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PREFACE.

THE subject-matter of this book is a historical summary of the
development of mathematics, illustrated by the lives and discoveries of
those to whom the progress of the science is mainly due. It may serve as
an introduction to more elaborate works on the subject, but primarily
it is intended to give a short and popular account of those leading facts
in the history of mathematics which many who are unwilling, or have
not the time, to study it systematically may yet desire to know.

The first edition was substantially a transcript of some lectures
which I delivered in the year 1888 with the object of giving a sketch of
the history, previous to the nineteenth century, that should be intelli-
gible to any one acquainted with the elements of mathematics. In the
second edition, issued in 1893, I rearranged parts of it, and introduced
a good deal of additional matter.

The scheme of arrangement will be gathered from the table of con-
tents at the end of this preface. Shortly it is as follows. The
contains a brief statement of what is known concerning the mathemat-
ics of the Egyptians and Phoenicians; this is introductory to the history
of mathematics under Greek influence. The subsequent history is di-
vided into three periods: first, that under Greek influence, chapters
to [viI} second, that of the middle ages and renaissance, chapters
to and lastly that of modern times, chapters to [x1x}

In discussing the mathematics of these periods I have confined my-
self to giving the leading events in the history, and frequently have
passed in silence over men or works whose influence was comparatively
unimportant. Doubtless an exaggerated view of the discoveries of those
mathematicians who are mentioned may be caused by the non-allusion
to minor writers who preceded and prepared the way for them, but in
all historical sketches this is to some extent inevitable, and I have done
my best to guard against it by interpolating remarks on the progress
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of the science at different times. Perhaps also I should here state that
generally I have not referred to the results obtained by practical as-
tronomers and physicists unless there was some mathematical interest
in them. In quoting results I have commonly made use of modern no-
tation; the reader must therefore recollect that, while the matter is
the same as that of any writer to whom allusion is made, his proof is
sometimes translated into a more convenient and familiar language.

The greater part of my account is a compilation from existing histo-
ries or memoirs, as indeed must be necessarily the case where the works
discussed are so numerous and cover so much ground. When authori-
ties disagree I have generally stated only that view which seems to me
to be the most probable; but if the question be one of importance, 1
believe that I have always indicated that there is a difference of opinion
about it.

I think that it is undesirable to overload a popular account with
a mass of detailed references or the authority for every particular fact
mentioned. For the history previous to 1758, I need only refer, once for
all, to the closely printed pages of M. Cantor’s monumental Vorlesungen
tber die Geschichte der Mathematik (hereafter alluded to as Cantor),
which may be regarded as the standard treatise on the subject, but
usually I have given references to the other leading authorities on which
I have relied or with which I am acquainted. My account for the period
subsequent to 1758 is generally based on the memoirs or monographs
referred to in the footnotes, but the main facts to 1799 have been also
enumerated in a supplementary volume issued by Prof. Cantor last year.
I hope that my footnotes will supply the means of studying in detail
the history of mathematics at any specified period should the reader
desire to do so.

My thanks are due to various friends and correspondents who have
called my attention to points in the previous editions. I shall be grateful
for notices of additions or corrections which may occur to any of my
readers.

W. W. ROUSE BALL.

TRINITY COLLEGE, CAMBRIDGE.



NOTE.

THE fourth edition was stereotyped in 1908, but no material changes
have been made since the issue of the second edition in 1893, other
duties having, for a few years, rendered it impossible for me to find
time for any extensive revision. Such revision and incorporation of
recent researches on the subject have now to be postponed till the cost
of printing has fallen, though advantage has been taken of reprints to
make trivial corrections and additions.

W. W. R. B.

TRINITY COLLEGE, CAMBRIDGE.
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CHAPTER I.

EGYPTIAN AND PHOENICIAN MATHEMATICS.

THE history of mathematics cannot with certainty be traced back to
any school or period before that of the Ionian Greeks. The subsequent
history may be divided into three periods, the distinctions between
which are tolerably well marked. The first period is that of the history
of mathematics under Greek influence, this is discussed in chapters
to the second is that of the mathematics of the middle ages and
the renaissance, this is discussed in chapters to the third is
that of modern mathematics, and this is discussed in chapters to
XIXL
Although the history of mathematics commences with that of the
Ionian schools, there is no doubt that those Greeks who first paid atten-
tion to the subject were largely indebted to the previous investigations
of the Egyptians and Phoenicians. Our knowledge of the mathemati-
cal attainments of those races is imperfect and partly conjectural, but,
such as it is, it is here briefly summarised. The definite history begins
with the next chapter]

On the subject of prehistoric mathematics, we may observe in the
first place that, though all early races which have left records behind
them knew something of numeration and mechanics, and though the
majority were also acquainted with the elements of land-surveying, yet
the rules which they possessed were in general founded only on the
results of observation and experiment, and were neither deduced from
nor did they form part of any science. The fact then that various
nations in the vicinity of Greece had reached a high state of civilisation
does not justify us in assuming that they had studied mathematics.

The only races with whom the Greeks of Asia Minor (amongst whom
our history begins) were likely to have come into frequent contact were
those inhabiting the eastern littoral of the Mediterranean; and Greek
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tradition uniformly assigned the special development of geometry to the
Egyptians, and that of the science of numbers either to the Egyptians
or to the Phoenicians. I discuss these subjects separately.

First, as to the science of numbers. So far as the acquirements of
the Phoenicians on this subject are concerned it is impossible to speak
with certainty. The magnitude of the commercial transactions of Tyre
and Sidon necessitated a considerable development of arithmetic, to
which it is probable the name of science might be properly applied. A
Babylonian table of the numerical value of the squares of a series of
consecutive integers has been found, and this would seem to indicate
that properties of numbers were studied. According to Strabo the Tyr-
ians paid particular attention to the sciences of numbers, navigation,
and astronomy; they had, we know, considerable commerce with their
neighbours and kinsmen the Chaldaeans; and Bockh says that they
regularly supplied the weights and measures used in Babylon. Now the
Chaldaeans had certainly paid some attention to arithmetic and geom-
etry, as is shown by their astronomical calculations; and, whatever was
the extent of their attainments in arithmetic, it is almost certain that
the Phoenicians were equally proficient, while it is likely that the knowl-
edge of the latter, such as it was, was communicated to the Greeks. On
the whole it seems probable that the early Greeks were largely indebted
to the Phoenicians for their knowledge of practical arithmetic or the art
of calculation, and perhaps also learnt from them a few properties of
numbers. It may be worthy of note that Pythagoras was a Phoenician;
and according to Herodotus, but this is more doubtful, Thales was also
of that race.

I may mention that the almost universal use of the abacus or swan-
pan rendered it easy for the ancients to add and subtract without any
knowledge of theoretical arithmetic. These instruments will be de-
scribed later in chapter it will be sufficient here to say that they
afford a concrete way of representing a number in the decimal scale,
and enable the results of addition and subtraction to be obtained by a
merely mechanical process. This, coupled with a means of representing
the result in writing, was all that was required for practical purposes.

We are able to speak with more certainty on the arithmetic of the
Egyptians. About forty years ago a hieratic papyrus,! forming part

1See Ein mathematisches Handbuch der alten Aegypter, by A. Eisenlohr, second
edition, Leipzig, 1891; see also Cantor, chap. i; and A Short History of Greek Math-
ematics, by J. Gow, Cambridge, 1884, arts. 12-14. Besides these authorities the
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of the Rhind collection in the British Museum, was deciphered, which
has thrown considerable light on their mathematical attainments. The
manuscript was written by a scribe named Ahmes at a date, accord-
ing to Egyptologists, considerably more than a thousand years before
Christ, and it is believed to be itself a copy, with emendations, of a trea-
tise more than a thousand years older. The work is called “directions
for knowing all dark things,” and consists of a collection of problems
in arithmetic and geometry; the answers are given, but in general not
the processes by which they are obtained. It appears to be a summary
of rules and questions familiar to the priests.

The first part deals with the reduction of fractions of the form
2/(2n + 1) to a sum of fractions each of whose numerators is unity:
for example, Ahmes states that % is the sum of i, %, ﬁ, and 2—;2;
and % is the sum of %, 6—;9, and ﬁ. In all the examples n is less than
50. Probably he had no rule for forming the component fractions, and
the answers given represent the accumulated experiences of previous
writers: in one solitary case, however, he has indicated his method,
for, after having asserted that % is the sum of % and %, he adds that
therefore two-thirds of one-fifth is equal to the sum of a half of a fifth
and a sixth of a fifth, that is, to % + %.

That so much attention was paid to fractions is explained by the
fact that in early times their treatment was found difficult. The Egyp-
tians and Greeks simplified the problem by reducing a fraction to the
sum of several fractions, in each of which the numerator was unity,
the sole exception to this rule being the fraction % This remained the
Greek practice until the sixth century of our era. The Romans, on
the other hand, generally kept the denominator constant and equal to
twelve, expressing the fraction (approximately) as so many twelfths.
The Babylonians did the same in astronomy, except that they used
sixty as the constant denominator; and from them through the Greeks
the modern division of a degree into sixty equal parts is derived. Thus
in one way or the other the difficulty of having to consider changes in
both numerator and denominator was evaded. To-day when using dec-
imals we often keep a fixed denominator, thus reverting to the Roman
practice.

After considering fractions Ahmes proceeds to some examples of the
fundamental processes of arithmetic. In multiplication he seems to have

papyrus has been discussed in memoirs by L. Rodet, A. Favaro, V. Bobynin, and
E. Weyr.



CH. 1] EGYPTIAN AND PHOENICIAN MATHEMATICS 4

relied on repeated additions. Thus in one numerical example, where he
requires to multiply a certain number, say a, by 13, he first multiplies
by 2 and gets 2a, then he doubles the results and gets 4a, then he again
doubles the result and gets 8a, and lastly he adds together a, 4a, and
8a. Probably division was also performed by repeated subtractions,
but, as he rarely explains the process by which he arrived at a result,
this is not certain. After these examples Ahmes goes on to the solution
of some simple numerical equations. For example, he says “heap, its
seventh, its whole, it makes nineteen,” by which he means that the
object is to find a number such that the sum of it and one-seventh of
it shall be together equal to 19; and he gives as the answer 16 + % + %,
which is correct.

The arithmetical part of the papyrus indicates that he had some
idea of algebraic symbols. The unknown quantity is always represented
by the symbol which means a heap; addition is sometimes represented
by a pair of legs walking forwards, subtraction by a pair of legs walking
backwards or by a flight of arrows; and equality by the sign <.

The latter part of the book contains various geometrical problems
to which I allude later. He concludes the work with some arithmetico-
algebraical questions, two of which deal with arithmetical progressions
and seem to indicate that he knew how to sum such series.

Second, as to the science of geometry. Geometry is supposed to have
had its origin in land-surveying; but while it is difficult to say when the
study of numbers and calculation—some knowledge of which is essen-
tial in any civilised state—became a science, it is comparatively easy to
distinguish between the abstract reasonings of geometry and the prac-
tical rules of the land-surveyor. Some methods of land-surveying must
have been practised from very early times, but the universal tradition
of antiquity asserted that the origin of geometry was to be sought in
Egypt. That it was not indigenous to Greece, and that it arose from
the necessity of surveying, is rendered the more probable by the deriva-
tion of the word from yn, the earth, and petpéw, I measure. Now
the Greek geometricians, as far as we can judge by their extant works,
always dealt with the science as an abstract one: they sought for the-
orems which should be absolutely true, and, at any rate in historical
times, would have argued that to measure quantities in terms of a unit
which might have been incommensurable with some of the magnitudes
considered would have made their results mere approximations to the
truth. The name does not therefore refer to their practice. It is not,
however, unlikely that it indicates the use which was made of geome-
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try among the Egyptians from whom the Greeks learned it. This also
agrees with the Greek traditions, which in themselves appear probable;
for Herodotus states that the periodical inundations of the Nile (which
swept away the landmarks in the valley of the river, and by altering its
course increased or decreased the taxable value of the adjoining lands)
rendered a tolerably accurate system of surveying indispensable, and
thus led to a systematic study of the subject by the priests.

We have no reason to think that any special attention was paid to
geometry by the Phoenicians, or other neighbours of the Egyptians. A
small piece of evidence which tends to show that the Jews had not paid
much attention to it is to be found in the mistake made in their sacred
books,! where it is stated that the circumference of a circle is three
times its diameter: the Babylonians? also reckoned that 7 was equal to
3.

Assuming, then, that a knowledge of geometry was first derived by
the Greeks from Egypt, we must next discuss the range and nature
of Egyptian geometry.®> That some geometrical results were known
at a date anterior to Ahmes’s work seems clear if we admit, as we
have reason to do, that, centuries before it was written, the following
method of obtaining a right angle was used in laying out the ground-
plan of certain buildings. The Egyptians were very particular about
the exact orientation of their temples; and they had therefore to obtain
with accuracy a north and south line, as also an east and west line. By
observing the points on the horizon where a star rose and set, and taking
a plane midway between them, they could obtain a north and south line.
To get an east and west line, which had to be drawn at right angles to
this, certain professional “rope-fasteners” were employed. These men
used a rope ABC'D divided by knots or marks at B and C| so that the
lengths AB, BC', C'D were in the ratio 3 : 4 : 5. The length BC was
placed along the north and south line, and pegs P and () inserted at the
knots B and C. The piece BA (keeping it stretched all the time) was
then rotated round the peg P, and similarly the piece C'D was rotated
round the peg @, until the ends A and D coincided; the point thus
indicated was marked by a peg R. The result was to form a triangle
PQR whose sides RP, P(Q), QR were in the ratio 3 : 4 : 5. The angle of

1. Kings, chap. vii, verse 23, and II. Chronicles, chap. iv, verse 2.

2See J. Oppert, Journal Asiatique, August 1872, and October 1874.

3See Eisenlohr; Cantor, chap. ii; Gow, arts. 75, 76; and Die Geometrie der alten
Aegypter, by E. Weyr, Vienna, 1884.
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the triangle at P would then be a right angle, and the line PR would
give an east and west line. A similar method is constantly used at the
present time by practical engineers for measuring a right angle. The
property employed can be deduced as a particular case of Euc. 1, 48;
and there is reason to think that the Egyptians were acquainted with
the results of this proposition and of Euc. 1, 47, for triangles whose
sides are in the ratio mentioned above. They must also, there is little
doubt, have known that the latter proposition was true for an isosceles
right-angled triangle, as this is obvious if a floor be paved with tiles
of that shape. But though these are interesting facts in the history
of the Egyptian arts we must not press them too far as showing that
geometry was then studied as a science. Our real knowledge of the
nature of Egyptian geometry depends mainly on the Rhind papyrus.

Ahmes commences that part of his papyrus which deals with ge-
ometry by giving some numerical instances of the contents of barns.
Unluckily we do not know what was the usual shape of an Egyptian
barn, but where it is defined by three linear measurements, say a, b,
and ¢, the answer is always given as if he had formed the expression
axbx(c+ %c) He next proceeds to find the areas of certain rectilineal
figures; if the text be correctly interpreted, some of these results are
wrong. He then goes on to find the area of a circular field of diam-
eter 12—mno unit of length being mentioned—and gives the result as
(d— %d)Q, where d is the diameter of the circle: this is equivalent to
taking 3.1604 as the value of 7, the actual value being very approxi-
mately 3.1416. Lastly, Ahmes gives some problems on pyramids. These
long proved incapable of interpretation, but Cantor and Eisenlohr have
shown that Ahmes was attempting to find, by means of data obtained
from the measurement of the external dimensions of a building, the
ratio of certain other dimensions which could not be directly measured:
his process is equivalent to determining the trigonometrical ratios of
certain angles. The data and the results given agree closely with the
dimensions of some of the existing pyramids. Perhaps all Ahmes’s ge-
ometrical results were intended only as approximations correct enough
for practical purposes.

It is noticeable that all the specimens of Egyptian geometry which
we possess deal only with particular numerical problems and not with
general theorems; and even if a result be stated as universally true,
it was probably proved to be so only by a wide induction. We shall
see later that Greek geometry was from its commencement deductive.
There are reasons for thinking that Egyptian geometry and arithmetic
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made little or no progress subsequent to the date of Ahmes’s work; and
though for nearly two hundred years after the time of Thales Egypt
was recognised by the Greeks as an important school of mathematics,
it would seem that, almost from the foundation of the Ionian school,
the Greeks outstripped their former teachers.

It may be added that Ahmes’s book gives us much that idea of
Egyptian mathematics which we should have gathered from statements
about it by various Greek and Latin authors, who lived centuries later.
Previous to its translation it was commonly thought that these state-
ments exaggerated the acquirements of the Egyptians, and its discovery
must increase the weight to be attached to the testimony of these au-
thorities.

We know nothing of the applied mathematics (if there were any)
of the Egyptians or Phoenicians. The astronomical attainments of the
Egyptians and Chaldaeans were no doubt considerable, though they
were chiefly the results of observation: the Phoenicians are said to
have confined themselves to studying what was required for navigation.
Astronomy, however, lies outside the range of this book.

I do not like to conclude the chapter without a brief mention of
the Chinese, since at one time it was asserted that they were familiar
with the sciences of arithmetic, geometry, mechanics, optics, naviga-
tion, and astronomy nearly three thousand years ago, and a few writers
were inclined to suspect (for no evidence was forthcoming) that some
knowledge of this learning had filtered across Asia to the West. It is
true that at a very early period the Chinese were acquainted with sev-
eral geometrical or rather architectural implements, such as the rule,
square, compasses, and level; with a few mechanical machines, such
as the wheel and axle; that they knew of the characteristic property of
the magnetic needle; and were aware that astronomical events occurred
in cycles. But the careful investigations of L. A. Sédillot! have shown
that the Chinese made no serious attempt to classify or extend the few
rules of arithmetic or geometry with which they were acquainted, or to
explain the causes of the phenomena which they observed.

The idea that the Chinese had made considerable progress in the-
oretical mathematics seems to have been due to a misapprehension of
the Jesuit missionaries who went to China in the sixteenth century.

1See Boncompagni’s Bulletino di bibliografia e di storia delle scienze matem-
atiche e fisiche for May, 1868, vol. i, pp. 161-166. On Chinese mathematics, mostly
of a later date, see Cantor, chap. xxxi.
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In the first place, they failed to distinguish between the original sci-
ence of the Chinese and the views which they found prevalent on their
arrival—the latter being founded on the work and teaching of Arab
or Hindoo missionaries who had come to China in the course of the
thirteenth century or later, and while there introduced a knowledge of
spherical trigonometry. In the second place, finding that one of the
most important government departments was known as the Board of
Mathematics, they supposed that its function was to promote and su-
perintend mathematical studies in the empire. Its duties were really
confined to the annual preparation of an almanack, the dates and pre-
dictions in which regulated many affairs both in public and domestic
life. All extant specimens of these almanacks are defective and, in many
respects, inaccurate.

The only geometrical theorem with which we can be certain that
the ancient Chinese were acquainted is that in certain cases (namely,
when the ratio of the sides is 3 : 4 : 5, or 1 : 1 : {/2) the area of the
square described on the hypotenuse of a right-angled triangle is equal to
the sum of the areas of the squares described on the sides. It is barely
possible that a few geometrical theorems which can be demonstrated in
the quasi-experimental way of superposition were also known to them.
Their arithmetic was decimal in notation, but their knowledge seems to
have been confined to the art of calculation by means of the swan-pan,
and the power of expressing the results in writing. Our acquaintance
with the early attainments of the Chinese, slight though it is, is more
complete than in the case of most of their contemporaries. It is thus
specially instructive, and serves to illustrate the fact that a nation may
possess considerable skill in the applied arts while they are ignorant of
the sciences on which those arts are founded.

From the foregoing summary it will be seen that our knowledge of
the mathematical attainments of those who preceded the Greeks is very
limited; but we may reasonably infer that from one source or another
the early Greeks learned the use of the abacus for practical calcula-
tions, symbols for recording the results, and as much mathematics as
is contained or implied in the Rhind papyrus. It is probable that this
sums up their indebtedness to other races. In the next six chapters I
shall trace the development of mathematics under Greek influence.



FIRST PERIOD.

Mathematics under Greek Influence.

This period begins with the teaching of Thales, circ. 600 B.C., and
ends with the capture of Alexandria by the Mohammedans in or about
641 A.D. The characteristic feature of this period is the development of
Geometry.

It will be remembered that I commenced the by saying
that the history of mathematics might be divided into three periods,

namely, that of mathematics under Greek influence, that of the math-
ematics of the middle ages and of the renaissance, and lastly that of
modern mathematics. The next four chapters (chapters , , and
deal with the history of mathematics under Greek influence: to
these it will be convenient to add one (chapter on the Byzantine
school, since through it the results of Greek mathematics were trans-
mitted to western Europe; and another (chapter on the systems of
numeration which were ultimately displaced by the system introduced
by the Arabs. I should add that many of the dates mentioned in these
chapters are not known with certainty, and must be regarded as only
approximately correct.

There appeared in December 1921, just before this reprint was
struck off, Sir T. L. Heath’s work in 2 volumes on the History of Greek
Mathematics. This may now be taken as the standard authority for
this period.
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CHAPTER II.

THE IONIAN AND PYTHAGOREAN SCHOOLS."
CIRC. 600 B.c.—400 B.cC.

WiITH the foundation of the Ionian and Pythagorean schools we
emerge from the region of antiquarian research and conjecture into
the light of history. The materials at our disposal for estimating the
knowledge of the philosophers of these schools previous to about the
year 430 B.C. are, however, very scanty Not only have all but fragments
of the different mathematical treatises then written been lost, but we
possess no copy of the history of mathematics written about 325 B.C.
by Eudemus (who was a pupil of Aristotle). Luckily Proclus, who
about 450 A.D. wrote a commentary on the earlier part of Euclid’s
Elements, was familiar with Eudemus’s work, and freely utilised it in
his historical references. We have also a fragment of the General View of
Mathematics written by Geminus about 50 B.C., in which the methods
of proof used by the early Greek geometricians are compared with those
current at a later date. In addition to these general statements we have
biographies of a few of the leading mathematicians, and some scattered
notes in various writers in which allusions are made to the lives and
works of others. The original authorities are criticised and discussed
at length in the works mentioned in the footnote to the heading of the
chapter.

!The history of these schools has been discussed by G. Loria in his Le Scienze
Esatte nell’ Antica Grecia, Modena, 1893-1900; by Cantor, chaps. v—viii; by
G. J. Allman in his Greek Geometry from Thales to Fuclid, Dublin, 1889; by J. Gow,
in his Greek Mathematics, Cambridge, 1884; by C. A. Bretschneider in his Die Ge-
ometrie und die Geometer vor Fukleides, Leipzig, 1870; and partially by H. Hankel
in his posthumous Geschichte der Mathematik, Leipzig, 1874.
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The Ionian School.

Thales.! The founder of the earliest Greek school of mathematics
and philosophy was Thales, one of the seven sages of Greece, who was
born about 640 B.C. at Miletus, and died in the same town about
550 B.C. The materials for an account of his life consist of little more
than a few anecdotes which have been handed down by tradition.

During the early part of his life Thales was engaged partly in com-
merce and partly in public affairs; and to judge by two stories that have
been preserved, he was then as distinguished for shrewdness in business
and readiness in resource as he was subsequently celebrated in science.
It is said that once when transporting some salt which was loaded on
mules, one of the animals slipping in a stream got its load wet and so
caused some of the salt to be dissolved, and finding its burden thus
lightened it rolled over at the next ford to which it came; to break it
of this trick Thales loaded it with rags and sponges which, by absorb-
ing the water, made the load heavier and soon effectually cured it of
its troublesome habit. At another time, according to Aristotle, when
there was a prospect of an unusually abundant crop of olives Thales
got possession of all the olive-presses of the district; and, having thus
“cornered” them, he was able to make his own terms for lending them
out, or buying the olives, and thus realized a large sum. These tales
may be apocryphal, but it is certain that he must have had consider-
able reputation as a man of affairs and as a good engineer, since he was
employed to construct an embankment so as to divert the river Halys
in such a way as to permit of the construction of a ford.

Probably it was as a merchant that Thales first went to Egypt, but
during his leisure there he studied astronomy and geometry. He was
middle-aged when he returned to Miletus; he seems then to have aban-
doned business and public life, and to have devoted himself to the study
of philosophy and science—subjects which in the lonian, Pythagorean,
and perhaps also the Athenian schools, were closely connected: his
views on philosophy do not here concern us. He continued to live at
Miletus till his death circ. 550 B.C.

We cannot form any exact idea as to how Thales presented his
geometrical teaching. We infer, however, from Proclus that it consisted
of a number of isolated propositions which were not arranged in a logical
sequence, but that the proofs were deductive, so that the theorems were

1See Loria, book I, chap. ii; Cantor, chap. v; Allman, chap. i.
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not a mere statement of an induction from a large number of special
instances, as probably was the case with the Egyptian geometricians.
The deductive character which he thus gave to the science is his chief
claim to distinction.

The following comprise the chief propositions that can now with
reasonable probability be attributed to him; they are concerned with
the geometry of angles and straight lines.

(i) The angles at the base of an isosceles triangle are equal (Euc. 1,
5). Proclus seems to imply that this was proved by taking another
exactly equal isosceles triangle, turning it over, and then superposing
it on the first—a sort of experimental demonstration.

(ii) If two straight lines cut one another, the vertically opposite
angles are equal (Euc. 1, 15). Thales may have regarded this as obvious,
for Proclus adds that Euclid was the first to give a strict proof of it.

(iii) A triangle is determined if its base and base angles be given (cf.
Euc. 1, 26). Apparently this was applied to find the distance of a ship
at sea—the base being a tower, and the base angles being obtained by
observation.

(iv) The sides of equiangular triangles are proportionals (Euc. vI, 4,
or perhaps rather Euc. v1, 2). This is said to have been used by Thales
when in Egypt to find the height of a pyramid. In a dialogue given by
Plutarch, the speaker, addressing Thales, says, “Placing your stick at
the end of the shadow of the pyramid, you made by the sun’s rays two
triangles, and so proved that the [height of the] pyramid was to the
[length of the] stick as the shadow of the pyramid to the shadow of the
stick.” It would seem that the theorem was unknown to the Egyptians,
and we are told that the king Amasis, who was present, was astonished
at this application of abstract science.

(v) A circle is bisected by any diameter. This may have been enun-
ciated by Thales, but it must have been recognised as an obvious fact
from the earliest times.

(vi) The angle subtended by a diameter of a circle at any point in
the circumference is a right angle (Euc. 111, 31). This appears to have
been regarded as the most remarkable of the geometrical achievements
of Thales, and it is stated that on inscribing a right-angled triangle in a
circle he sacrificed an ox to the immortal gods. It has been conjectured
that he may have come to this conclusion by noting that the diagonals
of a rectangle are equal and bisect one another, and that therefore a
rectangle can be inscribed in a circle. If so, and if he went on to apply
proposition (i), he would have discovered that the sum of the angles of a
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right-angled triangle is equal to two right angles, a fact with which it is
believed that he was acquainted. It has been remarked that the shape
of the tiles used in paving floors may have suggested these results.

On the whole it seems unlikely that he knew how to draw a per-
pendicular from a point to a line; but if he possessed this knowledge, it
is possible he was also aware, as suggested by some modern commen-
tators, that the sum of the angles of any triangle is equal to two right
angles. As far as equilateral and right-angled triangles are concerned,
we know from Eudemus that the first geometers proved the general
property separately for three species of triangles, and it is not unlikely
that they proved it thus. The area about a point can be filled by the
angles of six equilateral triangles or tiles, hence the proposition is true
for an equilateral triangle. Again, any two equal right-angled triangles
can be placed in juxtaposition so as to form a rectangle, the sum of
whose angles is four right angles; hence the proposition is true for a
right-angled triangle. Lastly, any triangle can be split into the sum of
two right-angled triangles by drawing a perpendicular from the biggest
angle on the opposite side, and therefore again the proposition is true.
The first of these proofs is evidently included in the last, but there is
nothing improbable in the suggestion that the early Greek geometers
continued to teach the first proposition in the form above given.

Thales wrote on astronomy, and among his contemporaries was
more famous as an astronomer than as a geometrician. A story runs
that one night, when walking out, he was looking so intently at the
stars that he tumbled into a ditch, on which an old woman exclaimed,
“How can you tell what is going on in the sky when you can’t see what
is lying at your own feet?”—an anecdote which was often quoted to
illustrate the unpractical character of philosophers.

Without going into astronomical details, it may be mentioned that
he taught that a year contained about 365 days, and not (as is said to
have been previously reckoned) twelve months of thirty days each. It
is said that his predecessors occasionally intercalated a month to keep
the seasons in their customary places, and if so they must have realized
that the year contains, on the average, more than 360 days. There is
some reason to think that he believed the earth to be a disc-like body
floating on water. He predicted a solar eclipse which took place at or
about the time he foretold; the actual date was either May 28, 585 B.C.,
or September 30, 609 B.Cc. But though this prophecy and its fulfilment
gave extraordinary prestige to his teaching, and secured him the name
of one of the seven sages of Greece, it is most likely that he only made
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use of one of the Egyptian or Chaldaean registers which stated that
solar eclipses recur at intervals of about 18 years 11 days.

Among the pupils of Thales were Anaximander, Anaximenes,
Mamercus, and Mandryatus. Of the three mentioned last we know
next to nothing. Anazimander was born in 611 B.C., and died in
545 B.C., and succeeded Thales as head of the school at Miletus. Ac-
cording to Suidas he wrote a treatise on geometry in which, tradition
says, he paid particular attention to the properties of spheres, and
dwelt at length on the philosophical ideas involved in the conception
of infinity in space and time. He constructed terrestrial and celestial
globes.

Anaximander is alleged to have introduced the use of the style or
gnomon into Greece. This, in principle, consisted only of a stick stuck
upright in a horizontal piece of ground. It was originally used as a
sun-dial, in which case it was placed at the centre of three concentric
circles, so that every two hours the end of its shadow passed from
one circle to another. Such sun-dials have been found at Pompeii and
Tusculum. It is said that he employed these styles to determine his
meridian (presumably by marking the lines of shadow cast by the style
at sunrise and sunset on the same day, and taking the plane bisecting
the angle so formed); and thence, by observing the time of year when
the noon-altitude of the sun was greatest and least, he got the solstices;
thence, by taking half the sum of the noon-altitudes of the sun at the
two solstices, he found the inclination of the equator to the horizon
(which determined the altitude of the place), and, by taking half their
difference, he found the inclination of the ecliptic to the equator. There
seems good reason to think that he did actually determine the latitude
of Sparta, but it is more doubtful whether he really made the rest of
these astronomical deductions.

We need not here concern ourselves further with the successors
of Thales. The school he established continued to flourish till about
400 B.C., but, as time went on, its members occupied themselves more
and more with philosophy and less with mathematics. We know very
little of the mathematicians comprised in it, but they would seem to
have devoted most of their attention to astronomy. They exercised but
slight influence on the further advance of Greek mathematics, which
was made almost entirely under the influence of the Pythagoreans, who
not only immensely developed the science of geometry, but created a
science of numbers. If Thales was the first to direct general attention to
geometry, it was Pythagoras, says Proclus, quoting from Eudemus, who
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“changed the study of geometry into the form of a liberal education, for
he examined its principles to the bottom and investigated its theorems
in an ...intellectual manner”; and it is accordingly to Pythagoras that
we must now direct attention.

The Pythagorean School.

Pythagoras.!  Pythagoras was born at Samos about 569 B.C.,
perhaps of Tyrian parents, and died in 500 B.C. He was thus a contem-
porary of Thales. The details of his life are somewhat doubtful, but
the following account is, I think, substantially correct. He studied first
under Pherecydes of Syros, and then under Anaximander; by the latter
he was recommended to go to Thebes, and there or at Memphis he
spent some years. After leaving Egypt he travelled in Asia Minor, and
then settled at Samos, where he gave lectures but without much suc-
cess. About 529 B.C. he migrated to Sicily with his mother, and with
a single disciple who seems to have been the sole fruit of his labours
at Samos. Thence he went to Tarentum, but very shortly moved to
Croton, a Dorian colony in the south of Italy. Here the schools that he
opened were crowded with enthusiastic audiences; citizens of all ranks,
especially those of the upper classes, attended, and even the women
broke a law which forbade their going to public meetings and flocked to
hear him. Amongst his most attentive auditors was Theano, the young
and beautiful daughter of his host Milo, whom, in spite of the disparity
of their ages, he married. She wrote a biography of her husband, but
unfortunately it is lost.

Pythagoras divided those who attended his lectures into two classes,
whom we may term probationers and Pythagoreans. The majority
were probationers, but it was only to the Pythagoreans that his chief
discoveries were revealed. The latter formed a brotherhood with all
things in common, holding the same philosophical and political beliefs,
engaged in the same pursuits, and bound by oath not to reveal the
teaching or secrets of the school; their food was simple; their discipline

!See Loria, book I, chap. iii; Cantor, chaps. vi, vii; Allman, chap. ii; Hankel,
pp- 92-111; Hoefer, Histoire des mathématiques, Paris, third edition, 1886, pp. 87—
130; and various papers by S. P. Tannery. For an account of Pythagoras’s life,
embodying the Pythagorean traditions, see the biography by Iamblichus, of which
there are two or three English translations. Those who are interested in esoteric
literature may like to see a modern attempt to reproduce the Pythagorean teaching
in Pythagoras, by E. Schuré, Eng. trans., London, 1906.
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severe; and their mode of life arranged to encourage self-command,
temperance, purity, and obedience. This strict discipline and secret
organisation gave the society a temporary supremacy in the state which
brought on it the hatred of various classes; and, finally, instigated by
his political opponents, the mob murdered Pythagoras and many of his
followers.

Though the political influence of the Pythagoreans was thus de-
stroyed, they seem to have re-established themselves at once as a philo-
sophical and mathematical society, with Tarentum as their headquar-
ters, and they continued to flourish for more than a hundred years.

Pythagoras himself did not publish any books; the assumption of his
school was that all their knowledge was held in common and veiled from
the outside world, and, further, that the glory of any fresh discovery
must be referred back to their founder. Thus Hippasus (circ. 470 B.C.)
is said to have been drowned for violating his oath by publicly boasting
that he had added the dodecahedron to the number of regular solids
enumerated by Pythagoras. Gradually, as the society became more
scattered, this custom was abandoned, and treatises containing the
substance of their teaching and doctrines were written. The first book
of the kind was composed, about 370 B.C., by Philolaus, and we are told
that Plato secured a copy of it. We may say that during the early part
of the fifth century before Christ the Pythagoreans were considerably
in advance of their contemporaries, but by the end of that time their
more prominent discoveries and doctrines had become known to the
outside world, and the centre of intellectual activity was transferred to
Athens.

Though it is impossible to separate precisely the discoveries of Pyth-
agoras himself from those of his school of a later date, we know from
Proclus that it was Pythagoras who gave geometry that rigorous char-
acter of deduction which it still bears, and made it the foundation of
a liberal education; and there is reason to believe that he was the first
to arrange the leading propositions of the subject in a logical order. It
was also, according to Aristoxenus, the glory of his school that they
raised arithmetic above the needs of merchants. It was their boast that
they sought knowledge and not wealth, or in the language of one of
their maxims, “a figure and a step forwards, not a figure to gain three
oboli.”

Pythagoras was primarily a moral reformer and philosopher, but his
system of morality and philosophy was built on a mathematical foun-
dation. His mathematical researches were, however, designed to lead
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up to a system of philosophy whose exposition was the main object of
his teaching. The Pythagoreans began by dividing the mathematical
subjects with which they dealt into four divisions: numbers absolute or
arithmetic, numbers applied or music, magnitudes at rest or geometry,
and magnitudes in motion or astronomy. This “quadrivium” was long
considered as constituting the necessary and sufficient course of study
for a liberal education. Even in the case of geometry and arithmetic
(which are founded on inferences unconsciously made and common to
all men) the Pythagorean presentation was involved with philosophy;
and there is no doubt that their teaching of the sciences of astronomy;,
mechanics, and music (which can rest safely only on the results of con-
scious observation and experiment) was intermingled with metaphysics
even more closely. It will be convenient to begin by describing their
treatment of geometry and arithmetic.

First, as to their geometry. Pythagoras probably knew and taught
the substance of what is contained in the first two books of Euclid
about parallels, triangles, and parallelograms, and was acquainted with
a few other isolated theorems including some elementary propositions
on irrational magnitudes; but it is suspected that many of his proofs
were not rigorous, and in particular that the converse of a theorem was
sometimes assumed without a proof. It is hardly necessary to say that
we are unable to reproduce the whole body of Pythagorean teaching on
this subject, but we gather from the notes of Proclus on Euclid, and
from a few stray remarks in other writers, that it included the following
propositions, most of which are on the geometry of areas.

(i) It commenced with a number of definitions, which probably were
rather statements connecting mathematical ideas with philosophy than
explanations of the terms used. One has been preserved in the definition
of a point as unity having position.

(ii) The sum of the angles of a triangle was shown to be equal to two
right angles (Euc. 1, 32); and in the proof, which has been preserved,
the results of the propositions Euc. 1, 13 and the first part of Euc. 1,
29 are quoted. The demonstration is substantially the same as that
in Euclid, and it is most likely that the proofs there given of the two
propositions last mentioned are also due to Pythagoras himself.

(iii) Pythagoras certainly proved the properties of right-angled tri-
angles which are given in Euc. 1, 47 and 1, 48. We know that the proofs
of these propositions which are found in Euclid were of Euclid’s own
invention; and a good deal of curiosity has been excited to discover
what was the demonstration which was originally offered by Pythago-
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ras of the first of these theorems. It has been conjectured that not
improbably it may have been one of the two following.'

A F B

D H C

(o) Any square ABCD can be split up, as in Euc. 11, 4, into two
squares BK and DK and two equal rectangles AK and C'K: that is,
it is equal to the square on F'K, the square on FK, and four times the
triangle AE'F. But, if points be taken, G on BC', H on C'D, and E on
DA, so that BG, CH, and DE are each equal to AF, it can be easily
shown that EFGH is a square, and that the triangles AEF, BFG,
CGH, and DHEFE are equal: thus the square ABCD is also equal to
the square on E'F' and four times the triangle AEF. Hence the square
on EF is equal to the sum of the squares on FFK and FK.

A

B D C

(8) Let ABC' be a right-angled triangle, A being the right angle.
Draw AD perpendicular to BC. The triangles ABC and DBA are

LA collection of a hundred proofs of Euc. 1, 47 was published in the American
Mathematical Monthly Journal, vols. iii. iv. v. vi. 1896-1899.
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similar,

.BC : AB = AB : BD.
Similarly BC : AC = AC : DC.
Hence AB? + AC* = BC(BD + DC) = BC?.

This proof requires a knowledge of the results of Euc. 11, 2, VI, 4, and
VI, 17, with all of which Pythagoras was acquainted.

(iv) Pythagoras is credited by some writers with the discovery of
the theorems Euc. 1, 44, and 1, 45, and with giving a solution of the
problem Euc. 11, 14. It is said that on the discovery of the necessary
construction for the problem last mentioned he sacrificed an ox, but
as his school had all things in common the liberality was less striking
than it seems at first. The Pythagoreans of a later date were aware of
the extension given in Euc. V1, 25, and Allman thinks that Pythagoras
himself was acquainted with it, but this must be regarded as doubtful.
It will be noticed that Euc. 11, 14 provides a geometrical solution of the
equation % = ab.

(v) Pythagoras showed that the plane about a point could be com-
pletely filled by equilateral triangles, by squares, or by regular hexagons
—results that must have been familiar wherever tiles of these shapes
were in common use.

(vi) The Pythagoreans were said to have attempted the quadrature
of the circle: they stated that the circle was the most perfect of all
plane figures.

(vii) They knew that there were five regular solids inscribable in a
sphere, which was itself, they said, the most perfect of all solids.

(viii) From their phraseology in the science of numbers and from
other occasional remarks, it would seem that they were acquainted
with the methods used in the second and fifth books of Euclid, and
knew something of irrational magnitudes. In particular, there is reason
to believe that Pythagoras proved that the side and the diagonal of a
square were incommensurable, and that it was this discovery which led
the early Greeks to banish the conceptions of number and measurement
from their geometry. A proof of this proposition which may be that
due to Pythagoras is given below.!

1See below, page
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Next, as to their theory of numbers.! In this Pythagoras was chiefly
concerned with four different groups of problems which dealt respec-
tively with polygonal numbers, with ratio and proportion, with the
factors of numbers, and with numbers in series; but many of his arith-
metical inquiries, and in particular the questions on polygonal numbers
and proportion, were treated by geometrical methods.

H K

C L

Pythagoras commenced his theory of arithmetic by dividing all num-
bers into even or odd: the odd numbers being termed gnomons. An
odd number, such as 2n + 1, was regarded as the difference of two
square numbers (n + 1)? and n?; and the sum of the gnomons from 1
to 2n + 1 was stated to be a square number, viz. (n + 1), its square
root was termed a side. Products of two numbers were called plane,
and if a product had no exact square root it was termed an oblong. A
product of three numbers was called a solid number, and, if the three
numbers were equal, a cube. All this has obvious reference to geom-
etry, and the opinion is confirmed by Aristotle’s remark that when a
gnomon is put round a square the figure remains a square though it
is increased in dimensions. Thus, in the given above in which
n is taken equal to 5, the gnomon AKC' (containing 11 small squares)
when put round the square AC (containing 5% small squares) makes
a square HL (containing 6* small squares). It is possible that several

1See the appendix Sur larithmétique pythagorienne to S. P. Tannery’s La science
helléne, Paris, 1887.
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of the numerical theorems due to Greek writers were discovered and
proved by an analogous method: the abacus can be used for many of
these demonstrations.

The numbers (2n? 4+ 2n + 1), (2n® + 2n), and (2n + 1) possessed
special importance as representing the hypotenuse and two sides of a
right-angled triangle: Cantor thinks that Pythagoras knew this fact be-
fore discovering the geometrical proposition Euc. 1, 47. A more general
expression for such numbers is (m?+n?), 2mn, and (m?—n?), or multi-
ples of them: it will be noticed that the result obtained by Pythagoras
can be deduced from these expressions by assuming m = n + 1; at a
later time Archytas and Plato gave rules which are equivalent to taking
n = 1; Diophantus knew the general expressions.

After this preliminary discussion the Pythagoreans proceeded to
the four special problems already alluded to. Pythagoras was himself
acquainted with triangular numbers; polygonal numbers of a higher
order were discussed by later members of the school. A triangular
number represents the sum of a number of counters laid in rows on a
plane; the bottom row containing n, and each succeeding row one less:
it is therefore equal to the sum of the series

n+(n—1)4+Mn—-2)+...+2+1,

that is, to n(n+1). Thus the triangular number corresponding to 4 is
10. This is the explanation of the language of Pythagoras in the well-
known passage in Lucian where the merchant asks Pythagoras what
he can teach him. Pythagoras replies “I will teach you how to count.”
Merchant, “1 know that already.” Pythagoras, “How do you count?”
Merchant, “One, two, three, four—" Pythagoras, “Stop! what you take
to be four is ten, a perfect triangle and our symbol.” The Pythagoreans
are, on somewhat doubtful authority, said to have classified numbers by
comparing them with the sum of their integral subdivisors or factors,
calling a number excessive, perfect, or defective, according as the sum
of these subdivisors was greater than, equal to, or less than the number:
the classification at first being restricted to even numbers. The third
group of problems which they considered dealt with numbers which
formed a proportion; presumably these were discussed with the aid of
geometry as is done in the fifth book of Euclid. Lastly, the Pythagore-
ans were concerned with series of numbers in arithmetical, geometri-
cal, harmonical, and musical progressions. The three progressions first
mentioned are well known; four integers are said to be in musical pro-
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gression when they are in the ratio a : 2ab/(a +b) : 3(a +b) : b, for
example, 6, 8, 9, and 12 are in musical progression.

Of the Pythagorean treatment of the applied subjects of the quad-
rivium, and the philosophical theories founded on them, we know very
little. It would seem that Pythagoras was much impressed by certain
numerical relations which occur in nature. It has been suggested that
he was acquainted with some of the simpler facts of crystallography.
It is thought that he was aware that the notes sounded by a vibrating
string depend on the length of the string, and in particular that lengths
which gave a note, its fifth and its octave were in the ratio 2 : 3 : 4,
forming terms in a musical progression. It would seem, too, that he
believed that the distances of the astrological planets from the earth
were also in musical progression, and that the heavenly bodies in their
motion through space gave out harmonious sounds: hence the phrase
the harmony of the spheres. These and similar conclusions seem to have
suggested to him that the explanation of the order and harmony of the
universe was to be found in the science of numbers, and that numbers
are to some extent the cause of form as well as essential to its accurate
measurement. He accordingly proceeded to attribute particular prop-
erties to particular numbers and geometrical figures. For example, he
taught that the cause of colour was to be sought in properties of the
number five, that the explanation of fire was to be discovered in the
nature of the pyramid, and so on. I should not have alluded to this
were it not that the Pythagorean tradition strengthened, or perhaps
was chiefly responsible for the tendency of Greek writers to found the
study of nature on philosophical conjectures and not on experimental
observation—a tendency to which the defects of Hellenic science must
be largely attributed.

After the death of Pythagoras his teaching seems to have been car-
ried on by Epicharmus and Hippasus, and subsequently by Philo-
laus (specially distinguished as an astronomer), Archippus, and Ly-
sis. About a century after the murder of Pythagoras we find Archytas
recognised as the head of the school.

Archytas.!  Archytas, circ. 400 B.C., was one of the most influ-
ential citizens of Tarentum, and was made governor of the city no less

!See Allman, chap. iv. A catalogue of the works of Archytas is given by Fabricius
in his Bibliotheca Graeca, vol. i, p. 833: most of the fragments on philosophy were
published by Thomas Gale in his Opuscula Mythologica, Cambridge, 1670; and by
Thomas Taylor as an Appendix to his translation of lamblichus’s Life of Pythagoras,
London, 1818. See also the references given by Cantor, vol. i, p. 203.
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than seven times. His influence among his contemporaries was very
great, and he used it with Dionysius on one occasion to save the life
of Plato. He was noted for the attention he paid to the comfort and
education of his slaves and of children in the city. He was drowned
in a shipwreck near Tarentum, and his body washed on shore—a fit
punishment, in the eyes of the more rigid Pythagoreans, for his having
departed from the lines of study laid down by their founder. Several of
the leaders of the Athenian school were among his pupils and friends,
and it is believed that much of their work was due to his inspiration.

The Pythagoreans at first made no attempt to apply their knowl-
edge to mechanics, but Archytas is said to have treated it with the aid
of geometry. He is alleged to have invented and worked out the the-
ory of the pulley, and is credited with the construction of a flying bird
and some other ingenious mechanical toys. He introduced various me-
chanical devices for constructing curves and solving problems. These
were objected to by Plato, who thought that they destroyed the value
of geometry as an intellectual exercise, and later Greek geometricians
confined themselves to the use of two species of instruments, namely,
rulers and compasses. Archytas was also interested in astronomy; he
taught that the earth was a sphere rotating round its axis in twenty-four
hours, and round which the heavenly bodies moved.

Archytas was one of the first to give a solution of the problem to
duplicate a cube, that is, to find the side of a cube whose volume is
double that of a given cube. This was one of the most famous problems
of antiquity.! The construction given by Archytas is equivalent to the
following. On the diameter OA of the base of a right circular cylinder
describe a semicircle whose plane is perpendicular to the base of the
cylinder. Let the plane containing this semicircle rotate round the
generator through O, then the surface traced out by the semicircle will
cut the cylinder in a tortuous curve. This curve will be cut by a right
cone whose axis is OA and semivertical angle is (say) 60° in a point P,
such that the projection of OP on the base of the cylinder will be to the
radius of the cylinder in the ratio of the side of the required cube to that
of the given cube. The proof given by Archytas is of course geometrical;?
it will be enough here to remark that in the course of it he shews himself
acquainted with the results of the propositions Euc. 111, 18, Euc. 111, 35,
and Euc. X1, 19. To shew analytically that the construction is correct,

1See below, pp.

2Tt is printed by Allman, pp. 111-113.
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take O A as the axis of z, and the generator through O as axis of z, then,
with the usual notation in polar co-ordinates, and if a be the radius
of the cylinder, we have for the equation of the surface described by
the semicircle, r = 2asin 0; for that of the cylinder, rsin = 2a cos ¢;
and for that of the cone, sinfcos¢ = % These three surfaces cut in
a point such that sin®6 = %, and, therefore, if p be the projection of
OP on the base of the cylinder, then p* = (rsin#)® = 2a®. Hence the
volume of the cube whose side is p is twice that of a cube whose side is
a. T mention the problem and give the construction used by Archytas
to illustrate how considerable was the knowledge of the Pythagorean
school at the time.

Theodorus.  Another Pythagorean of about the same date as
Archytas was Theodorus of Cyrene, who is said to have proved geomet-
rically that the numbers represented by v/3, v/5, v6, V7, V8, V10,

V11, V12, V13, V14, v/15, and /17 are incommensurable with unity.
Theaetetus was one of his pupils.

Perhaps Timaeus of Locri and Bryso of Heraclea should be men-
tioned as other distinguished Pythagoreans of this time. It is believed
that Bryso attempted to find the area of a circle by inscribing and
circumscribing squares, and finally obtained polygons between whose
areas the area of the circle lay; but it is said that at some point he
assumed that the area of the circle was the arithmetic mean between
an inscribed and a circumscribed polygon.

Other Greek Mathematical Schools in the Fifth Century B.C.

It would be a mistake to suppose that Miletus and Tarentum were
the only places where, in the fifth century, Greeks were engaged in
laying a scientific foundation for the study of mathematics. These towns
represented the centres of chief activity, but there were few cities or
colonies of any importance where lectures on philosophy and geometry
were not given. Among these smaller schools I may mention those at
Chios, Elea, and Thrace.

The best known philosopher of the School of Chios was Oenopides,
who was born about 500 B.C., and died about 430 B.C. He devoted
himself chiefly to astronomy, but he had studied geometry in Egypt,
and is credited with the solution of two problems, namely, to draw
a straight line from a given external point perpendicular to a given
straight line (Euc. 1, 12), and at a given point to construct an angle
equal to a given angle (Euc. 1, 23).
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Another important centre was at Elea in Italy. This was founded
in Sicily by Xenophanes. He was followed by Parmenides, Zeno,
and Melissus. The members of the FEleatic School were famous for
the difficulties they raised in connection with questions that required
the use of infinite series, such, for example, as the well-known paradox
of Achilles and the tortoise, enunciated by Zeno, one of their most
prominent members. Zeno was born in 495 B.C., and was executed at
Elea in 435 B.C. in consequence of some conspiracy against the state;
he was a pupil of Parmenides, with whom he visited Athens, circ. 455—
450 B.C.

Zeno argued that if Achilles ran ten times as fast as a tortoise, yet if
the tortoise had (say) 1000 yards start it could never be overtaken: for,
when Achilles had gone the 1000 yards, the tortoise would still be 100
yards in front of him; by the time he had covered these 100 yards, it
would still be 10 yards in front of him; and so on for ever: thus Achilles
would get nearer and nearer to the tortoise, but never overtake it. The
fallacy is usually explained by the argument that the time required to
overtake the tortoise, can be divided into an infinite number of parts, as
stated in the question, but these get smaller and smaller in geometrical
progression, and the sum of them all is a finite time: after the lapse
of that time Achilles would be in front of the tortoise. Probably Zeno
would have replied that this argument rests on the assumption that
space is infinitely divisible, which is the question under discussion: he
himself asserted that magnitudes are not infinitely divisible.

These paradoxes made the Greeks look with suspicion on the use
of infinitesimals, and ultimately led to the invention of the method of
exhaustions.

The Atomistic School, having its headquarters in Thrace, was an-
other important centre. This was founded by Leucippus, who was
a pupil of Zeno. He was succeeded by Democritus and Epicurus.
Its most famous mathematician was Democritus, born at Abdera in
460 B.C., and said to have died in 370 B.C., who, besides philosophical
works, wrote on plane and solid geometry, incommensurable lines, per-
spective, and numbers. These works are all lost. From the Archimedean
MS., discovered by Heiberg in 1906, it would seem that Democritus
enunciated, but without a proof, the proposition that the volume of a
pyramid is equal to one-third that of a prism of an equal base and of
equal height.

But though several distinguished individual philosophers may be
mentioned who, during the fifth century, lectured at different cities,
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they mostly seem to have drawn their inspiration from Tarentum, and
towards the end of the century to have looked to Athens as the intellec-
tual capital of the Greek world; and it is to the Athenian schools that
we owe the next great advance in mathematics.
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CHAPTER IIIL

THE SCHOOLS OF ATHENS AND CYZICUS.!
CIRC. 420 B.c.—300 B.C.

IT was towards the close of the fifth century before Christ that
Athens first became the chief centre of mathematical studies. Several
causes conspired to bring this about. During that century she had
become, partly by commerce, partly by appropriating for her own pur-
poses the contributions of her allies, the most wealthy city in Greece;
and the genius of her statesmen had made her the centre on which the
politics of the peninsula turned. Moreover, whatever states disputed
her claim to political supremacy her intellectual pre-eminence was ad-
mitted by all. There was no school of thought which had not at some
time in that century been represented at Athens by one or more of its
leading thinkers; and the ideas of the new science, which was being so
eagerly studied in Asia Minor and Graecia Magna, had been brought
before the Athenians on various occasions.

Anaxagoras. Amongst the most important of the philosophers
who resided at Athens and prepared the way for the Athenian school
I may mention Anazagoras of Clazomenae, who was almost the last
philosopher of the Ionian school. He was born in 500 B.C., and died
in 428 B.C. He seems to have settled at Athens about 440 B.C., and
there taught the results of the Ionian philosophy. Like all members
of that school he was much interested in astronomy. He asserted that

!The history of these schools is discussed at length in G. Loria’s Le Scienze Esatte
nell’ Antica Grecia, Modena, 1893-1900; in G. J. Allman’s Greek Geometry from
Thales to Fuclid, Dublin, 1889; and in J. Gow’s Greek Mathematics, Cambridge,
1884; it is also treated by Cantor, chaps. ix, x, and xi; by Hankel, pp. 111-156;
and by C. A. Bretschneider in his Die Geometrie und die Geometer vor Eukleides,
Leipzig, 1870; a critical account of the original authorities is given by S. P. Tannery
in his Géométrie Grecque, Paris, 1887, and other papers.
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the sun was larger than the Peloponnesus: this opinion, together with
some attempts he had made to explain various physical phenomena
which had been previously supposed to be due to the direct action of
the gods, led to a prosecution for impiety, and he was convicted. While
in prison he is said to have written a treatise on the quadrature of the
circle.

The Sophists. The sophists can hardly be considered as belonging
to the Athenian school, any more than Anaxagoras can; but like him
they immediately preceded and prepared the way for it, so that it is
desirable to devote a few words to them. One condition for success in
public life at Athens was the power of speaking well, and as the wealth
and power of the city increased a considerable number of “sophists”
settled there who undertook amongst other things to teach the art of
oratory. Many of them also directed the general education of their
pupils, of which geometry usually formed a part. We are told that
two of those who are usually termed sophists made a special study of
geometry—these were Hippias of Elis and Antipho, and one made a
special study of astronomy—this was Meton, after whom the metonic
cycle is named.

Hippias. The first of these geometricians, Hippias of Elis (circ.
420 B.C.), is described as an expert arithmetician, but he is best known
to us through his invention of a curve called the quadratrix, by means
of which an angle can be trisected, or indeed divided in any given ratio.
If the radius of a circle rotate uniformly round the centre O from the
position OA through a right angle to OB, and in the same time a
straight line drawn perpendicular to OB move uniformly parallel to
itself from the position OA to BC, the locus of their intersection will
be the quadratrix.

Let OR and M@ be the position of these lines at any time; and let
them cut in P, a point on the curve. Then

angle AOP : angle AOB =OM : OB.
Similarly, if OR’ be another position of the radius,
angle AOP' : angle AOB =OM': OB
angle AOP : angle AOP' = OM : OM’;
angle AOP' : angle POP = OM’ : M M.
Hence, if the angle AOP be given, and it be required to divide it in

any given ratio, it is sufficient to divide OM in that ratio at M’ and
draw the line M'P’; then OP’ will divide AOP in the required ratio.
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If OA be taken as the initial line, OP = r, the angle AOP = 6, and
OA = a, we have 0 : %77 = rsiné : a, and the equation of the curve is
mr = 2a# cosec 6.

Hippias devised an instrument to construct the curve mechanically;
but constructions which involved the use of any mathematical instru-
ments except a ruler and a pair of compasses were objected to by Plato,
and rejected by most geometricians of a subsequent date.

Antipho.  The second sophist whom I mentioned was Antipho
(circ. 420 B.C.). He is one of the very few writers among the ancients
who attempted to find the area of a circle by considering it as the
limit of an inscribed regular polygon with an infinite number of sides.
He began by inscribing an equilateral triangle (or, according to some
accounts, a square); on each side he inscribed in the smaller segment
an isosceles triangle, and so on ad infinitum. This method of attacking
the quadrature problem is similar to that described above as used by
Bryso of Heraclea.

No doubt there were other cities in Greece besides Athens where
similar and equally meritorious work was being done, though the record
of it has now been lost; I have mentioned here the investigations of these
three writers, chiefly because they were the immediate predecessors of
those who created the Athenian school.

The Schools of Athens and Cyzicus. The history of the
Athenian school begins with the teaching of Hippocrates about 420
B.C.; the school was established on a permanent basis by the labours
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of Plato and Eudoxus; and, together with the neighbouring school of
Cyzicus, continued to extend on the lines laid down by these three
geometricians until the foundation (about 300 B.C.) of the university
at Alexandria drew thither most of the talent of Greece.

