserves CPU and buffer resources for certain threads and
enables operation in real-time applications. Using the paths concepts we then devel oped
GIPC, which was specially designed to support group communications in real-time
applications.

A.44. ACE

The Adaptive Communication Environment (ACE) is an object-oriented framework and
tool-kit for implementing distributed systems in heterogeneous environments. ACE
implements patterns commonly used in such systems and ssimplifies devel opment. In
addition, the ACE APl is generally independent of the underlying OS. Thus, use of ACE
aleviates or eiminates several problems that arise due to the existence of a
heterogeneous infrastructure. ACE was originally developed by the Distributed Object
Computing group at Washington University at St. Louis.

2..., The Real-Time Specification for Java, Addison Wesley, ISBN 0-201-70323-8

Proposal Page 14 SBIR N01-079



Although ACE was originally created as a research project and continues to be devel oped
by groups as several universities, ACE is also available from and is supported by at least
two commercial organizations. ACE has been successfully applied in several real-time
projects, including at least one aerospace application. We anticipate usng ACE in
support of enhancements to the real-time Java and CORDS/GIPC components.

A.5.Benefits of Approach

A.5.1. Inour approach, only one form of executable object exists, and that
object can execute on any node regar dless of the underlying platform.

The Java class object is machine independent: the exact same executable object can run
on any Java virtual machine. Each object runsin a context that provides identical
behavior for almost all machine characteristics, including integer ranges.

A.5.2. Our approach enables efficient fault-tolerant applicationsfor systems
with real-time constraints.

The application programmer can leverage the power of the group communications
programming model to eliminate the need for brute force fault tolerance techniques, such
as binary copies of data bases, that would introduce intolerable delaysin system with
real-time constraints. Instead, the programmer can easily take advantage of application
specific characteristics that result in a viable system.

A.5.3. Our approach minimizing training costs for developers by leveraging
the Java programmer base.

The use of Java is becoming very widespread, and Java products now exist for many
environments, from constrained embedded systems, such as set-top boxes, to World Wide
Web server applications. Many developers are learning Java, attracted by its ability to
provide applet services via web browser frameworks.

A.5.4. Our approach lever ages the existing base of Ada applications and
developersin the U.S. military.

The Java virtual machineis not limited to executing programs written in Java. In
particular, thereis an existing commercial product that compiles Ada to the Java virtua
machineingtruction set. In addition, thereis an open source project to create such a
compiler adjunct for the Free Software Foundation’s gcc compiler.

Thus, real-time, fault-tolerant applications could be written in either Java or Ada. This
software would be compiled to Java class objects as an end-result of the devel opment
process. In either case, the resulting Java classes are processor-independent and will run
on any machine with an interpreter and/or a compiler for the Java virtua machine.
Optional optimization on each target machine would provide execution speeds
approximating that of native compiled code.

Proposal Page 15 SBIR NO1-079



A.5.5. Useof Java fosters creation of correct code.

Standard Javais a safe language in that a programmer can not overwrite portions of the
auxiliary implementation. Thus, Java applications are not subject to many of the exploits
that have been applied to C-based applications, such as sendmail or the Internet DNS
servers. This safety has been provided as a side effect of Java's use of garbage collection
as the modd for dynamic memory management. Traditionally, languages that utilize
garbage collection memory management have not succeeded in real-time applications
because the garbage collection process interfered with the real-time execution and
prevented successful adherence to deadlines.

B. Phase| Technical Objectives
The technical objectives of the Phase | effort will be to:

1) identify the requirements for middleware support of complex, real-time, fault-tolerant
distributed systemsin military and civilian applications,

2) evaluate and qualify the components dated for use in such as system,

3) create atechnical design that addresses the identified requirements, and

4) create a development project plan for Phase Il (option).

C. Phasel Work Plan

For phase |, we propose the following activities over a six month time span to create a
software architecture:

C.1.Requirements Definition

C.1.1. Commercial: Research and analyze commercial real-time, fault-
tolerant systems. Identify and char acterize time constraints during
normal operation and during fault recovery. I dentify strategies for
efficient fault-tolerant operation.

C.1.2. Military: Research and analyze military real-time, fault-toler ant
systems. I dentify and char acterize time constraints during normal
operation and during fault recovery. I dentify strategiesfor efficient
fault-tolerant operation.

C.1.3. Identify target operating systems and execution environments,
including any additional softwar e that isrequired for application
execution. Verify that target operating environment can meet time
constraints required by identified applications.

C.2.Evaluate Components

The application requirements must be refined into specific evaluation criteriafor each
potential component. Then each component must be evaluated in light of those criteria.

Proposal Page 16 SBIR NO1-079



C.2.1. Evaluate Real-Time Java implementation
Expected evaluation criteriainclude:

Is the throughput performance of the real-time Java implementation sufficient? I's hot-
spot optimization required?

Does the Java garbage collector interfere with meeting real -time deadlines?
Can the real-time heaps defined in real-time Java be effectively used?
Which, if any, of the various implementations of real-time Java should be selected?
C.2.2. Evaluate ACE
Expected evaluation criteriainclude:

Should the use of ACE be replaced by JACE, which isanew version of ACE
currently under development and targeted specifically at Java applications?

C.2.3. Evaluate CORDS/GIPC
Expected evaluation criteriainclude:

Can CORDS/GIPC meet the required performance and recovery time requirements for
the applications?

C.3.Design Development
C.3.1. Defineoverall architecture

C.3.2. Identify necessary extensions to existing components needed for read-
time and/or fault-tolerant application support.

C.3.3. Develop example application implementations for identified
applications for selected target environment, including specific examples
of data flow and fault recovery.

C.3.4. Review and char acterize needs for instrumentation in system.

C.3.5. Production of design document and feasibility report.

C.4.0OPTION: Phasell preparation
C.4.1. Preparework plan for Phase Il development

Prepare Phase |l Transition/M arketing Plan

Proposal Page 17 SBIR N01-079