Eudoxus, who was amongst the most distinguished of the Athe-
nian mathematicians, is also reckoned as the founder of the school at
Cyzicus. The connection between this school and that of Athens was
very close, and it is now impossible to disentangle their histories. It
is said that Hippocrates, Plato, and Theaetetus belonged to the Athe-
nian school; while Eudoxus, Menaechmus, and Aristaeus belonged to
that of Cyzicus. There was always a constant intercourse between the
two schools, the earliest members of both had been under the influence
either of Archytas or of his pupil Theodorus of Cyrene, and there was
no difference in their treatment of the subject, so that they may be
conveniently treated together.

Before discussing the work of the geometricians of these schools in
detail I may note that they were especially interested in three prob-
lems:! namely (i), the duplication of a cube, that is, the determination
of the side of a cube whose volume is double that of a given cube;
(ii) the trisection of an angle; and (iii) the squaring of a circle, that is,
the determination of a square whose area is equal to that of a given
circle.

Now the first two of these problems (considered analytically) require
the solution of a cubic equation; and, since a construction by means
of circles (whose equations are of the form z? + y* + ax + by + ¢ = 0)
and straight lines (whose equations are of the form x + Sy + v = 0)
cannot be equivalent to the solution of a cubic equation, the problems
are insoluble if in our constructions we restrict ourselves to the use
of circles and straight lines, that is, to Euclidean geometry. If the
use of the conic sections be permitted, both of these questions can be
solved in many ways. The third problem is equivalent to finding a
rectangle whose sides are equal respectively to the radius and to the
semiperimeter of the circle. These lines have been long known to be
incommensurable, but it is only recently that it has been shewn by
Lindemann that their ratio cannot be the root of a rational algebraical
equation. Hence this problem also is insoluble by Euclidean geometry.
The Athenians and Cyzicians were thus destined to fail in all three

1On these problems, solutions of them, and the authorities for their history, see
my Mathematical Recreations and Problems, London, ninth edition, 1920, chap. xiv.
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problems, but the attempts to solve them led to the discovery of many
new theorems and processes.

Besides attacking these problems the later Platonic school collected
all the geometrical theorems then known and arranged them system-
atically. These collections comprised the bulk of the propositions in
Euclid’s Elements, books 1-1X, XI, and XII, together with some of the
more elementary theorems in conic sections.

Hippocrates.  Hippocrates of Chios (who must be carefully dis-
tinguished from his contemporary, Hippocrates of Cos, the celebrated
physician) was one of the greatest of the Greek geometricians. He was
born about 470 B.C. at Chios, and began life as a merchant. The
accounts differ as to whether he was swindled by the Athenian custom-
house officials who were stationed at the Chersonese, or whether one of
his vessels was captured by an Athenian pirate near Byzantium; but at
any rate somewhere about 430 B.C. he came to Athens to try to recover
his property in the law courts. A foreigner was not likely to succeed in
such a case, and the Athenians seem only to have laughed at him for
his simplicity, first in allowing himself to be cheated, and then in hop-
ing to recover his money. While prosecuting his cause he attended the
lectures of various philosophers, and finally (in all probability to earn
a livelihood) opened a school of geometry himself. He seems to have
been well acquainted with the Pythagorean philosophy, though there is
no sufficient authority for the statement that he was ever initiated as
a Pythagorean.

He wrote the first elementary text-book of geometry, a text-book on
which probably Euclid’s Elements was founded; and therefore he may
be said to have sketched out the lines on which geometry is still taught
in English schools. It is supposed that the use of letters in diagrams to
describe a figure was made by him or introduced about this time, as he
employs expressions such as “the point on which the letter A stands”
and “the line on which AB is marked.” Cantor, however, thinks that
the Pythagoreans had previously been accustomed to represent the five
vertices of the pentagram-star by the letters v v ¢ # «; and though
this was a single instance, perhaps they may have used the method
generally. The Indian geometers never employed letters to aid them in
the description of their figures. Hippocrates also denoted the square on
a line by the word ovrauig, and thus gave the technical meaning to the
word power which it still retains in algebra: there is reason to think
that this use of the word was derived from the Pythagoreans, who are
said to have enunciated the result of the proposition Euc. 1, 47, in the
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form that “the total power of the sides of a right-angled triangle is the
same as that of the hypotenuse.”

In this text-book Hippocrates introduced the method of “reduc-
ing” one theorem to another, which being proved, the thing proposed
necessarily follows; of this method the reductio ad absurdum is an il-
lustration. No doubt the principle had been used occasionally before,
but he drew attention to it as a legitimate mode of proof which was
capable of numerous applications. He elaborated the geometry of the
circle: proving, among other propositions, that similar segments of a
circle contain equal angles; that the angle subtended by the chord of
a circle is greater than, equal to, or less than a right angle as the seg-
ment of the circle containing it is less than, equal to, or greater than a
semicircle (Euc. 111, 31); and probably several other of the propositions
in the third book of Euclid. It is most likely that he also established
the propositions that [similar| circles are to one another as the squares
of their diameters (Euc. x11, 2), and that similar segments are as the
squares of their chords. The proof given in Euclid of the first of these
theorems is believed to be due to Hippocrates.

The most celebrated discoveries of Hippocrates were, however, in
connection with the quadrature of the circle and the duplication of the
cube, and owing to his influence these problems played a prominent
part in the history of the Athenian school.

The following propositions will sufficiently illustrate the method by
which he attacked the quadrature problem.

A

B 0 C

() He commenced by finding the area of a lune contained between a
semicircle and a quadrantal arc standing on the same chord. This he did
as follows. Let ABC' be an isosceles right-angled triangle inscribed in
the semicircle ABOC, whose centre is O. On AB and AC' as diameters
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describe semicircles as in the ffigure] Then, since by Euc. 1, 47,

sq. on BC' =sq. on AC' + sq. on AB,
therefore, by Euc. XI11, 2,
area % ® on BC = area % ® on AC + area % ® on AB.
Take away the common parts
coarea AABC = sum of areas of lunes AEC'D and AFBG.

Hence the area of the lune AEC'D is equal to half that of the triangle
ABC.

() He next inscribed half a regular hexagon ABC'D in a semicir-
cle whose centre was O, and on OA, AB, BC, and C'D as diameters
described semicircles of which those on OA and AB are drawn in the
[figurel Then AD is double any of the lines OA, AB, BC, and CD,

c.8q. on AD = sum of sqs. on OA, AB, BC, and CD,
. area % ® ABCD = sum of areas of % ®son OA, AB,BC, and CD.

Take away the common parts

- area trapezium ABCD = 3 lune AEBF + § ® on OA.
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If therefore the area of this latter lune be known, so is that of the
semicircle described on OA as diameter. According to Simplicius, Hip-
pocrates assumed that the area of this lune was the same as the area
of the lune found in proposition («); if this be so, he was of course
mistaken, as in this case he is dealing with a lune contained between a
semicircle and a sextantal arc standing on the same chord; but it seems
more probable that Simplicius misunderstood Hippocrates.

Hippocrates also enunciated various other theorems connected with
lunes (which have been collected by Bretschneider and by Allman) of
which the theorem last given is a typical example. I believe that they
are the earliest instances in which areas bounded by curves were deter-
mined by geometry.

The other problem to which Hippocrates turned his attention was
the duplication of a cube, that is, the determination of the side of a
cube whose volume is double that of a given cube.

This problem was known in ancient times as the Delian problem, in
consequence of a legend that the Delians had consulted Plato on the
subject. In one form of the story, which is related by Philoponus, it is
asserted that the Athenians in 430 B.C., when suffering from the plague
of eruptive typhoid fever, consulted the oracle at Delos as to how they
could stop it. Apollo replied that they must double the size of his altar
which was in the form of a cube. To the unlearned suppliants nothing
seemed more easy, and a new altar was constructed either having each
of its edges double that of the old one (from which it followed that the
volume was increased eightfold) or by placing a similar cubic altar next
to the old one. Whereupon, according to the legend, the indignant god
made the pestilence worse than before, and informed a fresh deputation
that it was useless to trifle with him, as his new altar must be a cube
and have a volume exactly double that of his old one. Suspecting
a mystery the Athenians applied to Plato, who referred them to the
geometricians, and especially to Euclid, who had made a special study
of the problem. The introduction of the names of Plato and Euclid is an
obvious anachronism. Eratosthenes gives a somewhat similar account
of its origin, but with king Minos as the propounder of the problem.

Hippocrates reduced the problem of duplicating the cube to that of
finding two means between one straight line (a), and another twice as
long (2a). If these means be x and y, we have a : x =z : y = y : 2a,
from which it follows that 23 = 2a®. It is in this form that the problem
is usually presented now. Hippocrates did not succeed in finding a
construction for these means.
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Plato. The next philosopher of the Athenian school who re-
quires mention here was Plato. He was born at Athens in 429 B.C.,
and was, as is well known, a pupil for eight years of Socrates; much
of the teaching of the latter is inferred from Plato’s dialogues. After
the execution of his master in 399 B.C. Plato left Athens, and being
possessed of considerable wealth he spent some years in travelling; it
was during this time that he studied mathematics. He visited Egypt
with Eudoxus, and Strabo says that in his time the apartments they
occupied at Heliopolis were still shewn. Thence Plato went to Cyrene,
where he studied under Theodorus. Next he moved to Italy, where
he became intimate with Archytas the then head of the Pythagorean
school, Eurytas of Metapontum, and Timaeus of Locri. He returned to
Athens about the year 380 B.C., and formed a school of students in a
suburban gymnasium called the “Academy.” He died in 348 B.cC.

Plato, like Pythagoras, was primarily a philosopher, and perhaps his
philosophy should be regarded as founded on the Pythagorean rather
than on the Socratic teaching. At any rate it, like that of the Pythagore-
ans, was coloured with the idea that the secret of the universe is to be
found in number and in form; hence, as Eudemus says, “he exhibited
on every occasion the remarkable connection between mathematics and
philosophy.” All the authorities agree that, unlike many later philoso-
phers, he made a study of geometry or some exact science an indis-
pensable preliminary to that of philosophy. The inscription over the
entrance to his school ran “Let none ignorant of geometry enter my
door,” and on one occasion an applicant who knew no geometry is said
to have been refused admission as a student.

Plato’s position as one of the masters of the Athenian mathematical
school rests not so much on his individual discoveries and writings as
on the extraordinary influence he exerted on his contemporaries and
successors. Thus the objection that he expressed to the use in the con-
struction of curves of any instruments other than rulers and compasses
was at once accepted as a canon which must be observed in such prob-
lems. It is probably due to Plato that subsequent geometricians began
the subject with a carefully compiled series of definitions, postulates,
and axioms. He also systematized the methods which could be used
in attacking mathematical questions, and in particular directed atten-
tion to the value of analysis. The analytical method of proof begins
by assuming that the theorem or problem is solved, and thence de-
ducing some result: if the result be false, the theorem is not true or
the problem is incapable of solution: if the result be true, and if the
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steps be reversible, we get (by reversing them) a synthetic proof; but
if the steps be not reversible, no conclusion can be drawn. Numerous
illustrations of the method will be found in any modern text-book on
geometry. If the classification of the methods of legitimate induction
given by Mill in his work on logic had been universally accepted and
every new discovery in science had been justified by a reference to the
rules there laid down, he would, I imagine, have occupied a position in
reference to modern science somewhat analogous to that which Plato
occupied in regard to the mathematics of his time.

The following is the only extant theorem traditionally attributed
to Plato. If CAB and DAB be two right-angled triangles, having one
side, AB, common, their other sides, AD and BC, parallel, and their
hypotenuses, AC' and BD, at right angles, then, if these hypotenuses
cut in P, we have PC': PB = PB: PA = PA: PD. This theorem was
used in duplicating the cube, for, if such triangles can be constructed
having PD = 2PC, the problem will be solved. It is easy to make an
instrument by which the triangles can be constructed.

Eudoxus.! Of Fudozus, the third great mathematician of the
Athenian school and the founder of that at Cyzicus, we know very lit-
tle. He was born in Cnidus in 408 B.C. Like Plato, he went to Tarentum
and studied under Archytas the then head of the Pythagoreans. Subse-
quently he travelled with Plato to Egypt, and then settled at Cyzicus,
where he founded the school of that name. Finally he and his pupils
moved to Athens. There he seems to have taken some part in public
affairs, and to have practised medicine; but the hostility of Plato and
his own unpopularity as a foreigner made his position uncomfortable,
and he returned to Cyzicus or Cnidus shortly before his death. He died
while on a journey to Egypt in 355 B.C.

His mathematical work seems to have been of a high order of ex-
cellence. He discovered most of what we now know as the fifth book
of Euclid, and proved it in much the same form as that in which it is
there given.

He discovered some theorems on
what was called “the golden section.” H B
The problem to cut a line AB in the
golden section, that is, to divide it, say at H, in extreme and mean ratio

IThe works of Eudoxus were discussed in considerable detail by H. Kiinssberg
of Dinkelsbiihl in 1888 and 1890; see also the authorities mentioned above in the

footnote on p.
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(that is, so that AB : AH = AH : HB) is solved in Euc. 11, 11, and
probably was known to the Pythagoreans at an early date. If we denote
AB by l, AH by a, and HB by b, the theorems that Eudoxus proved are
equivalent to the following algebraical identities. (i) (a+ 30)* = 5(5)*.
(ii) Conversely, if (i) be true, and AH be taken equal to a, then AB
will be divided at H in a golden section. (iii) (b + 1a)? = 5(ia?).
(iv) ? +0* = 3a®>. (v) l4+a :1 =1: a, which gives another golden
section. These propositions were subsequently put by Euclid as the
first five propositions of his thirteenth book, but they might have been
equally well placed towards the end of the second book. All of them
are obvious algebraically, since [ = a + b and a? = bl.

Eudoxus further established the “method of exhaustions”; which
depends on the proposition that “if from the greater of two unequal
magnitudes there be taken more than its half, and from the remainder
more than its half, and so on, there will at length remain a magnitude
less than the least of the proposed magnitudes.” This proposition was
placed by Euclid as the first proposition of the tenth book of his Fle-
ments, but in most modern school editions it is printed at the beginning
of the twelfth book. By the aid of this theorem the ancient geometers
were able to avoid the use of infinitesimals: the method is rigorous, but
awkward of application. A good illustration of its use is to be found in
the demonstration of Euc. X11, 2, namely, that the square of the radius
of one circle is to the square of the radius of another circle as the area
of the first circle is to an area which is neither less nor greater than the
area of the second circle, and which therefore must be exactly equal to
it: the proof given by Euclid is (as was usual) completed by a reductio
ad absurdum. Eudoxus applied the principle to shew that the volume of
a pyramid or a cone is one-third that of the prism or the cylinder on the
same base and of the same altitude (Euc. X11, 7 and 10). It is believed
that he proved that the volumes of two spheres were to one another as
the cubes of their radii; some writers attribute the proposition Euc. X11,
2 to him, and not to Hippocrates.

Eudoxus also considered certain curves other than the circle. There
is no authority for the statement made in some old books that these
were conic sections, and recent investigations have shewn that the as-
sertion (which I repeated in the earlier editions of this book) that they
were plane sections of the anchor-ring is also improbable. It seems most
likely that they were tortuous curves; whatever they were, he applied
them in explaining the apparent motions of the planets as seen from
the earth.
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Eudoxus constructed an orrery, and wrote a treatise on practical
astronomy, in which he supposed a number of moving spheres to which
the sun, moon, and stars were attached, and which by their rotation
produced the effects observed. In all he required twenty-seven spheres.
As observations became more accurate, subsequent astronomers who
accepted the theory had continually to introduce fresh spheres to make
the theory agree with the facts. The work of Aratus on astronomy,
which was written about 300 B.C. and is still extant, is founded on
that of Eudoxus.

Plato and Eudoxus were contemporaries. Among Plato’s pupils
were the mathematicians Leodamas, Neocleides, Amyclas, and to
their school also belonged Leon, Theudius (both of whom wrote
text-books on plane geometry), Cyzicenus, Thasus, Hermotimus,
Philippus, and Theaetetus. Among the pupils of Fudoxus are reck-
oned Menaechmus, his brother Dinostratus (who applied the quad-
ratrix to the duplication and trisection problems), and Aristaeus.

Menaechmus. Of the above-mentioned mathematicians Menaech-
mus requires special mention. He was born about 375 B.C., and died
about 325 B.C. Probably he succeeded Eudoxus as head of the school
at Cyzicus, where he acquired great reputation as a teacher of geome-
try, and was for that reason appointed one of the tutors of Alexander
the Great. In answer to his pupil’s request to make his proofs shorter,
Menaechmus made the well-known reply that though in the country
there are private and even royal roads, yet in geometry there is only
one road for all.

Menaechmus was the first to discuss the conic sections, which were
long called the Menaechmian triads. He divided them into three classes,
and investigated their properties, not by taking different plane sections
of a fixed cone, but by keeping his plane fixed and cutting it by dif-
ferent cones. He shewed that the section of a right cone by a plane
perpendicular to a generator is an ellipse, if the cone be acute-angled;
a parabola, if it be right-angled; and a hyperbola, if it be obtuse-angled;
and he gave a mechanical construction for curves of each class. It seems
almost certain that he was acquainted with the fundamental properties
of these curves; but some writers think that he failed to connect them
with the sections of the cone which he had discovered, and there is no
doubt that he regarded the latter not as plane loci but as curves drawn
on the surface of a cone.

He also shewed how these curves could be used in either of the two
following ways to give a solution of the problem to duplicate a cube. In
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the first of these, he pointed out that two parabolas having a common
vertex, axes at right angles, and such that the latus rectum of the one is
double that of the other will intersect in another point whose abscissa
(or ordinate) will give a solution; for (using analysis) if the equations
of the parabolas be y? = 2ax and 22 = ay, they intersect in a point
whose abscissa is given by z® = 2a?. It is probable that this method
was suggested by the form in which Hippocrates had cast the problem,;
namely, to find z and y so that a : x = 2 : y = y : 2a, whence we have
2% = ay and y? = 2ax.

The second solution given by Menaechmus was as follows. Describe
a parabola of latus rectum [. Next describe a rectangular hyperbola,
the length of whose real axis is 4/, and having for its asymptotes the
tangent at the vertex of the parabola and the axis of the parabola. Then
the ordinate and the abscissa of the point of intersection of these curves
are the mean proportionals between [ and 2[. This is at once obvious
by analysis. The curves are 22 = ly and zy = 2/2. These cut in a point
determined by 2® = 2[* and > = 413. Hence l :x =2 :y =y : 2l.

Aristaeus and Theaetetus. Of the other members of these
schools, Aristaeus and Theaetetus, whose works are entirely lost, were
mathematicians of repute. We know that Aristaecus wrote on the five
regular solids and on conic sections, and that Theaetetus developed
the theory of incommensurable magnitudes. The only theorem we can
now definitely ascribe to the latter is that given by Euclid in the ninth
proposition of the tenth book of the Elements, namely, that the squares
on two commensurable right lines have one to the other a ratio which
a square number has to a square number (and conversely); but the
squares on two incommensurable right lines have one to the other a
ratio which cannot be expressed as that of a square number to a square
number (and conversely). This theorem includes the results given by
Theodorus.!

The contemporaries or successors of these mathematicians wrote
some fresh text-books on the elements of geometry and the conic sec-
tions, introduced problems concerned with finding loci, and system-
atized the knowledge already acquired, but they originated no new
methods of research.

Aristotle. An account of the Athenian school would be incom-
plete if there were no mention of Aristotle, who was born at Stagira in
Macedonia in 384 B.C. and died at Chalcis in Euboea in 322 B.C. Aris-

1See above, p.
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totle, however, deeply interested though he was in natural philosophy,
was chiefly concerned with mathematics and mathematical physics as
supplying illustrations of correct reasoning. A small book containing a
few questions on mechanics which is sometimes attributed to him is of
doubtful authority; but, though in all probability it is not his work, it is
interesting, partly as shewing that the principles of mechanics were be-
ginning to excite attention, and partly as containing the earliest known
employment of letters to indicate magnitudes.

The most instructive parts of the book are the dynamical proof of
the parallelogram of forces for the direction of the resultant, and the
statement, in effect, that if o be a force, # the mass to which it is
applied, v the distance through which it is moved, and ¢ the time of
the motion, then o will move %ﬁ through 2v in the time ¢, or through
v in the time %(5 : but the author goes on to say that it does not follow
that %a will move 3 through %’y in the time 0, because %a may not
be able to move ( at all; for 100 men may drag a ship 100 yards, but
it does not follow that one man can drag it one yard. The first part
of this statement is correct and is equivalent to the statement that an
impulse is proportional to the momentum produced, but the second
part is wrong.

The author also states the fact that what is gained in power is lost
in speed, and therefore that two weights which keep a [weightless] lever
in equilibrium are inversely proportional to the arms of the lever; this,
he says, is the explanation why it is easier to extract teeth with a pair
of pincers than with the fingers. Among other questions raised, but
not answered, are why a projectile should ever stop, and why carriages
with large wheels are easier to move than those with small.

I ought to add that the book contains some gross blunders, and as
a whole is not as able or suggestive as might be inferred from the above
extracts. In fact, here as elsewhere, the Greeks did not sufficiently
realise that the fundamental facts on which the mathematical treatment
of mechanics must be based can be established only by carefully devised
observations and experiments.
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CHAPTER IV.

THE FIRST ALEXANDRIAN SCHOOL.!
CIRC. 300 B.c.—30 B.C.

THE earliest attempt to found a university, as we understand the
word, was made at Alexandria. Richly endowed, supplied with lec-
ture rooms, libraries, museums, laboratories, and gardens, it became
at once the intellectual metropolis of the Greek race, and remained so
for a thousand years. It was particularly fortunate in producing within
the first century of its existence three of the greatest mathematicians
of antiquity—FEuclid, Archimedes, and Apollonius. They laid down
the lines on which mathematics subsequently developed, and treated
it as a subject distinct from philosophy: hence the foundation of the
Alexandrian Schools is rightly taken as the commencement of a new
era. Thenceforward, until the destruction of the city by the Arabs in
641 A.D., the history of mathematics centres more or less round that
of Alexandria; for this reason the Alexandrian Schools are commonly
taken to include all Greek mathematicians of their time.

The city and university of Alexandria were created under the fol-
lowing circumstances. Alexander the Great had ascended the throne of
Macedonia in 336 B.C. at the early age of twenty, and by 332 B.C. he
had conquered or subdued Greece, Asia Minor, and Egypt. Following

!The history of the Alexandrian Schools is discussed by G. Loria in his Le Scienze
Esatte nell’ Antica Grecia, Modena, 1893-1900; by Cantor, chaps. xii—xxiii; and by
J. Gow in his History of Greek Mathematics, Cambridge, 1884. The subject of
Greek algebra is treated by E. H. F. Nesselmann in his Die Algebra der Griechen,
Berlin, 1842; see also L. Matthiessen, Grundzige der antiken und modernen Alge-
bra der litteralen Gleichungen, Leipzig, 1878. The Greek treatment of the conic
sections forms the subject of Die Lehre von den Kegelschnitten in Altertum, by
H. G. Zeuthen, Copenhagen, 1886. The materials for the history of these schools
have been subjected to a searching criticism by S. P. Tannery, and most of his
papers are collected in his Géométrie Grecque, Paris, 1887.
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the plan he adopted whenever a commanding site had been left unoc-
cupied, he founded a new city on the Mediterranean near one mouth
of the Nile; and he himself sketched out the ground-plan, and arranged
for drafts of Greeks, Egyptians, and Jews to be sent to occupy it. The
city was intended to be the most magnificent in the world, and, the
better to secure this, its erection was left in the hands of Dinocrates,
the architect of the temple of Diana at Ephesus.

After Alexander’s death in 323 B.C. his empire was divided, and
Egypt fell to the lot of Ptolemy, who chose Alexandria as the capital
of his kingdom. A short period of confusion followed, but as soon as
Ptolemy was settled on the throne, say about 306 B.C., he determined
to attract, so far as he was able, learned men of all sorts to his new city;
and he at once began the erection of the university buildings on a piece
of ground immediately adjoining his palace. The university was ready
to be opened somewhere about 300 B.C., and Ptolemy, who wished to
secure for its staff the most eminent philosophers of the time, naturally
turned to Athens to find them. The great library which was the central
feature of the scheme was placed under Demetrius Phalereus, a distin-
guished Athenian, and so rapidly did it grow that within forty years
it (together with the Egyptian annexe) possessed about 600,000 rolls.
The mathematical department was placed under Euclid, who was thus
the first, as he was one of the most famous, of the mathematicians of
the Alexandrian school.

It happens that contemporaneously with the foundation of this
school the information on which our history is based becomes more
ample and certain. Many of the works of the Alexandrian mathemati-
cians are still extant; and we have besides an invaluable treatise by
Pappus, described below, in which their best-known treatises are col-
lated, discussed, and criticized. It curiously turns out that just as we
begin to be able to speak with confidence on the subject-matter which
was taught, we find that our information as to the personality of the
teachers becomes vague; and we know very little of the lives of the
mathematicians mentioned in this and the next chapter, even the dates
at which they lived being frequently in doubt.
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The third century before Christ.

Euclid.!-This century produced three of the greatest mathemati-
cians of antiquity, namely Euclid, Archimedes, and Apollonius. The
earliest of these was Fuclid. Of his life we know next to nothing, save
that he was of Greek descent, and was born about 330 B.C.; he died
about 275 B.C. It would appear that he was well acquainted with the
Platonic geometry, but he does not seem to have read Aristotle’s works;
and these facts are supposed to strengthen the tradition that he was ed-
ucated at Athens. Whatever may have been his previous training and
career, he proved a most successful teacher when settled at Alexan-
dria. He impressed his own individuality on the teaching of the new
university to such an extent that to his successors and almost to his
contemporaries the name Euclid meant (as it does to us) the book or
books he wrote, and not the man himself. Some of the medieval writers
went so far as to deny his existence, and with the ingenuity of philolo-
gists they explained that the term was only a corruption of UkA1 a key,
and 01¢ geometry. The former word was presumably derived from xA€iS.
I can only explain the meaning assigned to di¢ by the conjecture that as
the Pythagoreans said that the number two symbolized a line, possibly
a schoolman may have thought that it could be taken as indicative of
geometry.

From the meagre notices of Euclid which have come down to us
we find that the saying that there is no royal road in geometry was
attributed to Euclid as well as to Menaechmus; but it is an epigram-
matic remark which has had many imitators. According to tradition,
Euclid was noticeable for his gentleness and modesty. Of his teaching,
an anecdote has been preserved. Stobaeus, who is a somewhat doubt-
ful authority, tells us that, when a lad who had just begun geometry
asked, “What do I gain by learning all this stuff?” Euclid insisted that
knowledge was worth acquiring for its own sake, but made his slave
give the boy some coppers, “since,” said he, “he must make a profit out
of what he learns.”

IBesides Loria, book ii, chap. i; Cantor, chaps. xii, xiii; and Gow, pp. 72-86, 195
221; see the articles Fucleides by A. De Morgan in Smith’s Dictionary of Greek and
Roman Biography, London, 1849; the article on Irrational Quantity by A. De Mor-
gan in the Penny Cyclopaedia, London, 1839; Litterargeschichtliche Studien tiber
FEuklid, by J. L. Heiberg, Leipzig, 1882; and above all Fuclid’s Elements, trans-
lated with an introduction and commentary by T. L. Heath, 3 volumes, Cambridge,
1908. The latest complete edition of all Euclid’s works is that by J. L. Heiberg and
H. Menge, Leipzig, 1883-96.
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Euclid was the author of several works, but his reputation rests
mainly on his Flements. This treatise contains a systematic exposition
of the leading propositions of elementary metrical geometry (exclusive
of conic sections) and of the theory of numbers. It was at once adopted
by the Greeks as the standard text-book on the elements of pure math-
ematics, and it is probable that it was written for that purpose and not
as a philosophical attempt to shew that the results of geometry and
arithmetic are necessary truths.

The modern text! is founded on an edition or commentary prepared
by Theon, the father of Hypatia (circ. 380 A.D.). There is at the Vatican
a copy (circ. 1000 A.D.) of an older text, and we have besides quota-
tions from the work and references to it by numerous writers of various
dates. From these sources we gather that the definitions, axioms, and
postulates were rearranged and slightly altered by subsequent editors,
but that the propositions themselves are substantially as Euclid wrote
them.

As to the matter of the work. The geometrical part is to a large
extent a compilation from the works of previous writers. Thus the sub-
stance of books I and 11 (except perhaps the treatment of parallels) is
probably due to Pythagoras; that of book 111 to Hippocrates; that of
book v to Eudoxus; and the bulk of books 1v, VI, X1, and XII to the
later Pythagorean or Athenian schools. But this material was rear-
ranged, obvious deductions were omitted (for instance, the proposition
that the perpendiculars from the angular points of a triangle on the op-
posite sides meet in a point was cut out), and in some cases new proofs
substituted. Book X, which deals with irrational magnitudes, may be
founded on the lost book of Theaetetus; but probably much of it is
original, for Proclus says that while Euclid arranged the propositions
of Eudoxus he completed many of those of Theaetetus. The whole was
presented as a complete and consistent body of theorems.

The form in which the propositions are presented, consisting of
enunciation, statement, construction, proof, and conclusion, is due to
Euclid: so also is the synthetical character of the work, each proof be-
ing written out as a logically correct train of reasoning but without any
clue to the method by which it was obtained.

'Most of the modern text-books in English are founded on Simson’s edition,
issued in 1758. Robert Simson, who was born in 1687 and died in 1768, was professor
of mathematics at the University of Glasgow, and left several valuable works on
ancient geometry.
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The defects of Euclid’s Elements as a text-book of geometry have
been often stated; the most prominent are these. (i) The definitions and
axioms contain many assumptions which are not obvious, and in par-
ticular the postulate or axiom about parallel lines is not self-evident.!
(ii) No explanation is given as to the reason why the proofs take the
form in which they are presented, that is, the synthetical proof is given
but not the analysis by which it was obtained. (iii) There is no at-
tempt made to generalize the results arrived at; for instance, the idea
of an angle is never extended so as to cover the case where it is equal
to or greater than two right angles: the second half of the thirty-third
proposition in the sixth book, as now printed, appears to be an excep-
tion, but it is due to Theon and not to Euclid. (iv) The principle of
superposition as a method of proof might be used more frequently with
advantage. (v) The classification is imperfect. And (vi) the work is
unnecessarily long and verbose. Some of those objections do not apply
to certain of the recent school editions of the Elements.

On the other hand, the propositions in Euclid are arranged so as to
form a chain of geometrical reasoning, proceeding from certain almost
obvious assumptions by easy steps to results of considerable complexity.
The demonstrations are rigorous, often elegant, and not too difficult for
a beginner. Lastly, nearly all the elementary metrical (as opposed to
the graphical) properties of space are investigated, while the fact that
for two thousand years it was the usual text-book on the subject raises
a strong presumption that it is not unsuitable for the purpose.

On the Continent rather more than a century ago, Euclid was gen-
erally superseded by other text-books. In England determined efforts
have lately been made with the same purpose, and numerous other
works on elementary geometry have been produced in the last decade.
The change is too recent to enable us to say definitely what its effect
may be. But as far as I can judge, boys who have learnt their geom-
etry on the new system know more facts, but have missed the mental
and logical training which was inseparable from a judicious study of
Euclid’s treatise.

I do not think that all the objections above stated can fairly be
urged against Euclid himself. He published a collection of problems,
generally known as the Aedouéva or Data. This contains 95 illustrations
of the kind of deductions which frequently have to be made in analysis;

'We know, from the researches of Lobatschewsky and Riemann, that it is inca-
pable of proof.
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such as that, if one of the data of the problem under consideration
be that one angle of some triangle in the figure is constant, then it is
legitimate to conclude that the ratio of the area of the rectangle under
the sides containing the angle to the area of the triangle is known
[prop. 66]. Pappus says that the work was written for those “who wish
to acquire the power of solving problems.” It is in fact a gradual series
of exercises in geometrical analysis. In short the FElements gave the
principal results, and were intended to serve as a training in the science
of reasoning, while the Data were intended to develop originality.

Euclid also wrote a work called Ilepi Awaipéoewr or De Divisionibus,
known to us only through an Arabic translation which may be itself
imperfect.! This is a collection of 36 problems on the division of areas
into parts which bear to one another a given ratio. It is not unlikely
that this was only one of several such collections of examples—possibly
including the Fallacies and the Porisms—but even by itself it shews
that the value of exercises and riders was fully recognized by Euclid.

I may here add a suggestion made by De Morgan, whose comments
on FEuclid’s writings were notably ingenious and informing. From in-
ternal evidence he thought it likely that the FElements were written
towards the close of Euclid’s life, and that their present form repre-
sents the first draft of the proposed work, which, with the exception of
the tenth book, Euclid did not live to revise. This opinion is generally
discredited, and there is no extrinsic evidence to support it.

The geometrical parts of the Elements are so well known that I need
do no more than allude to them. Euclid admitted only those construc-
tions which could be made by the use of a ruler and compasses.? He
also excluded practical work and hypothetical constructions. The first
four books and book VI deal with plane geometry; the theory of pro-
portion (of any magnitudes) is discussed in book v; and books X1 and
XII treat of solid geometry. On the hypothesis that the Elements are
the first draft of Euclid’s proposed work, it is possible that book XIiI

IR. C. Archibald, Euclid’s Book on Divisions, Cambridge, 1915.

2The ruler must be of unlimited length and not graduated; the compasses also
must be capable of being opened as wide as is desired. Lorenzo Mascheroni (who
was born at Castagneta on May 14, 1750, and died at Paris on July 30, 1800)
set himself the task to obtain by means of constructions made only with a pair
of compasses as many Euclidean results as possible. Mascheroni’s treatise on the
geometry of the compass, which was published at Pavia in 1795, is a curious tour de
force: he was professor first at Bergamo and afterwards at Pavia, and left numerous
minor works. Similar limitations have been proposed by other writers.
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is a sort of appendix containing some additional propositions which
would have been put ultimately in one or other of the earlier books.
Thus, as mentioned above, the first five propositions which deal with
a line cut in golden section might be added to the second book. The
next seven propositions are concerned with the relations between cer-
tain incommensurable lines in plane figures (such as the radius of a
circle and the sides of an inscribed regular triangle, pentagon, hexagon,
and decagon) which are treated by the methods of the tenth book and
as an illustration of them. Constructions of the five regular solids are
discussed in the last six propositions, and it seems probable that Eu-
clid and his contemporaries attached great importance to this group of
problems. Bretschneider inclined to think that the thirteenth book is a
summary of part of the lost work of Aristaeus: but the illustrations of
the methods of the tenth book are due most probably to Theaetetus.

Books vi1, vIiI, 1X, and X of the Elements are given up to the theory
of numbers. The mere art of calculation or Aoyionikn) was taught to
boys when quite young, it was stigmatized by Plato as childish, and
never received much attention from Greek mathematicians; nor was it
regarded as forming part of a course of mathematics. We do not know
how it was taught, but the abacus certainly played a prominent part in
it. The scientific treatment of numbers was called api9unTixn, which I
have here generally translated as the science of numbers. It had special
reference to ratio, proportion, and the theory of numbers. It is with
this alone that most of the extant Greek works deal.

In discussing Euclid’s arrangement of the subject, we must therefore
bear in mind that those who attended his lectures were already familiar
with the art of calculation. The system of numeration adopted by
the Greeks is described later,! but it was so clumsy that it rendered
the scientific treatment of numbers much more difficult than that of
geometry; hence Euclid commenced his mathematical course with plane
geometry. At the same time it must be observed that the results of the
second book, though geometrical in form, are capable of expression in
algebraical language, and the fact that numbers could be represented
by lines was probably insisted on at an early stage, and illustrated by
concrete examples. This graphical method of using lines to represent
numbers possesses the obvious advantage of leading to proofs which
are true for all numbers, rational or irrational. It will be noticed that
among other propositions in the second book we get geometrical proofs

1See below, chapter
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of the distributive and commutative laws, of rules for multiplication,
and finally geometrical solutions of the equations a(a — ) = 22, that is
r?+azr—a? =0 (Euc. 11, 11), and 22 —ab = 0 (Euc. 11, 14): the solution
of the first of these equations is given in the form Va? + (5a)* — 3a.
The solutions of the equations az? — bz + ¢ = 0 and ax? +bx —c = 0
are given later in Euc. vi, 28 and V1, 29; the cases when a = 1 can be
deduced from the identities proved in Euc. 11, 5 and 6, but it is doubtful
if Euclid recognized this.

The results of the fifth book, in which the theory of proportion is
considered, apply to any magnitudes, and therefore are true of numbers
as well as of geometrical magnitudes. In the opinion of many writers
this is the most satisfactory way of treating the theory of proportion
on a scientific basis; and it was used by Euclid as the foundation on
which he built the theory of numbers. The theory of proportion given
in this book is believed to be due to Eudoxus. The treatment of the
same subject in the seventh book is less elegant, and is supposed to be
a reproduction of the Pythagorean teaching. This double discussion of
proportion is, as far as it goes, in favour of the conjecture that Euclid
did not live to revise the work.

In books vir, viil, and 1X Euclid discusses the theory of ratio-
nal numbers. He commences the seventh book with some definitions
founded on the Pythagorean notation. In propositions 1 to 3 he shews
that if, in the usual process for finding the greatest common measure
of two numbers, the last divisor be unity, the numbers must be prime;
and he thence deduces the rule for finding their G.C.M. Propositions 4
to 22 include the theory of fractions, which he bases on the theory of
proportion; among other results he shews that ab = ba [prop. 16]. In
propositions 23 to 34 he treats of prime numbers, giving many of the
theorems in modern text-books on algebra. In propositions 35 to 41
he discusses the least common multiple of numbers, and some miscel-
laneous problems.

The eighth book is chiefly devoted to numbers in continued propor-
tion, that is, in a geometrical progression; and the cases where one or
more is a product, square, or cube are specially considered.

In the ninth book Euclid continues the discussion of geometrical
progressions, and in proposition 35 he enunciates the rule for the sum-
mation of a series of n terms, though the proof is given only for the case
where n is equal to 4. He also develops the theory of primes, shews that
the number of primes is infinite [prop. 20], and discusses the properties
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of odd and even numbers. He concludes by shewing that a number of
the form 2"71(2" — 1), where 2" — 1 is a prime, is a “perfect” number
[prop. 36.

In the tenth book Euclid deals with certain irrational magnitudes;
and, since the Greeks possessed no symbolism for surds, he was forced
to adopt a geometrical representation. Propositions 1 to 21 deal gener-
ally with incommensurable magnitudes. The rest of the book, namely,
propositions 22 to 117, is devoted to the discussion of every possible
variety of lines which can be represented by /(y/a £ 1/b), where a and b
denote commensurable lines. There are twenty-five species of such lines,
and that Euclid could detect and classify them all is in the opinion of
so competent an authority as Nesselmann the most striking illustration
of his genius. No further advance in the theory of incommensurable
magnitudes was made until the subject was taken up by Leonardo and
Cardan after an interval of more than a thousand years.

In the last proposition of the tenth book [prop. 117] the side and
diagonal of a square are proved to be incommensurable. The proof is
so short and easy that I may quote it. If possible let the side be to
the diagonal in a commensurable ratio, namely, that of two integers,
a and b. Suppose this ratio reduced to its lowest terms so that a and
b have no common divisor other than unity, that is, they are prime to
one another. Then (by Euc. 1, 47) b* = 2a?; therefore b? is an even
number; therefore b is an even number; hence, since a is prime to b,
a must be an odd number. Again, since it has been shewn that b is
an even number, b may be represented by 2n; therefore (2n)? = 2a?;
therefore a? = 2n?; therefore a? is an even number; therefore a is an
even number. Thus the same number a must be both odd and even,
which is absurd; therefore the side and diagonal are incommensurable.
Hankel believes that this proof was due to Pythagoras, and this is not
unlikely. This proposition is also proved in another way in Euc. X,
9, and for this and other reasons it is now usually believed to be an
interpolation by some commentator on the Elements.

In addition to the Elements and the two collections of riders above
mentioned (which are extant) Euclid wrote the following books on ge-
ometry: (i) an elementary treatise on conic sections in four books; (ii) a
book on surface loci, probably confined to curves on the cone and cylin-
der; (iii) a collection of geometrical fallacies, which were to be used as
exercises in the detection of errors; and (iv) a treatise on porisms ar-
ranged in three books. All of these are lost, but the work on porisms
was discussed at such length by Pappus, that some writers have thought
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it possible to restore it. In particular, Chasles in 1860 published what
he considered to be substantially a reproduction of it. In this will be
found the conceptions of cross ratios and projection, and those ideas of
modern geometry which were used so extensively by Chasles and other
writers of the nineteenth century. It should be realized, however, that
the statements of the classical writers concerning this book are either
very brief or have come to us only in a mutilated form, and De Mor-
gan frankly says that he found them unintelligible, an opinion in which
most of those who read them will, I think, concur.

Euclid published a book on optics, treated geometrically, which con-
tains 61 propositions founded on 12 assumptions. It commences with
the assumption that objects are seen by rays emitted from the eye in
straight lines, “for if light proceeded from the object we should not,
as we often do, fail to perceive a needle on the floor.” A work called
Catoptrica is also attributed to him by some of the older writers; the
text is corrupt and the authorship doubtful; it consists of 31 propo-
sitions dealing with reflexions in plane, convex, and concave mirrors.
The geometry of both books is Euclidean in form.

Euclid has been credited with an ingenious demonstration® of the
principle of the lever, but its authenticity is doubtful. He also wrote
the Phaenomena, a treatise on geometrical astronomy. It contains ref-
erences to the work of Autolycus? and to some book on spherical geom-
etry by an unknown writer. Pappus asserts that Euclid also composed
a book on the elements of music: this may refer to the Sectio Canonis,
which is by Euclid, and deals with musical intervals.

To these works I may add the following little problem, which occurs
in the Palatine Anthology and is attributed by tradition to Euclid. “A
mule and a donkey were going to market laden with wheat. The mule
said, ‘If you gave me one measure I should carry twice as much as you,
but if I gave you one we should bear equal burdens.” Tell me, learned
geometrician, what were their burdens.” It is impossible to say whether
the question is due to Euclid, but there is nothing improbable in the
suggestion.

It will be noticed that Euclid dealt only with magnitudes, and did

Tt is given (from the Arabic) by F. Woepcke in the Journal Asiatique, series 4,
vol. xviii, October 1851, pp. 225-232.

2 Autolycus lived at Pitane in Aeolis and flourished about 330 B.c. His two works
on astronomy, containing 43 propositions, are said to be the oldest extant Greek
mathematical treatises. They exist in manuscript at Oxford. They were edited,
with a Latin translation, by F. Hultsch, Leipzig, 1885.
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not concern himself with their numerical measures, but it would seem
from the works of Aristarchus and Archimedes that this was not the
case with all the Greek mathematicians of that time. As one of the
works of the former is extant it will serve as another illustration of
Greek mathematics of this period.

Aristarchus. Aristarchus of Samos, born in 310 B.C. and died in
250 B.C., was an astronomer rather than a mathematician. He asserted,
at any rate as a working hypothesis, that the sun was the centre of
the universe, and that the earth revolved round the sun. This view,
in spite of the simple explanation it afforded of various phenomena,
was generally rejected by his contemporaries. But his propositions! on
the measurement of the sizes and distances of the sun and moon were
accurate in principle, and his results were accepted by Archimedes in
his Waupuitng, mentioned below, as approximately correct. There are 19
theorems, of which I select the seventh as a typical illustration, because
it shews the way in which the Greeks evaded the difficulty of finding
the numerical value of surds.

Aristarchus observed the angular distance between the moon when
dichotomized and the sun, and found it to be twenty-nine thirtieths of
a right angle. It is actually about 89°21’, but of course his instruments
were of the roughest description. He then proceeded to shew that the
distance of the sun is greater than eighteen and less than twenty times
the distance of the moon in the following manner.

Let S be the sun, E the earth, and M the moon. Then when the
moon is dichotomized, that is, when the bright part which we see is
exactly a half-circle, the angle between MS and M FE is a right angle.
With E as centre, and radii £S and EM describe circles, as in the
below. Draw EA perpendicular to ES. Draw EF bisecting the
angle AES, and EG bisecting the angle AEF, as in the [figure Let
EM (produced) cut AF in H. The angle AEM is by hypothesis %th
of a right angle. Hence we have

angle AEG :angle AEH = ;1. Z: 5516 £ =15:2,
SLAG  AH [=tan AEG :tan AEH] > 15: 2. ()

Hept peyébov xai drootnudrwr ‘HAiov kai XeArjyng, edited by E. Nizze, Stral-
sund, 1856. Latin translations were issued by F. Commandino in 1572 and by
J. Wallis in 1688; and a French translation was published by F. d’Urban in 1810
and 1823.
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Again FG? : AG? = EF?: EA? (Euc. v1, 3) =2: 1 (Euc. 1, 47),

- FG? 1 AG? > 49 : 25,
L FG:AG>T7:5,
SAF D AG > 1205,
SAE AG > 1205, (8)

Compounding the ratios («) and (), we have
AE : AH > 18 : 1.

But the triangles EMS and EAH are similar,

SESEM > 18: 1.

I will leave the second half of the proposition to amuse any reader
who may care to prove it: the analysis is straightforward. In a some-
what similar way Aristarchus found the ratio of the radii of the sun,
earth, and moon.

We know very little of Conon and Dositheus, the immediate suc-
cessors of Euclid at Alexandria, or of their contemporaries Zeuxippus
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and Nicoteles, who most likely also lectured there, except that Archi-
medes, who was a student at Alexandria probably shortly after Euclid’s
death, had a high opinion of their ability and corresponded with the
three first mentioned. Their work and reputation has been completely
overshadowed by that of Archimedes.

Archimedes.! Archimedes, who probably was related to the royal
family at Syracuse, was born there in 287 B.C. and died in 212 B.C. He
went to the university of Alexandria and attended the lectures of Conon,
but, as soon as he had finished his studies, returned to Sicily where he
passed the remainder of his life. He took no part in public affairs, but
his mechanical ingenuity was astonishing, and, on any difficulties which
could be overcome by material means arising, his advice was generally
asked by the government.

Archimedes, like Plato, held that it was undesirable for a philoso-
pher to seek to apply the results of science to any practical use; but
in fact he did introduce a large number of new inventions. The stories
of the detection of the fraudulent goldsmith and of the use of burning-
glasses to destroy the ships of the Roman blockading squadron will
recur to most readers. Perhaps it is not as well known that Hiero, who
had built a ship so large that he could not launch it off the slips, applied
to Archimedes. The difficulty was overcome by means of an apparatus
of cogwheels worked by an endless screw, but we are not told exactly
how the machine was used. It is said that it was on this occasion, in
acknowledging the compliments of Hiero, that Archimedes made the
well-known remark that had he but a fixed fulcrum he could move the
earth.

Most mathematicians are aware that the Archimedean screw was
another of his inventions. It consists of a tube, open at both ends, and
bent into the form of a spiral like a corkscrew. If one end be immersed
in water, and the axis of the instrument (i.e. the axis of the cylinder
on the surface of which the tube lies) be inclined to the vertical at a
sufficiently big angle, and the instrument turned round it, the water

!Besides Loria, book ii, chap. iii, Cantor, chaps. xiv, xv, and Gow, pp. 221
244, see Quaestiones Archimedeae, by J. L. Heiberg, Copenhagen, 1879; and Marie,
vol. i, pp. 81-134. The best editions of the extant works of Archimedes are those by
J. L. Heiberg, in 3 vols., Leipzig, 1880-81, and by Sir Thomas L. Heath, Cambridge,
1897. In 1906 a manuscript, previously unknown, was discovered at Constantinople,
containing propositions on hydrostatics and on methods; see Fine neue Schrift des
Archimedes, by J. L. Heiberg and H. G. Zeuthen, Leipzig, 1907, and the Method of
Archimedes, by Sir Thomas L. Heath, Cambridge, 1912.
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will flow along the tube and out at the other end. In order that it
may work, the inclination of the axis of the instrument to the vertical
must be greater than the pitch of the screw. It was used in Egypt to
drain the fields after an inundation of the Nile, and was also frequently
applied to take water out of the hold of a ship.

The story that Archimedes set fire to the Roman ships by means of
burning-glasses and concave mirrors is not mentioned till some centuries
after his death, and is generally rejected. The mirror of Archimedes
is said to have been made in the form of a hexagon surrounded by
rings of polygons; and Buffon® in 1747 contrived, by the use of a single
composite mirror made on this model, to set fire to wood at a distance
of 150 feet, and to melt lead at a distance of 140 feet. This was in April
and as far north as Paris, so in a Sicilian summer the use of several such
mirrors might be a serious annoyance to a blockading fleet, if the ships
were sufficiently near. It is perhaps worth mentioning that a similar
device is said to have been used in the defence of Constantinople in
514 A.D., and is alluded to by writers who either were present at the
siege or obtained their information from those who were engaged in it.

But whatever be the truth as to this story, there is no doubt that
Archimedes devised the catapults which kept the Romans, who were
then besieging Syracuse, at bay for a considerable time. These were
constructed so that the range could be made either short or long at
pleasure, and so that they could be discharged through a small loophole
without exposing the artillery-men to the fire of the enemy. So effective
did they prove that the siege was turned into a blockade, and three years
elapsed before the town was taken.

Archimedes was killed during the sack of the city which followed its
capture, in spite of the orders, given by the consul Marcellus who was
in command of the Romans, that his house and life should be spared.
It is said that a soldier entered his study while he was regarding a
geometrical diagram drawn in sand on the floor, which was the usual
way of drawing figures in classical times. Archimedes told him to get
off the diagram, and not spoil it. The soldier, feeling insulted at having
orders given to him and ignorant of who the old man was, killed him.
According to another and more probable account, the cupidity of the
troops was excited by seeing his instruments, constructed of polished
brass which they supposed to be made of gold.

1See Mémoires de l'académie royale des sciences for 1747, Paris, 1752, pp. 82—
101.
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The Romans erected a splendid tomb to Archimedes, on which was
engraved (in accordance with a wish he had expressed) the figure of a
sphere inscribed in a cylinder, in commemoration of the proof he had
given that the volume of a sphere was equal to two-thirds that of the
circumscribing right cylinder, and its surface to four times the area of
a great circle. Cicero! gives a charming account of his efforts (which
were successful) to rediscover the tomb in 75 B.C.

It is difficult to explain in a concise form the works or discoveries
of Archimedes, partly because he wrote on nearly all the mathemati-
cal subjects then known, and partly because his writings are contained
in a series of disconnected monographs. Thus, while Euclid aimed at
producing systematic treatises which could be understood by all stu-
dents who had attained a certain level of education, Archimedes wrote a
number of brilliant essays addressed chiefly to the most educated math-
ematicians of the day. The work for which he is perhaps now best known
is his treatment of the mechanics of solids and fluids; but he and his
contemporaries esteemed his geometrical discoveries of the quadrature
of a parabolic area and of a spherical surface, and his rule for finding
the volume of a sphere as more remarkable; while at a somewhat later
time his numerous mechanical inventions excited most attention.

(i) On plane geometry the extant works of Archimedes are three in
number, namely, (a) the Measure of the Circle, (b) the Quadrature of
the Parabola, and (c) one on Spirals.

(a) The Measure of the Clircle contains three propositions. In the
first proposition Archimedes proves that the area is the same as that of
a right-angled triangle whose sides are equal respectively to the radius
a and the circumference of the circle, i.e. the area is equal to $a(27a).
In the second proposition he shows that ma? : (2a)? = 11 : 14 very
nearly; and next, in the third proposition, that 7 is less than 3% and
greater than 3%. These theorems are of course proved geometrically.
To demonstrate the two latter propositions, he inscribes in and circum-
scribes about a circle regular polygons of ninety-six sides, calculates
their perimeters, and then assumes the circumference of the circle to lie
between them: this leads to the result 6336/20173 < m < 14688/46733,
from which he deduces the limits given above. It would seem from the
proof that he had some (at present unknown) method of extracting the
square roots of numbers approximately. The table which he formed of
the numerical values of the chords of a circle is essentially a table of

1See his Tusculanarum Disputationum, v. 23.
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natural sines, and may have suggested the subsequent work on these
lines of Hipparchus and Ptolemy.

(b) The Quadrature of the Parabola contains twenty-four propo-
sitions. Archimedes begins this work, which was sent to Dositheus,
by establishing some properties of conics [props. 1-5]. He then states
correctly the area cut off from a parabola by any chord, and gives a
proof which rests on a preliminary mechanical experiment of the ra-
tio of areas which balance when suspended from the arms of a lever
[props. 6-17]; and, lastly, he gives a geometrical demonstration of this
result [props. 18-24]. The latter is, of course, based on the method
of exhaustions, but for brevity I will, in quoting it, use the method of
limits.

Let the area of the parabola (see above) be bounded by the
chord PQ. Draw VM the diameter to the chord PQ, then (by a pre-
vious proposition), V' is more remote from P than any other point in
the arc PV (). Let the area of the triangle PV () be denoted by A. In
the segments bounded by VP and V(@ inscribe triangles in the same
way as the triangle PV () was inscribed in the given segment. Each of
these triangles is (by a previous proposition of his) equal to %A, and
their sum is therefore iA. Similarly in the four segments left inscribe
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triangles; their sum will be %6&. Proceeding in this way the area of the
given segment is shown to be equal to the limit of

when n is indefinitely large.

The problem is therefore reduced to finding the sum of a geometrical
series. This he effects as follows. Let A, B,C,...,J, K be a series of
magnitudes such that each is one-fourth of that which precedes it. Take
magnitudes b, ¢, ..., k equal respectively to $B,3C,...,sK. Then

B+b=3A, C+c=3B, ..., K+k=3lJ

Hence (B4+C+ ...+ K)+ (b+c+...+k) = 3(A+B+...+J); but,
by hypothesis, (b+c+...+j+k) =3(B+C+ ...+ J)+3K;

S (B+CH+.. . +K)+ 3K =3A

1
3
DA+B+CH. + K =3A- 1K

Hence the sum of these magnitudes exceeds four times the third of the
largest of them by one-third of the smallest of them.

Returning now to the problem of the quadrature of the parabola
A stands for A, and ultimately K is indefinitely small; therefore the
area of the parabolic segment is four-thirds that of the triangle PV @),
or two-thirds that of a rectangle whose base is P() and altitude the
distance of V' from PQ.

While discussing the question of quadratures it may be added that
in the fifth and sixth propositions of his work on conoids and spheroids
he determined the area of an ellipse.

(¢) The work on Spirals contains twenty-eight propositions on the
properties of the curve now known as the spiral of Archimedes. It was
sent to Dositheus at Alexandria accompanied by a letter, from which
it appears that Archimedes had previously sent a note of his results
to Conon, who had died before he had been able to prove them. The
spiral is defined by saying that the vectorial angle and radius vector
both increase uniformly, hence its equation is r = cf#. Archimedes
finds most of its properties, and determines the area inclosed between
the curve and two radii vectores. This he does (in effect) by saying,
in the language of the infinitesimal calculus, that an element of area

1

is > 1r?df and < 3(r + dr)?df: to effect the sum of the elementary
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areas he gives two lemmas in which he sums (geometrically) the series
a’ + (2a)* + (3a)* + ... + (na)? [prop. 10], and a + 2a + 3a + ... + na
[prop. 11].

(d) In addition to these he wrote a small treatise on geometrical
methods, and works on parallel lines, triangles, the properties of right-
angled triangles, data, the heptagon inscribed in a circle, and systems of
circles touching one another; possibly he wrote others too. These are
all lost, but it is probable that fragments of four of the propositions in
the last-mentioned work are preserved in a Latin translation from an
Arabic manuscript entitled Lemmas of Archimedes.

(ii)) On geometry of three dimensions the extant works of Archi-
medes are two in number, namely (a), the Sphere and Cylinder, and
(b) Conoids and Spheroids.

(a) The Sphere and Cylinder contains sixty propositions arranged in
two books. Archimedes sent this like so many of his works to Dositheus
at Alexandria; but he seems to have played a practical joke on his
friends there, for he purposely misstated some of his results “to deceive
those vain geometricians who say they have found everything, but never
give their proofs, and sometimes claim that they have discovered what
is impossible.” He regarded this work as his masterpiece. It is too
long for me to give an analysis of its contents, but I remark in passing
that in it he finds expressions for the surface and volume of a pyramid,
of a cone, and of a sphere, as well as of the figures produced by the
revolution of polygons inscribed in a circle about a diameter of the
circle. There are several other propositions on areas and volumes of
which perhaps the most striking is the tenth proposition of the second
book, namely, that “of all spherical segments whose surfaces are equal
the hemisphere has the greatest volume.” In the second proposition
of the second book he enunciates the remarkable theorem that a line
of length a can be divided so that a — z : b = 4a® : 92 (where b
is a given length), only if b be less than %a; that is to say, the cubic
equation 2 — az® 4+ 5a?b = 0 can have a real and positive root only
if a be greater than 3b. This proposition was required to complete his
solution of the problem to divide a given sphere by a plane so that the
volumes of the segments should be in a given ratio. One very simple
cubic equation occurs in the Arithmetic of Diophantus, but with that
exception no such equation appears again in the history of European
mathematics for more than a thousand years.

(b) The Conoids and Spheroids contains forty propositions on quad-
rics of revolution (sent to Dositheus in Alexandria) mostly concerned
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with an investigation of their volumes.

(¢) Archimedes also wrote a treatise on certain semi-regular polyhe-
drons, that is, solids contained by regular but dissimilar polygons. This
is lost, but references to it are given by Pappus.

(iii) On arithmetic Archimedes wrote two papers. One (addressed
to Zeuxippus) was on the principles of numeration; this is now lost. The
other (addressed to Gelon) was called Wauuitng (the sand-reckoner),
and in this he meets an objection which had been urged against his
first paper.

The object of the first paper had been to suggest a convenient sys-
tem by which numbers of any magnitude could be represented; and it
would seem that some philosophers at Syracuse had doubted whether
the system was practicable. Archimedes says people talk of the sand on
the Sicilian shore as something beyond the power of calculation, but he
can estimate it; and, further, he will illustrate the power of his method
by finding a superior limit to the number of grains of sand which would
fill the whole universe, i.e. a sphere whose centre is the earth, and
radius the distance of the sun. He begins by saying that in ordinary
Greek nomenclature it was only possible to express numbers from 1 up
to 10%: these are expressed in what he says he may call units of the first
order. If 10® be termed a unit of the second order, any number from
10® to 10'® can be expressed as so many units of the second order plus
so many units of the first order. If 10!¢ be a unit of the third order any
number up to 10** can be then expressed, and so on. Assuming that
10,000 grains of sand occupy a sphere whose radius is not less than %th
of a finger-breadth, and that the diameter of the universe is not greater
than 10'° stadia, he finds that the number of grains of sand required
to fill the solar universe is less than 105

Probably this system of numeration was suggested merely as a sci-
entific curiosity. The Greek system of numeration with which we are
acquainted had been only recently introduced, most likely at Alexan-
dria, and was sufficient for all the purposes for which the Greeks then
required numbers; and Archimedes used that system in all his papers.
On the other hand, it has been conjectured that Archimedes and Apol-
lonius had some symbolism based on the decimal system for their own
investigations, and it is possible that it was the one here sketched out.
The units suggested by Archimedes form a geometrical progression,
having 108 for the radix. He incidentally adds that it will be convenient
to remember that the product of the mth and nth terms of a geomet-
rical progression, whose first term is unity, is equal to the (m + n)th
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term of the series, that is, that r™ x r™ = pm*7,

To these two arithmetical papers I may add the following celebrated
problem! which he sent to the Alexandrian mathematicians. The sun
had a herd of bulls and cows, all of which were either white, grey, dun,
or piebald: the number of piebald bulls was less than the number of
white bulls by 5/6ths of the number of grey bulls, it was less than the
number of grey bulls by 9/20ths of the number of dun bulls, and it
was less than the number of dun bulls by 13/42nds of the number of
white bulls; the number of white cows was 7/12ths of the number of
grey cattle (bulls and cows), the number of grey cows was 9/20ths of
the number of dun cattle, the number of dun cows was 11/30ths of the
number of piebald cattle, and the number of piebald cows was 13/42nds
of the number of white cattle. The problem was to find the composition
of the herd. The problem is indeterminate, but the solution in lowest
integers is

white bulls, ... .. 10,366,482; white cows,...... 7,206,360;
grey bulls,....... 7,460,514, grey COwS, . ...... 4,893,246;
dun bulls, ....... 7,358,060; dun cows, ....... 3,515,820;
piebald bulls,.... 4,149,387; piebald cows,.... 5,439,213.

In the classical solution, attributed to Archimedes, these numbers are
multiplied by 80.

Nesselmann believes, from internal evidence, that the problem has
been falsely attributed to Archimedes. It certainly is unlike his extant
work, but it was attributed to him among the ancients, and is generally
thought to be genuine, though possibly it has come down to us in
a modified form. It is in verse, and a later copyist has added the
additional conditions that the sum of the white and grey bulls shall be
a square number, and the sum of the piebald and dun bulls a triangular
number.

It is perhaps worthy of note that in the enunciation the fractions
are represented as a sum of fractions whose numerators are unity: thus
Archimedes wrote 1/741/6 instead of 13/42, in the same way as Ahmes
would have done.

(iv) On mechanics the extant works of Archimedes are two in num-
ber, namely, (a) his Mechanics, and (¢) his Hydrostatics.

1See a memoir by B. Krumbiegel and A. Amthor, Zeitschrift fir Mathematik,
Abhandlungen zur Geschichte der Mathematik, Leipzig, vol. xxv, 1880, pp. 121-136,
153-171.
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(a) The Mechanics is a work on statics with special reference to
the equilibrium of plane laminas and to properties of their centres of
gravity; it consists of twenty-five propositions in two books. In the first
part of book 1, most of the elementary properties of the centre of gravity
are proved [props. 1-8]; and in the remainder of book 1, [props. 9-
15] and in book II the centres of gravity of a variety of plane areas,
such as parallelograms, triangles, trapeziums, and parabolic areas are
determined.

As an illustration of the influence of Archimedes on the history of
mathematics, I may mention that the science of statics rested on his
theory of the lever until 1586, when Stevinus published his treatise on
statics.

His reasoning is sufficiently illustrated by an outline of his proof for
the case of two weights, P and @), placed at their centres of gravity, A
and B, on a weightless bar AB. He wants to shew that the centre of
gravity of P and () is at a point O on the bar such that POA = Q.OB.

L H K
A O B

On the line AB (produced if necessary) take points H and K, so
that HB = BK = AQO; and a point L so that LA = OB. It follows that
LH will be bisected at A, HK at B, and LK at O; also LH : HK =
AH : HB = 0B : AO = P : (. Hence, by a previous proposition, we
may consider that the effect of P is the same as that of a heavy uniform
bar LH of weight P, and the effect of () is the same as that of a similar
heavy uniform bar HK of weight ). Hence the effect of the weights is
the same as that of a heavy uniform bar LK. But the centre of gravity
of such a bar is at its middle point O.

(b) Archimedes also wrote a treatise on levers and perhaps, on all
the mechanical machines. The book is lost, but we know from Pappus
that it contained a discussion of how a given weight could be moved
with a given power. It was in this work probably that Archimedes
discussed the theory of a certain compound pulley consisting of three
or more simple pulleys which he had invented, and which was used in
some public works in Syracuse. It is well known! that he boasted that,
if he had but a fixed fulcrum, he could move the whole earth; and a

ISee above, p.
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commentator of later date says that he added he would do it by using
a compound pulley.

(¢) His work on floating bodies contains nineteen propositions in
two books, and was the first attempt to apply mathematical reasoning
to hydrostatics. The story of the manner in which his attention was
directed to the subject is told by Vitruvius. Hiero, the king of Syracuse,
had given some gold to a goldsmith to make into a crown. The crown
was delivered, made up, and of the proper weight, but it was suspected
that the workman had appropriated some of the gold, replacing it by an
equal weight of silver. Archimedes was thereupon consulted. Shortly
afterwards, when in the public baths, he noticed that his body was
pressed upwards by a force which increased the more completely he was
immersed in the water. Recognising the value of the observation, he
rushed out, just as he was, and ran home through the streets, shouting
etpnka, eVpnka, “I have found it, I have found it.” There (to follow
a later account) on making accurate experiments he found that when
equal weights of gold and silver were weighed in water they no longer
appeared equal: each seemed lighter than before by the weight of the
water it displaced, and as the silver was more bulky than the gold its
weight was more diminished. Hence, if on a balance he weighed the
crown against an equal weight of gold and then immersed the whole in
water, the gold would outweigh the crown if any silver had been used
in its construction. Tradition says that the goldsmith was found to be
fraudulent.

Archimedes began the work by proving that the surface of a fluid
at rest is spherical, the centre of the sphere being at the centre of the
earth. He then proved that the pressure of the fluid on a body, wholly
or partially immersed, is equal to the weight of the fluid displaced; and
thence found the position of equilibrium of a floating body, which he
illustrated by spherical segments and paraboloids of revolution floating
on a fluid. Some of the latter problems involve geometrical reasoning
of considerable complexity.

The following is a fair specimen of the questions considered. A solid
in the shape of a paraboloid of revolution of height A and latus rectum
4a floats in water, with its vertex immersed and its base wholly above
the surface. If equilibrium be possible when the axis is not vertical,
then the density of the body must be less than (h — 3a)?/h* [book 11,
prop. 4]. When it is recollected that Archimedes was unacquainted with
trigonometry or analytical geometry, the fact that he could discover and
prove a proposition such as that just quoted will serve as an illustration
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of his powers of analysis.

It will be noticed that the mechanical investigations of Archimedes
were concerned with statics. It may be added that though the Greeks
attacked a few problems in dynamics, they did it with but indifferent
success: some of their remarks were acute, but they did not sufficiently
realise that the fundamental facts on which the theory must be based
can be established only by carefully devised observations and experi-
ments. It was not until the time of Galileo and Newton that this was
done.

(v) We know, both from occasional references in his works and from
remarks by other writers, that Archimedes was largely occupied in as-
tronomical observations. He wrote a book, Ilepi Ypeiporoiag, on the
construction of a celestial sphere, which is lost; and he constructed a
sphere of the stars, and an orrery. These, after the capture of Syracuse,
were taken by Marcellus to Rome, and were preserved as curiosities for
at least two or three hundred years.

This mere catalogue of

his works will show how

C wonderful were his achieve-

ments; but no one who has

not actually read some of

D his writings can form a just

A B appreciation of his extraor-

dinary ability. This will be

still further increased if we recollect that the only principles used by

Archimedes, in addition to those contained in Euclid’s Elements and

Conic sections, are that of all lines like ACB, ADB, ... connecting

two points A and B, the straight line is the shortest, and of the curved

lines, the inner one ADB is shorter than the outer one AC'B; together
with two similar statements for space of three dimensions.

In the old and medieval world Archimedes was reckoned as the first
of mathematicians, but possibly the best tribute to his fame is the fact
that those writers who have spoken most highly of his work and ability
are those who have been themselves the most distinguished men of their
own generation.

Apollonius.! The third great mathematician of this century

In addition to Zeuthen’s work and the other authorities mentioned in the foot-
note on p. see Litterargeschichtliche Studien tber Euklid, by J. L. Heiberg,
Leipzig, 1882. Editions of the extant works of Apollonius were issued by
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was Apollonius of Perga, who is chiefly celebrated for having produced
a systematic treatise on the conic sections which not only included
all that was previously known about them, but immensely extended
the knowledge of these curves. This work was accepted at once as
the standard text-book on the subject, and completely superseded the
previous treatises of Menaechmus, Aristaeus, and Euclid which until
that time had been in general use.

We know very little of Apollonius himself. He was born about
260 B.C., and died about 200 B.C. He studied in Alexandria for many
years, and probably lectured there; he is represented by Pappus as
“vain, jealous of the reputation of others, and ready to seize every op-
portunity to depreciate them.” It is curious that while we know next
to nothing of his life, or of that of his contemporary Eratosthenes, yet
their nicknames, which were respectively epsilon and beta, have come
down to us. Dr. Gow has ingeniously suggested that the lecture rooms
at Alexandria were numbered, and that they always used the rooms
numbered 5 and 2 respectively.

Apollonius spent some years at Pergamum in Pamphylia, where a
university had been recently established and endowed in imitation of
that at Alexandria. There he met Eudemus and Attalus, to whom
he subsequently sent each book of his conics as it came out with an
explanatory note. He returned to Alexandria, and lived there till his
death, which was nearly contemporaneous with that of Archimedes.

In his great work on conic sections Apollonius so thoroughly in-
vestigated the properties of these curves that he left but little for his
successors to add. But his proofs are long and involved, and I think
most readers will be content to accept a short analysis of his work,
and the assurance that his demonstrations are valid. Dr. Zeuthen be-
lieves that many of the properties enunciated were obtained in the
first instance by the use of co-ordinate geometry, and that the demon-
strations were translated subsequently into geometrical form. If this
be so, we must suppose that the classical writers were familiar with
some branches of analytical geometry—Dr. Zeuthen says the use of or-
thogonal and oblique co-ordinates, and of transformations depending
on abridged notation—that this knowledge was confined to a limited
school, and was finally lost. This is a mere conjecture and is unsup-
ported by any direct evidence, but it has been accepted by some writers

J. L. Heiberg in two volumes, Leipzig, 1890, 1893; and by E. Halley, Oxford, 1706
and 1710: an edition of the conics was published by T. L. Heath, Cambridge, 1896.
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as affording an explanation of the extent and arrangement of the work.

The treatise contained about four hundred propositions, and was
divided into eight books; we have the Greek text of the first four of
these, and we also possess copies of the commentaries by Pappus and
Eutocius on the whole work. In the ninth century an Arabic translation
was made of the first seven books, which were the only ones then extant;
we have two manuscripts of this version. The eighth book is lost.

In the letter to Eudemus which accompanied the first book Apol-
lonius says that he undertook the work at the request of Naucrates,
a geometrician who had been staying with him at Alexandria, and,
though he had given some of his friends a rough draft of it, he had
preferred to revise it carefully before sending it to Pergamum. In the
note which accompanied the next book, he asks Eudemus to read it
and communicate it to others who can understand it, and in particu-
lar to Philonides, a certain geometrician whom the author had met at
Ephesus.

The first four books deal with the elements of the subject, and of
these the first three are founded on Euclid’s previous work (which was
itself based on the earlier treatises by Menaechmus and Aristaeus).
Heracleides asserts that much of the matter in these books was stolen
from an unpublished work of Archimedes, but a critical examination
by Heiberg has shown that this is improbable.
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Apollonius begins by defining a cone on a circular base. He then
investigates the different plane sections of it, and shows that they are
divisible into three kinds of curves which he calls ellipses, parabolas,
and hyperbolas. He proves the proposition that, if A, A’ be the vertices
of a conic, and if P be any point on it, and PM the perpendicular drawn
from P on AA’, then (in the usual notation) the ratio M P? : AM .M A’
is constant in an ellipse or hyperbola, and the ratio MP? : AM is
constant in a parabola. These are the characteristic properties on which
almost all the rest of the work is based. He next shows that, if A be
the vertex, [ the latus rectum, and if AM and M P be the abscissa
and ordinate of any point on a conic (see above , then M P? is
less than, equal to, or greater than [ . AM according as the conic is an
ellipse, parabola, or hyperbola; hence the names which he gave to the
curves and by which they are still known.

He had no idea of the directrix, and was not aware that the parabola
had a focus, but, with the exception of the propositions which involve
these, his first three books contain most of the propositions which are
found in modern text-books. In the fourth book he develops the theory
of lines cut harmonically, and treats of the points of intersection of
systems of conics. In the fifth book he commences with the theory of
maxima and minima; applies it to find the centre of curvature at any
point of a conic, and the evolute of the curve; and discusses the number
of normals which can be drawn from a point to a conic. In the sixth
book he treats of similar conics. The seventh and eighth books were
given up to a discussion of conjugate diameters; the latter of these was
conjecturally restored by E. Halley in his edition of 1710.

The verbose explanations make the book repulsive to most modern
readers; but the arrangement and reasoning are unexceptional, and it
has been not unfitly described as the crown of Greek geometry. It is
the work on which the reputation of Apollonius rests, and it earned for
him the name of “the great geometrician.”

Besides this immense treatise he wrote numerous shorter works; of
course the books were written in Greek, but they are usually referred
to by their Latin titles: those about which we now know anything are
enumerated below. He was the author of a work on the problem “given
two co-planar straight lines Aa and Bb, drawn through fixed points A
and B; to draw a line Oab from a given point O outside them cutting
them in a and b, so that Aa shall be to Bb in a given ratio.” He reduced
the question to seventy-seven separate cases and gave an appropriate
solution, with the aid of conics, for each case; this was published by
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E. Halley (translated from an Arabic copy) in 1706. He also wrote a
treatise De Sectione Spatii (restored by E. Halley in 1706) on the same
problem under the condition that the rectangle Aa . Bb was given. He
wrote another entitled De Sectione Determinata (restored by R. Simson
in 1749), dealing with problems such as to find a point P in a given
straight line AB, so that PA? shall be to PB in a given ratio. He wrote
another De Tactionibus (restored by Vieta in 1600) on the construction
of a circle which shall touch three given circles. Another work was his
De Inclinationibus (restored by M. Ghetaldi in 1607) on the problem
to draw a line so that the intercept between two given lines, or the
circumferences of two given circles, shall be of a given length. He was
also the author of a treatise in three books on plane loci, De Locis
Planis (restored by Fermat in 1637, and by R. Simson in 1746), and
of another on the reqular solids. And, lastly, he wrote a treatise on
unclassed incommensurables, being a commentary on the tenth book of
Euclid. It is believed that in one or more of the lost books he used the
method of conical projections.

Besides these geometrical works he wrote on the methods of arith-
metical calculation. All that we know of this is derived from some
remarks of Pappus. Friedlein thinks that it was merely a sort of ready-
reckoner. It seems, however, more probable that Apollonius here sug-
gested a system of numeration similar to that proposed by Archimedes,
but proceeding by tetrads instead of octads, and described a notation
for it. It will be noticed that our modern notation goes by hexads, a
million = 10°, a billion = 10'2, a trillion = 10'8, etc. It is not impossi-
ble that Apollonius also pointed out that a decimal system of notation,
involving only nine symbols, would facilitate numerical multiplications.

Apollonius was interested in astronomy, and wrote a book on the
stations and regressions of the planets of which Ptolemy made some
use in writing the Almagest. He also wrote a treatise on the use and
theory of the screw in statics.

This is a long list, but I should suppose that most of these works
were short tracts on special points.

Like so many of his predecessors, he too gave a construction for
finding two mean proportionals between two given lines, and thereby
duplicating the cube. It was as follows. Let OA and OB be the given
lines. Construct a rectangle OAD B, of which they are adjacent sides.
Bisect AB in C'. Then, if with C as centre we can describe a circle
cutting OA produced in a, and cutting OB produced in b, so that aDb
shall be a straight line, the problem is effected. For it is easily shewn
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that
Oa . Aa+ CA? = Ca?.

Similarly Ob. Bb+ CB? = CV°.
Hence Oa . Aa = Ob . Bb.
That is, Oa : Ob = Bb : Aa.

b .

B =D

C
0] A a

But, by similar triangles,

BD : Bb=0a:0b= Aa: AD.
Therefore Oa : Bb= Bb: Aa = Aa : OB,

that is, Bb and Oa are the two mean proportionals between OA and
OB. 1t is impossible to construct the circle whose centre is C' by Eu-
clidean geometry, but Apollonius gave a mechanical way of describing
it. This construction is quoted by several Arabic writers.

In one of the most brilliant passages of his Aper¢u historiqgue Chasles
remarks that, while Archimedes and Apollonius were the most able ge-
ometricians of the old world, their works are distinguished by a con-
trast which runs through the whole subsequent history of geometry.
Archimedes, in attacking the problem of the quadrature of curvilinear
areas, established the principles of the geometry which rests on mea-
surements; this naturally gave rise to the infinitesimal calculus, and in
fact the method of exhaustions as used by Archimedes does not differ
in principle from the method of limits as used by Newton. Apollonius,
on the other hand, in investigating the properties of conic sections by
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means of transversals involving the ratio of rectilineal distances and of
perspective, laid the foundations of the geometry of form and position.

Eratosthenes.!  Among the contemporaries of Archimedes and
Apollonius I may mention FEratosthenes. Born at Cyrene in 275 B.C., he
was educated at Alexandria—perhaps at the same time as Archimedes,
of whom he was a personal friend—and Athens, and was at an early
age entrusted with the care of the university library at Alexandria, a
post which probably he occupied till his death. He was the Admirable
Crichton of his age, and distinguished for his athletic, literary, and
scientific attainments: he was also something of a poet. He lost his
sight by ophthalmia, then as now a curse of the valley of the Nile,
and, refusing to live when he was no longer able to read, he committed
suicide in 194 B.C.

In science he was chiefly interested in astronomy and geodesy, and
he constructed various astronomical instruments which were used for
some centuries at the university. He suggested the calendar (now known
as Julian), in which every fourth year contains 366 days; and he de-
termined the obliquity of the ecliptic as 23°51'20”. He measured the
length of a degree on the earth’s surface, making it to be about 79
miles, which is too long by nearly 10 miles, and thence calculated the
circumference of the earth to be 252,000 stadia. If we take the Olympic
stadium of 202% yards, this is equivalent to saying that the radius is
about 4600 miles, but there was also an Egyptian stadium, and if he
used this he estimated the radius as 3925 miles, which is very near the
truth. The principle used in the determination is correct.

Of Eratosthenes’s work in mathematics we have two extant illustra-
tions: one in a description of an instrument to duplicate a cube, and
the other in a rule he gave for constructing a table of prime numbers.
The former is given in many books. The latter, called the “sieve of
Eratosthenes,” was as follows: write down all the numbers from 1 up-
wards; then every second number from 2 is a multiple of 2 and may
be cancelled; every third number from 3 is a multiple of 3 and may be
cancelled; every fifth number from 5 is a multiple of 5 and may be can-
celled; and so on. It has been estimated that it would involve working
for about 300 hours to thus find the primes in the numbers from 1 to
1,000,000. The labour of determining whether any particular number

IThe works of Eratosthenes exist only in fragments. A collection of these was
published by G. Bernhardy at Berlin in 1822: some additional fragments were
printed by E. Hillier, Leipzig, 1872.
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is a prime may be, however, much shortened by observing that if a
number can be expressed as the product of two factors, one must be
less and the other greater than the square root of the number, unless
the number is the square of a prime, in which case the two factors are
equal. Hence every composite number must be divisible by a prime
which is not greater than its square root.

The second century before Christ.

The third century before Christ, which opens with the career of
Euclid and closes with the death of Apollonius, is the most brilliant era
in the history of Greek mathematics. But the great mathematicians
of that century were geometricians, and under their influence attention
was directed almost solely to that branch of mathematics. With the
methods they used, and to which their successors were by tradition
confined, it was hardly possible to make any further great advance:
to fill up a few details in a work that was completed in its essential
parts was all that could be effected. It was not till after the lapse of
nearly 1800 years that the genius of Descartes opened the way to any
further progress in geometry, and I therefore pass over the numerous
writers who followed Apollonius with but slight mention. Indeed it may
be said roughly that during the next thousand years Pappus was the
sole geometrician of great original ability; and during this long period
almost the only other pure mathematicians of exceptional genius were
Hipparchus and Ptolemy, who laid the foundations of trigonometry, and
Diophantus, who laid those of algebra.

Early in the second century, circ. 180 B.C., we find the names
of three mathematicians—Hypsicles, Nicomedes, and Diocles—who in
their own day were famous.

Hypsicles. The first of these was Hypsicles, who added a four-
teenth book to FEuclid’s Elements in which the regular solids were dis-
cussed. In another small work, entitled Risings, we find for the first time
in Greek mathematics a right angle divided in the Babylonian manner
into ninety degrees; possibly Eratosthenes may have previously esti-
mated angles by the number of degrees they contain, but this is only a
matter of conjecture.

Nicomedes. The second was Nicomedes, who invented the curve
known as the conchoid or the shell-shaped curve. If from a fixed point
S a line be drawn cutting a given fixed straight line in @), and if P be
taken on SQ so that the length Q) P is constant (say d), then the locus of
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P is the conchoid. Its equation may be put in the form r = asecf +d.
It is easy with its aid to trisect a given angle or to duplicate a cube;
and this no doubt was the cause of its invention.

Diocles. The third of these mathematicians was Diocles, the
inventor of the curve known as the cissoid or the ivy-shaped curve,
which, like the conchoid, was used to give a solution of the duplication
problem. He defined it thus: let AOA" and BOB’ be two fixed diam-
eters of a circle at right angles to one another. Draw two chords QQ’
and RR' parallel to BOB’ and equidistant from it. Then the locus of
the intersection of AR and Q@' will be the cissoid. Its equation can
be expressed in the form y*(2a — x) = 2®. The curve may be used to
duplicate the cube. For, if OA and OF be the two lines between which
it is required to insert two geometrical means, and if, in the figure con-
structed as above, A'E cut the cissoid in P, and AP cut OB in D, we
have OD? = OA? . OE. Thus OD is one of the means required, and
the other mean can be found at once.

Diocles also solved (by the aid of conic sections) a problem which
had been proposed by Archimedes, namely, to draw a plane which will
divide a sphere into two parts whose volumes shall bear to one another
a given ratio.

Perseus. Zenodorus. About a quarter of a century later, say
about 150 B.C., Perseus investigated the various plane sections of the
anchor-ring, and Zenodorus wrote a treatise on isoperimetrical figures.
Part of the latter work has been preserved; one proposition which will
serve to show the nature of the problems discussed is that “of segments
of circles, having equal arcs, the semicircle is the greatest.”

Towards the close of this century we find two mathematicians who,
by turning their attention to new subjects, gave a fresh stimulus to the
study of mathematics. These were Hipparchus and Hero.

Hipparchus.! Hipparchus was the most eminent of Greek as-
tronomers—his chief predecessors being Eudoxus, Aristarchus, Archi-
medes, and Eratosthenes. Hipparchus is said to have been born about
160 B.C. at Nicaea in Bithynia; it is probable that he spent some years
at Alexandria, but finally he took up his abode at Rhodes where he
made most of his observations. Delambre has obtained an ingenious

!See C. Manitius, Hipparchi in Arati et Eudoxi Phaenomena Commentarii,
Leipzig, 1894, and J. B. J. Delambre, Histoire de l’astronomie ancienne, Paris, 1817,
vol. i, pp. 106-189. S. P. Tannery in his Recherches sur [’histoire de l’astronomie
ancienne, Paris, 1893, argues that the work of Hipparchus has been overrated, but
I have adopted the view of the majority of writers on the subject.
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confirmation of the tradition which asserted that Hipparchus lived in
the second century before Christ. Hipparchus in one place says that
the longitude of a certain star 1 Canis observed by him was exactly
90°, and it should be noted that he was an extremely careful observer.
Now in 1750 it was 116°4’10”, and, as the first point of Aries regredes
at the rate of 50.2” a year, the observation was made about 120 B.C.

Except for a short commentary on a poem of Aratus dealing with
astronomy all his works are lost, but Ptolemy’s great treatise, the Al-
magest, described below, was founded on the observations and writings
of Hipparchus, and from the notes there given we infer that the chief
discoveries of Hipparchus were as follows. He determined the duration
of the year to within six minutes of its true value. He calculated the
inclination of the ecliptic and equator as 23°51’; it was actually at that
time 23°46’. He estimated the annual precession of the equinoxes as
59”; it is 50.2”. He stated the lunar parallax as 57', which is nearly
correct. He worked out the eccentricity of the solar orbit as 1/24; it is
very approximately 1/30. He determined the perigee and mean motion
of the sun and of the moon, and he calculated the extent of the shifting
of the plane of the moon’s motion. Finally he obtained the synodic
periods of the five planets then known. I leave the details of his obser-
vations and calculations to writers who deal specially with astronomy
such as Delambre; but it may be fairly said that this work placed the
subject for the first time on a scientific basis.

To account for the lunar motion Hipparchus supposed the moon to
move with uniform velocity in a circle, the earth occupying a position
near (but not at) the centre of this circle. This is equivalent to saying
that the orbit is an epicycle of the first order. The longitude of the
moon obtained on this hypothesis is correct to the first order of small
quantities for a few revolutions. To make it correct for any length of
time Hipparchus further supposed that the apse line moved forward
about 3° a month, thus giving a correction for eviction. He explained
the motion of the sun in a similar manner. This theory accounted for
all the facts which could be determined with the instruments then in
use, and in particular enabled him to calculate the details of eclipses
with considerable accuracy.

He commenced a series of planetary observations to enable his suc-
cessors to frame a theory to account for their motions; and with great
perspicacity he predicted that to do this it would be necessary to in-
troduce epicycles of a higher order, that is, to introduce three or more
circles the centre of each successive one moving uniformly along the
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circumference of the preceding one.

He also formed a list of 1080 of the fixed stars. It is said that the
sudden appearance in the heavens of a new and brilliant star called his
attention to the need of such a catalogue; and the appearance of such
a star during his lifetime is confirmed by Chinese records.

No further advance in the theory of astronomy was made until the
time of Copernicus, though the principles laid down by Hipparchus
were extended and worked out in detail by Ptolemy.

Investigations such as these naturally led to trigonometry, and Hip-
parchus must be credited with the invention of that subject. It is
known that in plane trigonometry he constructed a table of chords of
arcs, which is practically the same as one of natural sines; and that in
spherical trigonometry he had some method of solving triangles: but
his works are lost, and we can give no details. It is believed, however,
that the elegant theorem, printed as Euc. vi, D, and generally known
as Ptolemy’s Theorem, is due to Hipparchus and was copied from him
by Ptolemy. It contains implicitly the addition formulae for sin(A + B)
and cos(A =+ B); and Carnot showed how the whole of elementary plane
trigonometry could be deduced from it.

I ought also to add that Hipparchus was the first to indicate the
position of a place on the earth by means of its latitude and longitude.

Hero.! The second of these mathematicians was Hero of Alexan-
dria, who placed engineering and land-surveying on a scientific basis.
He was a pupil of Ctesibus, who invented several ingenious machines,
and is alluded to as if he were a mathematician of note. It is not likely
that Hero flourished before 80 B.C., but the precise period at which he
lived is uncertain.

In pure mathematics Hero’s principal and most characteristic work
consists of (i) some elementary geometry, with applications to the de-
termination of the areas of fields of given shapes; (ii) propositions on
finding the volumes of certain solids, with applications to theatres,

1See Recherches sur la vie et les ouvrages d’Héron d’Alexzandrie by T. H. Martin
in vol. iv of Mémoires présentés . .. a l'académie d’inscriptions, Paris, 1854; see also
Loria, book iii, chap. v, pp. 107-128, and Cantor, chaps. xviii, xix. On the work
entitled Definitions, which is attributed to Hero, see S. P. Tannery, chaps. xiii, xiv,
and an article by G. Friedlein in Boncompagni’s Bulletino di bibliografia March 1871,
vol. iv, pp. 93-126. Editions of the extant works of Hero were published in Teubner’s
series, Leipzig, 1899, 1900, 1903. An English translation of the Ilvevuatikd was
published by B. Woodcroft and J. G. Greenwood, London, 1851: drawings of the
apparatus are inserted.
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baths, banquet-halls, and so on; (iii) a rule to find the height of an
inaccessible object; and (iv) tables of weights and measures. He in-
vented a solution of the duplication problem which is practically the
same as that which Apollonius had already discovered. Some commen-
tators think that he knew how to solve a quadratic equation even when
the coefficients were not numerical; but this is doubtful. He proved the
formula that the area of a triangle is equal to {s(s —a)(s —b)(s —c)}'/?,
where s is the semiperimeter, and a, b, ¢, the lengths of the sides, and
gave as an illustration a triangle whose sides were in the ratio 13:14:15.
He seems to have been acquainted with the trigonometry of Hipparchus,
and the values of cot 2w /n are computed for various values of n, but
he nowhere quotes a formula or expressly uses the value of the sine;
it is probable that like the later Greeks he regarded trigonometry as
forming an introduction to, and being an integral part of, astronomy.

A

K

The following is the manner in which he solved! the problem to

In his Dioptra, Hultsch, part viii, pp. 235-237. It should be stated that some
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find the area of a triangle ABC' the length of whose sides are a, b,
c. Let s be the semiperimeter of the triangle. Let the inscribed circle
touch the sides in D, E, F, and let O be its centre. On BC' produced
take H so that CH = AF, therefore BH = s. Draw OK at right
angles to OB, and C'K at right angles to BC’; let them meet in K.
The area ABC or A is equal to the sum of the areas OBC, OCA,
OAB = —ar + lbr + cr = sr, that is, is equal to BH . OD. He then
shews that the angle OAF = angle CBK; hence the triangles OAF
and CBK are similar.

.BC:CK=AF:0OF =CH : 0D,

.BC:CH=CK:0D=CL:LD,

o.BH:CH=CD: LD,
:CH.BH=CD.BD:LD.BD=CD.BD:0D

Hence
A =BH.OD={CH.BH.CD.BD}z ={(s —a)s(s — ¢)(s — b)}.

In applied mathematics Hero discussed the centre of gravity, the
five simple machines, and the problem of moving a given weight with a
given power; and in one place he suggested a way in which the power
of a catapult could be tripled. He also wrote on the theory of hydraulic
machines. He described a theodolite and cyclometer, and pointed out
various problems in surveying for which they would be useful. But the
most interesting of his smaller works are his IIvevuatixd and Avtduara,
containing descriptions of about 100 small machines and mechanical
toys, many of which are ingenious. In the former there is an account
of a small stationary steam-engine which is of the form now known as
Avery’s patent: it was in common use in Scotland at the beginning of
this century, but is not so economical as the form introduced by Watt.
There is also an account of a double forcing pump to be used as a
fire-engine. It is probable that in the hands of Hero these instruments
never got beyond models. It is only recently that general attention has
been directed to his discoveries, though Arago had alluded to them in
his éloge on Watt.

All this is very different from the classical geometry and arithmetic
of Euclid, or the mechanics of Archimedes. Hero did nothing to extend
a knowledge of abstract mathematics; he learnt all that the text-books

critics think that this is an interpolation, and is not due to Hero.
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of the day could teach him, but he was interested in science only on
account of its practical applications, and so long as his results were true
he cared nothing for the logical accuracy of the process by which he
arrived at them. Thus, in finding the area of a triangle, he took the
square root of the product of four lines. The classical Greek geometri-
cians permitted the use of the square and the cube of a line because
these could be represented geometrically, but a figure of four dimen-
sions is inconceivable, and certainly they would have rejected a proof
which involved such a conception.

The first century before Christ.

The successors of Hipparchus and Hero did not avail themselves of
the opportunity thus opened of investigating new subjects, but fell back
on the well-worn subject of geometry. Amongst the more eminent of
these later geometricians were Theodosius and Dionysodorus, both of
whom flourished about 50 B.C.

Theodosius.  Theodosius was the author of a complete treatise
on the geometry of the sphere, and of two works on astronomy.!

Dionysodorus. Dionysodorus is known to us only by his solution?
of the problem to divide a hemisphere by a plane parallel to its base into
two parts, whose volumes shall be in a given ratio. Like the solution
by Diocles of the similar problem for a sphere above alluded to, it
was effected by the aid of conic sections. Pliny says that Dionysodorus
determined the length of the radius of the earth approximately as 42,000
stadia, which, if we take the Olympic stadium of 2021—11 yards, is a little
less than 5000 miles; we do not know how it was obtained. This may be
compared with the result given by Eratosthenes and mentioned above.

End of the First Alexandrian School.

The administration of Egypt was definitely undertaken by Rome
in 30 B.C. The closing years of the dynasty of the Ptolemies and the
earlier years of the Roman occupation of the country were marked by
much disorder, civil and political. The studies of the university were

!The work on the sphere was edited by 1. Barrow, Cambridge, 1675, and by
E. Nizze, Berlin, 1852. The works on astronomy were published by Dasypodius in
1572.

2Tt is reproduced in H. Suter’s Geschichte der mathematischen Wissenschaften,
second edition, Ziirich, 1873, p. 101.
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naturally interrupted, and it is customary to take this time as the close
of the first Alexandrian school.
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CHAPTER V.

THE SECOND ALEXANDRIAN SCHOOL.!
30 B.Cc.—641 A.D.

I cONCLUDED the last chapter by stating that the first school of
Alexandria may be said to have come to an end at about the same
time as the country lost its nominal independence. But, although the
schools at Alexandria suffered from the disturbances which affected the
whole Roman world in the transition, in fact if not in name, from a
republic to an empire, there was no break of continuity; the teach-
ing in the university was never abandoned; and as soon as order was
again established, students began once more to flock to Alexandria.
This time of confusion was, however, contemporaneous with a change
in the prevalent views of philosophy which thenceforward were mostly
neo-platonic or neo-pythagorean, and it therefore fitly marks the com-
mencement of a new period. These mystical opinions reacted on the
mathematical school, and this may partially account for the paucity of
good work.

Though Greek influence was still predominant and the Greek lan-
guage always used, Alexandria now became the intellectual centre for
most of the Mediterranean nations which were subject to Rome. It
should be added, however, that the direct connection with it of many
of the mathematicians of this time is at least doubtful, but their knowl-
edge was ultimately obtained from the Alexandrian teachers, and they
are usually described as of the second Alexandrian school. Such math-
ematics as were taught at Rome were derived from Greek sources, and
we may therefore conveniently consider their extent in connection with
this chapter.

1For authorities, see footnote above on p. All dates given hereafter are to be
taken as anno domini unless the contrary is expressly stated.
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The first century after Christ.

There is no doubt that throughout the first century after Christ ge-
ometry continued to be that subject in science to which most attention
was devoted. But by this time it was evident that the geometry of
Archimedes and Apollonius was not capable of much further extension;
and such geometrical treatises as were produced consisted mostly of
commentaries on the writings of the great mathematicians of a preced-
ing age. In this century the only original works of any ability of which
we know anything were two by Serenus and one by Menelaus.

Serenus. Menelaus. Those by Serenus of Antissa or of Antinoe,
circ. 70, are on the plane sections of the cone and cylinder,! in the course
of which he lays down the fundamental proposition of transversals.
That by Menelaus of Alexandria, circ. 98, is on spherical trigonometry,
investigated in the Euclidean method.? The fundamental theorem on
which the subject is based is the relation between the six segments of
the sides of a spherical triangle, formed by the arc of a great circle which
cuts them [book 111, prop. 1]. Menelaus also wrote on the calculation
of chords, that is, on plane trigonometry; this is lost.

Nicomachus. Towards the close of this century, circ. 100, a Jew,
Nicomachus, of Gerasa, published an Arithmetic,® which (or rather the
Latin translation of it) remained for a thousand years a standard au-
thority on the subject. Geometrical demonstrations are here aban-
doned, and the work is a mere classification of the results then known,
with numerical illustrations: the evidence for the truth of the propo-
sitions enunciated, for I cannot call them proofs, being in general an
induction from numerical instances. The object of the book is the
study of the properties of numbers, and particularly of their ratios.
Nicomachus commences with the usual distinctions between even, odd,
prime, and perfect numbers; he next discusses fractions in a somewhat
clumsy manner; he then turns to polygonal and to solid numbers; and
finally treats of ratio, proportion, and the progressions. Arithmetic of
this kind is usually termed Boethian, and the work of Boethius on it
was a recognised text-book in the middle ages.

!These have been edited by J. L. Heiberg, Leipzig, 1896; and by E. Halley,
Oxford, 1710.

2This was translated by E. Halley, Oxford, 1758.

3The work has been edited by R. Hoche, Leipzig, 1866.
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The second century after Christ.

Theon. Another text-book on arithmetic on much the same lines
as that of Nicomachus was produced by Theon of Smyrna, circ. 130.
It formed the first book of his work! on mathematics, written with the
view of facilitating the study of Plato’s writings.

Thymaridas. Another mathematician, reckoned by some writers
as of about the same date as Theon, was Thymaridas, who is worthy of
notice from the fact that he is the earliest known writer who explicitly
enunciates an algebraical theorem. He states that, if the sum of any
number of quantities be given, and also the sum of every pair which
contains one of them, then this quantity is equal to one (n — 2)th part
of the difference between the sum of these pairs and the first given sum.
Thus, if

1+ x+...+x, =259,
and if a1+ 129 =259, x1+x3=253,..., and 1 + x,, = S,,
then r1=(S9+s3+...+8,—95)/(n—2).

He does not seem to have used a symbol to denote the unknown quan-
tity, but he always represents it by the same word, which is an approx-
imation to symbolism.

Ptolemy.? About the same time as these writers Ptolemy of
Alexandria, who died in 168, produced his great work on astronomy,
which will preserve his name as long as the history of science endures.
This treatise is usually known as the Almagest: the name is derived
from the Arabic title al midschisti, which is said to be a corruption of
peyiotn [padnuaticn) ovvraéis. The work is founded on the writings of
Hipparchus, and, though it did not sensibly advance the theory of the
subject, it presents the views of the older writer with a completeness
and elegance which will always make it a standard treatise. We gather
from it that Ptolemy made observations at Alexandria from the years

!The Greek text of those parts which are now extant, with a French translation,
was issued by J. Dupuis, Paris, 1892.

2See the article Ptolemaeus Claudius, by A. De Morgan in Smith’s Dictionary
of Greek and Roman Biography, London, 1849; S. P. Tannery, Recherches sur
Uhistoire de l’astronomie ancienne, Paris, 1893; and J. B. J. Delambre, Histoire de
lastronomie ancienne, Paris, 1817, vol. ii. An edition of all the works of Ptolemy
which are now extant was published at Bale in 1551. The Almagest with various
minor works was edited by M. Halma, 12 vols. Paris, 1813-28, and a new edition,
in two volumes, by J. L. Heiberg, Leipzig, 1898, 1903, 1907.
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125 to 150; he, however, was but an indifferent practical astronomer,
and the observations of Hipparchus are generally more accurate than
those of his expounder.

The work is divided into thirteen books. In the first book Ptolemy
discusses various preliminary matters; treats of trigonometry, plane or
spherical; gives a table of chords, that is, of natural sines (which is
substantially correct and is probably taken from the lost work of Hip-
parchus); and explains the obliquity of the ecliptic; in this book he
uses degrees, minutes, and seconds as measures of angles. The sec-
ond book is devoted chiefly to phenomena depending on the spherical
form of the earth: he remarks that the explanations would be much
simplified if the earth were supposed to rotate on its axis once a day,
but states that this hypothesis is inconsistent with known facts. In the
third book he explains the motion of the sun round the earth by means
of excentrics and epicycles: and in the fourth and fifth books he treats
the motion of the moon in a similar way. The sixth book is devoted
to the theory of eclipses; and in it he gives 3°8'30”, that is 3%, as
the approximate value of m, which is equivalent to taking it equal to
3.1416. The seventh and eighth books contain a catalogue (probably
copied from Hipparchus) of 1028 fixed stars determined by indicating
those, three or more, that appear to be in a plane passing through the
observer’s eye: and in another work Ptolemy added a list of annual
sidereal phenomena. The remaining books are given up to the theory
of the planets.

This work is a splendid testimony to the ability of its author. It
became at once the standard authority on astronomy, and remained so
till Copernicus and Kepler shewed that the sun and not the earth must
be regarded as the centre of the solar system.

The idea of excentrics and epicycles on which the theories of Hip-
parchus and Ptolemy are based has been often ridiculed in modern
times. No doubt at a later time, when more accurate observations had
been made, the necessity of introducing epicycle on epicycle in order to
bring the theory into accordance with the facts made it very compli-
cated. But De Morgan has acutely observed that in so far as the ancient
astronomers supposed that it was necessary to resolve every celestial
motion into a series of uniform circular motions they erred greatly, but
that, if the hypothesis be regarded as a convenient way of expressing
known facts, it is not only legitimate but convenient. The theory suf-
fices to describe either the angular motion of the heavenly bodies or
their change in distance. The ancient astronomers were concerned only
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with the former question, and it fairly met their needs; for the latter
question it is less convenient. In fact it was as good a theory as for their
purposes and with their instruments and knowledge it was possible to
frame, and corresponds to the expression of a given function as a sum of
sines or cosines, a method which is of frequent use in modern analysis.

In spite of the trouble taken by Delambre it is almost impossible
to separate the results due to Hipparchus from those due to Ptolemy.
But Delambre and De Morgan agree in thinking that the observations
quoted, the fundamental ideas, and the explanation of the apparent
solar motion are due to Hipparchus; while all the detailed explanations
and calculations of the lunar and planetary motions are due to Ptolemy.

E

H

The Almagest shews that Ptolemy was a geometrician of the first
rank, though it is with the application of geometry to astronomy that
he is chiefly concerned. He was also the author of numerous other
treatises. Amongst these is one on pure geometry in which he proposed
to cancel Euclid’s postulate on parallel lines, and to prove it in the
following manner. Let the straight line EFGH meet the two straight
lines AB and C'D so as to make the sum of the angles BF'G and FGD
equal to two right angles. It is required to prove that AB and C'D are
parallel. If possible let them not be parallel, then they will meet when
produced say at M (or N). But the angle AFG is the supplement
of BFG, and is therefore equal to F'GD: similarly the angle FGC' is
equal to the angle BF'G. Hence the sum of the angles AFG and FGC
is equal to two right angles, and the lines BA and DC will therefore
if produced meet at N (or M). But two straight lines cannot enclose
a space, therefore AB and C'D cannot meet when produced, that is,
they are parallel. Conversely, if AB and C'D be parallel, then AF and
CG are not less parallel than F'B and G D; and therefore whatever be
the sum of the angles AFG and FGC' such also must be the sum of
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the angles FFGD and BFG. But the sum of the four angles is equal to
four right angles, and therefore the sum of the angles BFG and FGD
must be equal to two right angles.

Ptolemy wrote another work to shew that there could not be more
than three dimensions in space: he also discussed orthographic and
stereographic projections with special reference to the construction of
sun-dials. He wrote on geography, and stated that the length of one de-
gree of latitude is 500 stadia. A book on sound is sometimes attributed
to him, but on doubtful authority.

The third century after Christ.

Pappus. Ptolemy had shewn not only that geometry could be
applied to astronomy, but had indicated how new methods of analysis
like trigonometry might be thence developed. He found however no
successors to take up the work he had commenced so brilliantly, and
we must look forward 150 years before we find another geometrician of
any eminence. That geometrician was Pappus who lived and taught
at Alexandria about the end of the third century. We know that he
had numerous pupils, and it is probable that he temporarily revived an
interest in the study of geometry.

Pappus wrote several books, but the only one which has come down
to us is his Duraywyn,! a collection of mathematical papers arranged in
eight books of which the first and part of the second have been lost. This
collection was intended to be a synopsis of Greek mathematics together
with comments and additional propositions by the editor. A careful
comparison of various extant works with the account given of them in
this book shews that it is trustworthy, and we rely largely on it for our
knowledge of other works now lost. It is not arranged chronologically,
but all the treatises on the same subject are grouped together, and it is
most likely that it gives roughly the order in which the classical authors
were read at Alexandria. Probably the first book, which is now lost,
was on arithmetic. The next four books deal with geometry exclusive
of conic sections; the sixth with astronomy including, as subsidiary
subjects, optics and trigonometry; the seventh with analysis, conics,
and porisms; and the eighth with mechanics.

The last two books contain a good deal of original work by Pappus;
at the same time it should be remarked that in two or three cases he

Tt has been published by F. Hultsch, Berlin, 1876-8.



CH. V] THE SECOND ALEXANDRIAN SCHOOL 84

has been detected in appropriating proofs from earlier authors, and it
is possible he may have done this in other cases.

Subject to this suspicion we may say that Pappus’s best work is
in geometry. He discovered the directrix in the conic sections, but he
investigated only a few isolated properties: the earliest comprehensive
account was given by Newton and Boscovich. As an illustration of his
power I may mention that he solved [book Vi1, prop. 107] the problem
to inscribe in a given circle a triangle whose sides produced shall pass
through three collinear points. This question was in the eighteenth
century generalised by Cramer by supposing the three given points to
be anywhere; and was considered a difficult problem.! It was sent in
1742 as a challenge to Castillon, and in 1776 he published a solution.
Lagrange, Euler, Lhulier, Fuss, and Lexell also gave solutions in 1780.
A few years later the problem was set to a Neapolitan lad A. Giordano,
who was only 16 but who had shewn marked mathematical ability, and
he extended it to the case of a polygon of n sides which pass through
n given points, and gave a solution both simple and elegant. Poncelet
extended it to conics of any species and subject to other restrictions.

In mechanics Pappus shewed that the centre of mass of a triangular
lamina is the same as that of an inscribed triangular lamina whose
vertices divide each of the sides of the original triangle in the same
ratio. He also discovered the two theorems on the surface and volume
of a solid of revolution which are still quoted in text-books under his
name: these are that the volume generated by the revolution of a curve
about an axis is equal to the product of the area of the curve and the
length of the path described by its centre of mass; and the surface is
equal to the product of the perimeter of the curve and the length of
the path described by its centre of mass.

The problems above mentioned are but samples of many brilliant
but isolated theorems which were enunciated by Pappus. His work as
a whole and his comments shew that he was a geometrician of power;
but it was his misfortune to live at a time when but little interest was
taken in geometry, and when the subject, as then treated, had been
practically exhausted.

Possibly a small tract? on multiplication and division of sexagesimal

IFor references to this problem see a note by H. Brocard in L’Intermédiaire des
mathématiciens, Paris, 1904, vol. xi, pp. 219-220.

Tt was edited by C. Henry, Halle, 1879, and is valuable as an illustration of
practical Greek arithmetic.
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fractions, which would seem to have been written about this time, is
due to Pappus.

The fourth century after Christ.

Throughout the second and third centuries, that is, from the time
of Nicomachus, interest in geometry had steadily decreased, and more
and more attention had been paid to the theory of numbers, though
the results were in no way commensurate with the time devoted to the
subject. It will be remembered that Euclid used lines as symbols for
any magnitudes, and investigated a number of theorems about numbers
in a strictly scientific manner, but he confined himself to cases where
a geometrical representation was possible. There are indications in the
works of Archimedes that he was prepared to carry the subject much
further: he introduced numbers into his geometrical discussions and
divided lines by lines, but he was fully occupied by other researches
and had no time to devote to arithmetic. Hero abandoned the geomet-
rical representation of numbers, but he, Nicomachus, and other later
writers on arithmetic did not succeed in creating any other symbol-
ism for numbers in general, and thus when they enunciated a theorem
they were content to verify it by a large number of numerical examples.
They doubtless knew how to solve a quadratic equation with numeri-
cal coefficients—for, as pointed out above, geometrical solutions of the
equations az? — bx + ¢ = 0 and ax?® + bx — ¢ = 0 are given in Euc. VI,
28 and 29—but probably this represented their highest attainment.

It would seem then that, in spite of the time given to their study,
arithmetic and algebra had not made any sensible advance since the
time of Archimedes. The problems of this kind which excited most in-
terest in the third century may be illustrated from a collection of ques-
tions, printed in the Palatine Anthology, which was made by Metro-
dorus at the beginning of the next century, about 310. Some of them
are due to the editor, but some are of an anterior date, and they fairly
illustrate the way in which arithmetic was leading up to algebraical
methods. The following are typical examples. “Four pipes discharge
into a cistern: one fills it in one day; another in two days; the third in
three days; the fourth in four days: if all run together how soon will
they fill the cistern?” “Demochares has lived a fourth of his life as a
boy; a fifth as a youth; a third as a man; and has spent thirteen years
in his dotage: how old is he?” “Make a crown of gold, copper, tin, and
iron weighing 60 minae: gold and copper shall be two-thirds of it; gold
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and tin three-fourths of it; and gold and iron three-fifths of it: find the
weights of the gold, copper, tin, and iron which are required.” The last
is a numerical illustration of Thymaridas’s theorem quoted above.

It is believed that these problems were solved by rhetorical algebra,
that is, by a process of algebraical reasoning expressed in words and
without the use of any symbols. This, according to Nesselmann, is the
first stage in the development of algebra, and we find it used both by
Ahmes and by the earliest Arabian, Persian, and Italian algebraists: ex-
amples of its use in the solution of a geometrical problem and in the rule
for the solution of a quadratic equation are given later.! On this view
then a rhetorical algebra had been gradually evolved by the Greeks, or
was then in process of evolution. Its development was however very
imperfect. Hankel, who is no unfriendly critic, says that the results
attained as the net outcome of the work of six centuries on the theory
of numbers are, whether we look at the form or the substance, unim-
portant or even childish, and are not in any way the commencement of
a science.

In the midst of this decaying interest in geometry and these feeble
attempts at algebraic arithmetic, a single algebraist of marked original-
ity suddenly appeared who created what was practically a new science.
This was Diophantus who introduced a system of abbreviations for
those operations and quantities which constantly recur, though in us-
ing them he observed all the rules of grammatical syntax. The resulting
science is called by Nesselmann syncopated algebra: it is a sort of short-
hand. Broadly speaking, it may be said that European algebra did not
advance beyond this stage until the close of the sixteenth century.

Modern algebra has progressed one stage further and is entirely
symbolic; that is, it has a language of its own and a system of notation
which has no obvious connection with the things represented, while the
operations are performed according to certain rules which are distinct
from the laws of grammatical construction.

Diophantus.? All that we know of Diophantus is that he lived at
Alexandria, and that most likely he was not a Greek. Even the date of
his career is uncertain; it cannot reasonably be put before the middle of
the third century, and it seems probable that he was alive in the early

ISee below, pp.

2A critical edition of the collected works of Diophantus was edited by S. P. Tan-
nery, 2 vols., Leipzig, 1893; see also Diophantos of Alexandria, by T. L. Heath,
Cambridge, 1885; and Loria, book Vv, chap. v, pp. 95-158.
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years of the fourth century, that is, shortly after the death of Pappus.
He was 84 when he died.

In the above sketch of the lines on which algebra has developed 1
credited Diophantus with the invention of syncopated algebra. This is
a point on which opinions differ, and some writers believe that he only
systematized the knowledge which was familiar to his contemporaries.
In support of this latter opinion it may be stated that Cantor thinks
that there are traces of the use of algebraic symbolism in Pappus, and
Freidlein mentions a Greek papyrus in which the signs / and 9 are used
for addition and subtraction respectively; but no other direct evidence
for the non-originality of Diophantus has been produced, and no ancient
author gives any sanction to this opinion.

Diophantus wrote a short essay on polygonal numbers; a treatise
on algebra which has come down to us in a mutilated condition; and a
work on porisms which is lost.

The Polygonal Numbers contains ten propositions, and was proba-
bly his earliest work. In this he reverts to the classical system by which
numbers are represented by lines, a construction is (if necessary) made,
and a strictly deductive proof follows: it may be noticed that in it he
quotes propositions, such as Euc. 11, 3, and 11, 8, as referring to numbers
and not to magnitudes.

His chief work is his Arithmetic. This is really a treatise on algebra;
algebraic symbols are used, and the problems are treated analytically.
Diophantus tacitly assumes, as is done in nearly all modern algebra,
that the steps are reversible. He applies this algebra to find solutions
(though frequently only particular ones) of several problems involving
numbers. I propose to consider successively the notation, the methods
of analysis employed, and the subject-matter of this work.

First, as to the notation. Diophantus always employed a symbol to
represent the unknown quantity in his equations, but as he had only
one symbol he could not use more than one unknown at a time.® The
unknown quantity is called 6 dpiuds, and is represented by ¢’ or <.
It is usually printed as . In the plural it is denoted by ¢¢ or $c®. This
symbol may be a corruption of o, or perhaps it may be the final sigma
of this word, or possibly it may stand for the word owpdg a heap.? The
square of the unknown is called 6Uvauig, and denoted by ¢7: the cube

1See, however, below, page example (iii), for an instance of how he treated a
problem involving two unknown quantities.

2See above, page
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kUPog, and denoted by x¥; and so on up to the sixth power.

The coefficients of the unknown quantity and its powers are num-
bers, and a numerical coefficient is written immediately after the quan-
tity it multiplies: thus ¢’a = z, and ¢¢® 7 = ¢St = 11x. An absolute
term is regarded as a certain number of units or porddes which are
represented by p°: thus pla = 1, plra = 11.

There is no sign for addition beyond juxtaposition. Subtraction is
represented by ¢, and this symbol affects all the symbols that follow it.
Equality is represented by ¢. Thus

kP& ST 0%€ pla L s
represents (z° 4 82) — (5% + 1) = x.

Diophantus also introduced a somewhat similar notation for frac-
tions involving the unknown quantity, but into the details of this I need
not here enter.

It will be noticed that all these symbols are mere abbreviations for
words, and Diophantus reasons out his proofs, writing these abbrevia-
tions in the middle of his text. In most manuscripts there is a marginal
summary in which the symbols alone are used and which is really sym-
bolic algebra; but probably this is the addition of some scribe of later
times.

This introduction of a contraction or a symbol instead of a word to
represent an unknown quantity marks a greater advance than anyone
not acquainted with the subject would imagine, and those who have
never had the aid of some such abbreviated symbolism find it almost
impossible to understand complicated algebraical processes. It is likely
enough that it might have been introduced earlier, but for the unlucky
system of numeration adopted by the Greeks by which they used all
the letters of the alphabet to denote particular numbers and thus made
it impossible to employ them to represent any number.

Next, as to the knowledge of algebraic methods shewn in the book.
Diophantus commences with some definitions which include an expla-
nation of his notation, and in giving the symbol for minus he states that
a subtraction multiplied by a subtraction gives an addition; by this he
means that the product of —b and —d in the expansion of (a —b)(c—d)
is 4+bd, but in applying the rule he always takes care that the numbers
a, b, ¢, d are so chosen that a is greater than b and c is greater than d.

The whole of the work itself, or at least as much as is now extant,
is devoted to solving problems which lead to equations. It contains
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rules for solving a simple equation of the first degree and a binomial
quadratic. Probably the rule for solving any quadratic equation was
given in that part of the work which is now lost, but where the equation
is of the form ax?+bx+c = 0 he seems to have multiplied by a and then
“completed the square” in much the same way as is now done: when the
roots are negative or irrational the equation is rejected as “impossible,”
and even when both roots are positive he never gives more than one,
always taking the positive value of the square root. Diophantus solves
one cubic equation, namely, 2% + z = 42 + 4 [book VI, prob. 19].

The greater part of the work is however given up to indeterminate
equations between two or three variables. When the equation is be-
tween two variables, then, if it be of the first degree, he assumes a
suitable value for one variable and solves the equation for the other.
Most of his equations are of the form y? = Az? + Bz + C. Whenever
A or C is equal to zero, he is able to solve the equation completely.
When this is not the case, then, if A = a2, he assumes y = ax + m; if
C = %, he assumes y = max + c; and lastly, if the equation can be put
in the form y* = (ax £b)*+ ¢?, he assumes y = ma: where in each case
m has some particular numerical value suitable to the problem under
consideration. A few particular equations of a higher order occur, but
in these he generally alters the problem so as to enable him to reduce
the equation to one of the above forms.

The simultaneous indeterminate equations involving three variables,
or “double equations” as he calls them, which he considers are of the
forms y? = Ax? + Bx + C and 22 = ax? + bx + ¢. If A and a both
vanish, he solves the equations in one of two ways. It will be enough to
give one of his methods which is as follows: he subtracts and thus gets
an equation of the form y? — 22 = ma + n; hence, if y = 2z = ), then
y F z = (mx + n)/A; and solving he finds y and z. His treatment of
“double equations” of a higher order lacks generality and depends on
the particular numerical conditions of the problem.

Lastly, as to the matter of the book. The problems he attacks
and the analysis he uses are so various that they cannot be described
concisely and I have therefore selected five typical problems to illustrate
his methods. What seems to strike his critics most is the ingenuity with
which he selects as his unknown some quantity which leads to equations
such as he can solve, and the artifices by which he finds numerical
solutions of his equations.

I select the following as characteristic examples.

(i) Find four numbers, the sum of every arrangement three at a time
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being given; say 22, 24, 27, and 20 [book 1, prob. 17].
Let z be the sum of all four numbers; hence the numbers are x — 22,
x —24, x — 27, and = — 20.

sox=(r—22)+ (z—24) + (x — 27) + (z — 20).
Sor =31
.. the numbers are 9,7,4, and 11.

(i) Divide a number, such as 13 which is the sum of two squares 4
and 9, into two other squares [book 11, prob. 10].

He says that since the given squares are 22 and 3% he will take
(x+2)? and (mz — 3)? as the required squares, and will assume m = 2.

Sz 42)% 4 (20— 3)* =13,
sz =8/5.
.. the required squares are 324/25 and 1/25.

(iii) Find two squares such that the sum of the product and either is a
square [book 11, prob. 29].

Let 2 and y? be the numbers. Then z%y? + y? and 2%y? + 2? are
squares. The first will be a square if 2241 be a square, which he assumes
may be taken equal to (x — 2)?, hence x = 3/4. He has now to make
9(y? 4+ 1)/16 a square, to do this he assumes that 9y? + 9 = (3y — 4)?,
hence y = 7/24. Therefore the squares required are 9/16 and 49/576.

It will be recollected that Diophantus had only one symbol for an
unknown quantity; and in this example he begins by calling the un-
knowns x? and 1, but as soon as he has found z he then replaces the 1
by the symbol for the unknown quantity, and finds it in its turn.

(iv) To find a [rational] right-angled triangle such that the line bi-
secting an acute angle is rational [book VI, prob. 18].
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His solution is as follows. Let ABC' be the triangle of which C' is
the right-angle. Let the bisector AD = 5z, and let DC' = 3x, hence
AC = 4zx. Next let BC be a multiple of 3, say 3, .©. BD = 3— 3z, hence
AB = 4—4x (by Euc. v1, 3). Hence (4 —4x)? = 32+ (42)* (Euc. 1, 47),
o = 7/32. Multiplying by 32 we get for the sides of the triangle 28,
96, and 100; and for the bisector 35.

(v) A man buys x measures of wine, some at 8 drachmae a measure,
the rest at 5. He pays for them a square number of drachmae, such that,
if 60 be added to it, the resulting number is x%. Find the number he
bought at each price [book v, prob. 33].

The price paid was 2% — 60, hence 8z > 2% — 60 and 5z < 2% — 60.
From this it follows that x must be greater than 11 and less than 12.

Again x? — 60 is to be a square; suppose it is equal to (x —m)? then
x = (m? + 60)/2m, we have therefore

2
11<m—+60<12;
2m

219 <m < 21.

Diophantus therefore assumes that m is equal to 20, which gives
him x = 11%; and makes the total cost, i.e. 2% — 60, equal to 72%
drachmae.

He has next to divide this cost into two parts which shall give the
cost of the 8 drachmae measures and the 5 drachmae measures respec-
tively. Let these parts be y and z.

Then tz+3(721 —2) = 1.
5x 179 8 x 59
erefore z TI and y B

Therefore the number of 5 drachmae measures was 79/12, and of 8
drachmae measures was 59/12.

From the enunciation of this problem it would seem that the wine
was of a poor quality, and Tannery ingeniously suggested that the prices
mentioned for such a wine are higher than were usual until after the
end of the second century. He therefore rejected the view which was
formerly held that Diophantus lived in that century, but he did not seem
to be aware that De Morgan had previously shewn that this opinion
was untenable. Tannery inclined to think that Diophantus lived half a
century earlier than I have supposed.
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I mentioned that Diophantus wrote a third work entitled Porisms.
The book is lost, but we have the enunciations of some of the proposi-
tions, and though we cannot tell whether they were rigorously proved
by Diophantus they confirm our opinion of his ability and sagacity. It
has been suggested that some of the theorems which he assumes in his
arithmetic were proved in the porisms. Among the more striking of
these results are the statements that the difference of the cubes of two
numbers can be always expressed as the sum of the cubes of two other
numbers; that no number of the form 4n — 1 can be expressed as the
sum of two squares; and that no number of the form 8n—1 (or possibly
24n+7) can be expressed as the sum of three squares: to these we may
perhaps add the proposition that any number can be expressed as a
square or as the sum of two or three or four squares.

The writings of Diophantus exercised no perceptible influence on
Greek mathematics; but his Arithmetic, when translated into Arabic
in the tenth century, influenced the Arabian school, and so indirectly
affected the progress of European mathematics. An imperfect copy of
the original work was discovered in 1462; it was translated into Latin
and published by Xylander in 1575; the translation excited general
interest, and by that time the European algebraists had, on the whole,
advanced beyond the point at which Diophantus had left off.

Iamblichus.  Iamblichus, circ. 350, to whom we owe a valuable
work on the Pythagorean discoveries and doctrines, seems also to have
studied the properties of numbers. He enunciated the theorem that if
a number which is equal to the sum of three integers of the form 3n,
3n — 1, 3n — 2 be taken, and if the separate digits of this number be
added, and if the separate digits of the result be again added, and so on,
then the final result will be 6: for instance, the sum of 54, 53, and 52 is
159, the sum of the separate digits of 159 is 15, the sum of the separate
digits of 15 is 6. To any one confined to the usual Greek numerical
notation this must have been a difficult result to prove: possibly it was
reached empirically.

The names of two commentators will practically conclude the long
roll of Alexandrian mathematicians.

Theon. The first of these is Theon of Alexandria, who flourished
about 370. He was not a mathematician of special note, but we are
indebted to him for an edition of Euclid’s Elements and a commen-
tary on the Almagest; the latter! gives a great deal of miscellaneous

Tt was translated with comments by M. Halma and published at Paris in 1821.
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information about the numerical methods used by the Greeks.

Hypatia.  The other was Hypatia the daughter of Theon. She
was more distinguished than her father, and was the last Alexandrian
mathematician of any general reputation: she wrote a commentary on
the Conics of Apollonius and possibly some other works, but none of
her writings are now extant. She was murdered at the instigation of
the Christians in 415.

The fate of Hypatia may serve to remind us that the Eastern Chris-
tians, as soon as they became the dominant party in the state, showed
themselves bitterly hostile to all forms of learning. That very singleness
of purpose which had at first so materially aided their progress devel-
oped into a one-sidedness which refused to see any good outside their
own body; and all who did not actively assist them were persecuted.
The final establishment of Christianity in the East marks the end of
the Greek scientific schools, though nominally they continued to exist
for two hundred years more.

The Athenian School (in the fifth century).!

The hostility of the Eastern church to Greek science is further il-
lustrated by the fall of the later Athenian school. This school occupies
but a small space in our history. Ever since Plato’s time a certain num-
ber of professional mathematicians had lived at Athens; and about the
year 420 this school again acquired considerable reputation, largely in
consequence of the numerous students who after the murder of Hypa-
tia migrated there from Alexandria. Its most celebrated members were
Proclus, Damascius, and Eutocius.

Proclus.  Proclus was born at Constantinople in February 412
and died at Athens on April 17, 485. He wrote a commentary? on the
first book of Euclid’s Elements, which contains a great deal of valuable
information on the history of Greek mathematics: he is verbose and
dull, but luckily he has preserved for us quotations from other and
better authorities. Proclus was succeeded as head of the school by
Marinus, and Marinus by Isidorus.

Damascius. Eutocius. Two pupils of Isidorus, who in their turn
subsequently lectured at Athens, may be mentioned in passing. One

1See Untersuchungen tiber die neu aufgefundenen Scholien des Proklus, by J. H.
Knoche, Herford, 1865.
2Tt has been edited by G. Friedlein, Leipzig, 1873.
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of these, Damascius of Damascus, circ. 490, is commonly said to have
added to Euclid’s Flements a fifteenth book on the inscription of one
regular solid in another, but his authorship of this has been questioned
by some writers. The other, Futocius, circ. 510, wrote commentaries on
the first four books of the Conics of Apollonius and on various works
of Archimedes.

This later Athenian school was carried on under great difficulties
owing to the opposition of the Christians. Proclus, for example, was
repeatedly threatened with death because he was “a philosopher.” His
remark, “after all my body does not matter, it is the spirit that I shall
take with me when I die,” which he made to some students who had
offered to defend him, has been often quoted. The Christians, after
several ineffectual attempts, at last got a decree from Justinian in 529
that “heathen learning” should no longer be studied at Athens. That
date therefore marks the end of the Athenian school.

The church at Alexandria was less influential, and the city was more
remote from the centre of civil power. The schools there were thus suf-
fered to continue, though their existence was of a precarious character.
Under these conditions mathematics continued to be read in Egypt for
another hundred years, but all interest in the study had gone.

Roman Mathematics*

I ought not to conclude this part of the history without any mention
of Roman mathematics, for it was through Rome that mathematics
first passed into the curriculum of medieval Europe, and in Rome all
modern history has its origin. There is, however, very little to say on the
subject. The chief study of the place was in fact the art of government,
whether by law, by persuasion, or by those material means on which
all government ultimately rests. There were, no doubt, professors who
could teach the results of Greek science, but there was no demand for
a school of mathematics. Italians who wished to learn more than the
elements of the science went to Alexandria or to places which drew
their inspiration from Alexandria.

The subject as taught in the mathematical schools at Rome seems to
have been confined in arithmetic to the art of calculation (no doubt by
the aid of the abacus) and perhaps some of the easier parts of the work

!The subject is discussed by Cantor, chaps. xxv, xxvi, and xxvii; also by Hankel,
pp. 294-304.
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of Nicomachus, and in geometry to a few practical rules; though some
of the arts founded on a knowledge of mathematics (especially that of
surveying) were carried to a high pitch of excellence. It would seem
also that special attention was paid to the representation of numbers
by signs. The manner of indicating numbers up to ten by the use of
fingers must have been in practice from quite early times, but about
the first century it had been developed by the Romans into a finger-
symbolism by which numbers up to 10,000 or perhaps more could be
represented: this would seem to have been taught in the Roman schools.
It is described by Bede, and therefore would seem to have been known
as far west as Britain; Jerome also alludes to it; its use has still survived
in the Persian bazaars.

[ am not acquainted with any Latin work on the principles of me-
chanics, but there were numerous books on the practical side of the sub-
ject which dealt elaborately with architectural and engineering prob-
lems. We may judge what they were like by the Mathematici Veteres,
which is a collection of various short treatises on catapults, engines of
war, &c.: and by the Keotoi, written by Sextus Julius Africanus about
the end of the second century, part of which is included in the Mathe-
matici Veteres, which contains, amongst other things, rules for finding
the breadth of a river when the opposite bank is occupied by an enemy,
how to signal with a semaphore, &c.

In the sixth century Boethius published a geometry containing a
few propositions from FEuclid and an arithmetic founded on that of
Nicomachus; and about the same time Cassiodorus discussed the foun-
dation of a liberal education which, after the preliminary trivium of
grammar, logic, and rhetoric, meant the quadrivium of arithmetic, ge-
ometry, music, and astronomy. These works were written at Rome in
the closing years of the Athenian and Alexandrian schools, and I there-
fore mention them here, but as their only value lies in the fact that
they became recognized text-books in medieval education I postpone
their consideration to chapter [VI11]

Theoretical mathematics was in fact an exotic study at Rome; not
only was the genius of the people essentially practical, but, alike during
the building of their empire, while it lasted, and under the Goths, all
the conditions were unfavourable to abstract science.

On the other hand, Alexandria was exceptionally well placed to be
a centre of science. From the foundation of the city to its capture
by the Mohammedans it was disturbed neither by foreign nor by civil
war, save only for a few years when the rule of the Ptolemies gave
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way to that of Rome: it was wealthy, and its rulers took a pride in
endowing the university: and lastly, just as in commerce it became the
meeting-place of the east and the west, so it had the good fortune to
be the dwelling-place alike of Greeks and of various Semitic people;
the one race shewed a peculiar aptitude for geometry, the other for
sciences which rest on measurement. Here too, however, as time went
on the conditions gradually became more unfavourable, the endless
discussions on theological dogmas and the increasing insecurity of the
empire tending to divert men’s thoughts into other channels.

End of the Second Alexandrian School.

The precarious existence and unfruitful history of the last two cen-
turies of the second Alexandrian School need no record. In 632 Mo-
hammed died, and within ten years his successors had subdued Syria,
Palestine, Mesopotamia, Persia, and Egypt. The precise date on which
Alexandria fell is doubtful, but the most reliable Arab historians give
December 10, 641—a date which at any rate is correct within eighteen
months.

With the fall of Alexandria the long history of Greek mathemat-
ics came to a conclusion. It seems probable that the greater part of
the famous university library and museum had been destroyed by the
Christians a hundred or two hundred years previously, and what re-
mained was unvalued and neglected. Some two or three years after the
first capture of Alexandria a serious revolt occurred in Egypt, which
was ultimately put down with great severity. I see no reason to doubt
the truth of the account that after the capture of the city the Mo-
hammedans destroyed such university buildings and collections as were
still left. It is said that, when the Arab commander ordered the library
to be burnt, the Greeks made such energetic protests that he consented
to refer the matter to the caliph Omar. The caliph returned the answer,
“As to the books you have mentioned, if they contain what is agreeable
with the book of God, the book of God is sufficient without them; and,
if they contain what is contrary to the book of God, there is no need
for them; so give orders for their destruction.” The account goes on
to say that they were burnt in the public baths of the city, and that it
took six months to consume them all.
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CHAPTER VL

THE BYZANTINE SCHOOL.
641-1453.

IT will be convenient to consider the Byzantine school in connection
with the history of Greek mathematics. After the capture of Alexandria
by the Mohammedans the majority of the philosophers, who previously
had been teaching there, migrated to Constantinople, which then be-
came the centre of Greek learning in the East and remained so for 800
years. But though the history of the Byzantine school stretches over
so many years—a period about as long as that from the Norman Con-
quest to the present day—it is utterly barren of any scientific interest;
and its chief merit is that it preserved for us the works of the differ-
ent Greek schools. The revelation of these works to the West in the
fifteenth century was one of the most important sources of the stream
of modern European thought, and the history of the Byzantine school
may be summed up by saying that it played the part of a conduit-pipe
in conveying to us the results of an earlier and brighter age.

The time was one of constant war, and men’s minds during the short
intervals of peace were mainly occupied with theological subtleties and
pedantic scholarship. I should not have mentioned any of the following
writers had they lived in the Alexandrian period, but in default of any
others they may be noticed as illustrating the character of the school. 1
ought also, perhaps, to call the attention of the reader explicitly to the
fact that I am here departing from chronological order, and that the
mathematicians mentioned in this chapter were contemporaries of those
discussed in the chapters devoted to the mathematics of the middle
ages. The Byzantine school was so isolated that I deem this the best
arrangement of the subject.

Hero. One of the earliest members of the Byzantine school was
Hero of Constantinople, circ. 900, sometimes called the younger to dis-
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tinguish him from Hero of Alexandria. Hero would seem to have written
on geodesy and mechanics as applied to engines of war.

During the tenth century two emperors, Leo VI. and Constan-
tine VII., shewed considerable interest in astronomy and mathematics,
but the stimulus thus given to the study of these subjects was only
temporary.

Psellus. In the eleventh century Michael Psellus, born in 1020,
wrote a pamphlet! on the quadrivium: it is now in the National Library
at Paris.

In the fourteenth century we find the names of three monks who
paid attention to mathematics.

Planudes. Barlaam. Argyrus. The first of the three was
Mazimus Planudes.? He wrote a commentary on the first two books of
the Arithmetic of Diophantus; a work on Hindoo arithmetic in which
he used the Arabic numerals; and another on proportions which is now
in the National Library at Paris. The next was a Calabrian monk
named Barlaam, who was born in 1290 and died in 1348. He was the
author of a work, Logistic, on the Greek methods of calculation from
which we derive a good deal of information as to the way in which the
Greeks treated numerical fractions.®> Barlaam seems to have been a
man of great intelligence. He was sent as an ambassador to the Pope at
Avignon, and acquitted himself creditably of a difficult mission; while
there he taught Greek to Petrarch. He was famous at Constantinople for
the ridicule he threw on the preposterous pretensions of the monks at
Mount Athos who taught that those who joined them could, by steadily
regarding their bodies, see a mystic light which was the essence of God.
Barlaam advised them to substitute the light of reason for that of their
bodies—a piece of advice which nearly cost him his life. The last of
these monks was Isaac Argyrus, who died in 1372. He wrote three
astronomical tracts, the manuscripts of which are in the libraries at the
Vatican, Leyden, and Vienna: one on geodesy, the manuscript of which
is at the Escurial: one on geometry, the manuscript of which is in the
National Library at Paris: one on the arithmetic of Nicomachus, the

Tt was printed at Bale in 1536. Psellus also wrote a Compendium Mathematicum
which was printed at Leyden in 1647.

2His arithmetical commentary was published by Xylander, Bale, 1575: his work
on Hindoo arithmetic, edited by C. J. Gerhardt, was published at Halle, 1865.

3Barlaam’s Logistic, edited by Dasypodius, was published at Strassburg, 1572;
another edition was issued at Paris in 1600.
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manuscript of which is in the National Library at Paris: and one on
trigonometry, the manuscript of which is in the Bodleian at Oxford.

Rhabdas. In the fourteenth or perhaps the fifteenth century
Nicholas Rhabdas of Smyrna wrote two papers' on arithmetic which
are now in the National Library at Paris. He gave an account of the
finger-symbolism? which the Romans had introduced into the East and
was then current there.

Pachymeres. Early in the fifteenth century Pachymeres wrote
tracts on arithmetic, geometry, and four mechanical machines.

Moschopulus. A few years later Emmanuel Moschopulus, who
died in Italy circ. 1460, wrote a treatise on magic squares. A magic
square® consists of a number of integers arranged in the form of a square
so that the sum of the numbers in every row, in every column, and in
each diagonal is the same. If the integers be the consecutive numbers
from 1 to n?, the square is said to be of the nth order, and in this case
the sum of the numbers in any row, column, or diagonal is equal to
tn(n? 4 1). Thus the first 16 integers, arranged in either of the forms
given below, form a magic square of the fourth order, the sum of the

numbers in every row, every column, and each diagonal being 34.

1(15(14| 4 15110 3 [ 6
1216719 415(16]9
8 110[11] 5 411127
1313 1]2]16 18 (13]12

In the mystical philosophy then current certain metaphysical ideas
were often associated with particular numbers, and thus it was natural
that such arrangements of numbers should attract attention and be
deemed to possess magical properties. The theory of the formation
of magic squares is elegant, and several distinguished mathematicians
have written on it, but, though interesting, I need hardly say it is not
useful. Moschopulus seems to have been the earliest European writer
who attempted to deal with the mathematical theory, but his rules

IThey have been edited by S. P. Tannery, Paris, 1886.

2See above, page

30n the formation and history of magic squares, see my Mathematical Recre-
ations, London, ninth edition, 1920, chap. vii. On the work of Moschopulus,
see S. Giuinther’s Geschichte der mathematischen Wissenschaften, Leipzig, 1876,
chap. iv.
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apply only to odd squares. The astrologers of the fifteenth and sixteenth
centuries were much impressed by such arrangements. In particular
the famous Cornelius Agrippa (1486-1535) constructed magic squares
of the orders 3, 4, 5, 6, 7, 8, 9, which were associated respectively with
the seven astrological “planets,” namely, Saturn, Jupiter, Mars, the
Sun, Venus, Mercury, and the Moon. He taught that a square of one
cell, in which unity was inserted, represented the unity and eternity
of God; while the fact that a square of the second order could not be
constructed illustrated the imperfection of the four elements, air, earth,
fire, and water; and later writers added that it was symbolic of original
sin. A magic square engraved on a silver plate was often prescribed as
a charm against the plague, and one (namely, that in the first diagram
on the last page) is drawn in the picture of melancholy painted about
the year 1500 by Albrecht Diirer. Such charms are still worn in the
East.

Constantinople was captured by the Turks in 1453, and the last
semblance of a Greek school of mathematics then disappeared. Nu-
merous Greeks took refuge in Italy. In the West the memory of Greek
science had vanished, and even the names of all but a few Greek writ-
ers were unknown; thus the books brought by these refugees came as
a revelation to Europe, and, as we shall see later, gave a considerable
stimulus to the study of science.
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CHAPTER VII.

SYSTEMS OF NUMERATION AND PRIMITIVE ARITHMETIC."

I HAVE in many places alluded to the Greek method of expressing
numbers in writing, and I have thought it best to defer to this chapter
the whole of what I wanted to say on the various systems of numerical
notation which were displaced by the system introduced by the Arabs.

First, as to symbolism and language. The plan of indicating num-
bers by the digits of one or both hands is so natural that we find it
in universal use among early races, and the members of all tribes now
extant are able to indicate by signs numbers at least as high as ten: it
is stated that in some languages the names for the first ten numbers are
derived from the fingers used to denote them. For larger numbers we
soon, however, reach a limit beyond which primitive man is unable to
count, while as far as language goes it is well known that many tribes
have no word for any number higher than ten, and some have no word
for any number beyond four, all higher numbers being expressed by the
words plenty or heap: in connection with this it is worth remarking that
(as stated above) the Egyptians used the symbol for the word heap to
denote an unknown quantity in algebra.

The number five is generally represented by the open hand, and
it is said that in almost all languages the words five and hand are
derived from the same root. It is possible that in early times men
did not readily count beyond five, and things if more numerous were

IThe subject of this chapter has been discussed by Cantor and by Hankel. See
also the Philosophy of Arithmetic by John Leslie, second edition, Edinburgh, 1820.
Besides these authorities the article on Arithmetic by George Peacock in the En-
cyclopaedia Metropolitana, Pure Sciences, London, 1845; E. B. Tylor’s Primitive
Culture, London, 1873; Les signes numérauz et l’arithmétique chez les peuples de
Uantiquité . .. by T. H. Martin, Rome, 1864; and Die Zahlzeichen . ..by G. Friedlein,
Erlangen, 1869, should be consulted.
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counted by multiples of it. It may be that the Roman symbol X for
ten represents two “V”s, placed apex to apex, and, if so, this seems
to point to a time when things were counted by fives.! In connection
with this it is worth noticing that both in Java and among the Aztecs
a week consisted of five days.

The members of nearly all races of which we have now any knowl-
edge seem, however, to have used the digits of both hands to represent
numbers. They could thus count up to and including ten, and therefore
were led to take ten as their radix of notation. In the English language,
for example, all the words for numbers higher than ten are expressed
on the decimal system: those for 11 and 12, which at first sight seem
to be exceptions, being derived from Anglo-Saxon words for one and
ten and two and ten respectively.

Some tribes seem to have gone further, and by making use of their
toes were accustomed to count by multiples of twenty. The Aztecs, for
example, are said to have done so. It may be noticed that we still count
some things (for instance, sheep) by scores, the word score signifying
a notch or scratch made on the completion of the twenty; while the
French also talk of quatrevingts, as though at one time they counted
things by multiples of twenty. I am not, however, sure whether the
latter argument is worth anything, for [ have an impression that I have
seen the word octante in old French books; and there is no question®
that septante and nonante were at one time common words for seventy
and ninety, and indeed they are still retained in some dialects.

The only tribes of whom I have read who did not count in terms
either of five or of some multiple of five are the Bolans of West Africa
who are said to have counted by multiples of seven, and the Maories
who are said to have counted by multiples of eleven.

Up to ten it is comparatively easy to count, but primitive people
find great difficulty in counting higher numbers; apparently at first this
difficulty was only overcome by the method (still in use in South Africa)
of getting two men, one to count the units up to ten on his fingers, and
the other to count the number of groups of ten so formed. To us it
is obvious that it is equally effectual to make a mark of some kind on
the completion of each group of ten, but it is alleged that the members
of many tribes never succeeded in counting numbers higher than ten

1See also the Odyssey, iv, 413-415, in which apparently reference is made to a
similar custom.
2See, for example, V. M. de Kempten’s Practique. .. a ciffrer, Antwerp, 1556.
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unless by the aid of two men.

Most races who shewed any aptitude for civilization proceeded fur-
ther and invented a way of representing numbers by means of pebbles
or counters arranged in sets of ten; and this in its turn developed into
the abacus or swan-pan. This instrument was in use among nations so
widely separated as the Etruscans, Greeks, Egyptians, Hindoos, Chi-
nese, and Mexicans; and was, it is believed, invented independently at
several different centres. It is still in common use in Russia, China, and
Japan.

FiGuRre 1.

In its simplest form (see the abacus consists of a wooden
board with a number of grooves cut in it, or of a table covered with sand
in which grooves are made with the fingers. To represent a number,
as many counters or pebbles are put on the first groove as there are
units, as many on the second as there are tens, and so on. When by
its aid a number of objects are counted, for each object a pebble is
put on the first groove; and, as soon as there are ten pebbles there,
they are taken off and one pebble put on the second groove; and so
on. It was sometimes, as in the Aztec quipus, made with a number of
parallel wires or strings stuck in a piece of wood on which beads could
be threaded; and in that form is called a swan-pan. In the number
represented in each of the instruments drawn on the next page there
are seven thousands, three hundreds, no tens, and five units, that is,
the number is 7305. Some races counted from left to right, others from
right to left, but this is a mere matter of convention.

The Roman abaci seem to have been rather more elaborate. They
contained two marginal grooves or wires, one with four beads to facil-
itate the addition of fractions whose denominators were four, and one
with twelve beads for fractions whose denominators were twelve: but
otherwise they do not differ in principle from those described above.
They were commonly made to represent numbers up to 100,000,000.
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The Greek abaci were similar to the Roman ones. The Greeks and Ro-
mans used their abaci as boards on which they played a game something
like backgammon.

FIGURE 2.

In the Russian tschoti the instrument is improved by
having the wires set in a rectangular frame, and ten (or nine) beads are
permanently threaded on each of the wires, the wires being considerably
longer than is necessary to hold them. If the frame be held horizontal,
and all the beads be towards one side, say the lower side of the frame,
it is possible to represent any number by pushing towards the other
or upper side as many beads on the first wire as there are units in
the number, as many beads on the second wire as there are tens in the
number, and so on. Calculations can be made somewhat more rapidly if
the five beads on each wire next to the upper side be coloured differently
to those next to the lower side, and they can be still further facilitated
if the first, second, ..., ninth counters in each column be respectively
marked with symbols for the numbers 1, 2, ..., 9. Gerbert! is said to
have introduced the use of such marks, called apices, towards the close
of the tenth century.

FiGUuRrE 3.

1See below, page m
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represents the form of swan-pan or saroban in common use
in China and Japan. There the development is carried one step further,
and five beads on each wire are replaced by a single bead of a different
form or on a different division, but apices are not used. I am told
that an expert Japanese can, by the aid of a swan-pan, add numbers
as rapidly as they can be read out to him. It will be noticed that the
instrument represented in is made so that two numbers can
be expressed at the same time on it.

The use of the abacus in addition and subtraction is evident. It can
be used also in multiplication and division; rules for these processes,
illustrated by examples, are given in various old works on arithmetic.!

The abacus obviously presents a concrete way of representing a num-
ber in the decimal system of notation, that is, by means of the local
value of the digits. Unfortunately the method of writing numbers de-
veloped on different lines, and it was not until about the thirteenth
century of our era, when a symbol zero used in conjunction with nine
other symbols was introduced, that a corresponding notation in writing
was adopted in Europe.

Next, as to the means of representing numbers in writing. In general
we may say that in the earliest times a number was (if represented by
a sign and not a word) indicated by the requisite number of strokes.
Thus in an inscription from Tralles in Caria of the date 398 B.C. the
phrase seventh year is represented by ezeog | | | | | | |. These strokes may
have been mere marks; or perhaps they originally represented fingers,
since in the Egyptian hieroglyphics the symbols for the numbers 1, 2, 3,
are one, two, and three fingers respectively, though in the later hieratic
writing these symbols had become reduced to straight lines. Additional
symbols for 10 and 100 were soon introduced: and the oldest extant
Egyptian and Phoenician writings repeat the symbol for unity as many
times (up to 9) as was necessary, and then repeat the symbol for ten
as many times (up to 9) as was necessary, and so on. No specimens of
Greek numeration of a similar kind are in existence, but there is every
reason to believe the testimony of Iamblichus who asserts that this was
the method by which the Greeks first expressed numbers in writing.

This way of representing numbers remained in current use through-
out Roman history; and for greater brevity they or the Etruscans added
separate signs for 5, 50, &c. The Roman symbols are generally merely

'For example in R. Record’s Grounde of Artes, edition of 1610, London, pp. 225
262.
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the initial letters of the names of the numbers; thus ¢ stood for centum
or 100, M for mille or 1000. The symbol Vv for 5 seems to have originally
represented an open palm with the thumb extended. The symbols L for
50 and D for 500 are said to represent the upper halves of the symbols
used in early times for ¢ and M. The subtractive forms like 1v for 1111
are probably of a later origin.

Similarly in Attica five was denoted by II, the first letter of méve,
or sometimes by I'; ten by A, the initial letter of déxa; a hundred by H
for éxatdr; a thousand by X for yiAioy; while 50 was represented by a
A written inside a II; and so on. These Attic symbols continued to be
used for inscriptions and formal documents until a late date.

This, if a clumsy, is a perfectly intelligible system; but the Greeks at
some time in the third century before Christ abandoned it for one which
offers no special advantages in denoting a given number, while it makes
all the operations of arithmetic exceedingly difficult. In this, which
is known from the place where it was introduced as the Alexandrian
system, the numbers from 1 to 9 are represented by the first nine letters
of the alphabet; the tens from 10 to 90 by the next nine letters; and
the hundreds from 100 to 900 by the next nine letters. To do this the
Greeks wanted 27 letters, and as their alphabet contained only 24, they
reinserted two letters (the digamma and koppa) which had formerly
been in it but had become obsolete, and introduced at the end another
symbol taken from the Phoenician alphabet. Thus the ten letters a to
¢ stood respectively for the numbers from 1 to 10; the next eight letters
for the multiples of 10 from 20 to 90; and the last nine letters for 100,
200, etc., up to 900. Intermediate numbers like 11 were represented
as the sum of 10 and 1, that is, by the symbol ta’. This afforded a
notation for all numbers up to 999; and by a system of suffixes and
indices it was extended so as to represent numbers up to 100,000,000.

There is no doubt that at first the results were obtained by the use
of the abacus or some similar mechanical method, and that the signs
were only employed to record the result; the idea of operating with the
symbols themselves in order to obtain the results is of a later growth,
and is one with which the Greeks never became familiar. The non-
progressive character of Greek arithmetic may be partly due to their
unlucky adoption of the Alexandrian system which caused them for
most practical purposes to rely on the abacus, and to supplement it by
a table of multiplications which was learnt by heart. The results of the
multiplication or division of numbers other than those in the multipli-
cation table might have been obtained by the use of the abacus, but
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in fact they were generally got by repeated additions and subtractions.
Thus, as late as 944, a certain mathematician who in the course of his
work wants to multiply 400 by 5 finds the result by addition. The same
writer, when he wants to divide 6152 by 15, tries all the multiples of
15 until he gets to 6000, this gives him 400 and a remainder 152; he
then begins again with all the multiples of 15 until he gets to 150, and
this gives him 10 and a remainder 2. Hence the answer is 410 with a
remainder 2.

A few mathematicians, however, such as Hero of Alexandria, Theon,
and Futocius, multiplied and divided in what is essentially the same
way as we do. Thus to multiply 18 by 13 they proceeded as follows:—

vy +m=(0+7)(c+n) 13 x 18 = (10 + 3)(10 + 8)
=u(t+n)+v(t+n) =10(10 + 8) + 3(10 + 8)
=p+7+ A+ kK0 = 100 + 80 + 30 + 24

I suspect that the last step, in which they had to add four numbers
together, was obtained by the aid of the abacus.

These, however, were men of exceptional genius, and we must recol-
lect that for all ordinary purposes the art of calculation was performed
only by the use of the abacus and the multiplication table, while the
term arithmetic was confined to the theories of ratio, proportion, and
of numbers.

All the systems here described were more or less clumsy, and they
have been displaced among civilized races by the Arabic system in which
there are ten digits or symbols, namely, nine for the first nine numbers
and another for zero. In this system an integral number is denoted by
a succession of digits, each digit representing the product of that digit
and a power of ten, and the number being equal to the sum of these
products. Thus, by means of the local value attached to nine symbols
and a symbol for zero, any number in the decimal scale of notation
can be expressed. The history of the development of the science of
arithmetic with this notation will be considered below in chapter [X1]
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SECOND PERIOD.

Mathematics of the Middle Ages and Renaiggance.

This period begins about the sixth century, and may be said to end
with the invention of analytical geometry and of the infinitesimal cal-
culus. The characteristic feature of this period is the creation or devel-
opment of modern arithmetic, algebra, and trigonometry.

In this period I consider first, in chapter [VIII], the rise of learning
in Western Europe, and the mathematics of the middle ages. Next,
in chapter [IX] T discuss the nature and history of Hindoo and Arabian
mathematics, and in chapter [x| their introduction into Europe. Then,
in chapter [XI, I trace the subsequent progress of arithmetic to the year
1637. Next, in chapter [X1I| I treat of the general history of mathematics
during the renaissance, from the invention of printing to the beginning
of the seventeenth century, say, from 1450 to 1637; this contains an
account of the commencement of the modern treatment of arithmetic,
algebra, and trigonometry. Lastly, in chapter X111 I consider the revival
of interest in mechanics, experimental methods, and pure geometry
which marks the last few years of this period, and serves as a connecting
link between the mathematics of the renaissance and the mathematics
of modern times.
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CHAPTER VIIIL.

THE RISE OF LEARNING IN WESTERN EUROPE.!
CIRC. 600—1200.

Education in the sizth, seventh, and eighth centuries.

THE first few centuries of this second period of our history are
singularly barren of interest; and indeed it would be strange if we found
science or mathematics studied by those who lived in a condition of
perpetual war. Broadly speaking we may say that from the sixth to
the eighth centuries the only places of study in western Europe were the
Benedictine monasteries. We may find there some slight attempts at a
study of literature; but the science usually taught was confined to the
use of the abacus, the method of keeping accounts, and a knowledge of
the rule by which the date of Easter could be determined. Nor was this
unreasonable, for the monk had renounced the world, and there was
no reason why he should learn more science than was required for the
services of the Church and his monastery. The traditions of Greek and
Alexandrian learning gradually died away. Possibly in Rome and a few
favoured places copies of the works of the great Greek mathematicians
were obtainable though with difficulty, but there were no students, the
books were unvalued, and in time became very scarce.

Three authors of the sixth century—Boethius, Cassiodorus, and
[sidorus—may be named whose writings serve as a connecting link be-
tween the mathematics of classical and of medieval times. As their

!The mathematics of this period has been discussed by Cantor, by S. Giinther,
Geschichte des mathematischen Unterrichtes im deutschen Mittelalter, Berlin, 1887;
and by H. Weissenborn, Gerbert, Beitrige zur Kenntniss der Mathematik des Mitte-
lalters, Berlin, 1888; and Zur Geschichte der Einfihrung der jetzigen Ziffers, Berlin,
1892.
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works remained standard text-books for some six or seven centuries it
is necessary to mention them, but it should be understood that this is
the only reason for doing so; they show no special mathematical ability.
It will be noticed that these authors were contemporaries of the later
Athenian and Alexandrian schools.

Boethius. Anicius Manlius Severinus Boethius, or as the name is
sometimes written Boetius, born at Rome about 475 and died in 526,
belonged to a family which for the two preceding centuries had been
esteemed one of the most illustrious in Rome. It was formerly believed
that he was educated at Athens: this is somewhat doubtful, but at any
rate he was exceptionally well read in Greek literature and science.

Boethius would seem to have wished to devote his life to literary
pursuits; but recognizing “that the world would be happy only when
kings became philosophers or philosophers kings,” he yielded to the
pressure put on him and took an active share in politics. He was cele-
brated for his extensive charities, and, what in those days was very rare,
the care that he took to see that the recipients were worthy of them.
He was elected consul at an unusually early age, and took advantage
of his position to reform the coinage and to introduce the public use
of sun-dials, water-clocks, etc. He reached the height of his prosperity
in 522 when his two sons were inaugurated as consuls. His integrity
and attempts to protect the provincials from the plunder of the public
officials brought on him the hatred of the Court. He was sentenced to
death while absent from Rome, seized at Ticinum, and in the baptistery
of the church there tortured by drawing a cord round his head till the
eyes were forced out of the sockets, and finally beaten to death with
clubs on October 23, 526. Such at least is the account that has come
down to us. At a later time his merits were recognized, and tombs and
statues erected in his honour by the state.

Boethius was the last Roman of note who studied the language and
literature of Greece, and his works afforded to medieval Europe some
glimpse of the intellectual life of the old world. His importance in
the history of literature is thus very great, but it arises merely from
the accident of the time at which he lived. After the introduction of
Aristotle’s works in the thirteenth century his fame died away, and
he has now sunk into an obscurity which is as great as was once his
reputation. He is best known by his Consolatio, which was translated
by Alfred the Great into Anglo-Saxon. For our purpose it is sufficient
to note that the teaching of early medieval mathematics was mainly
founded on his geometry and arithmetic.
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His Geometry' consists of the enunciations (only) of the first book
of Euclid, and of a few selected propositions in the third and fourth
books, but with numerous practical applications to finding areas, etc.
He adds an appendix with proofs of the first three propositions to shew
that the enunciations may be relied on. His Arithmetic is founded on
that of Nicomachus.

Cassiodorus. A few years later another Roman, Magnus Aurelius
Cassiodorus, who was born about 490 and died in 566, published two
works, De Institutione Divinarum Litterarum and De Artibus ac Dis-
ciplinis, in which not only the preliminary trivium of grammar, logic,
and rhetoric were discussed, but also the scientific quadrivium of arith-
metic, geometry, music, and astronomy. These were considered stan-
dard works during the middle ages; the former was printed at Venice
in 1598.

Isidorus. Isidorus, bishop of Seville, born in 570 and died in
636, was the author of an encyclopaedic work in twenty volumes called
Origines, of which the third volume is given up to the quadrivium. It
was published at Leipzig in 1833.

The Cathedral and Conventual Schools.?

When, in the latter half of the eighth century, Charles the Great
had established his empire, he determined to promote learning so far as
he was able. He began by commanding that schools should be opened
in connection with every cathedral and monastery in his kingdom; an
order which was approved and materially assisted by the popes. It
is interesting to us to know that this was done at the instance and
under the direction of two Englishmen, Alcuin and Clement, who had
attached themselves to his court.

Alcuin.? Of these the more prominent was Alcuin, who was born
in Yorkshire in 735 and died at Tours in 804. He was educated at
York under archbishop Egbert, his “beloved master,” whom he suc-
ceeded as director of the school there. Subsequently he became abbot

'His works on geometry and arithmetic were edited by G. Friedlein, Leipzig,
1867.

2See The Schools of Charles the Great and the Restoration of Education in the
Ninth Century by J. B. Mullinger, London, 1877.

3See the life of Alcuin by F. Lorentz, Halle, 1829, translated by J. M. Slee,
London, 1837; Alcuin und sein Jahrhundert by K. Werner, Paderborn, 1876; and
Cantor, vol. i, pp. 712-721.
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of Canterbury, and was sent to Rome by Offa to procure the pallium
for archbishop Eanbald. On his journey back he met Charles at Parma;
the emperor took a great liking to him, and finally induced him to take
up his residence at the imperial court, and there teach rhetoric, logic,
mathematics, and divinity. Alcuin remained for many years one of the
most intimate and influential friends of Charles and was constantly
employed as a confidential ambassador; as such he spent the years 791
and 792 in England, and while there reorganized the studies at his old
school at York. In 801 he begged permission to retire from the court so
as to be able to spend the last years of his life in quiet: with difficulty he
obtained leave, and went to the abbey of St. Martin at Tours, of which
he had been made head in 796. He established a school in connection
with the abbey which became very celebrated, and he remained and
taught there till his death on May 19, 804.

Most of the extant writings of Alcuin deal with theology or history,
but they include a collection of arithmetical propositions suitable for
the instruction of the young. The majority of the propositions are
easy problems, either determinate or indeterminate, and are, I presume,
founded on works with which he had become acquainted when at Rome.
The following is one of the most difficult, and will give an idea of the
character of the work. If one hundred bushels of corn be distributed
among one hundred people in such a manner that each man receives
three bushels, each woman two, and each child half a bushel: how many
men, women, and children were there? The general solution is (20—3n)
men, bn women, and (80 — 2n) children, where n may have any of the
values 1, 2, 3, 4, 5, 6. Alcuin only states the solution for which n = 3;
that is, he gives as the answer 11 men, 15 women, and 74 children.

This collection however was the work of a man of exceptional ge-
nius, and probably we shall be correct in saying that mathematics, if
taught at all in a school, was generally confined to the geometry of
Boethius, the use of the abacus and multiplication table, and possibly
the arithmetic of Boethius; while except in one of these schools or in
a Benedictine cloister it was hardly possible to get either instruction
or opportunities for study. It was of course natural that the works
used should come from Roman sources, for Britain and all the coun-
tries included in the empire of Charles had at one time formed part of
the western half of the Roman empire, and their inhabitants continued
for a long time to regard Rome as the centre of civilization, while the
higher clergy kept up a tolerably constant intercourse with Rome.

After the death of Charles many of his schools confined themselves
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to teaching Latin, music, and theology, some knowledge of which was
essential to the worldly success of the higher clergy. Hardly any science
or mathematics was taught, but the continued existence of the schools
gave an opportunity to any teacher whose learning or zeal exceeded the
narrow limits fixed by tradition; and though there were but few who
availed themselves of the opportunity, yet the number of those desiring
instruction was so large that it would seem as if any one who could
teach was sure to attract a considerable audience.

A few schools, where the teachers were of repute, became large and
acquired a certain degree of permanence, but even in them the teaching
was still usually confined to the trivium and quadrivium. The former
comprised the three arts of grammar, logic, and rhetoric, but practi-
cally meant the art of reading and writing Latin; nominally the latter
included arithmetic and geometry with their applications, especially to
music and astronomy, but in fact it rarely meant more than arithmetic
sufficient to enable one to keep accounts, music for the church services,
geometry for the purpose of land-surveying, and astronomy sufficient
to enable one to calculate the feasts and fasts of the church. The seven
liberal arts are enumerated in the line, Lingua, tropus, ratio; numerus,
tonus, angulus, astra. Any student who got beyond the trivium was
looked on as a man of great erudition, Qui tria, qui septem, qui totum
scibile novit, as a verse of the eleventh century runs. The special ques-
tions which then and long afterwards attracted the best thinkers were
logic and certain portions of transcendental theology and philosophy.

We may sum the matter up by saying that during the ninth and
tenth centuries the mathematics taught was still usually confined to
that comprised in the two works of Boethius together with the practical
use of the abacus and the multiplication table, though during the latter
part of the time a wider range of reading was undoubtedly accessible.

Gerbert.! In the tenth century a man appeared who would in any
age have been remarkable and who gave a great stimulus to learning.
This was Gerbert, an Aquitanian by birth, who died in 1003 at about
the age of fifty. His abilities attracted attention to him even when a
boy, and procured his removal from the abbey school at Aurillac to the
Spanish march where he received a good education. He was in Rome in

"Weissenborn, in the works already mentioned, treats Gerbert very fully; see
also La Vie et les (Buvres de Gerbert, by A. Olleris, Clermont, 1867; Gerbert von
Aurillac, by K. Werner, second edition, Vienna, 1881; and Gerberti ... Opera math-
ematica, edited by N. Bubnov, Berlin, 1899.
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971, where his proficiency in music and astronomy excited considerable
interest: but his interests were not confined to these subjects, and he
had already mastered all the branches of the trivium and quadrivium, as
then taught, except logic; and to learn this he moved to Rheims, which
Archbishop Adalbero had made the most famous school in Europe.
Here he was at once invited to teach, and so great was his fame that
to him Hugh Capet entrusted the education of his son Robert who was
afterwards king of France.

Gerbert was especially famous for his construction of abaci and of
terrestrial and celestial globes; he was accustomed to use the latter to
illustrate his lectures. These globes excited great admiration; and he
utilized this by offering to exchange them for copies of classical Latin
works, which seem already to have become very scarce; the better to
effect this he appointed agents in the chief towns of Europe. To his
efforts it is believed we owe the preservation of several Latin works. In
982 he received the abbey of Bobbio, and the rest of his life was taken
up with political affairs; he became Archbishop of Rheims in 991, and
of Ravenna in 998; in 999 he was elected Pope, when he took the title of
Sylvester I1.; as head of the Church, he at once commenced an appeal
to Christendom to arm and defend the Holy Land, thus forestalling
Peter the Hermit by a century, but he died on May 12, 1003, before he
had time to elaborate his plans. His library is, I believe, preserved in
the Vatican.

So remarkable a personality left a deep impress on his generation,
and all sorts of fables soon began to collect around his memory. It seems
certain that he made a clock which was long preserved at Magdeburg,
and an organ worked by steam which was still at Rheims two centuries
after his death. All this only tended to confirm the suspicions of his
contemporaries that he had sold himself to the devil; and the details of
his interviews with that gentleman, the powers he purchased, and his
effort to escape from his bargain when he was dying, may be read in the
pages of William of Malmesbury, Orderic Vitalis, and Platina. To these
anecdotes the first named writer adds the story of the statue inscribed
with the words “strike here,” which having amused our ancestors in the
Gesta Romanorum has been recently told again in the Farthly Paradise.

Extensive though his influence was, it must not be supposed that
Gerbert’s writings shew any great originality. His mathematical works
comprise a treatise on arithmetic entitled De Numerorum Divisione,
and one on geometry. An improvement in the abacus, attributed by
some writers to Boethius, but which is more likely due to Gerbert, is
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the introduction in every column of beads marked by different charac-
ters, called apices, for each of the numbers from 1 to 9, instead of nine
exactly similar counters or beads. These apices lead to a representa-
tion of numbers essentially the same as the Arabic numerals. There
was however no symbol for zero; the step from this concrete system
of denoting numbers by a decimal system on an abacus to the system
of denoting them by similar symbols in writing seems to us to be a
small one, but it would appear that Gerbert did not make it. He found
at Mantua a copy of the geometry of Boethius, and introduced it into
the medieval schools. Gerbert’s own work on geometry is of unequal
ability; it includes a few applications to land-surveying and the deter-
mination of the heights of inaccessible objects, but much of it seems
to be copied from some Pythagorean text-book. In the course of it he
however solves one problem which was of remarkable difficulty for that
time. The question is to find the sides of a right-angled triangle whose
hypotenuse and area are given. He says, in effect, that if these latter
be denoted respectively by ¢ and h?, then the lengths of the two sides
will be

%{\/CQ+4h2 +Ve? —4h2} and 1 {\/02 + 4h2% — /2 —4h2}.

Bernelinus. One of Gerbert’s pupils, Bernelinus, published a
work on the abacus® which is, there is very little doubt, a reproduction
of the teaching of Gerbert. It is valuable as indicating that the Arabic
system of writing numbers was still unknown in Europe.

The Early Medieval Universities.

At the end of the eleventh century or the beginning of the twelfth a
revival of learning took place at several of these cathedral or monastic
schools; and in some cases, at the same time, teachers who were not
members of the school settled in its vicinity and, with the sanction of
the authorities, gave lectures which were in fact always on theology,
logic, or civil law. As the students at these centres grew in numbers,
it became desirable to act together whenever any interest common to
all was concerned. The association thus formed was a sort of guild or

Tt is reprinted in Olleris’s edition of Gerbert’s works, pp. 311-326.

2See the Universities of Europe in the Middle Ages by H. Rashdall, Oxford, 1895;
Die Universititen des Mittelalters bis 1400 by P. H. Denifle, 1885; and vol. i of the
University of Cambridge by J. B. Mullinger, Cambridge, 1873.
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trades union, or in the language of the time a universitas magistrorum
et scholarium. This was the first stage in the development of the ear-
liest medieval universities. In some cases, as at Paris, the governing
body of the university was formed by the teachers alone, in others, as
at Bologna, by both teachers and students; but in all cases precise rules
for the conduct of business and the regulation of the internal economy
of the guild were formulated at an early stage in its history. The munic-
ipalities and numerous societies which existed in Italy supplied plenty
of models for the construction of such rules, but it is possible that some
of the regulations were derived from those in force in the Mohammedan
schools at Cordova.

We are, almost inevitably, unable to fix the exact date of the com-
mencement of these voluntary associations, but they existed at Paris,
Bologna, Salerno, Oxford, and Cambridge before the end of the twelfth
century: these may be considered the earliest universities in Europe.
The instruction given at Salerno and Bologna was mainly technical—at
Salerno in medicine, and at Bologna in law—and their claim to recog-
nition as universities, as long as they were merely technical schools, has
been disputed.

Although the organization of these early universities was indepen-
dent of the neighbouring church and monastic schools they seem in gen-
eral to have been, at any rate originally, associated with such schools,
and perhaps indebted to them for the use of rooms, etc. The univer-
sities or guilds (self-governing and formed by teachers and students),
and the adjacent schools (under the direct control of church or monastic
authorities), continued to exist side by side, but in course of time the
latter diminished in importance, and often ended by becoming subject
to the rule of the university authorities. Nearly all the medieval univer-
sities grew up under the protection of a bishop (or abbot), and were in
some matters subject to his authority or to that of his chancellor, from
the latter of whom the head of the university subsequently took his
title. The universities, however, were not ecclesiastical organizations,
and, though the bulk of their members were ordained, their direct con-
nection with the Church arose chiefly from the fact that clerks were
then the only class of the community who were left free by the state to
pursue intellectual studies.

A universitas magistrorum et scholarium, if successful in attracting
students and acquiring permanency, always sought special legal privi-
leges, such as the right to fix the price of provisions and the power to
try legal actions in which its members were concerned. These privi-
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leges generally led to a recognition of its power to grant degrees which
conferred a right of teaching anywhere within the kingdom. The uni-
versity was frequently incorporated at or about the same time. Paris
received its charter in 1200, and probably was the earliest university
in Europe thus officially recognized. Legal privileges were conferred on
Oxford in 1214, and on Cambridge in 1231: the development of Oxford
and Cambridge followed closely the precedent of Paris on which their
organization was modelled. In the course of the thirteenth century uni-
versities were founded at (among other places) Naples, Orleans, Padua,
and Prague; and in the course of the fourteenth century at Pavia and
Vienna. The title of university was generally accredited to any teaching
body as soon as it was recognized as a studium generale.

The most famous medieval universities aspired to a still wider recog-
nition, and the final step in their evolution was an acknowledgment
by the pope or emperor of their degrees as a title to teach throughout
Christendom—such universities were closely related one with the other.
Paris was thus recognized in 1283, Oxford in 1296, and Cambridge in
1318.

The standard of education in mathematics has been largely fixed by
the universities, and most of the mathematicians of subsequent times
have been closely connected with one or more of them; and therefore
I may be pardoned for adding a few words on the general course of
studies! in a university in medieval times.

The students entered when quite young, sometimes not being more
than eleven or twelve years old when first coming into residence. It
is misleading to describe them as undergraduates, for their age, their
studies, the discipline to which they were subjected, and their position
in the university shew that they should be regarded as schoolboys.
The first four years of their residence were supposed to be spent in
the study of the trivium, that is, Latin grammar, logic, and rhetoric.
In quite early times, a considerable number of the students did not
progress beyond the study of Latin grammar—they formed an inferior
faculty and were eligible only for the degree of master of grammar or
master of rhetoric—but the more advanced students (and in later times
all students) spent these years in the study of the trivium.

The title of bachelor of arts was conferred at the end of this course,

IFor fuller details as to their organization of studies, their system of instruction,
and their constitution, see my History of the Study of Mathematics at Cambridge,
Cambridge, 1889.
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and signified that the student was no longer a schoolboy and therefore
in pupilage. The average age of a commencing bachelor may be taken
as having been about seventeen or eighteen. Thus at Cambridge in
the presentation for a degree the technical term still used for an under-
graduate is juvenis, while that for a bachelor is vir. A bachelor could
not take pupils, could teach only under special restrictions, and proba-
bly occupied a position closely analogous to that of an undergraduate
nowadays. Some few bachelors proceeded to the study of civil or canon
law, but it was assumed in theory that they next studied the quadriv-
ium, the course for which took three years, and which included about as
much science as was to be found in the pages of Boethius and Isidorus.

The degree of master of arts was given at the end of this course. In
the twelfth and thirteenth centuries it was merely a license to teach:
no one sought it who did not intend to use it for that purpose and
to reside in the university, and only those who had a natural aptitude
for such work were likely to enter a profession so ill-paid as that of
a teacher. The degree was obtainable by any student who had gone
through the recognized course of study, and shewn that he was of good
moral character. Outsiders were also admitted, but not as a matter
of course. I may here add that towards the end of the fourteenth
century students began to find that a degree had a pecuniary value,
and most universities subsequently conferred it only on condition that
the new master should reside and teach for at least a year. Somewhat
later the universities took a further step and began to refuse degrees to
those who were not intellectually qualified. This power was assumed
on the precedent of a case which arose in Paris in 1426, when the
university declined to confer a degree on a student—a Slavonian, one
Paul Nicholas—who had performed the necessary exercises in a very
indifferent manner: he took legal proceedings to compel the university
to grant the degree, but their right to withhold it was established.
Nicholas accordingly has the distinction of being the first student who
under modern conditions was “plucked.”

Although science and mathematics were recognised as the standard
subjects of study for a bachelor, it is probable that, until the renais-
sance, the majority of the students devoted most of their time to logic,
philosophy, and theology. The subtleties of scholastic philosophy were
dreary and barren, but it is only just to say that they provided a severe
intellectual training.

We have now arrived at a time when the results of Arab and Greek
science became known in Furope. The history of Greek mathematics
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has been already discussed; I must now temporarily leave the subject
of medieval mathematics, and trace the development of the Arabian
schools to the same date; and I must then explain how the schoolmen
became acquainted with the Arab and Greek text-books, and how their
introduction affected the progress of European mathematics.
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CHAPTER IX.

THE MATHEMATICS OF THE ARABS.!

THE story of Arab mathematics is known to us in its general out-
lines, but we are as yet unable to speak with certainty on many of its
details. It is, however, quite clear that while part of the early knowl-
edge of the Arabs was derived from Greek sources, part was obtained
from Hindoo works; and that it was on those foundations that Arab
science was built. I will begin by considering in turn the extent of
mathematical knowledge derived from these sources.

Extent of Mathematics obtained from Greek Sources.

According to their traditions, in themselves very probable, the sci-
entific knowledge of the Arabs was at first derived from the Greek doc-
tors who attended the caliphs at Bagdad. It is said that when the Arab
conquerors settled in towns they became subject to diseases which had
been unknown to them in their life in the desert. The study of medicine
was then confined mainly to Greeks and Jews, and many of these, en-
couraged by the caliphs, settled at Bagdad, Damascus, and other cities;
their knowledge of all branches of learning was far more extensive and
accurate than that of the Arabs, and the teaching of the young, as has

!The subject is discussed at length by Cantor, chaps. xxxii-xxxv; by Hankel,
pp. 172-293; by A. von Kremer in Kulturgeschichte des Orientes unter den Chalifen,
Vienna, 1877; and by H. Suter in his “Die Mathematiker und Astronomen der
Araber und ihre Werke,” Zeitschrift fiir Mathematik und Physik, Abhandlungen zur
Geschichte der Mathematik, Leipzig, vol. xlv, 1900. See also Matériaux pour servir
a Uhistoire comparée des sciences mathématiques chez les Grecs et les Orientaux,
by L. A. Sédillot, Paris, 1845-9; and the following articles by Fr. Woepcke, Sur
Uintroduction de Uarithmétique Indienne en Occident, Rome, 1859; Sur [’histoire
des sciences mathématiques chez les Orientauz, Paris, 1860; and Mémoire sur la
propagation des chiffres Indiens, Paris, 1863.
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often happened in similar cases, fell into their hands. The introduction
of European science was rendered the more easy as various small Greek
schools existed in the countries subject to the Arabs: there had for
many years been one at Edessa among the Nestorian Christians, and
there were others at Antioch, Emesa, and even at Damascus, which
had preserved the traditions and some of the results of Greek learning.

The Arabs soon remarked that the Greeks rested their medical sci-
ence on the works of Hippocrates, Aristotle, and Galen; and these books
were translated into Arabic by order of the caliph Haroun Al Raschid
about the year 800. The translation excited so much interest that his
successor Al Mamun (813-833) sent a commission to Constantinople to
obtain copies of as many scientific works as was possible, while an em-
bassy for a similar purpose was also sent to India. At the same time a
large staff of Syrian clerks was engaged, whose duty it was to translate
the works so obtained into Arabic and Syriac. To disarm fanaticism
these clerks were at first termed the caliph’s doctors, but in 851 they
were formed into a college, and their most celebrated member, Honein
ibn Ishak, was made its first president by the caliph Mutawakkil (847—
861). Honein and his son Ishak ibn Honein revised the translations
before they were finally issued. Neither of them knew much mathemat-
ics, and several blunders were made in the works issued on that subject,
but another member of the college, Tabit ibn Korra, shortly published
fresh editions which thereafter became the standard texts.

In this way before the end of the ninth century the Arabs obtained
translations of the works of Euclid, Archimedes, Apollonius, Ptolemy,
and others; and in some cases these editions are the only copies of the
books now extant. It is curious, as indicating how completely Dio-
phantus had dropped out of notice, that as far as we know the Arabs
got no manuscript of his great work till 150 years later, by which time
they were already acquainted with the idea of algebraic notation and
processes.

Extent of Mathematics obtained from Hindoo Sources.

The Arabs had considerable commerce with India, and a knowledge
of one or both of the two great original Hindoo works on algebra had
been thus obtained in the caliphate of Al Mansur (754-775), though it
was not until fifty or sixty years later that they attracted much atten-
tion. The algebra and arithmetic of the Arabs were largely founded on
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these treatises, and I therefore devote this section to the consideration
of Hindoo mathematics.

The Hindoos, like the Chinese, have pretended that they are the
most ancient people on the face of the earth, and that to them all sci-
ences owe their creation. But it is probable that these pretensions have
no foundation; and in fact no science or useful art (except a rather fan-
tastic architecture and sculpture) can be definitely traced back to the
inhabitants of the Indian peninsula prior to the Aryan invasion. This
invasion seems to have taken place at some time in the latter half of
the fifth century or in the sixth century, when a tribe of Aryans entered
India by the north-west frontier, and established themselves as rulers
over a large part of the country. Their descendants, wherever they have
kept their blood pure, may still be recognised by their superiority over
the races they originally conquered; but as is the case with the modern
Europeans, they found the climate trying and gradually degenerated.
For the first two or three centuries they, however, retained their intel-
lectual vigour, and produced one or two writers of great ability.

Arya-Bhata.  The earliest of these, of whom we have definite
information, is Arya-Bhata,! who was born at Patna in the year 476.
He is frequently quoted by Brahmagupta, and in the opinion of many
commentators he created algebraic analysis, though it has been sug-
gested that he may have seen Diophantus’s Arithmetic. The chief work
of Arya-Bhata with which we are acquainted is his Aryabhathiya, which
consists of mnemonic verses embodying the enunciations of various rules
and propositions. There are no proofs, and the language is so obscure
and concise that it long defied all efforts to translate it.

The book is divided into four parts: of these three are devoted to
astronomy and the elements of spherical trigonometry; the remaining
part contains the enunciations of thirty-three rules in arithmetic, alge-
bra, and plane trigonometry. It is probable that Arya-Bhata regarded
himself as an astronomer, and studied mathematics only so far as it
was useful to him in his astronomy.

In algebra Arya-Bhata gives the sum of the first, second, and third
powers of the first n natural numbers; the general solution of a quadratic

!The subject of prehistoric Indian mathematics has been discussed by G. Thi-
baut, Von Schroeder, and H. Vogt. A Sanskrit text of the Aryabhathiya, edited by
H. Kern, was published at Leyden in 1874; there is also an article on it by the same
editor in the Journal of the Asiatic Society, London, 1863, vol. xx, pp. 371-387; a
French translation by L. Rodet of that part which deals with algebra and trigono-
metry is given in the Journal Asiatique, 1879, Paris, series 7, vol. xiii, pp. 393-434.
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equation; and the solution in integers of certain indeterminate equations
of the first degree. His solutions of numerical equations have been
supposed to imply that he was acquainted with the decimal system of
enumeration.

In trigonometry he gives a table of natural sines of the angles in
the first quadrant, proceeding by multiples of 3%(’, defining a sine as
the semi-chord of double the angle. Assuming that for the angle 3%0
the sine is equal to the circular measure, he takes for its value 225, i.e.
the number of minutes in the angle. He then enunciates a rule which
is nearly unintelligible, but probably is the equivalent of the statement

sin(n + 1)a — sinna = sinna — sin(n — 1)a — sin na cosec a,

where « stands for 3%0; and working with this formula he constructs
a table of sines, and finally finds the value of sin90° to be 3438. This
result is correct if we take 3.1416 as the value of 7, and it is interesting
to note that this is the number which in another place he gives for 7.
The correct trigonometrical formula is

sin(n 4+ 1)a — sinna = sinna — sin(n — 1)a — 4sinnasin® 2a.
Arya-Bhata, therefore, took 4 sin? %04 as equal to cosec , that is, he
supposed that 2sina = 1 4+ sin2a: using the approximate values of
sina and sin 2« given in his table, this reduces to 2(225) = 1 + 449,
and hence to that degree of approximation his formula is correct. A
considerable proportion of the geometrical propositions which he gives
is wrong.

Brahmagupta. The next Hindoo writer of note is Brahmagupta,
who is said to have been born in 598, and probably was alive about 660.
He wrote a work in verse entitled Brahma-Sphuta-Siddhanta, that is,
the Siddhanta, or system of Brahma in astronomy. In this, two chapters
are devoted to arithmetic, algebra, and geometry.!

The arithmetic is entirely rhetorical. Most of the problems are
worked out by the rule of three, and a large proportion of them are
on the subject of interest.

In his algebra, which is also rhetorical, he works out the fundamental
propositions connected with an arithmetical progression, and solves a
quadratic equation (but gives only the positive value to the radical). As

!These two chapters (chaps. xii and xviii) were translated by H. T. Colebrooke,
and published at London in 1817.
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an illustration of the problems given I may quote the following, which
was reproduced in slightly different forms by various subsequent writers,
but I replace the numbers by letters. “T'wo apes lived at the top of a
cliff of height h, whose base was distant mh from a neighbouring village.
One descended the cliff and walked to the village, the other flew up a
height x and then flew in a straight line to the village. The distance
traversed by each was the same. Find z.” Brahmagupta gave the
correct answer, namely z = mh/(m+2). In the question as enunciated
originally h = 100, m = 2.

Brahmagupta finds solutions in integers of several indeterminate
equations of the first degree, using the same method as that now
practised. He states one indeterminate equation of the second degree,
namely, nz? + 1 = y?, and gives as its solution z = 2t/(t* — n) and
y = (t*+n)/(t* —n). To obtain this general form he proved that, if one
solution either of that or of certain allied equations could be guessed,
the general solution could be written down; but he did not explain
how one solution could be obtained. Curiously enough this equation
was sent by Fermat as a challenge to Wallis and Lord Brouncker in
the seventeenth century, and the latter found the same solutions as
Brahmagupta had previously done. Brahmagupta also stated that the
equation y? = nxz? — 1 could not be satisfied by integral values of z and
y unless n could be expressed as the sum of the squares of two integers.
It is perhaps worth noticing that the early algebraists, whether Greeks,
Hindoos, Arabs, or Italians, drew no distinction between the problems
which led to determinate and those which led to indeterminate equa-
tions. It was only after the introduction of syncopated algebra that
attempts were made to give general solutions of equations, and the dif-
ficulty of giving such solutions of indeterminate equations other than
those of the first degree has led to their practical exclusion from ele-
mentary algebra.

In geometry Brahmagupta proved the Pythagorean property of a
right-angled triangle (Euc. 1, 47). He gave expressions for the area
of a triangle and of a quadrilateral inscribable in a circle in terms of
their sides; and shewed that the area of a circle was equal to that of a
rectangle whose sides were the radius and semiperimeter. He was less
successful in his attempt to rectify a circle, and his result is equivalent
to taking /10 for the value of 7. He also determined the surface and
volume of a pyramid and cone; problems over which Arya-Bhata had
blundered badly. The next part of his geometry is almost unintelligible,
but it seems to be an attempt to find expressions for several magnitudes
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connected with a quadrilateral inscribed in a circle in terms of its sides:
much of this is wrong.

It must not be supposed that in the original work all the propositions
which deal with any one subject are collected together, and it is only
for convenience that I have tried to arrange them in that way. It is im-
possible to say whether the whole of Brahmagupta’s results given above
are original. He knew of Arya-Bhata’s work, for he reproduces the table
of sines there given; it is likely also that some progress in mathematics
had been made by Arya-Bhata’s immediate successors, and that Brah-
magupta was acquainted with their works; but there seems no reason to
doubt that the bulk of Brahmagupta’s algebra and arithmetic is origi-
nal, although perhaps influenced by Diophantus’s writings: the origin
of the geometry is more doubtful, probably some of it is derived from
Hero’s works, and maybe some represents indigenous Hindoo work.

Bhaskara. To make this account of Hindoo mathematics com-
plete I may depart from the chronological arrangement and say that
the only remaining Indian mathematician of exceptional eminence of
whose works we know anything was Bhaskara, who was born in 1114.
He is said to have been the lineal successor of Brahmagupta as head
of an astronomical observatory at Ujein. He wrote an astronomy, of
which four chapters have been translated. Of these one termed Lilavati
is on arithmetic; a second termed Bija Ganita is on algebra; the third
and fourth are on astronomy and the sphere;! some of the other chap-
ters also involve mathematics. This work was, I believe, known to the
Arabs almost as soon as it was written, and influenced their subsequent
writings, though they failed to utilize or extend most of the discover-
ies contained in it. The results thus became indirectly known in the
West before the end of the twelfth century, but the text itself was not
introduced into Europe till within recent times.

The treatise is in verse, but there are explanatory notes in prose. It
is not clear whether it is original or whether it is merely an exposition of
the results then known in India; but in any case it is most probable that
Bhaskara was acquainted with the Arab works which had been writ-
ten in the tenth and eleventh centuries, and with the results of Greek
mathematics as transmitted through Arabian sources. The algebra is

1See the article Viga Ganita in the Penny Cyclopaedia, London, 1843; and the
translations of the Lilavati and the Bija Ganita issued by H. T. Colebrooke, London,
1817. The chapters on astronomy and the sphere were edited by L. Wilkinson,
Calcutta, 1842.
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syncopated and almost symbolic, which marks a great advance over
that of Brahmagupta and of the Arabs. The geometry is also superior
to that of Brahmagupta, but apparently this is due to the knowledge
of various Greek works obtained through the Arabs.

The first book or Lilavati commences with a salutation to the god
of wisdom. The general arrangement of the work may be gathered
from the following table of contents. Systems of weights and measures.
Next decimal numeration, briefly described. Then the eight operations
of arithmetic, namely, addition, subtraction, multiplication, division,
square, cube, square-root, and cube-root. Reduction of fractions to
a common denominator, fractions of fractions, mixed numbers, and
the eight rules applied to fractions. The “rules of cipher,” namely,
at0=ua 02=0, vV0O=0, a=~0 = oo. The solution of some
simple equations which are treated as questions of arithmetic. The
rule of false assumption. Simultaneous equations of the first degree
with applications. Solution of a few quadratic equations. Rule of three
and compound rule of three, with various cases. Interest, discount,
and partnership. Time of filling a cistern by several fountains. Barter.
Arithmetical progressions, and sums of squares and cubes. Geometrical
progressions. Problems on triangles and quadrilaterals. Approximate
value of w. Some trigonometrical formulae. Contents of solids. Inde-
terminate equations of the first degree. Lastly, the book ends with a
few questions on combinations.

This is the earliest known work which contains a systematic expo-
sition of the decimal system of numeration. It is possible that Arya-
Bhata was acquainted with it, and it is most likely that Brahmagupta
was so, but in Bhaskara’s arithmetic we meet with the Arabic or Indian
numerals and a sign for zero as part of a well-recognised notation. It
is impossible at present to definitely trace these numerals farther back
than the eighth century, but there is no reason to doubt the assertion
that they were in use at the beginning of the seventh century. Their
origin is a difficult and disputed question. I mention below! the view
which on the whole seems most probable, and perhaps is now generally
accepted, and I reproduce there some of the forms used in early times.

To sum the matter up briefly, it may be said that the Lilavati gives
the rules now current for addition, subtraction, multiplication, and di-
vision, as well as for the more common processes in arithmetic; while
the greater part of the work is taken up with the discussion of the

1See below, page m
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rule of three, which is divided into direct and inverse, simple and com-
pound, and is used to solve numerous questions chiefly on interest and
exchange—the numerical questions being expressed in the decimal sys-
tem of notation with which we are familiar.

Bhaskara was celebrated as an astrologer no less than as a mathe-
matician. He learnt by this art that the event of his daughter Lilavati
marrying would be fatal to himself. He therefore declined to allow her
to leave his presence, but by way of consolation he not only called the
first book of his work by her name, but propounded many of his prob-
lems in the form of questions addressed to her. For example, “Lovely
and dear Lilavati, whose eyes are like a fawn’s, tell me what are the
numbers resulting from 135 multiplied by 12. If thou be skilled in mul-
tiplication, whether by whole or by parts, whether by division or by
separation of digits, tell me, auspicious damsel, what is the quotient of
the product when divided by the same multiplier.”

I may add here that the problems in the Indian works give a great
deal of interesting information about the social and economic condition
of the country in which they were written. Thus Bhaskara discusses
some questions on the price of slaves, and incidentally remarks that a
female slave was generally supposed to be most valuable when 16 years
old, and subsequently to decrease in value in inverse proportion to the
age; for instance, if when 16 years old she were worth 32 nishkas, her
value when 20 would be represented by (16 x 32) =+ 20 nishkas. It would
appear that, as a rough average, a female slave of 16 was worth about 8
oxen which had worked for two years. The interest charged for money
in India varied from 3% to b per cent per month. Amongst other data
thus given will be found the prices of provisions and labour.

The chapter termed Bija Ganita commences with a sentence so in-
geniously framed that it can be read as the enunciation of a religious,
or a philosophical, or a mathematical truth. Bhaskara after alluding to
his Lilavati, or arithmetic, states that he intends in this book to pro-
ceed to the general operations of analysis. The idea of the notation is
as follows. Abbreviations and initials are used for symbols; subtraction
is indicated by a dot placed above the coefficient of the quantity to be
subtracted; addition by juxtaposition merely; but no symbols are used
for multiplication, equality, or inequality, these being written at length.
A product is denoted by the first syllable of the word subjoined to the
factors, between which a dot is sometimes placed. In a quotient or
fraction the divisor is written under the dividend without a line of sep-
aration. The two sides of an equation are written one under the other,
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confusion being prevented by the recital in words of all the steps which
accompany the operation. Various symbols for the unknown quantity
are used, but most of them are the initials of names of colours, and
the word colour is often used as synonymous with unknown quantity;
its Sanskrit equivalent also signifies a letter, and letters are sometimes
used either from the alphabet or from the initial syllables of subjects
of the problem. In one or two cases symbols are used for the given as
well as for the unknown quantities. The initials of the words square
and solid denote the second and third powers, and the initial syllable of
square root marks a surd. Polynomials are arranged in powers, the ab-
solute quantity being always placed last and distinguished by an initial
syllable denoting known quantity. Most of the equations have numeri-
cal coefficients, and the coefficient is always written after the unknown
quantity. Positive or negative terms are indiscriminately allowed to
come first; and every power is repeated on both sides of an equation,
with a zero for the coefficient when the term is absent. After explaining
his notation, Bhaskara goes on to give the rules for addition, subtrac-
tion, multiplication, division, squaring, and extracting the square root
of algebraical expressions; he then gives the rules of cipher as in the
Lilavati; solves a few equations; and lastly concludes with some oper-
ations on surds. Many of the problems are given in a poetical setting
with allusions to fair damsels and gallant warriors.

Fragments of other chapters, involving algebra, trigonometry, and
geometrical applications, have been translated by Colebrooke. Amongst
the trigonometrical formulae is one which is equivalent to the equation
d(sinf) = cos 6 db.

I have departed from the chronological order in treating here of
Bhaskara, but I thought it better to mention him at the same time as |
was discussing his compatriots. It must be remembered, however, that
he flourished subsequently to all the Arab mathematicians considered
in the next section. The works with which the Arabs first became
acquainted were those of Arya-Bhata and Brahmagupta, and perhaps
of their successors Sridhara and Padmanabha; it is doubtful if they ever
made much use of the great treatise of Bhaskara.

It is probable that the attention of the Arabs was called to the works
of the first two of these writers by the fact that the Arabs adopted the
Indian system of arithmetic, and were thus led to look at the mathemat-
ical text-books of the Hindoos. The Arabs had always had considerable
commerce with India, and with the establishment of their empire the
amount of trade naturally increased; at that time, about the year 700,
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they found the Hindoo merchants beginning to use the system of nu-
meration with which we are familiar, and adopted it at once. This
immediate acceptance of it was made the easier, as they had no works
of science or literature in which another system was used, and it is
doubtful whether they then possessed any but the most primitive sys-
tem of notation for expressing numbers. The Arabs, like the Hindoos,
seem also to have made little or no use of the abacus, and therefore
must have found Greek and Roman methods of calculation extremely
laborious. The earliest definite date assigned for the use in Arabia of
the decimal system of numeration is 773. In that year some Indian
astronomical tables were brought to Bagdad, and it is almost certain
that in these Indian numerals (including a zero) were employed.

The Development of Mathematics in Arabia.*

In the preceding sections of this chapter I have indicated the two
sources from which the Arabs derived their knowledge of mathematics,
and have sketched out roughly the amount of knowledge obtained from
each. We may sum the matter up by saying that before the end of
the eighth century the Arabs were in possession of a good numerical
notation and of Brahmagupta’s work on arithmetic and algebra; while
before the end of the ninth century they were acquainted with the mas-
terpieces of Greek mathematics in geometry, mechanics, and astronomy.
I have now to explain what use they made of these materials.

Alkarismi. The first and in some respects the most illustrious
of the Arabian mathematicians was Mohammed ibn Musa Abu Djefar
Al-Khwarizmi. There is no common agreement as to which of these
names is the one by which he is to be known: the last of them refers to
the place where he was born, or in connection with which he was best
known, and I am told that it is the one by which he would have been
usually known among his contemporaries. I shall therefore refer to him
by that name; and shall also generally adopt the corresponding titles
to designate the other Arabian mathematicians. Until recently, this
was almost always written in the corrupt form Alkarismi, and, though
this way of spelling it is incorrect, it has been sanctioned by so many
writers that I shall make use of it.

A work by B. Baldi on the lives of several of the Arab mathematicians was
printed in Boncompagni’s Bulletino di bibliografia. 1872, vol. v, pp. 427-534.
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We know nothing of Alkarismi’s life except that he was a native
of Khorassan and librarian of the caliph Al Mamun; and that he ac-
companied a mission to Afghanistan, and possibly came back through
India. On his return, about 830, he wrote an algebra,! which is founded
on that of Brahmagupta, but in which some of the proofs rest on the
Greek method of representing numbers by lines. He also wrote a trea-
tise on arithmetic: an anonymous tract termed Algoritmi: De Numero
Indorum, which is in the university library at Cambridge, is believed
to be a Latin translation of this treatise.? Besides these two works he
compiled some astronomical tables, with explanatory remarks; these
included results taken from both Ptolemy and Brahmagupta.

The algebra of Alkarismi holds a most important place in the history
of mathematics, for we may say that the subsequent Arab and the
early medieval works on algebra were founded on it, and also that
through it the Arabic or Indian system of decimal numeration was
introduced into the West. The work is termed Al-gebr we’ | mukabala:
al-gebr, from which the word algebra is derived, means the restoration,
and refers to the fact that any the same magnitude may be added to
or subtracted from both sides of an equation; al mukabala means the
process of simplification, and is generally used in connection with the
combination of like terms into a single term. The unknown quantity is
termed either “the thing” or “the root” (that is, of a plant), and from
the latter phrase our use of the word root as applied to the solution
of an equation is derived. The square of the unknown is called “the
power.” All the known quantities are numbers.

The work is divided into five parts. In the first Alkarismi gives rules
for the solution of quadratic equations, divided into five classes of the
forms az? = bz, ax® = ¢, ax® + bx = ¢, ax® + ¢ = bx, and az® = bz +c,
where a, b, ¢ are positive numbers, and in all the applications a = 1. He
considers only real and positive roots, but he recognises the existence
of two roots, which as far as we know was never done by the Greeks.
It is somewhat curious that when both roots are positive he generally
takes only that root which is derived from the negative value of the
radical.

He next gives geometrical proofs of these rules in a manner anal-
ogous to that of Euclid 11, 4. For example, to solve the equation
2?2 + 10z = 39, or any equation of the form 2% + pr = ¢, he gives

Tt was published by F. Rosen, with an English translation, London, 1831.
2Tt was published by B. Boncompagni, Rome, 1857.
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two methods of which one is as follows. Let AB represent the value of
z, and construct on it the square ABCD (see [figure] below). Produce
DA to H and DC to F so that AH = CF =5 (or ip); and complete
the figure as drawn below. Then the areas AC', H B, and BF represent
the magnitudes 22, 5z, and 5x. Thus the left-hand side of the equation
is represented by the sum of the areas AC, HB, and BF, that is, by
the gnomon HCG. To both sides of the equation add the square KG,
the area of which is 25 (or zlpo), and we shall get a new square whose
area is by hypothesis equal to 39+25, that is, to 64 (or ¢ + ;p?) and
whose side therefore is 8. The side of this square DH, which is equal
to 8, will exceed AH, which is equal to 5, by the value of the unknown
required, which, therefore, is 3.

H A D

G F

In the third part of the book Alkarismi considers the product of
(x +a) and (z £b). In the fourth part he states the rules for addition
and subtraction of expressions which involve the unknown, its square,
or its square root; gives rules for the calculation of square roots; and
concludes with the theorems that avb = v/a2b and /avb = vab. In
the fifth and last part he gives some problems, such, for example, as to
find two numbers whose sum is 10 and the difference of whose squares
is 40.

In all these early works there is no clear distinction between arith-
metic and algebra, and we find the account and explanation of arith-
metical processes mixed up with algebra and treated as part of it. It was
from this book then that the Italians first obtained not only the ideas
of algebra, but also of an arithmetic founded on the decimal system.
This arithmetic was long known as algorism, or the art of Alkarismi,
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which served to distinguish it from the arithmetic of Boethius; this
name remained in use till the eighteenth century.

Tabit ibn Korra. The work commenced by Alkarismi was carried
on by Tabit ibn Korra, born at Harran in 836, and died in 901, who
was one of the most brilliant and accomplished scholars produced by
the Arabs. As I have already stated, he issued translations of the
chief works of Euclid, Apollonius, Archimedes, and Ptolemy. He also
wrote several original works, all of which are lost with the exception
of a fragment on algebra, consisting of one chapter on cubic equations,
which are solved by the aid of geometry in somewhat the same way as
that given later.!

Algebra continued to develop very rapidly, but it remained entirely
rhetorical. The problems with which the Arabs were chiefly concerned
were solution of equations, problems leading to equations, or properties
of numbers. The two most prominent algebraists of a later date were
Alkayami and Alkarki, both of whom flourished at the beginning of the
eleventh century.

Alkayami. The first of these, Omar Alkayami, is noticeable for his
geometrical treatment of cubic equations by which he obtained a root
as the abscissa of a point of intersection of a conic and a circle.? The
equations he considers are of the following forms, where a and ¢ stand
for positive integers, (i) #3+0b%z = b?c, whose root he says is the abscissa
of a point of intersection of z? = by and y* = x(c—2); (i) 23 +azx? = 3,
whose root he says is the abscissa of a point of intersection of zy = ¢?
and y* = ¢(x + a); (iii) 2% £ az? + b*x = b*c, whose root he says is the
abscissa of a point of intersection of y? = (z4a)(c—z) and z(bdy) = be.
He gives one biquadratic, namely, (100 — z2)(10 — z)? = 8100, the root
of which is determined by the point of intersection of (10 — z)y = 90
and 2% + y? = 100. It is sometimes said that he stated that it was
impossible to solve the equation x® + y®> = 2 in positive integers, or
in other words that the sum of two cubes can never be a cube; though
whether he gave an accurate proof, or whether, as is more likely, the
proposition (if enunciated at all) was the result of a wide induction, it
is now impossible to say; but the fact that such a theorem is attributed
to him will serve to illustrate the extraordinary progress the Arabs had
made in algebra.

Alkarki. The other mathematician of this time (circ. 1000) whom

1See below, page @
2His treatise on algebra was published by Fr. Woepcke, Paris, 1851.
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I mentioned was Alkarki.! He gave expressions for the sums of the first,
second, and third powers of the first n natural numbers; solved various
equations, including some of the forms ax?” £ ba? + ¢ = 0 and discussed
surds, shewing, for example, that v/8 + /18 = v/50.

Even where the methods of Arab algebra are quite general the appli-
cations are confined in all cases to numerical problems, and the algebra
is so arithmetical that it is difficult to treat the subjects apart. From
their books on arithmetic and from the observations scattered through
various works on algebra, we may say that the methods used by the
Arabs for the four fundamental processes were analogous to, though
more cumbrous than, those now in use; but the problems to which the
subject was applied were similar to those given in modern books, and
were solved by similar methods, such as rule of three, &c. Some minor
improvements in notation were introduced, such, for instance, as the
introduction of a line to separate the numerator from the denominator
of a fraction; and hence a line between two symbols came to be used
as a symbol of division.? Alhossein (980-1037) used a rule for testing
the correctness of the results of addition and multiplication by “casting
out the nines.” Various forms of this rule have been given, but they
all depend on the proposition that, if each number in the question be
replaced by the remainder when it is divided by 9, and if these remain-
ders be added or multiplied as directed in the question, then this result
when divided by 9 will leave the same remainder as the answer whose
correctness it is desired to test when divided by 9: if these remainders
differ, there is an error. The selection of 9 as a divisor was due to the
fact that the remainder when a number is divided by 9 can be obtained
by adding the digits of the number and dividing the sum by 9.

I am not concerned with the views of Arab writers on astronomy or
the value of their observations, but I may remark in passing that they
accepted the theory as laid down by Hipparchus and Ptolemy, and did
not materially alter or advance it. I may, however, add that Al Mamun
caused the length of a degree of latitude to be measured, and he, as well
as the two mathematicians to be next named, determined the obliquity
of the ecliptic.

Albategni. Albuzjani. Like the Greeks, the Arabs rarely, if
ever, employed trigonometry except in connection with astronomy; but

His algebra was published by Fr. Woepcke, 1853, and his arithmetic was trans-
lated into German by Ad. Hochheim, Halle, 1878.
2See below, page m
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in effect they used the trigonometrical ratios which are now current,
and worked out the plane trigonometry of a single angle. They are
also acquainted with the elements of spherical trigonometry. Albategni,
born at Batan in Mesopotamia, in 877, and died at Bagdad in 929, was
among the earliest of the many distinguished Arabian astronomers. He
wrote the Science of the Stars,' which is worthy of note from its con-
taining a mention of the motion of the sun’s apogee. In this work angles
are determined by “the semi-chord of twice the angle,” that is, by the
sine of the angle (taking the radius vector as unity). It is doubtful
whether he was acquainted with the previous introduction of sines by
Arya-Bhata and Brahmagupta; Hipparchus and Ptolemy, it will be re-
membered, had used the chord. Albategni was also acquainted with
the fundamental formula in spherical trigonometry, giving the side of
a triangle in terms of the other sides and the angle included by them.
Shortly after the death of Albategni, Albuzjani, who is also known as
Abul-Wafa, born in 940, and died in 998, introduced certain trigono-
metrical functions, and constructed tables of tangents and cotangents.
He was celebrated as a geometrician as well as an astronomer.

Alhazen. Abd-al-gehl. The Arabs were at first content to
take the works of Euclid and Apollonius for their text-books in geom-
etry without attempting to comment on them, but Alhazen, born at
Bassora in 987 and died at Cairo in 1038, issued in 1036 a collection?
of problems something like the Data of Euclid. Besides commentaries
on the definitions of Euclid and on the Almagest, Alhazen also wrote a
work on optics,® which includes the earliest scientific account of atmo-
spheric refraction. It also contains some ingenious geometry, amongst
other things, a geometrical solution of the problem to find at what point
of a concave mirror a ray from a given point must be incident so as to
be reflected to another given point. Another geometrician of a slightly
later date was Abd-al-gehl (circ. 1100), who wrote on conic sections,
and was also the author of three small geometrical tracts.

It was shortly after the last of the mathematicians mentioned above
that Bhaskara, the third great Hindoo mathematician, flourished; there
is every reason to believe that he was familiar with the works of the
Arab school as described above, and also that his writings were at once
known in Arabia.

Tt was edited by Regiomontanus, Nuremberg, 1537.
2Tt was translated by L. A. Sédillot, and published at Paris in 1836.
3Tt was published at Bale in 1572.
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The Arab schools continued to flourish until the fifteenth century.
But they produced no other mathematician of any exceptional genius,
nor was there any great advance on the methods indicated above, and
it is unnecessary for me to crowd my pages with the names of a number
of writers who did not materially affect the progress of the science in
Europe.

From this rapid sketch it will be seen that the work of the Arabs
(including therein writers who wrote in Arabia and lived under Eastern
Mohammedan rule) in arithmetic, algebra, and trigonometry was of a
high order of excellence. They appreciated geometry and the applica-
tions of geometry to astronomy, but they did not extend the bounds of
the science. It may be also added that they made no special progress
in statics, or optics, or hydrostatics; though there is abundant evidence
that they had a thorough knowledge of practical hydraulics.

The general impression left is that the Arabs were quick to appreci-
ate the work of others—mnotably of the Greek masters and of the Hindoo
mathematicians—but, like the ancient Chinese and Egyptians, they did
not systematically develop a subject to any considerable extent. Their
schools may be taken to have lasted in all for about 650 years, and if the
work produced be compared with that of Greek or modern European
writers it is, as a whole, second-rate both in quantity and quality.
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CHAPTER X.

THE INTRODUCTION OF ARAB WORKS INTO EUROPE.
CIRC. 1150-1450.

IN the(last chapter but one|I discussed the development of European
mathematics to a date which corresponds roughly with the end of the
“dark ages”; and in the last chapter I traced the history of the mathe-
matics of the Indians and Arabs to the same date. The mathematics of
the two or three centuries that follow and are treated in this chapter are
characterised by the introduction of the Arab mathematical text-books
and of Greek books derived from Arab sources, and the assimilation of
the new ideas thus presented.

It was, however, from Spain, and not from Arabia, that a knowledge
of eastern mathematics first came into western Europe. The Moors had
established their rule in Spain in 747, and by the tenth or eleventh cen-
tury had attained a high degree of civilisation. Though their political
relations with the caliphs at Bagdad were somewhat unfriendly, they
gave a ready welcome to the works of the great Arab mathematicians.
In this way the Arab translations of the writings of Euclid, Archimedes,
Apollonius, Ptolemy, and perhaps of other Greek authors, together with
the works of the Arabian algebraists, were read and commented on at
the three great Moorish schools of Granada, Cordova, and Seville. It
seems probable that these works indicate the full extent of Moorish
learning, but, as all knowledge was jealously guarded from Christians,
it is impossible to speak with certainty either on this point or on that
of the time when the Arab books were first introduced into Spain.

The eleventh century. The earliest Moorish writer of distinction
of whom I find mention is Geber ibn Aphla, who was born at Seville
and died towards the latter part of the eleventh century at Cordova.
He wrote on astronomy and trigonometry, and was acquainted with
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the theorem that the sines of the angles of a spherical triangle are
proportional to the sines of the opposite sides.!

Arzachel.?  Another Arab of about the same date was Arzachel,
who was living at Toledo in 1080. He suggested that the planets moved
in ellipses, but his contemporaries with scientific intolerance declined to
argue about a statement which was contrary to Ptolemy’s conclusions
in the Almagest.

The twelfth century. During the course of the twelfth century
copies of the books used in Spain were obtained in western Christen-
dom. The first step towards procuring a knowledge of Arab and Moor-
ish science was taken by an English monk, Adelhard of Bath,? who,
under the disguise of a Mohammedan student, attended some lectures
at Cordova about 1120 and obtained a copy of Euclid’s Elements. This
copy, translated into Latin, was the foundation of all the editions known
in Europe till 1533, when the Greek text was recovered. How rapidly
a knowledge of the work spread we may judge when we recollect that
before the end of the thirteenth century Roger Bacon was familiar with
it, while before the close of the fourteenth century the first five books
formed part of the regular curriculum at many universities. The enun-
ciations of Euclid seem to have been known before Adelhard’s time, and
possibly as early as the year 1000, though copies were rare. Adelhard
also issued a text-book on the use of the abacus.

Ben Ezra.? During the same century other translations of the
Arab text-books or commentaries on them were obtained. Amongst
those who were most influential in introducing Moorish learning into
Europe I may mention Abraham Ben Ezra. Ben Ezra was born at
Toledo in 1097, and died at Rome in 1167. He was one of the most
distinguished Jewish rabbis who had settled in Spain, where it must be
recollected that they were tolerated and even protected by the Moors
on account of their medical skill. Besides some astronomical tables and
an astrology, Ben Ezra wrote an arithmetic;* in this he explains the
Arab system of numeration with nine symbols and a zero, gives the
fundamental processes of arithmetic, and explains the rule of three.

!Geber’s works were translated into Latin by Gerard, and published at Nurem-
berg in 1533.

2See a memoir by M. Steinschneider in Boncompagni’s Bulletino di Bibliografia,
1887, vol xx.

30n the influence of Adelhard and Ben Ezra, see the “Abhandlungen zur
Geschichte der Mathematik” in the Zeitschrift fir Mathematik, vol. xxv, 1880.

4An analysis of it was published by O. Terquem in Liouville’s Journal for 1841.
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Gerard.! Another European who was induced by the reputation
of the Arab schools to go to Toledo was Gerard, who was born at
Cremona in 1114 and died in 1187. He translated the Arab edition
of the Almagest, the works of Alhazen, and the works of Alfarabius,
whose name is otherwise unknown to us: it is believed that the Arabic
numerals were used in this translation, made in 1136, of Ptolemy’s
work. Gerard also wrote a short treatise on algorism which exists in
manuscript in the Bodleian Library at Oxford. He was acquainted with
one of the Arab editions of Euclid’s Elements, which he translated into
Latin.

John Hispalensis. = Among the contemporaries of Gerard was
John Hispalensis of Seville, originally a rabbi, but converted to Chris-
tianity and baptized under the name given above. He made translations
of several Arab and Moorish works, and also wrote an algorism which
contains the earliest examples of the extraction of the square roots of
numbers by the aid of the decimal notation.

The thirteenth century. During the thirteenth century there
was a revival of learning throughout Europe, but the new learning was,
I believe, confined to a very limited class. The early years of this cen-
tury are memorable for the development of several universities, and for
the appearance of three remarkable mathematicians—Leonardo of Pisa,
Jordanus, and Roger Bacon, the Franciscan monk of Oxford. Hence-
forward it is to Europeans that we have to look for the development
of mathematics, but until the invention of printing the knowledge was
confined to a very limited class.

Leonardo.?  Leonardo Fibonacci (i.e. filius Bonaccii) generally
known as Leonardo of Pisa, was born at Pisa about 1175. His fa-
ther Bonacci was a merchant, and was sent by his fellow-townsmen
to control the custom-house at Bugia in Barbary; there Leonardo was
educated, and he thus became acquainted with the Arabic or decimal
system of numeration, as also with Alkarismi’s work on Algebra, which
was described in the [last chapter] It would seem that Leonardo was en-
trusted with some duties, in connection with the custom-house, which
required him to travel. He returned to Italy about 1200, and in 1202

1See Boncompagni’s Della vita e delle opere di Gherardo Cremonese, Rome,
1851.

2See the Leben und Schriften Leonardos da Pisa, by J. Giesing, Débeln, 1886;
Cantor, chaps. xli, xlii; and an article by V. Lazzarini in the Bollettino di Bibli-
ografia e Storia, Rome, 1904, vol. vii. Most of Leonardo’s writings were edited and
published by B. Boncompagni, Rome, vol. i, 1857, and vol. ii, 1862.
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published a work called Algebra et almuchabala (the title being taken
from Alkarismi’s work), but generally known as the Liber Abaci. He
there explains the Arabic system of numeration, and remarks on its
great advantages over the Roman system. He then gives an account of
algebra, and points out the convenience of using geometry to get rigid
demonstrations of algebraical formulae. He shews how to solve simple
equations, solves a few quadratic equations, and states some methods
for the solution of indeterminate equations; these rules are illustrated
by problems on numbers. The algebra is rhetorical, but in one case
letters are employed as algebraical symbols. This work had a wide cir-
culation, and for at least two centuries remained a standard authority
from which numerous writers drew their inspiration.

The Liber Abaci is especially interesting in the history of arith-
metic, since practically it introduced the use of the Arabic numerals
into Christian Europe. The language of Leonardo implies that they
were previously unknown to his countrymen; he says that having had
to spend some years in Barbary he there learnt the Arabic system,
which he found much more convenient than that used in Europe; he
therefore published it “in order that the Latin! race might no longer
be deficient in that knowledge.” Now Leonardo had read very widely,
and had travelled in Greece, Sicily, and Italy; there is therefore ev-
ery presumption that the system was not then commonly employed in
Furope.

Though Leonardo introduced the use of Arabic numerals into com-
mercial affairs,; it is probable that a knowledge of them as current in the
East was previously not uncommon among travellers and merchants,
for the intercourse between Christians and Mohammedans was suffi-
ciently close for each to learn something of the language and common
practices of the other. We can also hardly suppose that the Italian mer-
chants were ignorant of the method of keeping accounts used by some
of their best customers; and we must recollect, too, that there were
numerous Christians who had escaped or been ransomed after serving
the Mohammedans as slaves. It was, however, Leonardo who brought
the Arabic system into general use, and by the middle of the thirteenth
century a large proportion of the Italian merchants employed it by the
side of the old system.

IDean Peacock says that the earliest known application of the word Italians to
describe the inhabitants of Italy occurs about the middle of the thirteenth century;
by the end of that century it was in common use.



CH. X] INTRODUCTION OF ARAB WORKS 140

The majority of mathematicians must have already known of the
system from the works of Ben Ezra, Gerard, and John Hispalensis.
But shortly after the appearance of Leonardo’s book Alfonso of Castile
(in 1252) published some astronomical tables, founded on observations
made in Arabia, which were computed by Arabs, and which, it is gen-
erally believed, were expressed in Arabic notation. Alfonso’s tables had
a wide circulation among men of science, and probably were largely in-
strumental in bringing these numerals into universal use among math-
ematicians. By the end of the thirteenth century it was generally as-
sumed that all scientific men would be acquainted with the system:
thus Roger Bacon writing in that century recommends algorism (that
is, the arithmetic founded on the Arab notation) as a necessary study
for theologians who ought, he says, “to abound in the power of num-
bering.” We may then consider that by the year 1300, or at the latest
1350, these numerals were familiar both to mathematicians and to Ital-
ian merchants.

So great was Leonardo’s reputation that the Emperor Frederick II.
stopped at Pisa in 1225 in order to hold a sort of mathematical tour-
nament to test Leonardo’s skill, of which he had heard such marvellous
accounts. The competitors were informed beforehand of the questions
to be asked, some or all of which were composed by John of Palermo,
who was one of Frederick’s suite. This is the first time that we meet with
an instance of those challenges to solve particular problems which were
so common in the sixteenth and seventeenth centuries. The first ques-
tion propounded was to find a number of which the square, when either
increased or decreased by 5, would remain a square. Leonardo gave an
answer, which is correct, namely 41/12. The next question was to find
by the methods used in the tenth book of Euclid a line whose length z
should satisfy the equation 23 + 222 + 10z = 20. Leonardo showed by
geometry that the problem was impossible, but he gave an approximate
value of the root of this equation, namely, 122’ 77 42" 33" 4° 40!, which
is equal to 1.3688081075. .., and is correct to nine places of decimals.®
Another question was as follows. Three men, A, B, C, possess a sum of
money u, their shares being in the ratio 3 : 2 : 1. A takes away z, keeps
half of it, and deposits the remainder with D; B takes away y, keeps
two-thirds of it, and deposits the remainder with D; C takes away all
that is left, namely z, keeps five-sixths of it, and deposits the remainder
with D. This deposit with D is found to belong to A, B, and C in equal

1See Fr. Woepcke in Liouville’s Journal for 1854, p. 401.
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proportions. Find u, z, y, and z. Leonardo showed that the problem
was indeterminate, and gave as one solution v = 47, x = 33, y = 13,
z = 1. The other competitors failed to solve any of these questions.

The chief work of Leonardo is the Liber Abaci alluded to above.
This work contains a proof of the well-known result

(a® +b*)(c* + d*) = (ac + bd)* + (bc — ad)* = (ad + bc)* + (bd — ac)?.

He also wrote a geometry, termed Practica Geometriae, which was is-
sued in 1220. This is a good compilation, and some trigonometry is
introduced; among other propositions and examples he finds the area
of a triangle in terms of its sides. Subsequently he published a Liber
Quadratorum dealing with problems similar to the first of the questions
propounded at the tournament.! He also issued a tract dealing with
determinate algebraical problems: these are all solved by the rule of
false assumption in the manner explained above.

Frederick II. The Emperor Frederick II., who was born in 1194,
succeeded to the throne in 1210, and died in 1250, was not only in-
terested in science, but did as much as any other single man of the
thirteenth century to disseminate a knowledge of the works of the Arab
mathematicians in western Europe. The university of Naples remains
as a monument of his munificence. I have already mentioned that the
presence of the Jews had been tolerated in Spain on account of their
medical skill and scientific knowledge, and as a matter of fact the titles
of physician and algebraist? were for a long time nearly synonymous;
thus the Jewish physicians were admirably fitted both to get copies of
the Arab works and to translate them. Frederick II. made use of this
fact to engage a staff of learned Jews to translate the Arab works which
he obtained, though there is no doubt that he gave his patronage to
them the more readily because it was singularly offensive to the pope,
with whom he was then engaged in a quarrel. At any rate, by the end
of the thirteenth century copies of the works of Euclid, Archimedes,
Apollonius, Ptolemy, and of several Arab authors were obtainable from
this source, and by the end of the next century were not uncommon.
From this time, then, we may say that the development of science in
Europe was independent of the aid of the Arabian schools.

'Fr. Woepcke in Liouville’s Journal for 1855, p. 54, has given an analysis of
Leonardo’s method of treating problems on square numbers.

2For instance the reader may recollect that in Don Quizote (part ii, ch. 15), when
Samson Carasco is thrown by the knight from his horse and has his ribs broken, an
algebrista is summoned to bind up his wounds.
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Jordanus.!  Among Leonardo’s contemporaries was a German
mathematician, whose works were until the last few years almost un-
known. This was Jordanus Nemorarius, sometimes called Jordanus de
Sazonia or Teutonicus. Of the details of his life we know but little,
save that he was elected general of the Dominican order in 1222. The
works enumerated in the footnote? hereto are attributed to him, and
if we assume that these works have not been added to or improved by
subsequent annotators, we must esteem him one of the most eminent
mathematicians of the middle ages.

His knowledge of geometry is illustrated by his De Triangulis and
De Isoperimetris. The most important of these is the De Triangulis,
which is divided into four books. The first book, besides a few defi-
nitions, contains thirteen propositions on triangles which are based on
Euclid’s Elements. The second book contains nineteen propositions,
mainly on the ratios of straight lines and the comparison of the areas
of triangles; for example, one problem is to find a point inside a triangle
so that the lines joining it to the angular points may divide the triangle
into three equal parts. The third book contains twelve propositions
mainly concerning arcs and chords of circles. The fourth book con-
tains twenty-eight propositions, partly on regular polygons and partly
on miscellaneous questions such as the duplication and trisection prob-
lems.

The Algorithmus Demonstratus contains practical rules for the four
fundamental processes, and Arabic numerals are generally (but not
always) used. It is divided into ten books dealing with properties of
numbers, primes, perfect numbers, polygonal numbers, ratios, powers,
and the progressions. It would seem from it that Jordanus knew the
general expression for the square of any algebraic multinomial.

The De Numeris Datis consists of four books containing solutions

ISee Cantor, chaps. xliii, xliv, where references to the authorities on Jordanus
are collected.

2Prof. Curtze, who has made a special study of the subject, considers that the
following works are due to Jordanus. “Geometria vel de Triangulis,” published by
M. Curtze in 1887 in vol. vi of the Mitteilungen des Copernicus-Vereins zu Thorn;
De Isoperimetris; Arithmetica Demonstrata, published by Faber Stapulensis at Paris
in 1496, second edition, 1514; Algorithmus Demonstratus, published by J. Schoner
at Nuremberg in 1534; De Numeris Datis, published by P. Treutlein in 1879 and
edited in 1891 with comments by M. Curtze in vol. xxxvi of the Zeitschrift fir
Mathematik und Physik; De Ponderibus, published by P. Apian at Nuremberg in
1533, and reissued at Venice in 1565; and, lastly, two or three tracts on Ptolemaic
astronomy.
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of one hundred and fifteen problems. Some of these lead to simple or
quadratic equations involving more than one unknown quantity. He
shews a knowledge of proportion; but many of the demonstrations of
his general propositions are only numerical illustrations of them.

In several of the propositions of the Algorithmus and De Numeris
Datis letters are employed to denote both known and unknown quanti-
ties, and they are used in the demonstrations of the rules of arithmetic
as well as of algebra. As an example of this I quote the following propo-
sition,! the object of which is to determine two quantities whose sum
and product are known.

Dato numero per duo diuiso si, quod ex ductu unius in alterum produci-
tur, datum fuerit, et utrumque eorum datum esse necesse est.

Sit numerus datus abc diuisus in ab et ¢, atque ex ab in ¢ fiat d datus,
itemque ex abc in se fiat e. Sumatur itaque quadruplum d, qui fit f, quo
dempto de e remaneat g, et ipse erit quadratum differentiae ab ad ¢. Extra-
hatur ergo radix ex g, et sit h, eritque h differentia ab ad c. cumque sic h
datum, erit et ¢ et ab datum.

Huius operatio facile constabit hoc modo. Verbi gratia sit x diuisus in
numeros duos, atque ex ductu unius eorum in alium fiat XXI; cuius quadru-
plum et ipsum est LXXXIIII, tollatur de quadrato X, hoc est C, et remanent
XVI, cuius radix extrahatur, quae erit quatuor, et ipse est differentia. Ipsa
tollatur de X et reliquum, quod est VI, dimidietur, eritque medietas 111, et
ipse est minor portio et maior VII.

It will be noticed that Jordanus, like Diophantus and the Hindoos,
denotes addition by juxtaposition. Expressed in modern notation his
argument is as follows. Let the numbers be a + b (which T will denote
by 7) and ¢. Then v + ¢ is given; hence (v + ¢)? is known; denote it by
e. Again ~yc is given; denote it by d; hence 4vc, which is equal to 4d, is
known; denote it by f. Then (v —c)? is equal to e — f, which is known;
denote it by g. Therefore v — ¢ = /g, which is known; denote it by h.
Hence v+ c and v — ¢ are known, and therefore 7 and ¢ can be at once
found. It is curious that he should have taken a sum like a + b for one
of his unknowns. In his numerical illustration he takes the sum to be
10 and the product 21.

Save for one instance in Leonardo’s writings, the above works are
the earliest instances known in European mathematics of syncopated
algebra in which letters are used for algebraical symbols. It is probable
that the Algorithmus was not generally known until it was printed in

From the De Numeris Datis, book i, prop. 3.
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1534, and it is doubtful how far the works of Jordanus exercised any
considerable influence on the development of algebra. In fact it con-
stantly happens in the history of mathematics that improvements in
notation or method are made long before they are generally adopted or
their advantages realized. Thus the same thing may be discovered over
and over again, and it is not until the general standard of knowledge re-
quires some such improvement, or it is enforced by some one whose zeal
or attainments compel attention, that it is adopted and becomes part
of the science. Jordanus in using letters or symbols to represent any
quantities which occur in analysis was far in advance of his contempo-
raries. A similar notation was tentatively introduced by other and later
mathematicians, but it was not until it had been thus independently
discovered several times that it came into general use.

It is not necessary to describe in detail the mechanics, optics, or
astronomy of Jordanus. The treatment of mechanics throughout the
middle ages was generally unintelligent.

No mathematicians of the same ability as Leonardo and Jordanus
appear in the history of the subject for over two hundred years. Their
individual achievements must not be taken to imply the standard of
knowledge then current, but their works were accessible to students in
the following two centuries, though there were not many who seem to
have derived much benefit therefrom, or who attempted to extend the
bounds of arithmetic and algebra as there expounded.

During the thirteenth century the most famous centres of learning
in western Europe were Paris and Oxford, and I must now refer to the
more eminent members of those schools.

Holywood.! I will begin by mentioning John de Holywood, whose
name is often written in the latinized form of Sacrobosco. Holywood
was born in Yorkshire and educated at Oxford; but after taking his
master’s degree he moved to Paris, and taught there till his death in
1244 or 1246. His lectures on algorism and algebra are the earliest of
which I can find mention. His work on arithmetic was for many years
a standard authority; it contains rules, but no proofs; it was printed
at Paris in 1496. He also wrote a treatise on the sphere, which was
made public in 1256: this had a wide and long-continued circulation,
and indicates how rapidly a knowledge of mathematics was spreading.
Besides these, two pamphlets by him, entitled respectively De Computo
Ecclesiastico and De Astrolabio, are still extant.

!See Cantor, chap. xlv.
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Roger Bacon.! Another contemporary of Leonardo and Jordanus
was Roger Bacon, who for physical science did work somewhat anal-
ogous to what they did for arithmetic and algebra. Roger Bacon was
born near Ilchester in 1214, and died at Oxford on June 11, 1294. He
was the son of royalists, most of whose property had been confiscated at
the end of the civil wars: at an early age he was entered as a student at
Oxford, and is said to have taken orders in 1233. In 1234 he removed to
Paris, then the intellectual capital of western Europe, where he lived for
some years devoting himself especially to languages and physics; and
there he spent on books and experiments all that remained of his family
property and his savings. He returned to Oxford soon after 1240, and
there for the following ten or twelve years he laboured incessantly, being
chiefly occupied in teaching science. His lecture room was crowded, but
everything that he earned was spent in buying manuscripts and instru-
ments. He tells us that altogether at Paris and Oxford he spent over
£2000 in this way—a sum which represents at least £20,000 nowadays.

Bacon strove hard to replace logic in the university curriculum by
mathematical and linguistic studies, but the influences of the age were
too strong for him. His glowing eulogy on “divine mathematics” which
should form the foundation of a liberal education, and which “alone
can purge the intellect and fit the student for the acquirement of all
knowledge,” fell on deaf ears. We can judge how small was the amount
of geometry which was implied in the quadrivium, when he tells us that
in geometry few students at Oxford read beyond Euc. 1, 5; though we
might perhaps have inferred as much from the character of the work of
Boethius.

At last worn out, neglected, and ruined, Bacon was persuaded by his
friend Grosseteste, the great Bishop of Lincoln, to renounce the world
and take the Franciscan vows. The society to which he now found
himself confined was singularly uncongenial to him, and he beguiled
the time by writing on scientific questions and perhaps lecturing. The
superior of the order heard of this, and in 1257 forbade him to lecture
or publish anything under penalty of the most severe punishments, and
at the same time directed him to take up his residence at Paris, where
he could be more closely watched.

1See Roger Bacon, sa vie, ses ouvrages ... by E. Charles, Paris, 1861; and the
memoir by J. S. Brewer, prefixed to the Opera Inedita, Rolls Series, London, 1859:
a somewhat depreciatory criticism of the former of these works is given in Roger
Bacon, eine Monographie, by L. Schneider, Augsburg, 1873.
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Clement IV., when in England, had heard of Bacon’s abilities, and
in 1266 when he became Pope he invited Bacon to write. The Fran-
ciscan order reluctantly permitted him to do so, but they refused him
any assistance. With difficulty Bacon obtained sufficient money to get
paper and the loan of books, and in the short space of fifteen months
he produced in 1267 his Opus Majus with two supplements which sum-
marized what was then known in physical science, and laid down the
principles on which it, as well as philosophy and literature, should be
studied. He stated as the fundamental principle that the study of nat-
ural science must rest solely on experiment; and in the fourth part he
explained in detail how astronomy and physical sciences rest ultimately
on mathematics, and progress only when their fundamental principles
are expressed in a mathematical form. Mathematics, he says, should
be regarded as the alphabet of all philosophy.

The results that he arrived at in this and his other works are nearly
in accordance with modern ideas, but were too far in advance of that
age to be capable of appreciation or perhaps even of comprehension,
and it was left for later generations to rediscover his works, and give
him that credit which he never experienced in his lifetime. In astron-
omy he laid down the principles for a reform of the calendar, explained
the phenomena of shooting stars, and stated that the Ptolemaic system
was unscientific in so far as it rested on the assumption that circular
motion was the natural motion of a planet, while the complexity of the
explanations required made it improbable that the theory was true.
In optics he enunciated the laws of reflexion and in a general way of
refraction of light, and used them to give a rough explanation of the
rainbow and of magnifying glasses. Most of his experiments in chem-
istry were directed to the transmutation of metals, and led to no useful
results. He gave the composition of gunpowder, but there is no doubt
that it was not his own invention, though it is the earliest European
mention of it. On the other hand, some of his statements appear to
be guesses which are more or less ingenious, while some of them are
certainly erroneous.

In the years immediately following the publication of his Opus Majus
he wrote numerous works which developed in detail the principles there
laid down. Most of these have now been published, but I do not know
of the existence of any complete edition. They deal only with applied
mathematics and physics.

Clement took no notice of the great work for which he had asked,
except to obtain leave for Bacon to return to England. On the death
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of Clement, the general of the Franciscan order was elected Pope and
took the title of Nicholas IV. Bacon’s investigations had never been
approved of by his superiors, and he was now ordered to return to
Paris, where we are told he was immediately accused of magic; he was
condemned in 1280 to imprisonment for life, but was released about a
year before his death.

Campanus. The only other mathematician of this century whom I
need mention is Giovanni Campano, or in the latinized form Campanus,
a canon of Paris. A copy of Adelhard’s translation of Euclid’s Elements
fell into the hands of Campanus, who added a commentary thereon in
which he discussed the properties of a regular re-entrant pentagon.! He
also, besides some minor works, wrote the Theory of the Planets, which
was a free translation of the Almagest.

The fourteenth century. The history of the fourteenth century,
like that of the one preceding it, is mostly concerned with the assim-
ilation of Arab mathematical text-books and of Greek books derived
from Arab sources.

Bradwardine.? A mathematician of this time, who was perhaps
sufficiently influential to justify a mention here, is Thomas Bradwar-
dine, Archbishop of Canterbury. Bradwardine was born at Chichester
about 1290. He was educated at Merton College, Oxford, and subse-
quently lectured in that university. From 1335 to the time of his death
he was chiefly occupied with the politics of the church and state; he
took a prominent part in the invasion of France, the capture of Calais,
and the victory of Cressy. He died at Lambeth in 1349. His mathemat-
ical works, which were probably written when he was at Oxford, are the
Tractatus de Proportionibus, printed at Paris in 1495; the Arithmetica
Speculativa, printed at Paris in 1502; the Geometria Speculativa, printed
at Paris in 1511; and the De Quadratura Circuli, printed at Paris in
1495. They probably give a fair idea of the nature of the mathematics
then read at an English university.

Oresmus.? Nicholas Oresmus was another writer of the four-
teenth century. He was born at Caen in 1323, became the confidential
adviser of Charles V., by whom he was made tutor to Charles V1., and

! This edition of Euclid was printed by Ratdolt at Venice in 1482, and was for-
merly believed to be due to Campanus. On this work see J. L. Heiberg in the
Zeitschrift fiir Mathematik, vol. xxxv, 1890.

2See Cantor, vol. ii, p. 102 et seq.

3See Die mathematischen Schriften des Nicole Oresme, by M. Curtze, Thorn,
1870.
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subsequently was appointed bishop of Lisieux, at which city he died on
July 11, 1382. He wrote the Algorismus Proportionum, in which the
idea of fractional indices is introduced. He also issued a treatise dealing
with questions of coinage and commercial exchange; from the mathe-
matical point of view it is noticeable for the use of vulgar fractions and
the introduction of symbols for them.

By the middle of this century Euclidean geometry (as expounded
by Campanus) and algorism were fairly familiar to all professed math-
ematicians, and the Ptolemaic astronomy was also generally known.
About this time the almanacks began to add to the explanation of
the Arabic symbols the rules of addition, subtraction, multiplication,
and division, “de algorismo.” The more important calendars and other
treatises also inserted a statement of the rules of proportion, illustrated
by various practical questions.

In the latter half of this century there was a general revolt of the
universities against the intellectual tyranny of the schoolmen. This was
largely due to Petrarch, who in his own generation was celebrated as
a humanist rather than as a poet, and who exerted all his power to
destroy scholasticism and encourage scholarship. The result of these
influences on the study of mathematics may be seen in the changes
then introduced in the study of the quadrivium. The stimulus came
from the university of Paris, where a statute to that effect was passed
in 1366, and a year or two later similar regulations were made at other
universities; unfortunately no text-books are mentioned. We can, how-
ever, form a reasonable estimate of the range of mathematical reading
required, by looking at the statutes of the universities of Prague, of
Vienna, and of Leipzig.

By the statutes of Prague, dated 1384, candidates for the bachelor’s
degree were required to have read Holywood’s treatise on the sphere,
and candidates for the master’s degree to be acquainted with the first
six books of Euclid, optics, hydrostatics, the theory of the lever, and
astronomy. Lectures were actually delivered on arithmetic, the art of
reckoning with the fingers, and the algorism of integers; on almanacks,
which probably meant elementary astrology; and on the Almagest, that
is, on Ptolemaic astronomy. There is, however, some reason for thinking
that mathematics received far more attention here than was then usual
at other universities.

At Vienna, in 1389, a candidate for a master’s degree was required to
have read five books of Euclid, common perspective, proportional parts,
the measurement of superficies, and the Theory of the Planets. The
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book last named is the treatise by Campanus which was founded on that
by Ptolemy. This was a fairly respectable mathematical standard, but I
would remind the reader that there was no such thing as “plucking” in a
medieval university. The student had to keep an act or give a lecture on
certain subjects, but whether he did it well or badly he got his degree,
and it is probable that it was only the few students whose interests
were mathematical who really mastered the subjects mentioned above.

The fifteenth century. A few facts gleaned from the history
of the fifteenth century tend to shew that the regulations about the
study of the quadrivium were not seriously enforced. The lecture lists
for the years 1437 and 1438 of the university of Leipzig (founded in
1409, the statutes of which are almost identical with those of Prague as
quoted above) are extant, and shew that the only lectures given there
on mathematics in those years were confined to astrology. The records
of Bologna, Padua, and Pisa seem to imply that there also astrology
was the only scientific subject taught in the fifteenth century, and even
as late as 1598 the professor of mathematics at Pisa was required to
lecture on the Quadripartitum, an astrological work purporting (prob-
ably falsely) to have been written by Ptolemy. The only mathematical
subjects mentioned in the registers of the university of Oxford as read
there between the years 1449 and 1463 were Ptolemy’s astronomy, or
some commentary on it, and the first two books of Euclid. Whether
most students got as far as this is doubtful. It would seem, from an
edition of Euclid’s Elements published at Paris in 1536, that after 1452
candidates for the master’s degree at that university had to take an oath
that they had attended lectures on the first six books of that work.

Beldomandi. The only writer of this time that I need men-
tion here is Prodocimo Beldomandi of Padua, born about 1380, who
wrote an algoristic arithmetic, published in 1410, which contains the
summation of a geometrical series; and some geometrical works.!

By the middle of the fifteenth century printing had been introduced,
and the facilities it gave for disseminating knowledge were so great
as to revolutionize the progress of science. We have now arrived at
a time when the results of Arab and Greek science were known in
Europe; and this perhaps, then, is as good a date as can be fixed for the
close of this period, and the commencement of that of the renaissance.
The mathematical history of the renaissance begins with the career of
Regiomontanus; but before proceeding with the general history it will

IFor further details see Boncompagni’s Bulletino di bibliografia, vols. xii, xviii.
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be convenient to collect together the chief facts connected with the
development of arithmetic during the middle ages and the renaissance.

To this the is devoted.
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CHAPTER XI.

THE DEVELOPMENT OF ARITHMETIC.!
CIRC. 1300-1637.

WE have seen in the that by the end of the thirteenth
century the Arabic arithmetic had been fairly introduced into Europe
and was practised by the side of the older arithmetic which was founded
on the work of Boethius. It will be convenient to depart from the
chronological arrangement and briefly to sum up the subsequent history
of arithmetic, but I hope, by references in the to the
inventions and improvements in arithmetic here described, that I shall
be able to keep the order of events and discoveries clear.

The older arithmetic consisted of two parts: practical arithmetic or
the art of calculation which was taught by means of the abacus and
possibly the multiplication table; and theoretical arithmetic, by which
was meant the ratios and properties of numbers taught according to
Boethius—a knowledge of the latter being confined to professed math-
ematicians. The theoretical part of this system continued to be taught
till the middle of the fifteenth century, and the practical part of it was
used by the smaller tradesmen in England,? Germany, and France till
the beginning of the seventeenth century.

See the article on Arithmetic by G. Peacock in the Encyclopaedia Metropolitana,
vol. i, London, 1845; Arithmetical Books by A. De Morgan, London, 1847; and an
article by P. Treutlein of Karlsruhe, in the Zeitschrift fiir Mathematik, 1877, vol. xxii,
supplement, pp. 1-100.

2See, for instance, Chaucer, The Miller’s Tale, v, 22-25; Shakespeare, The Win-
ter’s Tale, Act 1v, Sc. 2; Othello, Act 1, Sc. 1. There are similar references in French
and German literature; notably by Montaigne and Moliére. I believe that the Ex-
chequer division of the High Court of Justice derives its name from the table before
which the judges and officers of the court originally sat: this was covered with black
cloth divided into squares or chequers by white lines, and apparently was used as
an abacus.
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The new Arabian arithmetic was called algorism or the art of Alka-
rismi, to distinguish it from the old or Boethian arithmetic. The text-
books on algorism commenced with the Arabic system of notation, and
began by giving rules for addition, subtraction, multiplication, and divi-
sion; the principles of proportion were then applied to various practical
problems, and the books usually concluded with general rules for many
of the common problems of commerce. Algorism was in fact a mercan-
tile arithmetic, though at first it also included all that was then known
as algebra.

Thus algebra has its origin in arithmetic; and to most people the
term wuniversal arithmetic, by which it was sometimes designated, con-
veys a more accurate impression of its objects and methods than the
more elaborate definitions of modern mathematicians—certainly bet-
ter than the definition of Sir William Hamilton as the science of pure
time, or that of De Morgan as the calculus of succession. No doubt
logically there is a marked distinction between arithmetic and algebra,
for the former is the theory of discrete magnitude, while the latter is
that of continuous magnitude; but a scientific distinction such as this
is of comparatively recent origin, and the idea of continuity was not
introduced into mathematics before the time of Kepler.

Of course the fundamental rules of this algorism were not at first
strictly proved—that is the work of advanced thought—but until the
middle of the seventeenth century there was some discussion of the
principles involved; since then very few arithmeticians have attempted
to justify or prove the processes used, or to do more than enunciate
rules and illustrate their use by numerical examples.

I have alluded frequently to the Arabic system of numerical nota-
tion. I may therefore conveniently begin by a few notes on the history
of the symbols now current.

Their origin is obscure and has been much disputed.! On the whole
it seems probable that the symbols for the numbers 4, 5, 6, 7, and 9 (and
possibly 8 too) are derived from the initial letters of the corresponding
words in the Indo-Bactrian alphabet in use in the north of India perhaps
150 years before Christ; that the symbols for the numbers 2 and 3
are derived respectively from two and three parallel penstrokes written

1See A. L’Esprit, Histoire des chiffres, Paris, 1893; A. P. Pihan, Signes de
numeération, Paris, 1860; Fr. Woepcke, La propagation des chiffres Indiens, Paris,
1863; A. C. Burnell, South Indian Palaeography, Mangalore, 1874; Is. Taylor, The
Alphabet, London, 1883; and Cantor.
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cursively; and similarly that the symbol for the number 1 represents a
single penstroke. Numerals of this type were in use in India before the
end of the second century of our era. The origin of the symbol for zero
is unknown; it is not impossible that it was originally a dot inserted to
indicate a blank space, or it may represent a closed hand, but these are
mere conjectures; there is reason to believe that it was introduced in
India towards the close of the fifth century of our era, but the earliest
writing now extant in which it occurs is assigned to the eighth century.

oot (i) w1 3 D YN S CIe
1 C.7, %Yy )99

Gobar Arabic numerals,
cire. 1100 (7).

From a missal, circ. 1385,

J
of German origin. } 1,2,3.2.4.6A,8,9,10
European (probably Ttal- } 17, }’ 4’ 5, d 7» 8, 7} 10

ian) numerals, circ. 1400.
1; 293) 4, h, 6: N: 8, 9) 10

From the Mirrour of the
World, printed by Cax-
ton in 1480.

From a Scotch calendar

for 1482, probably of } 1. Z, 3, 9’, (1: 6, /\) 8: q’ ‘0

French origin.

The numerals used in India in the eighth century and for a long
time afterwards are termed Devanagari numerals, and their forms are
shewn in the first line of the table given above. These forms were
slightly modified by the eastern Arabs, and the resulting symbols were
again slightly modified by the western Arabs or Moors. It is perhaps
probable that at first the Spanish Arabs discarded the use of the symbol
for zero, and only reinserted it when they found how inconvenient the
omission proved. The symbols ultimately adopted by the Arabs are
termed Gobar numerals, and an idea of the forms most commonly used
may be gathered from those printed in the second line of the table
given above. From Spain or Barbary the Gobar numerals passed into
western Europe, and they occur on a Sicilian coin as early as 1138. The
further evolution of the forms of the symbols to those with which we
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are familiar is indicated below by facsimiles! of the numerals used at
different times. All the sets of numerals here represented are written
from left to right and in the order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. From
1500 onwards the symbols employed are practically the same as those
now in use.?

VI E8TV.AG I

The further evolution in the East of the Gobar numerals proceeded
almost independently of European influence. There are minute differ-
ences in the forms used by various writers, and in some cases alternative
forms; without, however, entering into these details we may say that
the numerals they commonly employed finally took the form shewn
above, but the symbol there given for 4 is at the present time generally
written cursively.

Leaving now the history of the symbols I proceed to discuss their
introduction into general use and the development of algoristic arith-
metic. I have already explained how men of science, and particularly
astronomers, had become acquainted with the Arabic system by the
middle of the thirteenth century. The trade of Europe during the thir-
teenth and fourteenth centuries was mostly in Italian hands, and the
obvious advantages of the algoristic system led to its general adoption
in Italy for mercantile purposes. This change was not effected, however,
without considerable opposition; thus, an edict was issued at Florence
in 1299 forbidding bankers to use Arabic numerals, and in 1348 the au-
thorities of the university of Padua directed that a list should be kept
of books for sale with the prices marked “non per cifras sed per literas
claras.”

The rapid spread of the use of Arabic numerals and arithmetic
through the rest of Europe seems to have been as largely due to the
makers of almanacks and calendars as to merchants and men of sci-
ence. These calendars had a wide circulation in medieval times. Some
of them were composed with special reference to ecclesiastical purposes,

IThe first, second, and fourth examples are taken from Is. Taylor’s Alphabet,
London, 1883, vol. ii, p. 266; the others are taken from Leslie’s Philosophy of Arith-
metic, 2nd ed., Edinburgh, 1820, pp. 114, 115.

2See, for example, Tonstall’s De Arte Supputandi, London, 1522; or Record’s
Grounde of Artes, London, 1540, and Whetstone of Witte, London, 1557.
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and contained the dates of the different festivals and fasts of the church
for a period of some seven or eight years in advance, as well as notes on
church ritual. Nearly every monastery and church of any pretensions
possessed one of these. Others were written specially for the use of as-
trologers and physicians, and some of them contained notes on various
scientific subjects, especially medicine and astronomy. Such almanacks
were not then uncommon, but, since it was only rarely that they found
their way into any corporate library, specimens are now rather scarce.
It was the fashion to use the Arabic symbols in ecclesiastical works;
while their occurrence in all astronomical tables and their Oriental ori-
gin (which savoured of magic) secured their use in calendars intended
for scientific purposes. Thus the symbols were generally employed in
both kinds of almanacks, and there are but few specimens of calendars
issued after the year 1300 in which an explanation of the Arabic nu-
merals is not included. Towards the middle of the fourteenth century
the rules of arithmetic de algorismo were also sometimes added, and
by the year 1400 we may consider that the Arabic symbols were gen-
erally known throughout Europe, and were used in most scientific and
astronomical works.

Outside Italy most merchants continued, however, to keep their ac-
counts in Roman numerals till about 1550, and monasteries and colleges
till about 1650; though in both cases it is probable that in and after
the fifteenth century the processes of arithmetic were performed in the
algoristic manner. Arabic numerals are used in the pagination of some
books issued at Venice in 1471 and 1482. No instance of a date or
number being written in Arabic numerals is known to occur in any
English parish register or the court rolls of any English manor before
the sixteenth century; but in the rent-roll of the St Andrews Chapter,
Scotland, the Arabic numerals were used in 1490. The Arabic numerals
were used in Constantinople by Planudes! in the fourteenth century.

The history of modern mercantile arithmetic in Europe begins then
with its use by Italian merchants, and it is especially to the Florentine
traders and writers that we owe its early development and improve-
ment. It was they who invented the system of book-keeping by double
entry. In this system every transaction is entered on the credit side in
one ledger, and on the debtor side in another; thus, if cloth be sold
to A, A’s account is debited with the price, and the stock-book, con-
taining the transactions in cloth, is credited with the amount sold. It

1See above, p.
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was they, too, who arranged the problems to which arithmetic could
be applied in different classes, such as rule of three, interest, profit and
loss, &c. They also reduced the fundamental operations of arithmetic
“to seven, in reverence,” says Pacioli, “of the seven gifts of the Holy
Spirit: namely, numeration, addition, subtraction, multiplication, di-
vision, raising to powers, and extraction of roots.” Brahmagupta had
enumerated twenty processes, besides eight subsidiary ones, and had
stated that “a distinct and several knowledge of these” was “essential
to all who wished to be calculators”; and, whatever may be thought
of Pacioli’s reason for the alteration, the consequent simplification of
the elementary processes was satisfactory. It may be added that arith-
metical schools were founded in various parts of Germany, especially
in and after the fourteenth century, and did much towards familiariz-
ing traders in northern and western Europe with commercial algoristic
arithmetic.

The operations of algoristic arithmetic were at first very cumber-
some. The chief improvements subsequently introduced into the early
Italian algorism were (i) the simplification of the four fundamental pro-
cesses; (ii) the introduction of signs for addition, subtraction, equality,
and (though not so important) for multiplication and division; (iii) the
invention of logarithms; and (iv) the use of decimals. T will consider
these in succession.

(i) In addition and subtraction the Arabs usually worked from left
to right. The modern plan of working from right to left is said to have
been introduced by an Englishman named Garth, of whose life I can
find no account. The old plan continued in partial use till about 1600;
even now it would be more convenient in approximations where it is
necessary to keep only a certain number of places of decimals.

The Indians and Arabs had several systems of multiplication. These
were all somewhat laborious, and were made the more so as multipli-
cation tables, if not unknown, were at any rate used but rarely. The
operation was regarded as one of considerable difficulty, and the test of
the accuracy of the result by “casting out the nines” was invented as a
check on the correctness of the work. Various other systems of multipli-
cation were subsequently employed in Italy, of which several examples
are given by Pacioli and Tartaglia; and the use of the multiplication
table—at least as far as 5 x 5—became common. From this limited
table the resulting product of the multiplication of all numbers up to
10 x 10 can be deduced by what was termed the requla ignavi. This is a
statement of the identity (5+a)(5+b) = (5—a)(5—b)+10(a+0b). The
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rule was usually enunciated in the following form. Let the number five
be represented by the open hand; the number six by the hand with one
finger closed; the number seven by the hand with two fingers closed; the
number eight by the hand with three fingers closed; and the number
nine by the hand with four fingers closed. To multiply one number by
another let the multiplier be represented by one hand, and the num-
ber multiplied by the other, according to the above convention. Then
the required answer is the product of the number of fingers (counting
the thumb as a finger) open in the one hand by the number of fingers
open in the other together with ten times the total number of fingers
closed. The system of multiplication now in use seems to have been
first introduced at Florence.
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Figure 1. Figure 2 Figure 3.

The difficulty which all but professed mathematicians experienced
in the multiplication of large numbers led to the invention of several
mechanical ways of effecting the process. Of these the most celebrated
is that of Napier’s rods invented in 1617. In principle it is the same
as a method which had been long in use both in India and Persia,
and which has been described in the diaries of several travellers, and
notably in the Travels of Sir John Chardin in Persia, London, 1686.
To use the method a number of rectangular slips of bone, wood, metal,
or cardboard are prepared, and each of them divided by cross lines
into nine little squares, a slip being generally about three inches long
and a third of an inch across. In the top square one of the digits is
engraved, and the results of multiplying it by 2, 3, 4, 5, 6, 7, 8, and 9
are respectively entered in the eight lower squares; where the result is
a number of two digits, the ten-digit is written above and to the left of
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the unit-digit and separated from it by a diagonal line. The slips are
usually arranged in a box. above represents nine such slips
side by side; shews the seventh slip, which is supposed to be
taken out of the box and put by itself. Suppose we wish to multiply
2985 by 317. The process as effected by the use of these slips is as
follows. The slips headed 2, 9, 8, and 5 are taken out of the box and
put side by side as shewn in above. The result of multiplying
2985 by 7 may be written thus—

2935
7
- 35
56
63
14
20895

Now if the reader will look at the seventh line in he will
see that the upper and lower rows of figures are respectively 1653 and
4365; moreover, these are arranged by the diagonals so that roughly
the 4 is under the 6, the 3 under the 5, and the 6 under the 3; thus

1 6 5 3
4 3 6 5

The addition of these two numbers gives the required result. Hence
the result of multiplying by 7, 1, and 3 can be successively determined
in this way, and the required answer (namely, the product of 2985 and
317) is then obtained by addition.

The whole process was written as follows:

2985
20895 /7
2985 /1

8955 /3

946245

The modification introduced by Napier in his Rabdologia, published
in 1617, consisted merely in replacing each slip by a prism with square
ends, which he called “a rod,” each lateral face being divided and
marked in the same way as one of the slips above described. These
rods not only economized space, but were easier to handle, and were
arranged in such a way as to facilitate the operations required.
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171978 17978 1/7(9|7)|8
12 12
519|718 519178
211 2
318|718 31878
6
318|118 31818
312
6|18
516
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116
412
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Figure 1. Figure 2. Figure 3.

If multiplication was considered difficult, division was at first re-
garded as a feat which could be performed only by skilled mathemati-
cians. The method commonly employed by the Arabs and Persians for
the division of one number by another will be sufficiently illustrated
by a concrete instance. Suppose we require to divide 17978 by 472. A
sheet of paper is divided into as many vertical columns as there are
figures in the number to be divided. The number to be divided is writ-
ten at the top and the divisor at the bottom; the first digit of each
number being placed at the left-hand side of the paper. Then, taking
the left-hand column, 4 will go into 1 no times, hence the first figure in
the dividend is 0, which is written under the last figure of the divisor.
This is represented in above. Next (see rewrite the
472 immediately above its former position, but shifted one place to the
right, and cancel the old figures. Then 4 will go into 17 four times; but,
as on trial it is found that 4 is too big for the first digit of the dividend,
3 is selected; 3 is therefore written below the last digit of the divisor
and next to the digit of the dividend last found. The process of multi-
plying the divisor by 3 and subtracting from the number to be divided
is indicated in[figure 2] and shews that the remainder is 3818. A similar
process is then repeated, that is, 472 is divided into 3818, shewing that
the quotient is 38 and the remainder 42. This is represented in
which shews the whole operation.
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The method described above never found much favour in Italy. The
present system was in use there as early as the beginning of the four-
teenth century, but the method generally employed was that known as
the galley or scratch system. The following example from Tartaglia, in
which it is required to divide 1330 by 84, will serve to illustrate this
method: the arithmetic given by Tartaglia is shewn below, where num-
bers in thin type are supposed to be scratched out in the course of the
work.

07
49
0590
1330(15
8414
8

The process is as follows. First write the 84 beneath the 1330, as
indicated below, then 84 will go into 133 once, hence the first figure in
the quotient is 1. Now 1 x 8 = 8, which subtracted from 13 leaves 5.
Write this above the 13, and cancel the 13 and the 8, and we have as
the result of the first step

5
1330(1
84

Next, 1 x4 = 4, which subtracted from 53 leaves 49. Insert the 49, and
cancel the 53 and the 4, and we have as the next step

4
59

1330(1
84

which shews a remainder 490.
We have now to divide 490 by 84. Hence the next figure in the
quotient will be 5, and re-writing the divisor we have

4
59
1330(15
844
8
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Then 5 x 8 = 40, and this subtracted from 49 leaves 9. Insert the 9,
and cancel the 49 and the 8, and we have the following result

49
59
1330(15
844
8

Next 5 x 4 = 20, and this subtracted from 90 leaves 70. Insert
the 70, and cancel the 90 and the 4, and the final result, shewing a
remainder 70, is

7
49
590
1330(15
844
8

The three extra zeros inserted in Tartaglia’s work are unnecessary, but
they do not affect the result, as it is evident that a figure in the dividend
may be shifted one or more places up in the same vertical column if it
be convenient to do so.

The medieval writers were acquainted with the method now in use,
but considered the scratch method more simple. In some cases the
latter is very clumsy, as may be illustrated by the following example
taken from Pacioli. The object is to divide 23400 by 100. The result is
obtained thus

0
040
03400
23400 (234
10000
100
1

The galley method was used in India, and the Italians may have
derived it thence. In Italy it became obsolete somewhere about 1600;
but it continued in partial use for at least another century in other
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countries. I should add that Napier’s rods can be, and sometimes were
used to obtain the result of dividing one number by another.

(ii) The signs + and — to indicate addition and subtraction! occur
in Widman’s arithmetic published in 1489, but were first brought into
general notice, at any rate as symbols of operation, by Stifel in 1544.
They occur, however, in a work by G. V. Hoecke, published at Antwerp
in 1514. I believe I am correct in saying that Vieta in 1591 was the
first well-known writer who used these signs consistently throughout
his work, and that it was not until the beginning of the seventeenth
century that they became recognized as well-known symbols. The sign
= to denote equality? was introduced by Record in 1557.

(iii) The invention of logarithms,®> without which many of the nu-
merical calculations which have constantly to be made would be prac-
tically impossible, was due to Napier of Merchiston. The first public
announcement of the discovery was made in his Mirifici Logarithmo-
rum Canonis Descriptio, published in 1614, and of which an English
translation was issued in the following year; but he had privately com-
municated a summary of his results to Tycho Brahe as early as 1594.
In this work Napier explains the nature of logarithms by a comparison
between corresponding terms of an arithmetical and geometrical pro-
gression. He illustrates their use, and gives tables of the logarithms of
the sines and tangents of all angles in the first quadrant, for differences
of every minute, calculated to seven places of decimals. His definition
of the logarithm of a quantity n was what we should now express by
107 log,(107/n). This work is the more interesting to us as it is the
first valuable contribution to the progress of mathematics which was
made by any British writer. The method by which the logarithms were
calculated was explained in the Constructio, a posthumous work issued
in 1619: it seems to have been very laborious, and depended either
on direct involution and evolution, or on the formation of geometrical
means. The method by finding the approximate value of a convergent
series was introduced by Newton, Cotes, and Euler. Napier had deter-
mined to change the base to one which was a power of 10, but died
before he could effect it.

The rapid recognition throughout Europe of the advantages of using

ISee below, pp.
7

2See below, p.
3See the article on Logarithms in the Encyclopaedia Britannica, ninth edition;

see also below, pp.
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logarithms in practical calculations was mainly due to Briggs, who was
one of the earliest to recognize the value of Napier’s invention. Briggs
at once realized that the base to which Napier’s logarithms were cal-
culated was inconvenient; he accordingly visited Napier in 1616, and
urged the change to a decimal base, which was recognized by Napier
as an improvement. On his return Briggs immediately set to work to
calculate tables to a decimal base, and in 1617 he brought out a table of
logarithms of the numbers from 1 to 1000 calculated to fourteen places
of decimals.

It would seem that J. Biirgi, independently of Napier, had con-
structed before 1611 a table of antilogarithms of a series of natural
numbers: this was published in 1620. In the same year a table of the
logarithms, to seven places of decimals, of the sines and tangents of
angles in the first quadrant was brought out by Edmund Gunter, one
of the Gresham lecturers. Four years later the latter mathematician in-
troduced a “line of numbers,” which provided a mechanical method for
finding the product of two numbers: this was the precursor of the slide-
rule, first described by Oughtred in 1632. In 1624, Briggs published
tables of the logarithms of some additional numbers and of various
trigonometrical functions. His logarithms of the natural numbers are
equal to those to the base 10 when multiplied by 10%, and of the sines of
angles to those to the base 10 when multiplied by 10'2. The calculation
of the logarithms of 70,000 numbers which had been omitted by Briggs
from his tables of 1624 was performed by Adrian Vlacq and published
in 1628: with this addition the table gave the logarithms of all numbers
from 1 to 101,000.

The Arithmetica Logarithmica of Briggs and Vlacq are substantially
the same as the existing tables: parts have at different times been re-
calculated, but no tables of an equal range and fulness entirely founded
on fresh computations have been published since. These tables were
supplemented by Briggs’s Trigonometrica Britannica, which contains
tables not only of the logarithms of the trigonometrical functions, but
also of their natural values: it was published posthumously in 1633. A
table of logarithms to the base e of the numbers from 1 to 1000 and
of the sines, tangents, and secants of angles in the first quadrant was
published by John Speidell at London as early as 1619, but of course
these were not so useful in practical calculations as those to the base 10.
By 1630 tables of logarithms were in general use.

(iv) The introduction of the decimal notation for fractions is due to
Pitiscus, in whose Tables, 1608 and 1612, it appears; it was employed
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in 1616 in the English translation of Napier’s Descriptio, and occurs in
the logarithmic Tables published by Briggs in 1617, after which date its
use may be taken to be established. The idea was not new, for Stevinus
had in 1585 used a somewhat similar notation, writing a number such as
25-379 either in the form 25, 3' 77 9" or in the form 25 @3 O 7® 9 ().
This latter notation was also used by Napier in 1617 in his essay on
Rods, and by Rudolff. These writers employed it only as a concise
way of stating results, and made no use of it as an operative form;
probably Briggs did more than any other writer to establish its use as an
operative form. The subject is one of much interest, and a considerable
body of literature has grown up about it. Some of the facts are in
dispute, and the above statement must only be taken to represent my
general conclusions. The reader interested in the subject may consult
the Napier Tercentenary Volume issued by the Edinburgh Royal Society
in 1915. Before the sixteenth century fractions were commonly written
in the sexagesimal notation.!

In Napier’s work of 1619 the point is written in the form now
adopted in England. Witt in 1613 and Napier in 1617 used a solidus
to separate the integral from the fractional part. Briggs underlined the
decimal figures, and would have printed a number such as 25-379 in the
form 25379. Subsequent writers added another line, and would have
written it as 25]379; nor was it till the beginning of the eighteenth cen-
tury that the current notation was generally employed. Even now the
notation varies slightly in different countries: thus the fraction % would
in the decimal notation be written in England as 0-25, in America as
0.25, and in Germany and France as 0,25. A knowledge of the decimal
notation became general among practical men with the introduction of
the French decimal standards.

IFor examples, see above, pp.
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CHAPTER XII.

THE MATHEMATICS OF THE RENAISSANCE.!
CIRC. 1450-1637.

THE is a digression from the chronological arrange-
ment to which, as far as possible, I have throughout adhered, but I

trust by references in this chapter to keep the order of events and dis-
coveries clear. I return now to the general history of mathematics in
western Europe. Mathematicians had barely assimilated the knowledge
obtained from the Arabs, including their translations of Greek writers,
when the refugees who escaped from Constantinople after the fall of the
eastern empire brought the original works and the traditions of Greek
science into Italy. Thus by the middle of the fifteenth century the chief
results of Greek and Arabian mathematics were accessible to European
students.

The invention of printing about that time rendered the dissemina-
tion of discoveries comparatively easy. It is almost a truism to remark
that until printing was introduced a writer appealed to a very limited
class of readers, but we are perhaps apt to forget that when a medieval
writer “published” a work the results were known to only a few of his
contemporaries. This had not been the case in classical times, for then
and until the fourth century of our era Alexandria was the recognized
centre for the reception and dissemination of new works and discov-
eries. In medieval Europe, on the other hand, there was no common
centre through which men of science could communicate with one an-
other, and to this cause the slow and fitful development of medieval
mathematics may be partly ascribed.

"'Where no other references are given, see parts xii, xiii, xiv, and the early chap-
ters of part xv of Cantor’s Vorlesungen; on the Italian mathematicians of this period
see also G. Libri, Histoire des sciences mathématiques en Italie, 4 vols., Paris, 1838—
1841.
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The introduction of printing marks the beginning of the modern
world in science as in politics; for it was contemporaneous with the
assimilation by the indigenous European school (which was born from
scholasticism, and whose history was traced in chapter of the
results of the Indian and Arabian schools (whose history and influence
were traced in chapters [IX] and [x]), and of the Greek schools (whose
history was traced in chapters |11 to .

The last two centuries of this period of our history, which may be de-
scribed as the renaissance, were distinguished by great mental activity
in all branches of learning. The creation of a fresh group of universities
(including those in Scotland), of a somewhat less complex type than
the medieval universities above described, testify to the general desire
for knowledge. The discovery of America in 1492 and the discussions
that preceded the Reformation flooded Europe with new ideas which,
by the invention of printing, were widely disseminated; but the advance
in mathematics was at least as well marked as that in literature and
that in politics.

During the first part of this time the attention of mathematicians
was to a large extent concentrated on syncopated algebra and trigono-
metry; the treatment of these subjects is discussed in the first section of
this chapter, but the relative importance of the mathematicians of this
period is not very easy to determine. The middle years of the renais-
sance were distinguished by the development of symbolic algebra: this
is treated in the second section of this chapter. The close of the six-
teenth century saw the creation of the science of dynamics: this forms
the subject of the first section of chapter X1l About the same time
and in the early years of the seventeenth century considerable attention
was paid to pure geometry: this forms the subject of the second section
of chapter X111}

The development of syncopated algebra and trigonometry.

Regiomontanus.!  Amongst the many distinguished writers of
this time Johann Regiomontanus was the earliest and one of the most
able. He was born at Konigsberg on June 6, 1436, and died at Rome

'His life was written by P. Gassendi, The Hague, second edition, 1655. His
letters, which afford much valuable information on the mathematics of his time,
were collected and edited by C. G. von Murr, Nuremberg, 1786. An account of his
works will be found in Regiomontanus, ein geistiger Vorldufer des Copernicus, by
A. Ziegler, Dresden, 1874; see also Cantor, chap. lv.
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on July 6, 1476. His real name was Johannes Miiller, but, follow-
ing the custom of that time, he issued his publications under a Latin
pseudonym which in his case was taken from his birthplace. To his
friends, his neighbours, and his tradespeople he may have been Jo-
hannes Miiller, but the literary and scientific world knew him as Re-
giomontanus, just as they knew Zepernik as Copernicus, and Schwarz-
erd as Melanchthon. It seems as pedantic as it is confusing to refer to
an author by his actual name when he is universally recognized under
another: I shall therefore in all cases as far as possible use that title
only, whether latinized or not, by which a writer is generally known.

Regiomontanus studied mathematics at the university of Vienna,
then one of the chief centres of mathematical studies in Europe, under
Purbach who was professor there. His first work, done in conjunction
with Purbach, consisted of an analysis of the Almagest. In this the
trigonometrical functions sine and cosine were used and a table of nat-
ural sines was introduced. Purbach died before the book was finished:
it was finally published at Venice, but not till 1496. As soon as this
was completed Regiomontanus wrote a work on astrology, which con-
tains some astronomical tables and a table of natural tangents: this
was published in 1490.

Leaving Vienna in 1462, Regiomontanus travelled for some time
in Italy and Germany; and at last in 1471 settled for a few years at
Nuremberg, where he established an observatory, opened a printing-
press, and probably lectured. Three tracts on astronomy by him were
written here. A mechanical eagle, which flapped its wings and saluted
the Emperor Maximilian I. on his entry into the city, bears witness
to his mechanical ingenuity, and was reckoned among the marvels of
the age. Thence Regiomontanus moved to Rome on an invitation from
Sixtus IV. who wished him to reform the calendar. He was assassinated,
shortly after his arrival, at the age of 40.

Regiomontanus was among the first to take advantage of the re-
covery of the original texts of the Greek mathematical works in order
to make himself acquainted with the methods of reasoning and results
there used; the earliest notice in modern Europe of the algebra of Dio-
phantus is a remark of his that he had seen a copy of it at the Vatican.
He was also well read in the works of the Arab mathematicians.

The fruit of his study was shewn in his De Triangulis written in
1464. This is the earliest modern systematic exposition of trigono-
metry, plane and spherical, though the only trigonometrical functions
introduced are those of the sine and cosine. It is divided into five books.
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The first four are given up to plane trigonometry, and in particular to
determining triangles from three given conditions. The fifth book is de-
voted to spherical trigonometry. The work was printed at Nuremberg
in 1533, nearly a century after the death of Regiomontanus.

As an example of the mathematics of this time I quote one of his
propositions at length. It is required to determine a triangle when
the difference of two sides, the perpendicular on the base, and the
difference between the segments into which the base is thus divided
are given [book 11, prop. 23]. The following is the solution given by
Regiomontanus.

Sit talis triangulus ABG, cujus duo latera AB et AG differentia habeant
nota HG, ductaque perpendiculari AD duorum casuum BD et DG, differ-
entia sit £G: hae duae differentiae sint datae, et ipsa perpendicularis AD
data. Dico quod omnia latera trianguli nota concludentur. Per artem rei
et census hoc problema absolvemus. Detur ergo differentia laterum ut 3,
differentia casuum 12, et perpendicularis 10. Pono pro basi unam rem, et
pro aggregato laterum 4 res, nae proportio basis ad congeriem laterum est
ut HG ad GEFE, scilicet unius ad 4. Erit ergo BD % rei minus 6, sed AB
erit 2 res demptis % Duco AB in se, producuntur 4 census et 2% demptis 6
rebus. Item BD in se facit % census et 36 minus 6 rebus: huic addo quadra-
tum de 10 qui est 100. Colliguntur i census et 136 minus 6 rebus aequales
videlicet 4 censibus et 2% demptis 6 rebus. Restaurando itaque defectus et
auferendo utrobique aequalia, quemadmodum ars ipsa praecipit, habemus
census aliquot aequales numero, unde cognitio rei patebit, et inde tria latera
trianguli more suo innotescet.

A

B D E G

To explain the language of the proof I should add that Regiomon-
tanus calls the unknown quantity res, and its square census or zensus;
but though he uses these technical terms he writes the words in full.
He commences by saying that he will solve the problem by means of a
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quadratic equation (per artem rei et census); and that he will suppose
the difference of the sides of the triangle to be 3, the difference of the
segments of the base to be 12, and the altitude of the triangle to be 10.
He then takes for his unknown quantity (unam rem or x) the base of
the triangle, and therefore the sum of the sides will be 4z. Therefore
BD will be equal to %x —6 (% rei minus 6), and AB will be equal to
22 — 3 (2 res demptis 2); hence AB? (AB in se) will be 422 + 21 — 6z
(4 census et 21 demptis 6 rebus), and BD? will be 122 + 36 — 6z. To
BD? he adds AD? (quadratum de 10) which is 100, and states that the
sum of the two is equal to AB2. This he says will give the value of 2>
(census), whence a knowledge of  (cognitio rei) can be obtained, and
the triangle determined.
To express this in the language of modern algebra we have

AG? — DG? = AB* - DB?,
L AG? — AB* = DG? — DB?,

but by the given numerical conditions

AG — AB =3 = i(DG — DB),
- AG + AB = 4(DG + DB) = 4x.

Therefore AB =2z — g, and BD = %x — 6.
Hence (22 — )% = (2 — 6)? + 100.
From which z can be found, and all the elements of the triangle deter-
mined.

It is worth noticing that Regiomontanus merely aimed at giving
a general method, and the numbers are not chosen with any special
reference to the particular problem. Thus in his diagram he does not
attempt to make GE anything like four times as long as GH, and,
since z is ultimately found to be equal to §\/32_1, the point D really
falls outside the base. The order of the letters ABG, used to denote
the triangle, is of course derived from the Greek alphabet.

Some of the solutions which he gives are unnecessarily complicated,
but it must be remembered that algebra and trigonometry were still
only in the rhetorical stage of development, and when every step of the
argument is expressed in words at full length it is by no means easy to
realize all that is contained in a formula.

It will be observed from the above example that Regiomontanus did
not hesitate to apply algebra to the solution of geometrical problems.
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Another illustration of this is to be found in his discussion of a question
which appears in Brahmagupta’s Siddhanta. The problem was to con-
struct a quadrilateral, having its sides of given lengths, which should
be inscribable in a circle. The solution! given by Regiomontanus was
effected by means of algebra and trigonometry.

The Algorithmus Demonstratus of Jordanus, described above, which
was first printed in 1534, was formerly attributed to Regiomontanus.

Regiomontanus was one of the most prominent mathematicians of
his generation, and I have dealt with his works in some detail as typical
of the most advanced mathematics of the time. Of his contemporaries
I shall do little more than mention the names of a few of those who are
best known; none were quite of the first rank, and I should sacrifice the
proportion of the parts of the subject were I to devote much space to
them.

Purbach.? I may begin by mentioning George Purbach, first the
tutor and then the friend of Regiomontanus, born near Linz on May 30,
1423, and died at Vienna on April 8, 1461, who wrote a work on plan-
etary motions which was published in 1460; an arithmetic, published
in 1511; a table of eclipses, published in 1514; and a table of natural
sines, published in 1541.

Cusa.? Next I may mention Nicolas de Cusa, who was born
in 1401 and died in 1464. Although the son of a poor fisherman and
without influence, he rose rapidly in the church, and in spite of being “a
reformer before the reformation” became a cardinal. His mathematical
writings deal with the reform of the calendar and the quadrature of
the circle; in the latter problem his construction is equivalent to taking
3(\/3 + 1/6) as the value of m. He argued in favour of the diurnal
rotation of the earth.

Chuquet. I may also here notice a treatise on arithmetic, known
as Le Triparty,* by Nicolas Chuquet, a bachelor of medicine in the
university of Paris, which was written in 1484. This work indicates that
the extent of mathematics then taught was somewhat greater than was
generally believed a few years ago. It contains the earliest known use of
the radical sign with indices to mark the root taken, 2 for a square-root,

1Tt was published by C. G. von Murr at Nuremberg in 1786.

2Purbach’s life was written by P. Gassendi, The Hague, second edition, 1655.

3Cusa’s life was written by F. A. Scharpff, Tiibingen, 1871; and his collected
works, edited by H. Petri, were published at Bale in 1565.

4See an article by A. Marre in Boncompagni’s Bulletino di bibliografia for 1880,
vol. xiii, pp. 555-659.
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3 for a cube-root, and so on; and also a definite statement of the rule
of signs. The words plus and minus are denoted by the contractions p,
m. The work is in French.

Introduction! of signs + and —. In England and Germany
algorists were less fettered by precedent and tradition than in Italy, and
introduced some improvements in notation which were hardly likely to
occur to an Italian. Of these the most prominent were the introduction,
if not the invention, of the current symbols for addition, subtraction,
and equality.

The earliest instances of the regular use of the signs + and — of
which we have any knowledge occur in the fifteenth century. Johannes
Widman of Eger, born about 1460, matriculated at Leipzig in 1480, and
probably by profession a physician, wrote a Mercantile Arithmetic, pub-
lished at Leipzig in 1489 (and modelled on a work by Wagner printed
some six or seven years earlier): in this book these signs are used merely
as marks signifying excess or deficiency; the corresponding use of the
word surplus or overplus® was once common and is still retained in
commmerce.

It is noticeable that the signs generally occur only in practical mer-
cantile questions: hence it has been conjectured that they were orig-
inally warehouse marks. Some kinds of goods were sold in a sort of
wooden chest called a lagel, which when full was apparently expected
to weigh roughly either three or four centners; if one of these cases were
a little lighter, say 5 lbs., than four centners, Widman describes it as
weighing 4c — 5 lbs.: if it were 5 lbs. heavier than the normal weight
it is described as weighing 4c —}—5 lbs. The symbols are used as if
they would be familiar to his readers; and there are some slight reasons
for thinking that these marks were chalked on the chests as they came
into the warehouses. We infer that the more usual case was for a chest
to weigh a little less than its reputed weight, and, as the sign — placed
between two numbers was a common symbol to signify some connec-
tion between them, that seems to have been taken as the standard case,
while the vertical bar was originally a small mark super-added on the
sign — to distinguish the two symbols. It will be observed that the ver-
tical line in the symbol for excess, printed above, is somewhat shorter

'Recently new light has been thrown on the history of the subject by the re-
searches of J. W. L. Glaisher, Messenger of Mathematics, Cambridge, vol. li, pp. 1
et seq. The account in the text is based on the earlier investigations of P. Treutlein,
A. de Morgan, and Boncompagni.

2See passim Levit. xxv, verse 27, and 1 Maccab. x, verse 41.
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than the horizontal line. This is also the case with Stifel and most
of the early writers who used the symbol: some presses continued to
print it in this, its earliest form, till the end of the seventeenth century.
Xylander, on the other hand, in 1575 has the vertical bar much longer
than the horizontal line, and the symbol is something like +.

Another conjecture is that the symbol for plus is derived from the
Latin abbreviation & for et; while that for minus is obtained from the
bar which is often used in ancient manuscripts to indicate an omission,
or which is written over the contracted form of a word to signify that
certain letters have been left out. This view has been often supported
on a priori grounds, but it has recently found powerful advocates in
Professors Zangmeister and Le Paige who also consider that the intro-
duction of these symbols for plus and minus may be referred to the
fourteenth century.

These explanations of the origin of our symbols for plus and minus
are the most plausible that have been yet advanced, but the question is
difficult and cannot be said to be solved. Another suggested derivation
is that + is a contraction of ® the initial letter in Old German of plus,
while — is the limiting form of m (for minus) when written rapidly.
De Morgan'® proposed yet another derivation: the Hindoos sometimes
used a dot to indicate subtraction, and this dot might, he thought, have
been elongated into a bar, and thus give the sign for minus; while the
origin of the sign for plus was derived from it by a super-added bar as
explained above; but I take it that at a later time he abandoned this
theory for what has been called the warehouse explanation.

I should perhaps here add that till the close of the sixteenth century
the sign + connecting two quantities like a and b was also used in
the sense that if a were taken as the answer to some question one
of the given conditions would be too little by b. This was a relation
which constantly occurred in solutions of questions by the rule of false
assumption.

Lastly, I would repeat again that these signs in Widman are only
abbreviations and not symbols of operation; he attached little or no
importance to them, and no doubt would have been amazed if he had
been told that their introduction was preparing the way for a revolution
of the processes used in algebra.

The Algorithmus of Jordanus was not published till 1534; Widman’s
work was hardly known outside Germany; and it is to Pacioli that we

1See his Arithmetical Books, London, 1847, p. 19.
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owe the introduction into general use of syncopated algebra; that is,
the use of abbreviations for certain of the more common algebraical
quantities and operations, but where in using them the rules of syntax
are observed.

Pacioli.! Lucas Pacioli, sometimes known as Lucas di Burgo,
and sometimes, but more rarely, as Lucas Paciolus, was born at Burgo
in Tuscany about the middle of the fifteenth century. We know little
of his life except that he was a Franciscan friar; that he lectured on
mathematics at Rome, Pisa, Venice, and Milan; and that at the last-
named city he was the first occupant of a chair of mathematics founded
by Sforza: he died at Florence about the year 1510.

His chief work was printed at Venice in 1494 and is termed Summa
de arithmetica, geometria, proporzioni e proporzionalita. It is divided
into two parts, the first dealing with arithmetic and algebra, the second
with geometry. This was the earliest printed book on arithmetic and
algebra. It is mainly based on the writings of Leonardo of Pisa, and
its importance in the history of mathematics is largely due to its wide
circulation.

In the arithmetic Pacioli gives rules for the four simple processes,
and a method for extracting square roots. He deals pretty fully with all
questions connected with mercantile arithmetic, in which he works out
numerous examples, and in particular discusses at great length bills of
exchange and the theory of book-keeping by double entry. This part
was the first systematic exposition of algoristic arithmetic, and has been
already alluded to in chapter X1 It and the similar work by Tartaglia
are the two standard authorities on the subject.

Many of his problems are solved by “the method of false assump-
tion,” which consists in assuming any number for the unknown quan-
tity, and if on trial the given conditions be not satisfied, altering it by
a simple proportion as in rule of three. As an example of this take the
problem to find the original capital of a merchant who spent a quarter
of it in Pisa and a fifth of it in Venice, who received on these transac-
tions 180 ducats, and who has in hand 224 ducats. Suppose that we
assume that he had originally 100 ducats. Then if he spent 25 + 20
ducats at Pisa and Venice, he would have had 55 ducats left. But by
the enunciation he then had 224 — 180, that is, 44 ducats. Hence the ra-
tio of his original capital to 100 ducats is as 44 to 55. Thus his original

!See H. Staigmiiller in the Zeitschrift fiir Mathematik, 1889, vol. xxxiv; also
Libri, vol. iii, pp. 133-145; and Cantor, chap. lvii.
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capital was 80 ducats.
The following example will serve as an illustration of the kind of
arithmetical problems discussed.

I buy for 1440 ducats at Venice 2400 sugar loaves, whose nett weight is
7200 lire; I pay as a fee to the agent 2 per cent.; to the weighers and porters
on the whole, 2 ducats; I afterwards spend in boxes, cords, canvas, and in
fees to the ordinary packers in the whole, 8 ducats; for the tax or octroi
duty on the first amount, 1 ducat per cent.; afterwards for duty and tax at
the office of exports, 3 ducats per cent.; for writing directions on the boxes
and booking their passage, 1 ducat; for the bark to Rimini, 13 ducats; in
compliments to the captains and in drink for the crews of armed barks on
several occasions, 2 ducats; in expenses for provisions for myself and servant
for one month, 6 ducats; for expenses for several short journeys over land
here and there, for barbers, for washing of linen, and of boots for myself and
servant, 1 ducat; upon my arrival at Rimini I pay to the captain of the port
for port dues in the money of that city, 3 lire; for porters, disembarkation
on land, and carriage to the magazine, 5 lire; as a tax upon entrance, 4
soldi a load which are in number 32 (such being the custom); for a booth at
the fair, 4 soldi per load; I further find that the measures used at the fair
are different to those used at Venice, and that 140 lire of weight are there
equivalent to 100 at Venice, and that 4 lire of their silver coinage are equal
to a ducat of gold. I ask, therefore, at how much I must sell a hundred lire
Rimini in order that I may gain 10 per cent. upon my whole adventure, and
what is the sum which I must receive in Venetian money?

In the algebra he discusses in some detail simple and quadratic
equations, and problems on numbers which lead to such equations.
He mentions the Arabic classification of cubic equations, but adds that
their solution appears to be as impossible as the quadrature of the circle.
The following is the rule he gives' for solving a quadratic equation of
the form 22 + 2z = a: it is rhetorical and not syncopated, and will serve
to illustrate the inconvenience of that method.

“Si res et census numero coaequantur, a rebus
dimidio sumpto censum producere debes,
addereque numero, cujus a radice totiens
tolle semis rerum, census latusque redibit.”

He confines his attention to the positive roots of equations.

Edition of 1494, p. 145.
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Though much of the matter described above is taken from Leo-
nardo’s Liber Abaci, yet the notation in which it is expressed is supe-
rior to that of Leonardo. Pacioli follows Leonardo and the Arabs in
calling the unknown quantity the thing, in Italian cosa—hence algebra
was sometimes known as the cossic art—or in Latin res, and sometimes
denotes it by co or R or Rj. He calls the square of it census or zensus,
and sometimes denotes it by ce or Z; similarly the cube of it, or cuba,
is sometimes represented by cu or C; the fourth power, or censo di
censo, is written either at length or as ce di ce or as ce ce. It may be
noticed that all his equations are numerical, so that he did not rise to
the conception of representing known quantities by letters as Jordanus
had done and as is the case in modern algebra; but Libri gives two
instances in which in a proportion he represents a number by a letter.
He indicates addition by p or p, the initial letter of the word plus, but
he generally evades the introduction of a symbol for minus by writing
his quantities on that side of the equation which makes them positive,
though in a few places he denotes it by m for minus or by de for demp-
tus. Similarly, equality is sometimes indicated by ae for aequalis. This
is a commencement of syncopated algebra.

There is nothing striking in the results he arrives at in the second
or geometrical part of the work; nor in two other tracts on geometry
which he wrote and which were printed at Venice in 1508 and 1509. It
may be noticed, however, that, like Regiomontanus, he applied algebra
to aid him in investigating the geometrical properties of figures.

The following problem will illustrate the kind of geometrical ques-
tions he attacked. The radius of the inscribed circle of a triangle
is 4 inches, and the segments into which one side is divided by the
point of contact are 6 inches and 8 inches respectively. Determine
the other sides. To solve this it is sufficient to remark that rs = A =
V/8(s —a)(s — b)(s — ¢) which gives 4s = /s x (s — 14) x 6 x 8, hence
s = 21; therefore the required sides are 21 — 6 and 21 — 8, that is, 15
and 13. But Pacioli makes no use of these formulae (with which he
was acquainted), but gives an elaborate geometrical construction, and
then uses algebra to find the lengths of various segments of the lines he
wants. The work is too long for me to reproduce here, but the following
analysis of it will afford sufficient materials for its reproduction. Let
ABC be the triangle, D, E, F' the points of contact of the sides, and
O the centre of the given circle. Let H be the point of intersection of
OB and DF, and K that of OC and DFE. Let L and M be the feet of
the perpendiculars drawn from F and F' on BC. Draw EP parallel to
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AB and cutting BC' in P. Then Pacioli determines in succession the
magnitudes of the following lines: (i) OB, (ii) OC, (iii) F'D, (iv) FH,
(v) ED, (vi) EK. He then forms a quadratic equation, from the solu-
tion of which he obtains the values of M B and M D. Similarly he finds
the values of LC and LD. He now finds in succession the values of
EL, FM, EP, and LP; and then by similar triangles obtains the value
of AB, which is 13. This proof was, even sixty years later, quoted by
Cardan as “incomparably simple and excellent, and the very crown of
mathematics.” 1 cite it as an illustration of the involved and inelegant
methods then current. The problems enunciated are very similar to
those in the De Triangulis of Regiomontanus.

Leonardo da Vinci. The fame of Leonardo da Vinci as an artist
has overshadowed his claim to consideration as a mathematician, but
he may be said to have prepared the way for a more accurate conception
of mechanics and physics, while his reputation and influence drew some
attention to the subject; he was an intimate friend of Pacioli. Leonardo
was the illegitimate son of a lawyer of Vinci in Tuscany, was born in
1452, and died in France in 1519 while on a visit to Francis I. Several
manuscripts by him were seized by the French revolutionary armies at
the end of the last century, and Venturi, at the request of the Institute,
reported on those concerned with physical or mathematical subjects.

Leaving out of account Leonardo’s numerous and important
artistic works, his mathematical writings are concerned chiefly with
mechanics, hydraulics, and optics—his conclusions being usually
based on experiments. His treatment of hydraulics and optics involves
but little mathematics. The mechanics contain numerous and serious
errors; the best portions are those dealing with the equilibrium of a
lever under any forces, the laws of friction, the stability of a body as
affected by the position of its centre of gravity, the strength of beams,
and the orbit of a particle under a central force; he also treated a
few easy problems by virtual moments. A knowledge of the triangle
of forces is occasionally attributed to him, but it is probable that his
views on the subject were somewhat indefinite. Broadly speaking, we
may say that his mathematical work is unfinished, and consists largely
of suggestions which he did not discuss in detail and could not (or at
any rate did not) verify.

' Essai sur les ouvrages physico-mathématiques de Léonard de Vinci, by J.-B.
Venturi, Paris, 1797.
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Diirer. Albrecht Diirer' was another artist of the same time who
was also known as a mathematician. He was born at Nuremberg on
May 21, 1471, and died there on April 6, 1528. His chief mathematical
work was issued in 1525, and contains a discussion of perspective, some
geometry, and certain graphical solutions; Latin translations of it were
issued in 1532, 1555, and 1605.

Copernicus. An account of Nicolaus Copernicus, born at Thorn
on Feb. 19, 1473, and died at Frauenberg on May 7, 1543, and his
conjecture that the earth and planets all revolved round the sun, belong
to astronomy rather than to mathematics. I may, however, add that
Copernicus wrote on trigonometry, his results being published as a
text-book at Wittenberg in 1542; it is clear though it contains nothing
new. It is evident from this and his astronomy that he was well read
in the literature of mathematics, and was himself a mathematician of
considerable power. I describe his statement as to the motion of the
earth as a conjecture, because he advocated it only on the ground that
it gave a simple explanation of natural phenomena. Galileo in 1632 was
the first to try to supply a proof of this hypothesis.

By the beginning of the sixteenth century the printing-press began
to be active, and many of the works of the earlier mathematicians be-
came now for the first time accessible to all students. This stimulated
inquiry, and before the middle of the century numerous works were
issued which, though they did not include any great discoveries, in-
troduced a variety of small improvements all tending to make algebra
more analytical.

Record. The sign now used to denote equality was introduced
by Robert Record.? Record was born at Tenby in Pembrokeshire about
1510, and died at London in 1558. He entered at Oxford, and obtained
a fellowship at All Souls College in 1531; thence he migrated to Cam-
bridge, where he took a degree in medicine in 1545. He then returned
to Oxford and lectured there, but finally settled in London and became
physician to Edward VI. and to Mary. His prosperity must have been
short-lived, for at the time of his death he was confined in the King’s
Bench prison for debt.

In 1540 he published an arithmetic, termed the Grounde of Artes,
in which he employed the signs + to indicate excess and — to indi-

1See Diirer als Mathematiker, by H. Staigmiiller, Stuttgart, 1891.
20n the life and career of Robert Record, see D. E. Smith in The American
Mathematical Monthly, vol. 28, 1921, p. 296 et seq.
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cate deficiency; “+ whyche betokeneth too muche, as this line — plaine
without a crosse line betokeneth too little.” In this book the equality
of two ratios is indicated by two equal and parallel lines whose oppo-
site ends are joined diagonally, ez. gr. by Z. A few years later, in
1557, he wrote an algebra under the title of the Whetstone of Witte.
This is interesting as it contains the earliest introduction of the sign =
for equality, and he says he selected that particular symbol because!
than two parallel straight lines “noe 2 thynges can be moare equalle.”
M. Charles Henry has, however, asserted that this sign is a recognized
abbreviation for the word est in medieval manuscripts; and, if this be
established, it would seem to indicate a more probable origin. In this
work Record shewed how the square root of an algebraic expression
could be extracted. He also wrote an astronomy. These works give a
clear view of the knowledge of the time.

Rudolff. Riese. About the same time in Germany, Rudolff and
Riese took up the subjects of algebra and arithmetic. Their investi-
gations form the basis of Stifel’s well-known work. Christoff Rudolff*
published his algebra in 1525; it is entitled Die Coss, and is founded on
the writings of Pacioli, and perhaps of Jordanus. Rudolff introduced
the sign of 4/ for the square root, the symbol being a corruption of
the initial letter of the word radiz, similarly /y// denoted the cube
root, and +/4/ the fourth root. Adam Riese® was born near Bamberg,
Bavaria, in 1489, of humble parentage, and after working for some years
as a miner set up a school; he died at Annaberg on March 30, 1559. He
wrote a treatise on practical geometry, but his most important book
was his well-known arithmetic (which may be described as algebraical),
issued in 1536, and founded on Pacioli’s work. Riese used the symbols
+ and —.

Stifel. The methods used by Rudolff and Riese and their results
were brought into general notice through Stifel’s work, which had a
wide circulation. Michael Stifel, sometimes known by the Latin name
of Stiffelius, was born at Esslingen in 1486, and died at Jena on April 19,
1567. He was originally an Augustine monk, but he accepted the doc-
trines of Luther, of whom he was a personal friend. He tells us in his

1See Whetstone of Witte, f. Ff, j. v.

2See E. Wappler, Geschichte der deutschen Algebra im azv. Jahrhunderte,
Zwickau, 1887.

3See two works by B. Berlet, Ueber Adam Riese, Annaberg, 1855; and Die Coss
von Adam Riese, Annaberg, 1860.

4The authorities on Stifel are given by Cantor chap. Ixii.



CH. XI1] THE MATHEMATICS OF THE RENAISSANCE 179

algebra that his conversion was finally determined by noticing that the
pope Leo X. was the beast mentioned in the Revelation. To shew this,
it was only necessary to add up the numbers represented by the let-
ters in Leo decimus (the m had to be rejected since it clearly stood
for mysterium) and the result amounts to exactly ten less than 666,
thus distinctly implying that it was Leo the tenth. Luther accepted his
conversion, but frankly told him he had better clear his mind of any
nonsense about the number of the beast.

Unluckily for himself Stifel did not act on this advice. Believing that
he had discovered the true way of interpreting the biblical prophecies,
he announced that the world would come to an end on October 3,
1533. The peasants of Holzdorf, of which place he was pastor, aware
of his scientific reputation, accepted his assurance on this point. Some
gave themselves up to religious exercises, others wasted their goods
in dissipation, but all abandoned their work. When the day foretold
had passed, many of the peasants found themselves ruined. Furious at
having been deceived, they seized the unfortunate prophet, and he was
lucky in finding a refuge in the prison at Wittenberg, from which he
was after some time released by the personal intercession of Luther.

Stifel wrote a small treatise on algebra, but his chief mathematical
work is his Arithmetica Integra, published at Nuremberg in 1544, with
a preface by Melanchthon.

The first two books of the Arithmetica Integra deal with surds and
incommensurables, and are Euclidean in form. The third book is on
algebra, and is noticeable for having called general attention to the
German practice of using the signs + and — to denote addition and
subtraction. There are traces of these signs being occasionally employed
by Stifel as symbols of operation and not only as abbreviations; in this
use of them he seems to have followed G. V. Hoecke. He not only
employed the usual abbreviations for the Italian words which represent
the unknown quantity and its powers, but in at least one case when
there were several unknown quantities he represented them respectively
by the letters A, B, C, &c.; thus re-introducing the general algebraic
notation which had fallen into disuse since the time of Jordanus. It
used to be said that Stifel was the real inventor of logarithms, but it is
now certain that this opinion was due to a misapprehension of a passage
in which he compares geometrical and arithmetical progressions. Stifel
is said to have indicated a formula for writing down the coefficients of
the various terms in the expansion of (14 x)™ if those in the expansion
of (14 x)"~! were known.
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In 1553 Stifel brought out an edition of Rudolft’s Die Coss, in which
he introduced an improvement in the algebraic notation then current.
The symbols at that time ordinarily used for the unknown quantity
and its powers were letters which stood for abbreviations of the words.
Among those frequently adopted were R or Rj for radiz or res (x),
Z or C for zensus or census (z°), C or K for cubus (z3), &c. Thus
2% + 52 — 4 would have been written

1 Zp.5Rm. 4

where p stands for plus and m for minus. Other letters and symbols
were also employed: thus Xylander (1575) would have denoted the
above expression by

1Q + 5N — 4;

a notation similar to this was sometimes used by Vieta and even by
Fermat. The advance made by Stifel was that he introduced the sym-
bols 1A, 1AA, 1AAA, for the unknown quantity, its square, and its
cube, which shewed at a glance the relation between them.
Tartaglia.  Niccolo Fontana, generally known as Nicholas Tar-
taglia, that is, Nicholas the stammerer, was born at Brescia in 1500,
and died at Venice on December 14, 1557. After the capture of the
town by the French in 1512, most of the inhabitants took refuge in the
cathedral, and were there massacred by the soldiers. His father, who
was a postal messenger at Brescia, was amongst the killed. The boy
himself had his skull split through in three places, while his jaws and
his palate were cut open; he was left for dead, but his mother got into
the cathedral, and finding him still alive managed to carry him off. De-
prived of all resources she recollected that dogs when wounded always
licked the injured place, and to that remedy he attributed his ultimate
recovery, but the injury to his palate produced an impediment in his
speech, from which he received his nickname. His mother managed to
get sufficient money to pay for his attendance at school for fifteen days,
and he took advantage of it to steal a copy-book from which he subse-
quently taught himself how to read and write; but so poor were they
that he tells us he could not afford to buy paper, and was obliged to
make use of the tombstones as slates on which to work his exercises.
He commenced his public life by lecturing at Verona, but he was
appointed at some time before 1535 to a chair of mathematics at Venice,
where he was living, when he became famous through his acceptance
of a challenge from a certain Antonio del Fiore (or Florido). Fiore had



CH. XI1] THE MATHEMATICS OF THE RENAISSANCE 181

learnt from his master, one Scipione Ferro (who died at Bologna in
1526), an empirical solution of a cubic equation of the form z3+qx = r.
This solution was previously unknown in Europe, and it is possible that
Ferro had found the result in an Arab work. Tartaglia, in answer to a
request from Colla in 1530, stated that he could effect the solution of
a numerical equation of the form 3 + px? = r. Fiore, believing that
Tartaglia was an impostor, challenged him to a contest. According to
this challenge each of them was to deposit a certain stake with a notary,
and whoever could solve the most problems out of a collection of thirty
propounded by the other was to get the stakes, thirty days being allowed
for the solution of the questions proposed. Tartaglia was aware that his
adversary was acquainted with the solution of a cubic equation of some
particular form, and suspecting that the questions proposed to him
would all depend on the solution of such cubic equations, set himself
the problem to find a general solution, and certainly discovered how
to obtain a solution of some if not all cubic equations. His solution is
believed to have depended on a geometrical construction,! but led to
the formula which is often, but unjustly, described as Cardan’s.

When the contest took place, all the questions proposed to Tartaglia
were, as he had suspected, reducible to the solution of a cubic equation,
and he succeeded within two hours in bringing them to particular cases
of the equation 2®+qx = r, of which he knew the solution. His opponent
failed to solve any of the problems proposed to him, most of which
were, as a matter of fact, reducible to numerical equations of the form
23 + pr? = r. Tartaglia was therefore the conqueror; he subsequently
composed some verses commemorative of his victory.

The chief works of Tartaglia are as follows: (i) His Nova scienza,
published in 1537: in this he investigated the fall of bodies under grav-
ity; and he determined the range of a projectile, stating that it was
a maximum when the angle of projection was 45°, but this seems to
have been a lucky guess. (ii) His Inventioni, published in 1546, and
containing, inter alia, his solution of cubic equations. (iii) His Trat-
tato di numeri e misuri, consisting of an arithmetic, published in 1556,
and a treatise on numbers, published in 1560; in this he shewed how
the coefficients of = in the expansion of (1 + x)" could be calculated,
by the use of an arithmetical triangle,? from those in the expansion of
(1 + 2)"! for the cases when n is equal to 2, 3, 4, 5, or 6. His works

1See below, p.

2See below, pp.
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were collected into a single edition and republished at Venice in 1606.

The treatise on arithmetic and numbers is one of the chief authori-
ties for our knowledge of the early Italian algorism. It is verbose, but
gives a clear account of the arithmetical methods then in use, and has
numerous historical notes which, as far as we can judge, are reliable,
and are ultimately the authorities for many of the statements in the
It contains an immense number of questions on every kind of
problem which would be likely to occur in mercantile arithmetic, and
there are several attempts to frame algebraical formulae suitable for
particular problems.

These problems give incidentally a good deal of information as to
the ordinary life and commercial customs of the time. Thus we find that
the interest demanded on first-class security in Venice ranged from 5
to 12 per cent. a year; while the interest on commercial transactions
ranged from 20 per cent. a year upwards. Tartaglia illustrates the
evil effects of the law forbidding usury by the manner in which it was
evaded in farming. Farmers who were in debt were forced by their
creditors to sell all their crops immediately after the harvest; the market
being thus glutted, the price obtained was very low, and the money-
lenders purchased the corn in open market at an extremely cheap rate.
The farmers then had to borrow their seed-corn on condition that they
replaced an equal quantity, or paid the then price of it, in the month of
May, when corn was dearest. Again, Tartaglia, who had been asked by
the magistrates at Verona to frame for them a sliding scale by which the
price of bread would be fixed by that of corn, enters into a discussion on
the principles which it was then supposed should regulate it. In another
place he gives the rules at that time current for preparing medicines.

Pacioli had given in his arithmetic some problems of an amusing
character, and Tartaglia imitated him by inserting a large collection
of mathematical puzzles. He half apologizes for introducing them by
saying that it was not uncommon at dessert to propose arithmetical
questions to the company by way of amusement, and he therefore adds
some suitable problems. He gives several questions on how to guess a
number thought of by one of the company, or the relationships caused
by the marriage of relatives, or difficulties arising from inconsistent
bequests. Other puzzles are similar to the following. “Three beautiful
ladies have for husbands three men, who are young, handsome, and
gallant, but also jealous. The party are travelling, and find on the bank
of a river, over which they have to pass, a small boat which can hold
no more than two persons. How can they pass, it being agreed that, in
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order to avoid scandal, no woman shall be left in the society of a man
unless her husband is present?” “A ship, carrying as passengers fifteen
Turks and fifteen Christians, encounters a storm; and the pilot declares
that in order to save the ship and crew one-half of the passengers must
be thrown into the sea. To choose the victims, the passengers are placed
in a circle, and it is agreed that every ninth man shall be cast overboard,
reckoning from a certain point. In what manner must they be arranged,
so that the lot may fall exclusively upon the Turks?” “Three men
robbed a gentleman of a vase containing 24 ounces of balsam. Whilst
running away they met in a wood with a glass-seller of whom in a great
hurry they purchased three vessels. On reaching a place of safety they
wish to divide the booty, but they find that their vessels contain 5, 11,
and 13 ounces respectively. How can they divide the balsam into equal
portions?”

These problems—some of which are of oriental origin—form the ba-
sis of the collections of mathematical recreations by Bachet de Méziriac,
Ozanam, and Montucla.!

Cardan.? The life of Tartaglia was embittered by a quarrel with
his contemporary Cardan, who published Tartaglia’s solution of a cubic
equation which he had obtained under a pledge of secrecy. Girolamo
Cardan was born at Pavia on September 24, 1501, and died at Rome on
September 21, 1576. His career is an account of the most extraordinary
and inconsistent acts. A gambler, if not a murderer, he was also an
ardent student of science, solving problems which had long baffied all
investigation; at one time of his life he was devoted to intrigues which
were a scandal even in the sixteenth century, at another he did nothing

1Solutions of these and other similar problems are given in my Mathematical
Recreations, chaps. i, ii. On Bachet, see below, p. Jacques Ozanam, born
at Bouligneux in 1640, and died in 1717, left numerous works of which one, worth
mentioning here, is his Récréations mathématiques et physiques, two volumes, Paris,
1696. Jean Etienne Montucla, born at Lyons in 1725, and died in Paris in 1799,
edited and revised Ozanam’s mathematical recreations. His history of attempts to
square the circle, 1754, and history of mathematics to the end of the seventeenth
century, in two volumes, 1758, are interesting and valuable works.

2There is an admirable account of Cardan’s life in the Nouwvelle biographie
générale, by V. Sardou. Cardan left an autobiography of which an analysis by
H. Morley was published in two volumes in London in 1854. All Cardan’s printed
works were collected by Sponius, and published in ten volumes, Lyons, 1663; the
works on arithmetic and geometry are contained in the fourth volume. It is said
that there are in the Vatican several manuscript note-books of his which have not
been yet edited.
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but rave on astrology, and yet at another he declared that philosophy
was the only subject worthy of man’s attention. His was the genius
that was closely allied to madness.

He was the illegitimate son of a lawyer of Milan, and was educated
at the universities of Pavia and Padua. After taking his degree he com-
menced life as a doctor, and practised his profession at Sacco and Milan
from 1524 to 1550; it was during this period that he studied mathe-
matics and published his chief works. After spending a year or so in
France, Scotland, and England, he returned to Milan as professor of
science, and shortly afterwards was elected to a chair at Pavia. Here
he divided his time between debauchery, astrology, and mechanics. His
two sons were as wicked and passionate as himself: the elder was in
1560 executed for poisoning his wife, and about the same time Cardan
in a fit of rage cut off the ears of the younger who had committed some
offence; for this scandalous outrage he suffered no punishment, as the
Pope Gregory XIII. granted him protection. In 1562 Cardan moved
to Bologna, but the scandals connected with his name were so great
that the university took steps to prevent his lecturing, and only gave
way under pressure from Rome. In 1570 he was imprisoned for heresy
on account of his having published the horoscope of Christ, and when
released he found himself so generally detested that he determined to
resign his chair. At any rate he left Bologna in 1571, and shortly after-
wards moved to Rome. Cardan was the most distinguished astrologer
of his time, and when he settled at Rome he received a pension in order
to secure his services as astrologer to the papal court. This proved fatal
to him for, having foretold that he should die on a particular day, he
felt obliged to commit suicide in order to keep up his reputation—so at
least the story runs.

The chief mathematical work of Cardan is the Ars Magna published
at Nuremberg in 1545. Cardan was much interested in the contest
between Tartaglia and Fiore, and as he had already begun writing this
book he asked Tartaglia to communicate his method of solving a cubic
equation. Tartaglia refused, whereupon Cardan abused him in the most
violent terms, but shortly afterwards wrote saying that a certain Italian
nobleman had heard of Tartaglia’s fame and was most anxious to meet
him, and begged him to come to Milan at once. Tartaglia came, and
though he found no nobleman awaiting him at the end of his journey,
he yielded to Cardan’s importunity, and gave him the rule, Cardan on
his side taking a solemn oath that he would never reveal it. Cardan
asserts that he was given merely the result, and that he obtained the
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proof himself, but this is doubtful. He seems to have at once taught
the method, and one of his pupils Ferrari reduced the equation of the
fourth degree to a cubic and so solved it.

When the Ars Magna was published in 1545 the breach of faith
was made manifest.! Tartaglia not unnaturally was very angry, and
after an acrimonious controversy he sent a challenge to Cardan to take
part in a mathematical duel. The preliminaries were settled, and the
place of meeting was to be a certain church in Milan, but when the
day arrived Cardan failed to appear, and sent Ferrari in his stead.
Both sides claimed the victory, though I gather that Tartaglia was the
more successful; at any rate his opponents broke up the meeting, and
he deemed himself fortunate in escaping with his life. Not only did
Cardan succeed in his fraud, but modern writers have often attributed
the solution to him, so that Tartaglia has not even that posthumous
reputation which at least is his due.

The Ars Magna is a great advance on any algebra previously pub-
lished. Hitherto algebraists had confined their attention to those roots
of equations which were positive. Cardan discussed negative and even
complex roots, and proved that the latter would always occur in pairs,
though he declined to commit himself to any explanation as to the
meaning of these “sophistic” quantities which he said were ingenious
though useless. Most of his analysis of cubic equations seems to have
been original; he shewed that if the three roots were real, Tartaglia’s
solution gave them in a form which involved imaginary quantities. Ex-
cept for the somewhat similar researches of Bombelli a few years later,
the theory of imaginary quantities received little further attention from
mathematicians until John Bernoulli and Euler took up the matter af-
ter the lapse of nearly two centuries. Gauss first put the subject on
a systematic and scientific basis, introduced the notation of complex
variables, and used the symbol ¢, which had been introduced by Euler
in 1777, to denote the square root of (-1): the modern theory is chiefly
based on his researches.

Cardan established the relations connecting the roots with the coef-
ficients of an equation. He was also aware of the principle that underlies
Descartes’s “rule of signs,” but as he followed the custom, then gen-
eral, of writing his equations as the equality of two expressions in each

!The history of the subject and of the doings of Fiore, Tartaglia, and Cardan
are given in an Appendix to the 2nd edition of the French translation of my Math-
ematical Recreations, Paris, 1908, vol. ii, p. 322 et seq.
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of which all the terms were positive he was unable to express the rule
concisely. He gave a method of approximating to the root of a nu-
merical equation, founded on the fact that, if a function have opposite
signs when two numbers are substituted in it, the equation obtained
by equating the function to zero will have a root between these two
numbers.

Cardan’s solution of a quadratic equation is geometrical and sub-
stantially the same as that given by Alkarismi. His solution of a cubic
equation is also geometrical, and may be illustrated by the following
case which he gives in chapter XI1. To solve the equation 2 + 6z = 20
(or any equation of the form z® +qx = r), take two cubes such that the
rectangle under their respective edges is 2 (or %q) and the difference of
their volumes is 20 (or r). Then z will be equal to the difference be-
tween the edges of the cubes. To verify this he first gives a geometrical
lemma to shew that, if from a line AC a portion C'B be cut off, then
the cube on AB will be less than the difference between the cubes on
AC and BC by three times the right parallelepiped whose edges are
respectively equal to AC, BC, and AB—this statement is equivalent
to the algebraical identity (a —b)® = a® — b — 3ab(a — b)—and the fact
that z satisfies the equation is then obvious. To obtain the lengths of
the edges of the two cubes he has only to solve a quadratic equation
for which the geometrical solution previously given sufficed.

Like all previous mathematicians he gives separate proofs of his rule
for the different forms of equations which can fall under it. Thus he
proves the rule independently for equations of the form 2® + px = ¢,
2> =pr+q, 2*+pr+q=0, and 2° + ¢ = pr. It will be noticed
that with geometrical proofs this was the natural course, but it does
not appear that he was aware that the resulting formulae were general.
The equations he considers are numerical.

Shortly after Cardan came a number of mathematicians who did
good work in developing the subject, but who are hardly of sufficient
importance to require detailed mention here. Of these the most cele-
brated are perhaps Ferrari and Rheticus.

Ferrari. Ludovico Ferraro, usually known as Ferrari, whose name I
have already mentioned in connection with the solution of a biquadratic
equation, was born at Bologna on Feb. 2, 1522, and died on Oct. 5,
1565. His parents were poor and he was taken into Cardan’s service
as an errand boy, but was allowed to attend his master’s lectures, and
subsequently became his most celebrated pupil. He is described as “a
neat rosy little fellow, with a bland voice, a cheerful face, and an agree-
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able short nose, fond of pleasure, of great natural powers,” but “with
the temper of a fiend.” His manners and numerous accomplishments
procured him a place in the service of the Cardinal Ferrando Gonzago,
where he managed to make a fortune. His dissipations told on his
health, and he retired in 1565 to Bologna where he began to lecture on
mathematics. He was poisoned the same year either by his sister, who
seems to have been the only person for whom he had any affection, or
by her paramour.

Such work as Ferrari produced is incorporated in Cardan’s Ars
Magna or Bombelli’s Algebra, but nothing can be definitely assigned
to him except the solution of a biquadratic equation. Colla had pro-
posed the solution of the equation z* + 622 + 36 = 60x as a challenge to
mathematicians: this particular equation had probably been found in
some Arabic work. Nothing is known about the history of this problem
except that Ferrari succeeded where Tartaglia and Cardan had failed.

Rheticus. Georg Joachim Rheticus, born at Feldkirch on Feb. 15,
1514, and died at Kaschau on Dec. 4, 1576, was professor at Witten-
berg, and subsequently studied under Copernicus whose works were
produced under the direction of Rheticus. Rheticus constructed vari-
ous trigonometrical tables, some of which were published by his pupil
Otho in 1596. These were subsequently completed and extended by
Vieta and Pitiscus, and are the basis of those still in use. Reticus also
found the values of sin 26 and sin 36 in terms of sinf and cos#, and
was aware that trigonometrical ratios might be defined by means of
the ratios of the sides of a right-angled triangle without introducing a
circle.

I add here the names of some other celebrated mathematicians of
about the same time, though their works are now of little value to
any save antiquarians. Franciscus Maurolycus, born at Messina of
Greek parents in 1494, and died in 1575, translated numerous Latin
and Greek mathematical works, and discussed the conics regarded as
sections of a cone: his works were published at Venice in 1575. Jean
Borrel, born in 1492 and died at Grenoble in 1572, wrote an alge-
bra, founded on that of Stifel; and a history of the quadrature of the
circle: his works were published at Lyons in 1559. Wilhelm Xylan-
der, born at Augsburg on Dec. 26, 1532, and died on Feb. 10, 1576,
at Heidelberg, where since 1558 he had been professor, brought out an
edition of the works of Psellus in 1556; an edition of Euclid’s Elements
in 1562; an edition of the Arithmetic of Diophantus in 1575; and some
minor works which were collected and published in 1577. Frederigo
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Commandino, born at Urbino in 1509, and died there on Sept. 3,
1575, published a translation of the works of Archimedes in 1558; se-
lections from Apollonius and Pappus in 1566; an edition of Euclid’s
Elements in 1572; and selections from Aristarchus, Ptolemy, Hero, and
Pappus in 1574: all being accompanied by commentaries. Jacques
Peletier, born at le Mans on July 25, 1517, and died at Paris in July
1582, wrote text-books on algebra and geometry: most of the results
of Stifel and Cardan are included in the former. Adrian Romanus,
born at Louvain on Sept. 29, 1561, and died on May 4, 1625, professor
of mathematics and medicine at the university of Louvain, was the first
to prove the usual formula for sin(A+ B). And lastly, Bartholomé&us
Pitiscus, born on Aug. 24, 1561, and died at Heidelberg, where he was
professor of mathematics, on July 2, 1613, published his Trigonometry
in 1599: this contains the expressions for sin(A £+ B) and cos(A + B)
in terms of the trigonometrical ratios of A and B.

About this time also several text-books were produced which if they
did not extend the boundaries of the subject systematized it. In par-
ticular I may mention those by Ramus and Bombelli.

Ramus.! Peter Ramus was born at Cuth in Picardy in 1515, and
was killed at Paris in the massacre of St. Bartholomew on Aug. 24, 1572.
He was educated at the university of Paris, and on taking his degree he
astonished and charmed the university with the brilliant declamation he
delivered on the thesis that everything Aristotle had taught was false.
He lectured—for it will be remembered that in early days there were no
professors—first at le Mans, and afterwards at Paris; at the latter he
founded the first chair of mathematics. Besides some works on philos-
ophy he wrote treatises on arithmetic, algebra, geometry (founded on
Euclid), astronomy (founded on the works of Copernicus), and physics,
which were long regarded on the Continent as the standard text-books
in these subjects. They are collected in an edition of his works pub-
lished at Bale in 1569.

Bombelli.  Closely following the publication of Cardan’s great
work, Rafaello Bombelli published in 1572 an algebra which is a sys-
tematic exposition of the knowledge then current on the subject. In the
preface he traces the history of the subject, and alludes to Diophantus
who, in spite of the notice of Regiomontanus, was still unknown in Eu-
rope. He discusses radicals, real and complex. He also treats the theory

!See the monographs by Ch. Waddington, Paris, 1855; and by C. Desmaze, Paris,
1864.
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of equations, and shews that in the irreducible case of a cubic equation
the roots are all real; and he remarks that the problem to trisect a given
angle is the same as that of the solution of a cubic equation. Finally
he gave a large collection of problems.

Bombelli’s work is noticeable for his use of symbols which indicate
an approach to index notation. Following in the steps of Stifel, he
introduced a symbol (., for the unknown quantity, \2, for its square, \s,
for its cube, and so on, and therefore wrote z2 + 5z — 4 as

1\yp.5wm.4

Stevinus in 1586 employed (O), @), (3, ... in a similar way; and suggested,
though he did not use, a corresponding notation for fractional indices.
He would have written the above expression as

1@+50—-4@©.

But whether the symbols were more or less convenient they were still
only abbreviations for words, and were subject to all the rules of syntax.
They merely afforded a sort of shorthand by which the various steps and
results could be expressed concisely. The next advance was the creation
of symbolic algebra, and the chief credit of that is due to Vieta.

The development of symbolic algebra.

We have now reached a point beyond which any considerable devel-
opment of algebra, so long as it was strictly syncopated, could hardly
proceed. It is evident that Stifel and Bombelli and other writers of
the sixteenth century had introduced or were on the point of introduc-
ing some of the ideas of symbolic algebra. But so far as the credit of
inventing symbolic algebra can be put down to any one man we may
perhaps assign it to Vieta, while we may say that Harriot and Descartes
did more than any other writers to bring it into general use. It must
be remembered, however, that it took time before all these innovations
became generally known, and they were not familiar to mathematicians
until the lapse of some years after they had been published.

Vieta.!  Franciscus Vieta (Frangois Viéte) was born in 1540 at
Fontenay near la Rochelle, and died in Paris in 1603. He was brought

!The best account of Vieta’s life and works is that by A. De Morgan in the
English Cyclopaedia, London, vol. vi, 1858.
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up as a lawyer and practised for some time at the Parisian bar; he then
became a member of the provincial parliament in Brittany; and finally
in 1580, through the influence of the Duke de Rohan, he was made
master of requests, an office attached to the parliament at Paris; the
rest of his life was spent in the public service. He was a firm believer in
the right divine of kings, and probably a zealous catholic. After 1580
he gave up most of his leisure to mathematics, though his great work,
In Artem Analyticam Isagoge, in which he explained how algebra could
be applied to the solution of geometrical problems, was not published
till 1591.

His mathematical reputation was already considerable, when one
day the ambassador from the Low Countries remarked to Henry IV.
that France did not possess any geometricians capable of solving a
problem which had been propounded in 1593 by his countryman Adrian
Romanus to all the mathematicians of the world, and which required
the solution of an equation of the 45th degree. The king thereupon
summoned Vieta, and informed him of the challenge. Vieta saw that
the equation was satisfied by the chord of a circle (of unit radius) which
subtends an angle 27 /45 at the centre, and in a few minutes he gave
back to the king two solutions of the problem written in pencil. In
explanation of this feat I should add that Vieta had previously discov-
ered how to form the equation connecting sinnf with sinf and cos#.
Vieta in his turn asked Romanus to give a geometrical construction
to describe a circle which should touch three given circles. This was
the problem which Apollonius had treated in his De Tactionibus, a
lost book which Vieta at a later time conjecturally restored. Romanus
solved the problem by the use of conic sections, but failed to do it
by Euclidean geometry. Vieta gave a Euclidean solution which so im-
pressed Romanus that he travelled to Fontenay, where the French court
was then settled, to make Vieta’s acquaintance—an acquaintanceship
which rapidly ripened into warm friendship.

Henry was much struck with the ability shown by Vieta in this
matter. The Spaniards had at that time a cipher containing nearly 600
characters, which was periodically changed, and which they believed it
was impossible to decipher. A despatch having been intercepted, the
king gave it to Vieta, and asked him to try to read it and find the key
to the system. Vieta succeeded, and for two years the French used it,
greatly to their profit, in the war which was then raging. So convinced
was Philip II. that the cipher could not be discovered, that when he
found his plans known he complained to the Pope that the French were
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using sorcery against him, “contrary to the practice of the Christian
faith.”

Vieta wrote numerous works on algebra and geometry. The most
important are the In Artem Analyticam Isagoge, Tours, 1591; the
Supplementum Geometriae, and a collection of geometrical problems,
Tours, 1593; and the De Numerosa Potestatum Resolutione, Paris,
1600. All of these were printed for private circulation only, but they
were collected by F. van Schooten and published in one volume at
Leyden in 1646. Vieta also wrote the De Aequationum Recognitione et
Emendatione, which was published after his death in 1615 by Alexander
Anderson.

The In Artem is the earliest work on symbolic algebra. It also
introduced the use of letters for both known and unknown (positive)
quantities, a notation for the powers of quantities, and enforced the ad-
vantage of working with homogeneous equations. To this an appendix
called Logistice Speciosa was added on addition and multiplication of
algebraical quantities, and on the powers of a binomial up to the sixth.
Vieta implies that he knew how to form the coefficients of these six
expansions by means of the arithmetical triangle as Tartaglia had pre-
viously done, but Pascal gave the general rule for forming it for any
order, and Stifel had already indicated the method in the expansion of
(1 4+ z)™ if those in the expansion of (1 + x)"~! were known; Newton
was the first to give the general expression for the coefficient of 2P in
the expansion of (14 z)". Another appendix known as Zetetica on the
solution of equations was subsequently added to the In Artem.

The In Artem is memorable for two improvements in algebraic no-
tation which were introduced here, though it is probable that Vieta
took the idea of both from other authors.

One of these improvements was that he denoted the known quanti-
ties by the consonants B, C, D, &c., and the unknown quantities by the
vowels A, E, I, &c. Thus in any problem he was able to use a number
of unknown quantities. In this particular point he seems to have been
forestalled by Jordanus and by Stifel. The present custom of using
the letters at the beginning of the alphabet a,b,c, &c., to represent
known quantities and those towards the end, z,y, z, &c., to represent
the unknown quantities was introduced by Descartes in 1637.

The other improvement was this. Till this time it had been generally
the custom to introduce new symbols to represent the square, cube, &c.,
of quantities which had already occurred in the equations; thus, if R
or N stood for #, Z or C or Q stood for z?, and C or K for 23, &c.
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So long as this was the case the chief advantage of algebra was that it
afforded a concise statement of results every statement of which was
reasoned out. But when Vieta used A to denote the unknown quantity
x, he sometimes employed A quadratus, A cubus, . ..to represent 22, z3,
..., which at once showed the connection between the different powers;
and later the successive powers of A were commonly denoted by the
abbreviations Aq, Ac, Aqq, &c. Thus Vieta would have written the
equation
3BA* - DA+ A® = 7,

as B 3 in A quad. — D plano in A + A cubo aequatur Z solido. It will
be observed that the dimensions of the constants (B, D, and Z) are
chosen so as to make the equation homogeneous: this is characteristic
of all his work. It will be also noticed that he does not use a sign
for equality; and in fact the particular sign = which we use to denote
equality was employed by him to represent “the difference between.”
Vieta’s notation is not so convenient as that previously used by Stifel,
Bombelli, and Stevinus, but it was more generally adopted.

These two steps were almost essential to any further progress in
algebra. In both of them Vieta had been forestalled, but it was his
good luck in emphasising their importance to be the means of making
them generally known at a time when opinion was ripe for such an
advance.

The De Aequationum Recognitione et Emendatione is mostly on the
theory of equations. It was not published till twelve years after Vieta’s
death, and it is possible that the editor made additions to it. Vieta here
indicated how from a given equation another could be obtained whose
roots were equal to those of the original increased by a given quantity,
or multiplied by a given quantity; he used this method to get rid of the
coefficient of z in a quadratic equation and of the coefficient of z? in
a cubic equation, and was thus enabled to give the general algebraic
solution of both. It would seem that he knew that the first member of an
algebraical equation ¢(x) = 0 could be resolved into linear factors, and
that the coefficients of x could be expressed as functions of the roots;
perhaps the discovery of both these theorems should be attributed to
him.

His solution of a cubic equation is as follows. First reduce the
equation to the form z3 + 3a?x = 2b3. Next let z = a?/y — y, and we
get y® + 2b3y3 = a, which is a quadratic in 3®. Hence y can be found,
and therefore x can be determined.
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His solution of a biquadratic is similar to that known as Ferrari’s,
and essentially as follows. He first got rid of the term involving 22, thus
reducing the equation to the form z* + a?z? + b3z = ¢*. He then took
the forms involving 2% and x to the right-hand side of the equation and
added z%y? + %y‘l to each side, so that the equation became

(2% + %yQ)2 = 2%(y* — a*) — b’z + iy4 +ct
He then chose y so that the right-hand side of this equality is a perfect
square. Substituting this value of y, he was able to take the square root
of both sides, and thus obtain two quadratic equations for z, each of
which can be solved.

The De Numerosa Potestatum Resolutione deals with numerical
equations. In this a method for approximating to the values of posi-
tive roots is given, but it is prolix and of little use, though the principle
(which is similar to that of Newton’s rule) is correct. Negative roots are
uniformly rejected. This work is hardly worthy of Vieta’s reputation.

Vieta’s trigonometrical researches are included in various tracts
which are collected in Van Schooten’s edition. Besides some trigono-
metrical tables he gave the general expression for the sine (or chord) of
an angle in terms of the sine and cosine of its submultiples. Delambre
considers this as the completion of the Arab system of trigonometry.
We may take it then that from this time the results of elementary tri-
gonometry were familiar to mathematicians. Vieta also elaborated the
theory of right-angled spherical triangles.

Among Vieta’s miscellaneous tracts will be found a proof that each
of the famous geometrical problems of the trisection of an angle and
the duplication of the cube depends on the solution of a cubic equation.
There are also some papers connected with an angry controversy with
Clavius, in 1594, on the subject of the reformed calendar, in which
Vieta was not well advised.

Vieta’s works on geometry are good, but they contain nothing which
requires mention here. He applied algebra and trigonometry to help him
in investigating the properties of figures. He also, as I have already said,
laid great stress on the desirability of always working with homogeneous
equations, so that if a square or a cube were given it should be denoted
by expressions like a? or b3, and not by terms like m or n which do
not indicate the dimensions of the quantities they represent. He had
a lively dispute with Scaliger on the latter publishing a solution of the
quadrature of the circle, and Vieta succeeded in showing the mistake
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into which his rival had fallen. He gave a solution of his own which as
far as it goes is correct, and stated that the area of a square is to that
of the circumscribing circle as

ViaxVGFVE) X VE+VG V)Y adinf 1

This is one of the earliest attempts to find the value of m by means
of an infinite series. He was well acquainted with the extant writings
of the Greek geometricians, and introduced the curious custom, which
during the seventeenth and eighteenth centuries became fashionable,
of restoring lost classical works. He himself produced a conjectural
restoration of the De Tactionibus of Apollonius.

Girard. Vieta’s results in trigonometry and the theory of equa-
tions were extended by Albert Girard, a Dutch mathematician, who was
born in Lorraine in 1595, and died on December 9, 1632.

In 1626 Girard published at the Hague a short treatise on trigono-
metry, to which were appended tables of the values of the trigonomet-
rical functions. This work contains the earliest use of the abbreviations
sin, tan, sec for sine, tangent, and secant. The supplemental triangles in
spherical trigonometry are also discussed; their properties seem to have
been discovered by Girard and Snell at about the same time. Girard
also gave the expression for the area of a spherical triangle in terms of
the spherical excess—this was discovered independently by Cavalieri.
In 1627 Girard brought out an edition of Marolois’s Geometry with
considerable additions.

Girard’s algebraical investigations are contained in his Invention
nouvelle en ’algébre, published at Amsterdam in 1629.! This contains
the earliest use of brackets; a geometrical interpretation of the negative
sign; the statement that the number of roots of an algebraical question
is equal to its degree; the distinct recognition of imaginary roots; the
theorem, known as Newton’s rule, for finding the sum of like powers
of the roots of an equation; and (in the opinion of some writers) im-
plies also a knowledge that the first member of an algebraical equation
¢(z) = 0 could be resolved into linear factors. Girard’s investigations
were unknown to most of his contemporaries, and exercised no appre-
ciable influence on the development of mathematics.

The invention of logarithms by Napier of Merchiston in 1614, and
their introduction into England by Briggs and others, have been already

Tt was reissued by B. de Haan at Leyden in 1884.
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mentioned in chapter X A few words on these mathematicians may
be here added.

Napier.! John Napier was born at Merchiston in 1550, and
died on April 4, 1617. He spent most of his time on the family estate
near Edinburgh, and took an active part in the political and religious
controversies of the day; the business of his life was to show that the
Pope was Antichrist, but his favourite amusement was the study of
mathematics and science.

As soon as the use of exponents became common in algebra the
introduction of logarithms would naturally follow, but Napier reasoned
out the result without the use of any symbolic notation to assist him,
and the invention of logarithms was the result of the efforts of many
years with a view to abbreviate the processes of multiplication and divi-
sion. It is likely that Napier’s attention may have been partly directed
to the desirability of facilitating computations by the stupendous arith-
metical efforts of some of his contemporaries, who seem to have taken
a keen pleasure in surpassing one another in the extent to which they
carried multiplications and divisions. The trigonometrical tables by
Rheticus, which were published in 1596 and 1613, were calculated in
a most laborious way: Vieta himself delighted in arithmetical calcula-
tions which must have taken days of hard work, and of which the results
often served no useful purpose: L. van Ceulen (1539-1610) practically
devoted his life to finding a numerical approximation to the value of ,
finally in 1610 obtaining it correct to 35 places of decimals: while, to
cite one more instance, P. A. Cataldi (1548-1626), who is chiefly known
for his invention in 1613 of the form of continued fractions, must have
spent years in numerical calculations.

In regard to Napier’s other work I may again mention that in his
Rabdologia, published in 1617, he introduced an improved form of rod
by the use of which the product of two numbers can be found in a
mechanical way, or the quotient of one number by another. He also
invented two other rods called “virgulae,” by which square and cube
roots can be extracted. I should add that in spherical trigonometry he
discovered certain formulae known as Napier’s analogies, and enunci-
ated the “rule of circular parts” for the solution of right-angled spherical

1See the Napier Tercentenary Memorial Volume, Edinburgh, 1915. An edition
of all his works was issued at Edinburgh in 1839: a bibliography of his writings
is appended to a translation of the Constructio by W. R. Macdonald, Edinburgh,
1889.
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triangles.

Briggs. The name of Briggs is inseparably associated with the
history of logarithms. Henry Briggs® was born near Halifax in 1561:
he was educated at St. John’s College, Cambridge, took his degree in
1581, and obtained a fellowship in 1588: he was elected to the Gre-
sham professorship of geometry in 1596, and in 1619 or 1620 became
Savilian professor at Oxford, a chair which he held until his death on
January 26, 1631. It may be interesting to add that the chair of geom-
etry founded by Sir Thomas Gresham was the earliest professorship of
mathematics established in Great Britain. Some twenty years earlier
Sir Henry Savile had given at Oxford open lectures on Greek geome-
try and geometricians, and in 1619 he endowed the chairs of geometry
and astronomy in that university which are still associated with his
name. Both in London and at Oxford Briggs was the first occupant of
the chair of geometry. He began his lectures at Oxford with the ninth
proposition of the first book of Euclid—that being the furthest point
to which Savile had been able to carry his audiences. At Cambridge
the Lucasian chair was established in 1663, the earliest occupants being
Barrow and Newton.

The almost immediate adoption throughout Europe of logarithms
for astronomical and other calculations was mainly the work of Briggs,
who undertook the tedious work of calculating and preparing tables of
logarithms. Amongst others he convinced Kepler of the advantages of
Napier’s discovery, and the spread of the use of logarithms was rendered
more rapid by the zeal and reputation of Kepler, who by his tables of
1625 and 1629 brought them into vogue in Germany, while Cavalieri
in 1624 and Edmund Wingate in 1626 did a similar service for Italian
and French mathematicians respectively. Briggs also was instrumental
in bringing into common use the method of long division now generally
employed.

Harriot. Thomas Harriot, who was born at Oxford in 1560, and
died in London on July 2, 1621, did a great deal to extend and codify
the theory of equations. The early part of his life was spent in America
with Sir Walter Raleigh; while there he made the first survey of Virginia
and North Carolina, the maps of these being subsequently presented to
Queen Elizabeth. On his return to England he settled in London, and
gave up most of his time to mathematical studies.

1See pp. 27-30 of my History of the Study of Mathematics at Cambridge, Cam-
bridge, 1889.
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The majority of the propositions I have assigned to Vieta are to
be found in Harriot’s writings, but it is uncertain whether they were
discovered by him independently of Vieta or not. In any case it is
probable that Vieta had not fully realised all that was contained in the
propositions he had enunciated. Some of the consequences of these,
with extensions and a systematic exposition of the theory of equations,
were given by Harriot in his Artis Analyticae Praxis, which was first
printed in 1631. The Prazis is more analytical than any algebra that
preceded it, and marks an advance both in symbolism and notation,
though negative and imaginary roots are rejected. It was widely read,
and proved one of the most powerful instruments in bringing analytical
methods into general use. Harriot was the first to use the signs > and <
to represent greater than and less than. When he denoted the unknown
quantity by a he represented a? by aa, a® by aaa, and so on. This
is a distinct improvement on Vieta’s notation. The same symbolism
was used by Wallis as late as 1685, but concurrently with the modern
index notation which was introduced by Descartes. I need not allude to
the other investigations of Harriot, as they are comparatively of small
importance; extracts from some of them were published by S. P. Rigaud
in 1833.

Oughtred. Among those who contributed to the general adoption
in England of these various improvements and additions to algorism and
algebra was William Oughtred,! who was born at Eton on March 5,
1574, and died at his vicarage of Albury in Surrey on June 30, 1660: it
is sometimes said that the cause of his death was the excitement and
delight which he experienced “at hearing the House of Commons [or
Convention] had voted the King’s return”; a recent critic adds that it
should be remembered “by way of excuse that he [Oughtred| was then
eighty-six years old,” but perhaps the story is sufficiently discredited
by the date of his death. Oughtred was educated at Eton and King’s
College, Cambridge, of the latter of which colleges he was a fellow and
for some time mathematical lecturer.

His Clavis Mathematicae published in 1631 is a good systematic
text-book on arithmetic, and it contains practically all that was then
known on the subject. In this work he introduced the symbol x for
multiplication. He also introduced the symbol : : in proportion: previ-
ously to his time a proportion such as a : b = ¢ : d was usually written

'See William Oughtred, by F. Cajori, Chicago, 1916. A complete edition of
Oughtred’s works was published at Oxford in 1677.
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as a —b— c—d; he denoted it by a. b :: c.d. Wallis says that some
found fault with the book on account of the style, but that they only
displayed their own incompetence, for Oughtred’s “words be always full
but not redundant.” Pell makes a somewhat similar remark.

Oughtred also wrote a treatise on trigonometry published in 1657,
in which abbreviations for sine, cosine, &c., were employed. This was
really an important advance, but the works of Girard and Oughtred,
in which they were used, were neglected and soon forgotten, and it
was not until Euler reintroduced contractions for the trigonometrical
functions that they were generally adopted. In this work the colon (i.e.
the symbol :) was used to denote a ratio.

We may say roughly that henceforth elementary arithmetic, algebra,
and trigonometry were treated in a manner which is not substantially
different from that now in use; and that the subsequent improvements
introduced were additions to the subjects as then known, and not a
rearrangement of them on new foundations.

The origin of the more common symbols in algebra.

It may be convenient if I collect here in one place the scattered
remarks I have made on the introduction of the various symbols for the
more common operations in algebra.!

The later Greeks, the Hindoos, and Jordanus indicated addition by
mere juxtaposition. It will be observed that this is still the custom in
arithmetic, where, for instance, 2% stands for 2 + % The Italian alge-
braists, when they gave up expressing every operation in words at full
length and introduced syncopated algebra, usually denoted plus by its
initial letter P or p, a line being sometimes drawn through the letter
to show that it was a contraction, or a symbol of operation, and not
a quantity. The practice, however, was not uniform; Pacioli, for exam-
ple, sometimes denoted plus by p, and sometimes by e, and Tartaglia
commonly denoted it by ¢. The German and English algebraists, on
the other hand, introduced the sign + almost as soon as they used al-
gorism, but they spoke of it as signum additorum and employed it only
to indicate excess; they also used it with a special meaning in solutions
by the method of false assumption. Widman used it as an abbreviation

1See also two articles by C. Henry in the June and July numbers of the Revue
Archéologique, 1879, vol. xxxvii, pp. 324-333, vol. xxxviii, pp. 1-10.
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for excess in 1489: by 1630 it was part of the recognised notation of
algebra, and was used as a symbol of operation.

Subtraction was indicated by Diophantus by an inverted and trun-
cated ¥. The Hindoos denoted it by a dot. The Italian algebraists
when they introduced syncopated algebra generally denoted minus by
M or m, a line being sometimes drawn through the letter; but the prac-
tice was not uniform—Pacioli, for example, denoting it sometimes by
m, and sometimes by de for demptus. The German and English alge-
braists introduced the present symbol which they described as signum
subtractorum. It is most likely that the vertical bar in the symbol for
plus was superimposed on the symbol for minus to distinguish the two.
It may be noticed that Pacioli and Tartaglia found the sign — already
used to denote a division, a ratio, or a proportion indifferently. The
present sign for minus was in general use by about the year 1630, and
was then employed as a symbol of operation.

Vieta, Schooten, and others among their contemporaries employed
the sign = written between two quantities to denote the difference be-
tween them; thus ¢ = b means with them what we denote by a ~ b.

On the other hand, Barrow wrote —: for the same purpose. I am not
aware when or by whom the current symbol ~ was first used with this
signification.

Oughtred in 1631 used the sign x to indicate multiplication; Harriot
in 1631 denoted the operation by a dot; Descartes in 1637 indicated it
by juxtaposition. I am not aware of any symbols for it which were in
previous use. Leibnitz in 1686 employed the sign —~ to denote multi-
plication.

Division was ordinarily denoted by the Arab way of writing the
quantities in the form of a fraction by means of a line drawn between

them in any of the forms a — b, a/b, or %. Oughtred in 1631 employed

a dot to denote either division or a ratio. Leibnitz in 1686 employed
the sign — to denote division. The colon (or symbol :), used to denote
a ratio, occurs on the last two pages of Oughtred’s Canones Sinuum,
published in 1657. I believe that the current symbol for division + is
only a combination of the — and the symbol : for a ratio; it was used by
Johann Heinrich Rahn at Ziirich in 1659, and by John Pell in London
in 1668. The symbol -+ was used by Barrow and other writers of his
time to indicate continued proportion.

The current symbol for equality was introduced by Record in 1557;
Xylander in 1575 denoted it by two parallel vertical lines; but in general
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till the year 1600 the word was written at length; and from then until
the time of Newton, say about 1680, it was more frequently represented
by o or by oo than by any other symbol. Either of these latter signs
was used as a contraction for the first two letters of the word aequalis.

The symbol :: to denote proportion, or the equality of two ratios,
was introduced by Oughtred in 1631, and was brought into common use
by Wallis in 1686. There is no object in having a symbol to indicate
the equality of two ratios which is different from that used to indicate
the equality of other things, and it is better to replace it by the sign =.

The sign > for s greater than and the sign < for is less than were
introduced by Harriot in 1631, but Oughtred simultaneously invented
the symbols ] and ___] for the same purpose; and these latter were
frequently used till the beginning of the eighteenth century, ex. gr. by
Barrow.

The symbols =+ for is not equal to, ¥ for is not greater than, and
& for is not less than, are, I believe, now rarely used outside Great
Britain; they were employed, if not invented, by Euler. The symbols =
and < were introduced by P. Bouguer in 1734.

The vinculum was introduced by Vieta in 1591; and brackets were
first used by Girard in 1629.

The symbol / to denote the square root was introduced by Rudolff
in 1526; a similar notation had been used by Bhaskara and by Chuquet.

The different methods of representing the power to which a mag-
nitude was raised have been already briefly alluded to. The earliest
known attempt to frame a symbolic notation was made by Bombelli in
1572, when he represented the unknown quantity by \., its square by
w2, its cube by \s, &c. In 1586 Stevinus used (), @), ¢), &c., in a similar
way; and suggested, though he did not use, a corresponding notation
for fractional indices. In 1591 Vieta improved on this by denoting the
different powers of A by A, A quad., A cub., &c., so that he could
indicate the powers of different magnitudes; Harriot in 1631 further
improved on Vieta’s notation by writing aa for a?, aaa for a3, &c., and
this remained in use for fifty years concurrently with the index nota-
tion. In 1634 P. Herigonus, in his Cursus mathematicus, published in
five volumes at Paris in 1634-1637, wrote a,a2,a3, ... for a,a® a®....

The idea of using exponents to mark the power to which a quantity
was raised was due to Descartes, and was introduced by him in 1637,
but he used only positive integral indices a',a?, a3, .... Wallis in 1659
explained the meaning of negative and fractional indices in expressions
such as a™ ', az'/?, &c.; the latter conception having been foreshadowed
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by Oresmus and perhaps by Stevinus. Finally the idea of an index
unrestricted in magnitude, such as the n in the expression a”, is, |
believe, due to Newton, and was introduced by him in connection with
the binomial theorem in the letters for Leibnitz written in 1676.

The symbol oo for infinity was first employed by Wallis in 1655
in his Arithmetica Infinitorum; but does not occur again until 1713,
when it is used in James Bernoulli’s Ars Conjectandi. This sign was
sometimes employed by the Romans to denote the number 1000, and
it has been conjectured that this led to its being applied to represent
any very large number.

There are but few special symbols in trigonometry; I may, however,
add here the following note which contains all that I have been able
to learn on the subject. The current sexagesimal division of angles
is derived from the Babylonians through the Greeks. The Babylonian
unit angle was the angle of an equilateral triangle; following their usual
practice this was divided into sixty equal parts or degrees, a degree was
subdivided into sixty equal parts or minutes, and so on; it is said that
60 was assumed as the base of the system in order that the number
of degrees corresponding to the circumference of a circle should be the
same as the number of days in a year which it is alleged was taken (at
any rate in practice) to be 360.

The word sine was used by Regiomontanus and was derived from
the Arabs; the terms secant and tangent were introduced by Thomas
Finck (born in Denmark in 1561 and died in 1646) in his Geometriae
Rotundi, Bale, 1583; the word cosecant was (I believe) first used by
Rheticus in his Opus Palatinum, 1596; the terms cosine and cotangent
were first employed by E. Gunter in his Canon Triangulorum, London,
1620. The abbreviations sin, tan, sec were used in 1626 by Girard, and
those of cos and cot by Oughtred in 1657; but these contractions did not
come into general use till Euler reintroduced them in 1748. The idea
of trigonometrical functions originated with John Bernoulli, and this
view of the subject was elaborated in 1748 by Euler in his Introductio
in Analysin Infinitorum.
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CHAPTER XIII.

THE CLOSE OF THE RENAISSANCE.!
CIRC. 1586—1637.

THE closing years of the renaissance were marked by a revival of
interest in nearly all branches of mathematics and science. As far as
pure mathematics is concerned we have already seen that during the
last half of the sixteenth century there had been a great advance in
algebra, theory of equations, and trigonometry; and we shall shortly
see (in the second section of this chapter) that in the early part of the
seventeenth century some new processes in geometry were invented.
If, however, we turn to applied mathematics it is impossible not to be
struck by the fact that even as late as the middle or end of the sixteenth
century no marked progress in the theory had been made from the time
of Archimedes. Statics (of solids) and hydrostatics remained in much
the state in which he had left them, while dynamics as a science did
not exist. It was Stevinus who gave the first impulse to the renewed
study of statics, and Galileo who laid the foundation of dynamics; and
to their works the first section of this chapter is devoted.

The development of mechanics and experimental methods.

Stevinus.?  Simon Stevinus was born at Bruges in 1548, and died
at the Hague in 1620. We know very little of his life save that he was

1See footnote to chapter

2An analysis of his works is given in the Histoire des sciences mathématiques et
physiques chez les Belges, by L. A. J. Quetelet, Brussels, 1866, pp. 144-168; see also
Notice historique sur la vie et les ouvrages de Stevinus, by J. V. Gothals, Brussels,
1841; and Les travaux de Stevinus, by M. Steichen, Brussels, 1846. The works of
Stevinus were collected by Snell, translated into Latin, and published at Leyden in
1608 under the title Hypomnemata Mathematica.
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originally a merchant’s clerk at Antwerp, and at a later period of his
life was the friend of Prince Maurice of Orange, by whom he was made
quartermaster-general of the Dutch army.

To his contemporaries he was best known for his works on fortifica-
tions and military engineering, and the principles he laid down are said
to be in accordance with those which are now usually accepted. To the
general populace he was also well known on account of his invention
of a carriage which was propelled by sails; this ran on the sea-shore,
carried twenty-eight people, and easily outstripped horses galloping by
the side; his model of it was destroyed in 1802 by the French when they
invaded Holland. It was chiefly owing to the influence of Stevinus that
the Dutch and French began a proper system of book-keeping in the
national accounts.

I have already alluded to the introduction in his Arithmetic, pub-
lished in 1585, of exponents to mark the power to which quantities
were raised; for instance, he wrote 322 =5z +1as 3® -5 QO+ 1 .
His notation for decimal fractions was of a similar character. He fur-
ther suggested the use of fractional (but not negative) exponents. In
the same book he likewise suggested a decimal system of weights and
measures.

He also published a geometry which is ingenious though it does
not contain many results which were not previously known; in it some
theorems on perspective are enunciated.

It is, however, on his Statics and Hydrostatics, published (in Flem-
ish) at Leyden in 1586, that his fame rests. In this work he enun-
ciates the triangle of forces—a theorem which some think was first
propounded by Leonardo da Vinci. Stevinus regards this as the funda-
mental proposition of the subject. Previous to the publication of his
work the science of statics had rested on the theory of the lever, but
subsequently it became usual to commence by proving the possibility of
representing forces by straight lines, and thus reducing many theorems
to geometrical propositions, and in particular to obtaining in this way a
proof of the parallelogram (which is equivalent to the triangle) of forces.
Stevinus is not clear in his arrangement of the various propositions or
in their logical sequence, and the new treatment of the subject was not
definitely established before the appearance in 1687 of Varignon’s work
on mechanics. Stevinus also found the force which must be exerted
along the line of greatest slope to support a given weight on an inclined
plane—a problem the solution of which had been long in dispute. He
further distinguishes between stable and unstable equilibrium. In hy-
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drostatics he discusses the question of the pressure which a fluid can
exercise, and explains the so-called hydrostatic paradox.

His method! of finding the resolved part of a force in a given direc-
tion, as illustrated by the case of a weight resting on an inclined plane,
is a good specimen of his work and is worth quoting.

He takes a wedge ABC whose base AC is horizontal [and whose
sides BA, BC' are in the ratio of 2 to 1]. A thread connecting a number
of small equal equidistant weights is placed over the wedge as indicated
in the below (which I reproduce from his demonstration) so that
the number of these weights on BA is to the number on BC' in the same
proportion as BA is to BC'. This is always possible if the dimensions
of the wedge be properly chosen, and he places four weights resting
on BA and two on BC'; but we may replace these weights by a heavy
uniform chain TS LV'T without altering his argument. He says in effect,
that experience shews that such a chain will remain at rest; if not, we
could obtain perpetual motion. Thus the effect in the direction BA of
the weight of the part T'S of the chain must balance the effect in the
direction BC' of the weight of the part T'V of the chain. Of course BC
may be vertical, and if so the above statement is equivalent to saying
that the effect in the direction BA of the weight of the chain on it is
diminished in the proportion of BC' to BA; in other words, if a weight
W rests on an inclined plane of inclination a the component of W down
the line of greatest slope is W sin a.

! Hypomnemata Mathematica, vol. iv, de Statica, prop. 19.
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Stevinus was somewhat dogmatic in his statements, and allowed no
one to differ from his conclusions, “and those,” says he, in one place,
“who cannot see this, may the Author of nature have pity upon their
unfortunate eyes, for the fault is not in the thing, but in the sight which
we are unable to give them.”

Galileo.! Just as the modern treatment of statics originates with
Stevinus, so the foundation of the science of dynamics is due to Galileo.
Galileo Galilei was born at Pisa on February 18, 1564, and died near
Florence on January 8, 1642. His father, a poor descendant of an old
and noble Florentine house, was himself a fair mathematician and a
good musician. Galileo was educated at the monastery of Vallombrosa,
where his literary ability and mechanical ingenuity attracted consider-
able attention. He was persuaded to become a novitiate of the order in
1579, but his father, who had other views, at once removed him, and
sent him in 1581 to the university of Pisa to study medicine. It was
there that he noticed that the great bronze lamp, hanging from the roof
of the cathedral, performed its oscillations in equal times, and indepen-
dently of whether the oscillations were large or small—a fact which he
verified by counting his pulse. He had been hitherto kept in ignorance
of mathematics, but one day, by chance hearing a lecture on geometry
(by Ricci), he was so fascinated by the science that thenceforward he
devoted his leisure to its study, and finally got leave to discontinue his
medical studies. He left the university in 1585, and almost immediately
commenced his original researches.

He published in 1586 an account of the hydrostatic balance, and
in 1588 an essay on the centre of gravity in solids; these were not
printed till later. The fame of these works secured for him in 1589
the appointment to the mathematical chair at Pisa—the stipend, as
was then the case with most professorships, being very small. During
the next three years he carried on, from the leaning tower, that series
of experiments on falling bodies which established the first principles
of dynamics. Unfortunately, the manner in which he promulgated his
discoveries, and the ridicule he threw on those who opposed him, gave
not unnatural offence, and in 1591 he was obliged to resign his position.

1See the biography of Galileo, by J. J. Fahie, London, 1903. An edition of
Galileo’s works was issued in 16 volumes by E. Alberi, Florence, 1842-1856. A good
many of his letters on various mathematical subjects have been since discovered,
and a new and complete edition is in process of issue by the Italian Government,
Florence; vols. i to xix and a bibliography, 1890-1907.
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At this time he seems to have been much hampered by want of
money. Influence was, however, exerted on his behalf with the Vene-
tian senate, and he was appointed professor at Padua, a chair which
he held for eighteen years, 1592-1610. His lectures there seem to have
been chiefly on mechanics and hydrostatics, and the substance of them
is contained in his treatise on mechanics, which was published in 1612.
In these lectures he repeated his Pisan experiments, and demonstrated
that falling bodies did not (as was then commonly believed) descend
with velocities proportional, amongst other things, to their weights.
He further shewed that, if it were assumed that they descended with
a uniformly accelerated motion, it was possible to deduce the relations
connecting velocity, space, and time which did actually exist. At a later
date, by observing the times of descent of bodies sliding down inclined
planes, he shewed that this hypothesis was true. He also proved that
the path of a projectile is a parabola, and in doing so implicitly used
the principles laid down in the first two laws of motion as enunciated
by Newton. He gave an accurate definition of momentum which some
writers have thought may be taken to imply a recognition of the truth
of the third law of motion. The laws of motion are, however, nowhere
enunciated in a precise and definite form, and Galileo must be regarded
rather as preparing the way for Newton than as being himself the cre-
ator of the science of dynamics.

In statics he laid down the principle that in machines what was
gained in power was lost in speed, and in the same ratio. In the statics of
solids he found the force which can support a given weight on an inclined
plane; in hydrostatics he propounded the more elementary theorems on
pressure and on floating bodies; while among hydrostatical instruments
he used, and perhaps invented, the thermometer, though in a somewhat
imperfect form.

It is, however, as an astronomer that most people regard Galileo,
and though, strictly speaking, his astronomical researches lie outside
the subject-matter of this book, it may be interesting to give the lead-
ing facts. It was in the spring of 1609 that Galileo heard that a tube
containing lenses had been made by an optician, Hans Lippershey, of
Middleburg, which served to magnify objects seen through it. This gave
him the clue, and he constructed a telescope of that kind which still
bears his name, and of which an ordinary opera-glass is an example.
Within a few months he had produced instruments which were capable
of magnifying thirty-two diameters, and within a year he had made
and published observations on the solar spots, the lunar mountains,
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Jupiter’s satellites, the phases of Venus, and Saturn’s ring. The dis-
covery of the microscope followed naturally from that of the telescope.
Honours and emoluments were showered on him, and he was enabled
in 1610 to give up his professorship and retire to Florence. In 1611 he
paid a temporary visit to Rome, and exhibited in the gardens of the
Quirinal the new worlds revealed by the telescope.

It would seem that Galileo had always believed in the Copernican
system, but was afraid of promulgating it on account of the ridicule it
excited. The existence of Jupiter’s satellites seemed, however, to make
its truth almost certain, and he now boldly preached it. The orthodox
party resented his action, and in February 1616 the Inquisition declared
that to suppose the sun the centre of the solar system was false, and
opposed to Holy Scripture. The edict of March 5, 1616, which carried
this into effect, has never been repealed, though it has been long tacitly
ignored. It is well known that towards the middle of the seventeenth
century the Jesuits evaded it by treating the theory as an hypothesis
from which, though false, certain results would follow.

In January 1632 Galileo published his dialogues on the system of the
world, in which in clear and forcible language he expounded the Coper-
nican theory. In these, apparently through jealousy of Kepler’s fame,
he does not so much as mention Kepler’s laws (the first two of which
had been published in 1609, and the third in 1619); he rejects Kepler’s
hypothesis that the tides are caused by the attraction of the moon, and
tries to explain their existence (which he alleges is a confirmation of
the Copernican hypothesis) by the statement that different parts of the
earth rotate with different velocities. He was more successful in show-
ing that mechanical principles would account for the fact that a stone
thrown straight up falls again to the place from which it was thrown—a
fact which previously had been one of the chief difficulties in the way
of any theory which supposed the earth to be in motion.

The publication of this book was approved by the papal censor,
but substantially was contrary to the edict of 1616. Galileo was sum-
moned to Rome, forced to recant, do penance, and was released only
on promise of obedience. The documents recently printed show that he
was threatened with the torture, but probably there was no intention
of carrying the threat into effect.

When released he again took up his work on mechanics, and by 1636
had finished a book which was published under the title Discorsi intorno
a due nuove scienze at Leyden in 1638. In 1637 he lost his sight, but
with the aid of pupils he continued his experiments on mechanics and
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hydrostatics, and in particular on the possibility of using a pendulum
to regulate a clock, and on the theory of impact.

An anecdote of this time has been preserved which, though probably
not authentic, is sufficiently interesting to bear repetition. According
to one version of the story, Galileo was interviewed by some members
of a Florentine guild who wanted their pumps altered so as to raise
water to a height which was greater than thirty feet; and thereupon he
remarked that it might be desirable to first find out why the water rose
at all. A bystander intervened and said there was no difficulty about
that, because nature abhorred a vacuum. Yes, said Galileo, but appar-
ently it is only a vacuum which is less than thirty feet. His favourite
pupil Torricelli was present, and thus had his attention directed to the
question, which he subsequently elucidated.

Galileo’s work may, I think, be fairly summed up by saying that
his researches on mechanics are deserving of high praise, and that they
are memorable for clearly enunciating the fact that science must be
founded on laws obtained by experiment; his astronomical observations
and his deductions therefrom were also excellent, and were expounded
with a literary skill which leaves nothing to be desired; but though he
produced some of the evidence which placed the Copernican theory on
a satisfactory basis, he did not himself make any special advance in the
theory of astronomy.

Francis Bacon.!  The necessity of an experimental foundation
for science was also advocated with considerable effect by Galileo’s
contemporary Francis Bacon (Lord Verulam), who was born at London
on Jan. 22, 1561, and died on April 9, 1626. He was educated at Trinity
College, Cambridge. His career in politics and at the bar culminated
in his becoming Lord Chancellor, with the title of Lord Verulam. The
story of his subsequent degradation for accepting bribes is well known.

His chief work is the Novum Organum, published in 1620, in which
he lays down the principles which should guide those who are making
experiments on which they propose to found a theory of any branch
of physics or applied mathematics. He gave rules by which the results
of induction could be tested, hasty generalisations avoided, and exper-
iments used to check one another. The influence of this treatise in the
eighteenth century was great, but it is probable that during the pre-
ceding century it was little read, and the remark repeated by several

!See his life by J. Spedding, London, 1872-74. The best edition of his works is
that by Ellis, Spedding, and Heath, in 7 volumes, London, second edition, 1870.



CH. XIII] THE CLOSE OF THE RENAISSANCE 209

French writers that Bacon and Descartes are the creators of modern
philosophy rests on a misapprehension of Bacon’s influence on his con-
temporaries; any detailed account of this book belongs, however, to the
history of scientific ideas rather than to that of mathematics.

Before leaving the subject of applied mathematics I may add a few
words on the writings of Guldinus, Wright, and Snell.

Guldinus. Habakkuk Guldinus, born at St. Gall on June 12, 1577,
and died at Gratz on Nov. 3, 1643, was of Jewish descent, but was
brought up as a Protestant; he was converted to Roman Catholicism,
and became a Jesuit, when he took the Christian name of Paul, and
it was to him that the Jesuit colleges at Rome and Gratz owed their
mathematical reputation. The two theorems known by the name of
Pappus (to which I have alluded above) were published by Guldinus
in the fourth book of his De Centro Gravitatis, Vienna, 1635-1642.
Not only were the rules in question taken without acknowledgment
from Pappus, but (according to Montucla) the proof of them given
by Guldinus was faulty, though he was successful in applying them to
the determination of the volumes and surfaces of certain solids. The
theorems were, however, previously unknown, and their enunciation
excited considerable interest.

Wright.! I may here also refer to Edward Wright, who is worthy of
mention for having put the art of navigation on a scientific basis. Wright
was born in Norfolk about 1560, and died in 1615. He was educated
at Caius College, Cambridge, of which society he was subsequently a
fellow. He seems to have been a good sailor, and he had a special
talent for the construction of instruments. About 1600 he was elected
lecturer on mathematics by the East India Company; he then settled in
London, and shortly afterwards was appointed mathematical tutor to
Henry, Prince of Wales, the son of James I. His mechanical ability may
be illustrated by an orrery of his construction by which it was possible
to predict eclipses; it was shewn in the Tower as a curiosity as late as
1675.

In the maps in use before the time of Gerard Mercator a degree,
whether of latitude or longitude, had been represented in all cases by
the same length, and the course to be pursued by a vessel was marked
on the map by a straight line joining the ports of arrival and departure.
Mercator had seen that this led to considerable errors, and had realised

1See pp. 25-27 of my History of the Study of Mathematics at Cambridge, Cam-
bridge, 1889.



CH. XIII] THE CLOSE OF THE RENAISSANCE 210

that to make this method of tracing the course of a ship at all accurate
the space assigned on the map to a degree of latitude ought gradually
to increase as the latitude increased. Using this principle, he had em-
pirically constructed some charts, which were published about 1560 or
1570. Wright set himself the problem to determine the theory on which
such maps should be drawn, and succeeded in discovering the law of
the scale of the maps, though his rule is strictly correct for small arcs
only. The result was published in the second edition of Blundeville’s
Ezxercises.

In 1599 Wright published his Certain Errors in Navigation Detected
and Corrected, in which he explained the theory and inserted a table of
meridional parts. The reasoning shews considerable geometrical power.
In the course of the work he gives the declinations of thirty-two stars,
explains the phenomena of the dip, parallax, and refraction, and adds a
table of magnetic declinations; he assumes the earth to be stationary. In
the following year he published some maps constructed on his principle.
In these the northernmost point of Australia is shewn; the latitude of
London is taken to be 51°32'.

Snell. A contemporary of Guldinus and Wright was Willebrod
Snell, whose name is still well known through his discovery in 1619
of the law of refraction in optics. Snell was born at Leyden in 1581,
occupied a chair of mathematics at the university there, and died there
on Oct. 30, 1626. He was one of those infant prodigies who occasionally
appear, and at the age of twelve he is said to have been acquainted with
the standard mathematical works. I will here only add that in geodesy
he laid down the principles for determining the length of the arc of
a meridian from the measurement of any base line, and in spherical
trigonometry he discovered the properties of the polar or supplemental
triangle.

Revival of interest in pure geometry.

The close of the sixteenth century was marked not only by the
attempt to found a theory of dynamics based on laws derived from
experiment, but also by a revived interest in geometry. This was largely
due to the influence of Kepler.

Kepler.!  Johann Kepler, one of the founders of modern astron-

1See Johann Kepplers Leben und Wirken, by J. L. E. von Breitschwert, Stuttgart,
1831; and R. Wolf’s Geschichte der Astronomie, Munich, 1877. A complete edition
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omy, was born of humble parents near Stuttgart on Dec. 27, 1571, and
died at Ratisbon on Nov. 15, 1630. He was educated under Mastlin at
Tiibingen. In 1593 he was appointed professor at Gratz, where he made
the acquaintance of a wealthy widow, whom he married, but found too
late that he had purchased his freedom from pecuniary troubles at the
expense of domestic happiness. In 1599 he accepted an appointment
as assistant to Tycho Brahe, and in 1601 succeeded his master as as-
tronomer to the emperor Rudolph II. But his career was dogged by bad
luck: first his stipend was not paid; next his wife went mad and then
died, and a second marriage in 1611 did not prove fortunate; while, to
complete his discomfort, he was expelled from his chair, and narrowly
escaped condemnation for heterodoxy. During this time he depended
for his income on telling fortunes and casting horoscopes, for, as he
says, “nature which has conferred upon every animal the means of ex-
istence has designed astrology as an adjunct and ally to astronomy.”
He seems, however, to have had no scruple in charging heavily for his
services, and to the surprise of his contemporaries was found at his
death to possess a considerable hoard of money. He died while on a
journey to try and recover for the benefit of his children some of the
arrears of his stipend.

In describing Galileo’s work I alluded briefly to the three laws in
astronomy that Kepler had discovered, and in connection with which
his name will be always associated. I may further add that he suggested
that the planets might be retained in their orbits by magnetic vortices,
but this was little more than a crude conjecture. I have also already
mentioned the prominent part he took in bringing logarithms into gen-
eral use on the continent. These are familiar facts; but it is not known
so generally that Kepler was also a geometrician and algebraist of con-
siderable power, and that he, Desargues, and perhaps Galileo, may be
considered as forming a connecting link between the mathematicians of
the renaissance and those of modern times.

Kepler’s work in geometry consists rather in certain general princi-
ples enunciated, and illustrated by a few cases, than in any systematic
exposition of the subject. In a short chapter on conics inserted in his
Paralipomena, published in 1604, he lays down what has been called
the principle of continuity, and gives as an example the statement that

of Kepler’s works was published by C. Frisch at Frankfort, in 8 volumes, 1858-71;
and an analysis of the mathematical part of his chief work, the Harmonice Munds,
is given by Chasles in his Aper¢u historique. See also Cantor, vol. ii, part xv.
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a parabola is at once the limiting case of an ellipse and of a hyperbola;
he illustrates the same doctrine by reference to the foci of conics (the
word focus was introduced by him); and he also explains that parallel
lines should be regarded as meeting at infinity. He introduced the use
of the eccentric angle in discussing properties of the ellipse.

In his Stereometria, which was published in 1615, he determines the
volumes of certain vessels and the areas of certain surfaces, by means of
infinitesimals instead of by the long and tedious method of exhaustions.
These investigations as well as those of 1604 arose from a dispute with
a wine merchant as to the proper way of gauging the contents of a cask.
This use of infinitesimals was objected to by Guldinus and other writers
as inaccurate, but though the methods of Kepler are not altogether free
from objection he was substantially correct, and by applying the law of
continuity to infinitesimals he prepared the way for Cavalieri’s method
of indivisibles, and the infinitesimal calculus of Newton and Leibnitz.

Kepler’s work on astronomy lies outside the scope of this book. I
will mention only that it was founded on the observations of Tycho
Brahe,! whose assistant he was. His three laws of planetary motion
were the result of many and laborious efforts to reduce the phenomena
of the solar system to certain simple rules. The first two were published
in 1609, and stated that the planets describe ellipses round the sun, the
sun being in a focus; and that the line joining the sun to any planet
sweeps over equal areas in equal times. The third was published in
1619, and stated that the squares of the periodic times of the planets
are proportional to the cubes of the major axes of their orbits. The
laws were deduced from observations on the motions of Mars and the
earth, and were extended by analogy to the other planets. I ought
to add that he attempted to explain why these motions took place
by a hypothesis which is not very different from Descartes’s theory of
vortices. He suggested that the tides were caused by the attraction of
the moon. Kepler also devoted considerable time to the elucidation of
the theories of vision and refraction in optics.

While the conceptions of the geometry of the Greeks were being ex-
tended by Kepler, a Frenchman, whose works until recently were almost
unknown, was inventing a new method of investigating the subject—a
method which is now known as projective geometry. This was the dis-
covery of Desargues, whom I put (with some hesitation) at the close of

1For an account of Tycho Brahe, born at Knudstrup in 1546 and died at Prague
in 1601, see his life by J. L. E. Dreyer, Edinburgh, 1890.
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this period, and not among the mathematicians of modern times.

Desargues.!  Gérard Desargues, born at Lyons in 1593, and died
in 1662, was by profession an engineer and architect, but he gave some
courses of gratuitous lectures in Paris from 1626 to about 1630 which
made a great impression upon his contemporaries. Both Descartes and
Pascal had a high opinion of his work and abilities, and both made
considerable use of the theorems he had enunciated.

In 1636 Desargues issued a work on perspective; but most of his
researches were embodied in his Brouillon proiect on conics, published
in 1639, a copy of which was discovered by Chasles in 1845. I take the
following summary of it from C. Taylor’s work on conics. Desargues
commences with a statement of the doctrine of continuity as laid down
by Kepler: thus the points at the opposite ends of a straight line are
regarded as coincident, parallel lines are treated as meeting at a point
at infinity, and parallel planes on a line at infinity, while a straight line
may be considered as a circle whose centre is at infinity. The theory
of involution of six points, with its special cases, is laid down, and the
projective property of pencils in involution is established. The theory
of polar lines is expounded, and its analogue in space suggested. A
tangent is defined as the limiting case of a secant, and an asymptote
as a tangent at infinity. Desargues shows that the lines which join four
points in a plane determine three pairs of lines in involution on any
transversal, and from any conic through the four points another pair
of lines can be obtained which are in involution with any two of the
former. He proves that the points of intersection of the diagonals and
the two pairs of opposite sides of any quadrilateral inscribed in a conic
are a conjugate triad with respect to the conic, and when one of the
three points is at infinity its polar is a diameter; but he fails to explain
the case in which the quadrilateral is a parallelogram, although he had
formed the conception of a straight line which was wholly at infinity.
The book, therefore, may be fairly said to contain the fundamental
theorems on involution, homology, poles and polars, and perspective.

The influence exerted by the lectures of Desargues on Descartes,
Pascal, and the French geometricians of the seventeenth century was
considerable; but the subject of projective geometry soon fell into obliv-
ion, chiefly because the analytical geometry of Descartes was so much
more powerful as a method of proof or discovery.

1See Oeuvres de Desargues, by M. Poudra, 2 vols., Paris, 1864; and a note in
the Bibliotheca Mathematica, 1885, p. 90.
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The researches of Kepler and Desargues will serve to remind us that
as the geometry of the Greeks was not capable of much further exten-
sion, mathematicians were now beginning to seek for new methods of
investigation, and were extending the conceptions of geometry. The
invention of analytical geometry and of the infinitesimal calculus tem-
porarily diverted attention from pure geometry, but at the beginning
of the last century there was a revival of interest in it, and since then
it has been a favourite subject of study with many mathematicians.

Mathematical knowledge at the close of the renaissance.

Thus by the beginning of the seventeenth century we may say that
the fundamental principles of arithmetic, algebra, theory of equations,
and trigonometry had been laid down, and the outlines of the subjects
as we know them had been traced. It must be, however, remembered
that there were no good elementary text-books on these subjects; and a
knowledge of them was therefore confined to those who could extract it
from the ponderous treatises in which it lay buried. Though much of the
modern algebraical and trigonometrical notation had been introduced,
it was not familiar to mathematicians, nor was it even universally ac-
cepted; and it was not until the end of the seventeenth century that
the language of these subjects was definitely fixed. Considering the
absence of good text-books, I am inclined rather to admire the rapidity
with which it came into universal use, than to cavil at the hesitation
to trust to it alone which many writers showed.

If we turn to applied mathematics, we find, on the other hand,
that the science of statics had made but little advance in the eighteen
centuries that had elapsed since the time of Archimedes, while the
foundations of dynamics were laid by Galileo only at the close of the
sixteenth century. In fact, as we shall see later, it was not until the time
of Newton that the science of mechanics was placed on a satisfactory
basis. The fundamental conceptions of mechanics are difficult, but the
ignorance of the principles of the subject shown by the mathematicians
of this time is greater than would have been anticipated from their
knowledge of pure mathematics.

With this exception, we may say that the principles of analytical
geometry and of the infinitesimal calculus were needed before there
was likely to be much further progress. The former was employed by
Descartes in 1637, the latter was invented by Newton some thirty or
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forty years later, and their introduction may be taken as marking the
commencement of the period of modern mathematics.
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THIRD PERIOD.

Modern Mathematics.

The history of modern mathematics begins with the invention of an-
alytical geometry and the infinitesimal calculus. The mathematics is
far more complex than that produced in either of the preceding periods;
but, during the seventeenth and eighteenth centuries, it may be gener-
ally described as characterized by the development of analysis, and its
application to the phenomena of nature.

I continue the chronological arrangement of the subject. Chapter[XV]
contains the history of the forty years from 1635 to 1675, and an ac-
count of the mathematical discoveries of Descartes, Cavalieri, Pascal,
Wallis, Fermat, and Huygens. Chapter is given up to a discussion
of Newton’s researches. Chapter contains an account of the works
of Leibnitz and his followers during the first half of the eighteenth cen-
tury (including D’Alembert), and of the contemporary English school
to the death of Maclaurin. The works of Euler, Lagrange, Laplace, and
their contemporaries form the subject-matter of chapter Xviii]

Lastly, in chapter I have added some notes on a few of the
mathematicians of recent times; but I exclude all detailed reference to
living writers, and partly because of this, partly for other reasons there
given, the account of contemporary mathematics does not profess to
cover the subject.
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CHAPTER XIV.

THE HISTORY OF MODERN MATHEMATICS.

THE division between this period and that treated in the last six
chapters is by no means so well defined as that which separates the
history of Greek mathematics from the mathematics of the middle ages.
The methods of analysis used in the seventeenth century and the kind
of problems attacked changed but gradually; and the mathematicians
at the beginning of this period were in immediate relations with those
at the end of that last considered. For this reason some writers have
divided the history of mathematics into two parts only, treating the
schoolmen as the lineal successors of the Greek mathematicians, and
dating the creation of modern mathematics from the introduction of
the Arab text-books into Europe. The division I have given is, I think,
more convenient, for the introduction of analytical geometry and of the
infinitesimal calculus revolutionized the development of the subject,
and therefore it seems preferable to take their invention as marking the
commencement of modern mathematics.

The time that has elapsed since these methods were invented has
been a period of incessant intellectual activity in all departments of
knowledge, and the progress made in mathematics has been immense.
The greatly extended range of knowledge, the mass of materials to
be mastered, the absence of perspective, and even the echoes of old
controversies, combine to increase the difficulties of an author. As,
however, the leading facts are generally known, and the works published
during this time are accessible to any student, I may deal more concisely
with the lives and writings of modern mathematicians than with those
of their predecessors, and confine myself more strictly than before to
those who have materially affected the progress of the subject.

To give a sense of unity to a history of mathematics it is necessary
to treat it chronologically, but it is possible to do this in two ways. We
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may discuss separately the development of different branches of mathe-
matics during a certain period (not too long), and deal with the works
of each mathematician under such heads as they may fall. Or we may
describe in succession the lives and writings of the mathematicians of
a certain period, and deal with the development of different subjects
under the heads of those who studied them. Personally, I prefer the
latter course; and not the least advantage of this, from my point of
view, is that it adds a human interest to the narrative. No doubt as
the subject becomes more complex this course becomes more difficult,
and it may be that when the history of mathematics in the nineteenth
century is written it will be necessary to deal separately with the sepa-
rate branches of the subject, but, as far as I can, I continue to present
the history biographically.

Roughly speaking, we may say that five distinct stages in the history
of modern mathematics can be discerned.

First of all, there is the invention of analytical geometry by Des-
cartes in 1637; and almost at the same time the introduction of the
method of indivisibles, by the use of which areas, volumes, and the po-
sitions of centres of mass can be determined by summation in a manner
analogous to that effected nowadays by the aid of the integral calcu-
lus. The method of indivisibles was soon superseded by the integral
calculus. Analytical geometry, however, maintains its position as part
of the necessary training of every mathematician, and for all purposes
of research is incomparably more potent than the geometry of the an-
cients. The latter is still, no doubt, an admirable intellectual training,
and it frequently affords an elegant demonstration of some proposition
the truth of which is already known, but it requires a special procedure
for every particular problem attacked. The former, on the other hand,
lays down a few simple rules by which any property can be at once
proved or disproved.

In the second place, we have the invention, some thirty years later,
of the fluxional or differential calculus. Wherever a quantity changes
according to some continuous law—and most things in nature do so
change—the differential calculus enables us to measure its rate of in-
crease or decrease; and, from its rate of increase or decrease, the integral
calculus enables us to find the original quantity. Formerly every sepa-
rate function of x such as (1+x)", log(1+ ), sinz, tan~' z, &c., could
be expanded in ascending powers of x only by means of such special
procedure as was suitable for that particular problem; but, by the aid
of the calculus, the expansion of any function of z in ascending pow-
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ers of x is in general reducible to one rule which covers all cases alike.
So, again, the theory of maxima and minima, the determination of the
lengths of curves and the areas enclosed by them, the determination
of surfaces, of volumes, and of centres of mass, and many other prob-
lems, are each reducible to a single rule. The theories of differential
equations, of the calculus of variations, of finite differences, &c., are
the developments of the ideas of the calculus.

These two subjects—analytical geometry and the calculus—became
the chief instruments of further progress in mathematics. In both of
them a sort of machine was constructed: to solve a problem, it was only
necessary to put in the particular function dealt with, or the equation
of the particular curve or surface considered, and on performing certain
simple operations the result came out. The validity of the process was
proved once for all, and it was no longer requisite to invent some special
method for every separate function, curve, or surface.

In the third place, Huygens, following Galileo, laid the foundation
of a satisfactory treatment of dynamics, and Newton reduced it to an
exact science. The latter mathematician proceeded to apply the new
analytical methods not only to numerous problems in the mechanics
of solids and fluids on the earth, but to the solar system; the whole of
mechanics terrestrial and celestial was thus brought within the domain
of mathematics. There is no doubt that Newton used the calculus to
obtain many of his results, but he seems to have thought that, if his
demonstrations were established by the aid of a new science which was
at that time generally unknown, his critics (who would not understand
the fluxional calculus) would fail to realise the truth and importance of
his discoveries. He therefore determined to give geometrical proofs of all
his results. He accordingly cast the Principia into a geometrical form,
and thus presented it to the world in a language which all men could
then understand. The theory of mechanics was extended, systematized,
and put in its modern form by Lagrange and Laplace towards the end
of the eighteenth century.

In the fourth place, we may say that during this period the chief
branches of physics have been brought within the scope of mathemat-
ics. This extension of the domain of mathematics was commenced by
Huygens and Newton when they propounded their theories of light;
but it was not until the beginning of the last century that sufficiently
accurate observations were made in most physical subjects to enable
mathematical reasoning to be applied to them.

Numerous and far-reaching conclusions have been obtained in phys-
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ics by the application of mathematics to the results of observations and
experiments, but we now want some more simple hypotheses from which
we can deduce those laws which at present form our starting-point. If,
to take one example, we could say in what electricity consisted, we
might get some simple laws or hypotheses from which by the aid of
mathematics all the observed phenomena could be deduced, in the same
way as Newton deduced all the results of physical astronomy from the
law of gravitation. All lines of research seem, moreover, to indicate that
there is an intimate connection between the different branches of phys-
ics, e.g. between light, heat, elasticity, electricity, and magnetism. The
ultimate explanation of this and of the leading facts in physics seems to
demand a study of molecular physics; a knowledge of molecular physics
in its turn seems to require some theory as to the constitution of mat-
ter; it would further appear that the key to the constitution of matter is
to be found in electricity or chemical physics. So the matter stands at
present; the connection between the different branches of physics, and
the fundamental laws of those branches (if there be any simple ones),
are riddles which are yet unsolved. This history does not pretend to
treat of problems which are now the subject of investigation; the fact
also that mathematical physics is mainly the creation of the nineteenth
century would exclude all detailed discussion of the subject.

Fifthly, this period has seen an immense extension of pure math-
ematics. Much of this is the creation of comparatively recent times,
and I regard the details of it as outside the limits of this book, though
in chapter [XIX| I have allowed myself to mention some of the subjects
discussed. The most striking features of this extension are the critical
discussion of fundamental principles, the developments of higher geom-
etry, of higher arithmetic or the theory of numbers, of higher algebra
(including the theory of forms), and of the theory of equations, also
the discussion of functions of double and multiple periodicity, and the
creation of a theory of functions.

This hasty summary will indicate the subjects treated and the limi-
tations I have imposed on myself. The history of the origin and growth
of analysis and its application to the material universe comes within my
purview. The extensions in the latter half of the nineteenth century of
pure mathematics and of the application of mathematics to physical
problems open a new period which lies beyond the limits of this book;
and I allude to these subjects only so far as they may indicate the
directions in which the future history of mathematics appears to be
developing.
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CHAPTER XV.

HISTORY OF MATHEMATICS FROM DESCARTES TO HUYGENS.!
CIRC. 1635—-1675.

I PROPOSE in this chapter to consider the history of mathematics
during the forty years in the middle of the seventeenth century. I re-
gard Descartes, Cavalieri, Pascal, Wallis, Fermat, and Huygens as the
leading mathematicians of this time. I shall treat them in that order,
and I shall conclude with a brief list of the more eminent remaining
mathematicians of the same date.

I have already stated that the mathematicians of this period—
and the remark applies more particularly to Descartes, Pascal, and
Fermat—were largely influenced by the teaching of Kepler and Desar-
gues, and I would repeat again that I regard these latter and Galileo as
forming a connecting link between the writers of the renaissance and
those of modern times. I should also add that the mathematicians con-
sidered in this chapter were contemporaries, and, although I have tried
to place them roughly in such an order that their chief works shall come
in a chronological arrangement, it is essential to remember that they
were in relation one with the other, and in general were acquainted
with one another’s researches as soon as these were published.

Descartes.? Subject to the above remarks, we may consider
Descartes as the first of the modern school of mathematics. René Des-

1See Cantor, part xv, vol. ii, pp. 599-844: other authorities for the mathemati-
cians of this period are mentioned in the footnotes.

2See Descartes, by E. S. Haldane, London, 1905; and Descartes Savant, by
G. Milhaud, Paris, 1921. A complete edition of his works, edited by C. Adam and
P. Tanner, is in process of issue by the French Government; vols. i-ix, 1897-1904.
A tolerably complete account of Descartes’s mathematical and physical investiga-
tions is given in Ersch and Gruber’s Encyclopddie. The most complete edition of
his works is that by Victor Cousin in 11 vols., Paris, 1824-26. Some minor papers
subsequently discovered were printed by F. de Careil, Paris, 1859.
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cartes was born near Tours on March 31, 1596, and died at Stockholm
on February 11, 1650; thus he was a contemporary of Galileo and De-
sargues. His father, who, as the name implies, was of a good family,
was accustomed to spend half the year at Rennes when the local par-
liament, in which he held a commission as councillor, was in session,
and the rest of the time on his family estate of Les Cartes at La Haye.
René, the second of a family of two sons and one daughter, was sent
at the age of eight years to the Jesuit School at La Fléche, and of the
admirable discipline and education there given he speaks most highly.
On account of his delicate health he was permitted to lie in bed till late
in the mornings; this was a custom which he always followed, and when
he visited Pascal in 1647 he told him that the only way to do good work
in mathematics and to preserve his health was never to allow any one
to make him get up in the morning before he felt inclined to do so; an
opinion which I chronicle for the benefit of any schoolboy into whose
hands this work may fall.

On leaving school in 1612 Descartes went to Paris to be introduced
to the world of fashion. Here, through the medium of the Jesuits, he
made the acquaintance of Mydorge, and renewed his schoolboy friend-
ship with Mersenne, and together with them he devoted the two years
of 1615 and 1616 to the study of mathematics. At that time a man
of position usually entered either the army or the church; Descartes
chose the former profession, and in 1617 joined the army of Prince
Maurice of Orange, then at Breda. Walking through the streets there
he saw a placard in Dutch which excited his curiosity, and stopping
the first passer, asked him to translate it into either French or Latin.
The stranger, who happened to be Isaac Beeckman, the head of the
Dutch College at Dort, offered to do so if Descartes would answer it;
the placard being, in fact, a challenge to all the world to solve a certain
geometrical problem.! Descartes worked it out within a few hours, and
a warm friendship between him and Beeckman was the result. This un-
expected test of his mathematical attainments made the uncongenial
life of the army distasteful to him, and though, under family influence
and tradition, he remained a soldier, he continued to occupy his leisure
with mathematical studies. He was accustomed to date the first ideas
of his new philosophy and of his analytical geometry from three dreams
which he experienced on the night of November 10, 1619, at Neuberg,

!Some doubt has been recently expressed as to whether the story is well founded:
see L’Intermédiaire des Mathématiciens, Paris, 1909, vol. xvi, pp. 12-13.
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when campaigning on the Danube, and he regarded this as the critical
day of his life, and one which determined his whole future.

He resigned his commission in the spring of 1621, and spent the
next five years in travel, during most of which time he continued to
study pure mathematics. In 1626 we find him settled at Paris, “a little
well-built figure, modestly clad in green taffety, and only wearing sword
and feather in token of his quality as a gentleman.” During the first
two years there he interested himself in general society, and spent his
leisure in the construction of optical instruments; but these pursuits
were merely the relaxations of one who failed to find in philosophy that
theory of the universe which he was convinced finally awaited him.

In 1628 Cardinal de Berulle, the founder of the Oratorians, met Des-
cartes, and was so much impressed by his conversation that he urged
on him the duty of devoting his life to the examination of truth. Des-
cartes agreed, and the better to secure himself from interruption moved
to Holland, then at the height of its power. There for twenty years he
lived, giving up all his time to philosophy and mathematics. Science,
he says, may be compared to a tree; metaphysics is the root, physics is
the trunk, and the three chief branches are mechanics, medicine, and
morals, these forming the three applications of our knowledge, namely,
to the external world, to the human body, and to the conduct of life.

He spent the first four years, 1629 to 1633, of his stay in Holland
in writing Le Monde, which embodies an attempt to give a physical
theory of the universe; but finding that its publication was likely to
bring on him the hostility of the church, and having no desire to pose
as a martyr, he abandoned it: the incomplete manuscript was published
in 1664. He then devoted himself to composing a treatise on universal
science; this was published at Leyden in 1637 under the title Discours
de la méthode pour bien conduire sa raison et chercher la vérité dans les
sciences, and was accompanied with three appendices (which possibly
were not issued till 1638) entitled La Dioptrique, Les Météores, and La
Géométrie; it is from the last of these that the invention of analytical
geometry dates. In 1641 he published a work called Meditationes, in
which he explained at some length his views of philosophy as sketched
out in the Discours. In 1644 he issued the Principia Philosophiae,
the greater part of which was devoted to physical science, especially
the laws of motion and the theory of vortices. In 1647 he received a
pension from the French court in honour of his discoveries. He went to
Sweden on the invitation of the Queen in 1649, and died a few months
later of inflammation of the lungs.
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In appearance, Descartes was a small man with large head, project-
ing brow, prominent nose, and black hair coming down to his eyebrows
His voice was feeble. In disposition he was cold and selfish. Consider-
ing the range of his studies he was by no means widely read, and he
despised both learning and art unless something tangible could be ex-
tracted therefrom. He never married, and left no descendants, though
he had one illegitimate daughter, who died young.

As to his philosophical theories, it will be sufficient to say that he
discussed the same problems which have been debated for the last two
thousand years, and probably will be debated with equal zeal two thou-
sand years hence. It is hardly necessary to say that the problems them-
selves are of importance and interest, but from the nature of the case
no solution ever offered is capable either of rigid proof or of disproof;
all that can be effected is to make one explanation more probable than
another, and whenever a philosopher like Descartes believes that he has
at last finally settled a question it has been possible for his successors
to point out the fallacy in his assumptions. I have read somewhere that
philosophy has always been chiefly engaged with the inter-relations of
God, Nature, and Man. The earliest philosophers were Greeks who
occupied themselves mainly with the relations between God and Na-
ture, and dealt with Man separately. The Christian Church was so
absorbed in the relation of God to Man as entirely to neglect Nature.
Finally, modern philosophers concern themselves chiefly with the rela-
tions between Man and Nature. Whether this is a correct historical
generalization of the views which have been successively prevalent I do
not care to discuss here, but the statement as to the scope of modern
philosophy marks the limitations of Descartes’s writings.

Descartes’s chief contributions to mathematics were his analytical
geometry and his theory of vortices, and it is on his researches in connec-
tion with the former of these subjects that his mathematical reputation
rests.

Analytical geometry does not consist merely (as is sometimes loosely
said) in the application of algebra to geometry; that had been done by
Archimedes and many others, and had become the usual method of
procedure in the works of the mathematicians of the sixteenth century.
The great advance made by Descartes was that he saw that a point
in a plane could be completely determined if its distances, say = and
y, from two fixed lines drawn at right angles in the plane were given,
with the convention familiar to us as to the interpretation of positive
and negative values; and that though an equation f(z,y) = 0 was
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indeterminate and could be satisfied by an infinite number of values of
x and y, yet these values of x and y determined the co-ordinates of a
number of points which form a curve, of which the equation f(x,y) = 0
expresses some geometrical property, that is, a property true of the
curve at every point on it. Descartes asserted that a point in space
could be similarly determined by three co-ordinates, but he confined
his attention to plane curves.

It was at once seen that in order to investigate the properties of
a curve it was sufficient to select, as a definition, any characteristic
geometrical property, and to express it by means of an equation be-
tween the (current) co-ordinates of any point on the curve, that is, to
translate the definition into the language of analytical geometry. The
equation so obtained contains implicitly every property of the curve,
and any particular property can be deduced from it by ordinary alge-
bra without troubling about the geometry of the figure. This may have
been dimly recognized or foreshadowed by earlier writers, but Descartes
went further and pointed out the very important facts that two or more
curves can be referred to one and the same system of co-ordinates, and
that the points in which two curves intersect can be determined by
finding the roots common to their two equations. I need not go further
into details, for nearly everyone to whom the above is intelligible will
have read analytical geometry, and is able to appreciate the value of its
invention.

Descartes’s Géométrie is divided into three books: the first two of
these treat of analytical geometry, and the third includes an analysis
of the algebra then current. It is somewhat difficult to follow the rea-
soning, but the obscurity was intentional. “Je n’ai rien omis,” says
he, “qu’a dessein ...j’avois prévu que certaines gens qui se vantent de
scavoir tout n’auroient pas manqué de dire que je n’avois rien écrit
qu’ils n’eussent scu auparavant, si je me fusse rendu assez intelligible
pour eux.”

The first book commences with an explanation of the principles
of analytical geometry, and contains a discussion of a certain problem
which had been propounded by Pappus in the seventh book of his
Ywvaywyn) and of which some particular cases had been considered
by Euclid and Apollonius. The general theorem had baffled previous
geometricians, and it was in the attempt to solve it that Descartes was
led to the invention of analytical geometry. The full enunciation of
the problem is rather involved, but the most important case is to find
the locus of a point such that the product of the perpendiculars on m
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given straight lines shall be in a constant ratio to the product of the
perpendiculars on n other given straight lines. The ancients had solved
this geometrically for the case m = 1, n = 1, and the case m = 1,
n = 2. Pappus had further stated that, if m = n = 2, the locus is a
conic, but he gave no proof; Descartes also failed to prove this by pure
geometry, but he shewed that the curve is represented by an equation
of the second degree, that is, is a conic; subsequently Newton gave an
elegant solution of the problem by pure geometry.

In the second book Descartes divides curves into two classes, namely,
geometrical and mechanical curves. He defines geometrical curves as
those which can be generated by the intersection of two lines each mov-
ing parallel to one co-ordinate axis with “commensurable” velocities;
by which terms he means that dy/dx is an algebraical function, as, for
example, is the case in the ellipse and the cissoid. He calls a curve
mechanical when the ratio of the velocities of these lines is “incom-
mensurable”; by which term he means that dy/dz is a transcendental
function, as, for example, is the case in the cycloid and the quadra-
trix. Descartes confined his discussion to geometrical curves, and did
not treat of the theory of mechanical curves. The classification into
algebraical and transcendental curves now usual is due to Newton.!

Descartes also paid particular attention to the theory of the tangents
to curves—as perhaps might be inferred from his system of classification
just alluded to. The then current definition of a tangent at a point
was a straight line through the point such that between it and the
curve no other straight line could be drawn, that is, the straight line of
closest contact. Descartes proposed to substitute for this a statement
equivalent to the assertion that the tangent is the limiting position
of the secant; Fermat, and at a later date Maclaurin and Lagrange,
adopted this definition. Barrow, followed by Newton and Leibnitz,
considered a curve as the limit of an inscribed polygon when the sides
become indefinitely small, and stated that a side of the polygon when
produced became in the limit a tangent to the curve. Roberval, on the
other hand, defined a tangent at a point as the direction of motion at
that instant of a point which was describing the curve. The results
are the same whichever definition is selected, but the controversy as to
which definition was the correct one was none the less lively. In his
letters Descartes illustrated his theory by giving the general rule for
drawing tangents and normals to a roulette.

1See below, page
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The method used by Descartes to find the tangent or normal at
any point of a given curve was substantially as follows. He determined
the centre and radius of a circle which should cut the curve in two
consecutive points there. The tangent to the circle at that point will
be the required tangent to the curve. In modern text-books it is usual
to express the condition that two of the points in which a straight line
(such as y = mz + ¢) cuts the curve shall coincide with the given point:
this enables us to determine m and ¢, and thus the equation of the
tangent there is determined. Descartes, however, did not venture to do
this, but selecting a circle as the simplest curve and one to which he
knew how to draw a tangent, he so fixed his circle as to make it touch
the given curve at the point in question, and thus reduced the problem
to drawing a tangent to a circle. I should note in passing that he only
applied this method to curves which are symmetrical about an axis,
and he took the centre of the circle on the axis.

The obscure style deliberately adopted by Descartes diminished the
circulation and immediate appreciation of these books; but a Latin
translation of them, with explanatory notes, was prepared by F. de
Beaune, and an edition of this, with a commentary by F. van Schooten,
issued in 1659, was widely read.

The third book of the Géométrie contains an analysis of the algebra
then current, and it has affected the language of the subject by fixing
the custom of employing the letters at the beginning of the alphabet
to denote known quantities, and those at the end of the alphabet to
denote unknown quantities.! Descartes further introduced the system
of indices now in use; very likely it was original on his part, but I would
here remind the reader that the suggestion had been made by previ-
ous writers, though it had not been generally adopted. It is doubtful
whether or not Descartes recognised that his letters might represent
any quantities, positive or negative, and that it was sufficient to prove
a proposition for one general case. He was the earliest writer to realize
the advantage to be obtained by taking all the terms of an equation to
one side of it, though Stifel and Harriot had sometimes employed that
form by choice. He realised the meaning of negative quantities and used
them freely. In this book he made use of the rule for finding a limit to
the number of positive and of negative roots of an algebraical equation,
which is still known by his name; and introduced the method of inde-

1On the origin of the custom of using x to represent an unknown example, see a
note by G. Enestrom in the Bibliotheca Mathematica, 1885, p. 43.
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terminate coefficients for the solution of equations. He believed that he
had given a method by which algebraical equations of any order could
be solved, but in this he was mistaken. It may be also mentioned that
he enunciated the theorem, commonly attributed to Euler, on the rela-
tion between the numbers of faces, edges, and angles of a polyhedron:
this is in one of the papers published by Careil.

Of the two other appendices to the Discours one was devoted to
optics. The chief interest of this consists in the statement given of
the law of refraction. This appears to have been taken from Snell’s
work, though, unfortunately, it is enunciated in a way which might
lead a reader to suppose that it is due to the researches of Descartes.
Descartes would seem to have repeated Snell’s experiments when in
Paris in 1626 or 1627, and it is possible that he subsequently forgot
how much he owed to the earlier investigations of Snell. A large part
of the optics is devoted to determining the best shape for the lenses
of a telescope, but the mechanical difficulties in grinding a surface of
glass to a required form are so great as to render these investigations
of little practical use. Descartes seems to have been doubtful whether
to regard the rays of light as proceeding from the eye and so to speak
touching the object, as the Greeks had done, or as proceeding from the
object, and so affecting the eye; but, since he considered the velocity of
light to be infinite, he did not deem the point particularly important.

The other appendix, on meteors, contains an explanation of numer-
ous atmospheric phenomena, including the rainbow; the explanation of
the latter is necessarily incomplete, since Descartes was unacquainted
with the fact that the refractive index of a substance is different for
lights of different colours.

Descartes’s physical theory of the universe, embodying most of the
results contained in his earlier and unpublished Le Monde, is given in
his Principia, 1644, and rests on a metaphysical basis. He commences
with a discussion on motion; and then lays down ten laws of nature, of
which the first two are almost identical with the first two laws of motion
as given by Newton; the remaining eight laws are inaccurate. He next
proceeds to discuss the nature of matter which he regards as uniform
in kind though there are three forms of it. He assumes that the matter
of the universe must be in motion, and that the motion must result in a
number of vortices. He states that the sun is the centre of an immense
whirlpool of this matter, in which the planets float and are swept round
like straws in a whirlpool of water. Each planet is supposed to be the
centre of a secondary whirlpool by which its satellites are carried: these
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secondary whirlpools are supposed to produce variations of density in
the surrounding medium which constitute the primary whirlpool, and
so cause the planets to move in ellipses and not in circles. All these
assumptions are arbitrary and unsupported by any investigation. It
is not difficult to prove that on his hypothesis the sun would be in
the centre of these ellipses, and not at a focus (as Kepler had shewn
was the case), and that the weight of a body at every place on the
surface of the earth except the equator would act in a direction which
was not vertical; but it will be sufficient here to say that Newton in
the second book of his Principia, 1687, considered the theory in detail,
and shewed that its consequences are not only inconsistent with each
of Kepler’s laws and with the fundamental laws of mechanics, but are
also at variance with the laws of nature assumed by Descartes. Still,
in spite of its crudeness and its inherent defects, the theory of vortices
marks a fresh era in astronomy, for it was an attempt to explain the
phenomena of the whole universe by the same mechanical laws which
experiment shews to be true on the earth.

Cavalieri.!  Almost contemporaneously with the publication in
1637 of Descartes’s geometry, the principles of the integral calculus, so
far as they are concerned with summation, were being worked out in
Italy. This was effected by what was called the principle of indivisibles,
and was the invention of Cavalieri. It was applied by him and his
contemporaries to numerous problems connected with the quadrature
of curves and surfaces, the determination of volumes, and the positions
of centres of mass. It served the same purpose as the tedious method of
exhaustions used by the Greeks; in principle the methods are the same,
but the notation of indivisibles is more concise and convenient. It was,
in its turn, superseded at the beginning of the eighteenth century by
the integral calculus.

Bonaventura Cavalieri was born at Milan in 1598, and died at
Bologna on November 27, 1647. He became a Jesuit at an early age;
on the recommendation of the Order he was in 1629 made professor of
mathematics at Bologna; and he continued to occupy the chair there
until his death. I have already mentioned Cavalieri’s name in connec-
tion with the introduction of the use of logarithms into Italy, and have
alluded to his discovery of the expression for the area of a spherical

ICavalieri’s life has been written by P. Frisi, Milan, 1778; by F. Predari, Milan,
1843; by Gabrio Piola, Milan, 1844; and by A. Favaro, Bologna, 1888. An analysis of
his works is given in Marie’s Histoire des Sciences, Paris, 1885-8, vol. iv, pp. 69-90.
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triangle in terms of the spherical excess. He was one of the most influ-
ential mathematicians of his time, but his subsequent reputation rests
mainly on his invention of the principle of indivisibles.

The principle of indivisibles had been used by Kepler in 1604 and
1615 in a somewhat crude form. It was first stated by Cavalieri in 1629,
but he did not publish his results till 1635. In his early enunciation of
the principle in 1635 Cavalieri asserted that a line was made up of
an infinite number of points (each without magnitude), a surface of
an infinite number of lines (each without breadth), and a volume of
an infinite number of surfaces (each without thickness). To meet the
objections of Guldinus and others, the statement was recast, and in its
final form as used by the mathematicians of the seventeenth century
it was published in Cavalieri’s Fxercitationes Geometricae in 1647; the
third exercise is devoted to a defence of the theory. This book contains
the earliest demonstration of the properties of Pappus.! Cavalieri’s
works on indivisibles were reissued with his later corrections in 1653.

The method of indivisibles rests, in effect, on the assumption that
any magnitude may be divided into an infinite number of small quanti-
ties which can be made to bear any required ratios (ezx. gr. equality) one
to the other. The analysis given by Cavalieri is hardly worth quoting
except as being one of the first steps taken towards the formation of an
infinitesimal calculus. One example will suffice. Suppose it be required
to find the area of a right-angled triangle. Let the base be made up
of, or contain n points (or indivisibles), and similarly let the other side
contain na points, then the ordinates at the successive points of the
base will contain a,2a...,na points. Therefore the number of points
in the area is a+2a+. . .+na; the sum of which is %n%—k%na. Since n is
very large, we may neglect %na, for it is inconsiderable compared with
%nQa. Hence the area is equal to %(na)n, that is, % x altitude x base.
There is no difficulty in criticizing such a proof, but, although the form
in which it is presented is indefensible, the substance of it is correct.

It would be misleading to give the above as the only specimen of the
method of indivisibles, and I therefore quote another example, taken
from a later writer, which will fairly illustrate the use of the method
when modified and corrected by the method of limits. Let it be required
to find the area outside a parabola APC' and bounded by the curve,
the tangent at A, and a line DC' parallel to AB the diameter at A.
Complete the parallelogram ABCD. Divide AD into n equal parts, let

1See above, pp.
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AM contain r of them, and let M N be the (r 4+ 1)th part. Draw M P
and N(Q parallel to AB, and draw PR parallel to AD. Then when n
becomes indefinitely large, the curvilinear area APC D will be the limit
of the sum of all parallelograms like PN. Now

area PN : area BD=MP.MN : DC . AD.

D C
R
I\I/ Q
M P
A B

But by the properties of the parabola
MP :DC = AM? : AD? = r? : n?,

and MN : AD =1 :n.
Hence MP.MN : DC.AD = r?: n’.
Therefore area PN : area BD = r? : n’.

Therefore, ultimately,

area APCD :area BD =1 + 2>+ ...+ (n—1)* : n°

=in(n—1)2n—1):n°

which, in the limit, =1:3.

It is perhaps worth noticing that Cavalieri and his successors always
used the method to find the ratio of two areas, volumes, or magnitudes
of the same kind and dimensions, that is, they never thought of an
area as containing so many units of area. The idea of comparing a
magnitude with a unit of the same kind seems to have been due to
Wallis.

It is evident that in its direct form the method is applicable to only
a few curves. Cavalieri proved that, if m be a positive integer, then the
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limit, when n is infinite, of (1™ 4 2™ + -+« +n™)/n™ ™ is 1/(m + 1),
which is equivalent to saying that he found the integral to x of 2™ from
x =0 to x = 1; he also discussed the quadrature of the hyperbola.

Pascal.! Among the contemporaries of Descartes none displayed
greater natural genius than Pascal, but his mathematical reputation
rests more on what he might have done than on what he actually ef-
fected, as during a considerable part of his life he deemed it his duty
to devote his whole time to religious exercises.

Blaise Pascal was born at Clermont on June 19, 1623, and died at
Paris on Aug. 19, 1662. His father, a local judge at Clermont, and
himself of some scientific reputation, moved to Paris in 1631, partly to
prosecute his own scientific studies, partly to carry on the education
of his only son, who had already displayed exceptional ability. Pascal
was kept at home in order to ensure his not being overworked, and
with the same object it was directed that his education should be at
first confined to the study of languages, and should not include any
mathematics. This naturally excited the boy’s curiosity, and one day,
being then twelve years old, he asked in what geometry consisted. His
tutor replied that it was the science of constructing exact figures and
of determining the proportions between their different parts. Pascal,
stimulated no doubt by the injunction against reading it, gave up his
play-time to this new study, and in a few weeks had discovered for
himself many properties of figures, and in particular the proposition
that the sum of the angles of a triangle is equal to two right angles. 1
have read somewhere, but I cannot lay my hand on the authority, that
his proof merely consisted in turning the angular points of a triangular
piece of paper over so as to meet in the centre of the inscribed circle:
a similar demonstration can be got by turning the angular points over
so as to meet at the foot of the perpendicular drawn from the biggest
angle to the opposite side. His father, struck by this display of ability,
gave him a copy of Euclid’s Elements, a book which Pascal read with
avidity and soon mastered.

At the age of fourteen he was admitted to the weekly meetings of
Roberval, Mersenne, Mydorge, and other French geometricians; from

1See Pascal by J. Bertrand, Paris, 1891; and Pascal, sein Leben und seine
Kdampfe, by J. G. Dreydorff, Leipzig, 1870. Pascal’s life, written by his sister Mme.
Périer, was edited by A. P. Faugere, Paris, 1845, and has formed the basis for sev-
eral works. An edition of his writings was published in five volumes at the Hague
in 1779, second edition, Paris, 1819; some additional pamphlets and letters were
published in three volumes at Paris in 1858.
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which, ultimately, the French Academy sprung. At sixteen Pascal wrote
an essay on conic sections; and in 1641, at the age of eighteen, he
constructed the first arithmetical machine, an instrument which, eight
years later, he further improved. His correspondence with Fermat about
this time shews that he was then turning his attention to analytical ge-
ometry and physics. He repeated Torricelli’s experiments, by which
the pressure of the atmosphere could be estimated as a weight, and
he confirmed his theory of the cause of barometrical variations by ob-
taining at the same instant readings at different altitudes on the hill of
Puy-de-Dome.

In 1650, when in the midst of these researches, Pascal suddenly
abandoned his favourite pursuits to study religion, or, as he says in his
Pensées, “to contemplate the greatness and the misery of man”; and
about the same time he persuaded the younger of his two sisters to
enter the Port Royal society.

In 1653 he had to administer his father’s estate. He now took up his
old life again, and made several experiments on the pressure exerted
by gases and liquids; it was also about this period that he invented the
arithmetical triangle, and together with Fermat created the calculus
of probabilities. He was meditating marriage when an accident again
turned the current of his thoughts to a religious life. He was driving a
four-in-hand on November 23, 1654, when the horses ran away; the two
leaders dashed over the parapet of the bridge at Neuilly, and Pascal
was saved only by the traces breaking. Always somewhat of a mystic,
he considered this a special summons to abandon the world. He wrote
an account of the accident on a small piece of parchment, which for the
rest of his life he wore next to his heart, to perpetually remind him of
his covenant; and shortly moved to Port Royal, where he continued to
live until his death in 1662. Constitutionally delicate, he had injured
his health by his incessant study; from the age of seventeen or eighteen
he suffered from insomnia and acute dyspepsia, and at the time of his
death was physically worn out.

His famous Provincial Letters directed against the Jesuits, and
his Pensées, were written towards the close of his life, and are
the first example of that finished form which is characteristic
of the best French literature. The only mathematical work that
he produced after retiring to Port Royal was the essay on the cycloid
in 1658. He was suffering from sleeplessness and toothache when the
idea occurred to him, and to his surprise his teeth immediately ceased
to ache. Regarding this as a divine intimation to proceed with the
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problem, he worked incessantly for eight days at it, and completed a
tolerably full account of the geometry of the cycloid.

I now proceed to consider his mathematical works in rather greater
detail.

His early essay on the geometry of conics, written in 1639, but
not published till 1779, seems to have been founded on the teaching of
Desargues. Two of the results are important as well as interesting. The
first of these is the theorem known now as “Pascal’s theorem,” namely,
that if a hexagon be inscribed in a conic, the points of intersection of
the opposite sides will lie in a straight line. The second, which is really
due to Desargues, is that if a quadrilateral be inscribed in a conic, and
a straight line be drawn cutting the sides taken in order in the points

A, B,C, and D, and the conic in P and @, then
PA.PC:PB.PD=QA.QC:QB.QD.

Pascal employed his arithmetical triangle in 1653, but no account
of his method was printed till 1665. The triangle is constructed as in
the below, each horizontal line being formed from the one above
it by making every number in it equal to the sum of those above and to
the left of it in the row immediately above it; ex. gr. the fourth number
in the fourth line, namely, 20, is equal to 1 + 3 + 6 + 10. The numbers
in each line are what are now called figurate numbers. Those in the
first line are called numbers of the first order; those in the second line,
natural numbers or numbers of the second order; those in the third line,
numbers of the third order, and so on. It is easily shewn that the mth
number in the nth row is (m +n — 2)!/(m — 1)!(n — 1)!

1 3 610 15

14 10 20 35

1 /5 15 35 170
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Pascal’s arithmetical triangle, to any required order, is got by draw-
ing a diagonal downwards from right to left as in the [figurel The num-
bers in any diagonal give the coefficients of the expansion of a binomial;
for example, the figures in the fifth diagonal, namely, 1, 4, 6, 4, 1, are
the coefficients in the expansion (a + b)*. Pascal used the triangle
partly for this purpose, and partly to find the numbers of combina-
tions of m things taken n at a time, which he stated, correctly, to be
m+1)(n+2)(n+3)...m/(m—mn)!

Perhaps as a mathematician Pascal is best known in connection
with his correspondence with Fermat in 1654, in which he laid down
the principles of the theory of probabilities. This correspondence arose
from a problem proposed by a gamester, the Chevalier de Méré, to
Pascal, who communicated it to Fermat. The problem was this. Two
players of equal skill want to leave the table before finishing their game.
Their scores and the number of points which constitute the game being
given, it is desired to find in what proportion they should divide the
stakes. Pascal and Fermat agreed on the answer, but gave different
proofs. The following is a translation of Pascal’s solution. That of
Fermat is given later.

The following is my method for determining the share of each player
when, for example, two players play a game of three points and each player
has staked 32 pistoles.

Suppose that the first player has gained two points, and the second player
one point; they have now to play for a point on this condition, that, if the
first player gain, he takes all the money which is at stake, namely, 64 pistoles;
while, if the second player gain, each player has two points, so that they are
on terms of equality, and, if they leave off playing, each ought to take 32
pistoles. Thus, if the first player gain, then 64 pistoles belong to him, and,
if he lose, then 32 pistoles belong to him. If therefore the players do not
wish to play this game, but to separate without playing it, the first player
would say to the second, “I am certain of 32 pistoles even if I lose this game,
and as for the other 32 pistoles perhaps I shall have them and perhaps you
will have them; the chances are equal. Let us then divide these 32 pistoles
equally, and give me also the 32 pistoles of which I am certain.” Thus the
first player will have 48 pistoles and the second 16 pistoles.

Next, suppose that the first player has gained two points and the second
player none, and that they are about to play for a point; the condition then
is that, if the first player gain this point, he secures the game and takes the
64 pistoles, and, if the second player gain this point, then the players will be
in the situation already examined, in which the first player is entitled to 48
pistoles and the second to 16 pistoles. Thus, if they do not wish to play, the
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first player would say to the second, “If I gain the point I gain 64 pistoles; if
I lose it, I am entitled to 48 pistoles. Give me then the 48 pistoles of which I
am certain, and divide the other 16 equally, since our chances of gaining the
point are equal.” Thus the first player will have 56 pistoles and the second
player 8 pistoles.

Finally, suppose that the first player has gained one point and the second
player none. If they proceed to play for a point, the condition is that, if the
first player gain it, the players will be in the situation first examined, in which
the first player is entitled to 56 pistoles; if the first player lose the point, each
player has then a point, and each is entitled to 32 pistoles. Thus, if they do
not wish to play, the first player would say to the second, “Give me the 32
pistoles of which I am certain, and divide the remainder of the 56 pistoles
equally, that is, divide 24 pistoles equally.” Thus the first player will have
the sum of 32 and 12 pistoles, that is, 44 pistoles, and consequently the
second will have 20 pistoles.

Pascal proceeds next to consider the similar problems when the
game is won by whoever first obtains m + n points, and one player
has m while the other has n points. The answer is obtained by using
the arithmetical triangle. The general solution (in which the skill of
the players is unequal) is given in many modern text-books on algebra,
and agrees with Pascal’s result, though of course the notation of the
latter is different and less convenient.

Pascal made an illegitimate use of the new theory in the seventh
chapter of his Pensées. In effect, he puts his argument that, as the
value of eternal happiness must be infinite, then, even if the proba-
bility of a religious life ensuring eternal happiness be very small, still
the expectation (which is measured by product of the two) must be of
sufficient magnitude to make it worth while to be religious. The ar-
gument, if worth anything, would apply equally to any religion which
promised eternal happiness to those who accepted its doctrines. If any
conclusion may be drawn from the statement, it is the undesirability
of applying mathematics to questions of morality of which some of the
data are necessarily outside the range of an exact science. It is only
fair to add that no one had more contempt than Pascal for those who
changed their opinions according to the prospect of material benefit,
and this isolated passage is at variance with the spirit of his writings.

The last mathematical work of Pascal was that on the cycloid in
1658. The cycloid is the curve traced out by a point on the circum-
ference of a circular hoop which rolls along a straight line. Galileo, in
1630, had called attention to this curve, the shape of which is particu-
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larly graceful, and had suggested that the arches of bridges should be
built in this form.! Four years later, in 1634, Roberval found the area of
the cycloid; Descartes thought little of this solution and defied him to
find its tangents, the same challenge being also sent to Fermat who at
once solved the problem. Several questions connected with the curve,
and with the surface and volume generated by its revolution about its
axis, base, or the tangent at its vertex, were then proposed by various
mathematicians. These and some analogous questions, as well as the
positions of the centres of the mass of the solids formed, were solved by
Pascal in 1658, and the results were issued as a challenge to the world.
Wallis succeeded in solving all the questions except those connected
with the centre of mass. Pascal’s own solutions were effected by the
method of indivisibles, and are similar to those which a modern math-
ematician would give by the aid of the integral calculus. He obtained
by summation what are equivalent to the integrals of sin ¢, sin? ¢, and
¢ sin ¢, one limit being either 0 or %7?. He also investigated the geometry
of the Archimedean spiral. These researches, according to D’Alembert,
form a connecting link between the geometry of Archimedes and the
infinitesimal calculus of Newton.

Wallis.? John Wallis was born at Ashford on November 22,
1616, and died at Oxford on October 28, 1703. He was educated at
Felstead school, and one day in his holidays, when fifteen years old,
he happened to see a book of arithmetic in the hands of his brother;
struck with curiosity at the odd signs and symbols in it he borrowed
the book, and in a fortnight, wit