| Type: | Package |
| Title: | Nonparametric Bootstrap and Permutation Tests |
| Version: | 1.2 |
| Date: | 2026-01-23 |
| Description: | Robust nonparametric bootstrap and permutation tests for goodness of fit, distribution equivalence, location, correlation, and regression problems, as described in Helwig (2019a) <doi:10.1002/wics.1457> and Helwig (2019b) <doi:10.1016/j.neuroimage.2019.116030>. Univariate and multivariate tests are supported. For each problem, exact tests and Monte Carlo approximations are available. Five different nonparametric bootstrap confidence intervals are implemented. Parallel computing is implemented via the 'parallel' package. |
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
| NeedsCompilation: | no |
| Packaged: | 2026-01-23 15:08:56 UTC; nate |
| Author: | Nathaniel E. Helwig [aut, cre] |
| Maintainer: | Nathaniel E. Helwig <helwig@umn.edu> |
| Repository: | CRAN |
| Date/Publication: | 2026-01-23 16:00:02 UTC |
Startup Message for nptest
Description
Prints the startup message when nptest is loaded. Not intended to be called by the user.
Details
The ‘nptest’ ascii start-up message was created using the taag software.
References
https://patorjk.com/software/taag/
Generate All Sign-Flips of n Elements
Description
Generates all 2^n vectors of length n consisting of the elements -1 and 1.
Usage
flipn(n)
Arguments
n |
Number of elements. |
Details
Adapted from the "bincombinations" function in the e1071 R package.
Value
Matrix of dimension n by 2^n where each column contains a unique sign-flip vector.
Warning
For large n this function will consume a lot of memory and may even crash R.
Note
Used for exact tests in np.loc.test and np.reg.test.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2018). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-0. https://CRAN.R-project.org/package=e1071
Examples
flipn(2)
flipn(3)
Monte Carlo Standard Errors for Tests
Description
This function calculates Monte Carlo standard errors for (non-exact) nonparametric tests. The MCSEs can be used to determine (i) the accuracy of a test for a given number of resamples, or (ii) the number of resamples needed to achieve a test with a given accuracy.
Usage
mcse(R, delta, conf.level = 0.95, sig.level = 0.05,
alternative = c("two.sided", "one.sided"))
Arguments
R |
Number of resamples (positive integer). |
delta |
Accuracy of the approximation (number between 0 and 1). |
conf.level |
Confidence level for the approximation (number between 0 and 1). |
sig.level |
Significance level of the test (number between 0 and 1). |
alternative |
Alternative hypothesis (two-sided or one-sided). |
Details
Note: either R or delta must be provided.
Let F(x) denote the distribution function for the full permutation distribution, and let G(x) denote the approximation obtained from R resamples. The Monte Carlo standard error is given by
\sigma(x) = \sqrt{ F(x) [1 - F(x)] / R }
which is the standard deviation of G(x).
A symmetric confidence interval for F(x) can be approximated as
G(x) +/- C \sigma(x)
where C is some quantile of the standard normal distribution. Note that the critical value C corresponds to the confidence level (conf.level) of the approximation.
Let \alpha denote the significance level (sig.level) for a one-sided test (\alpha is one-half the significance level for two-sided tests). Define a to be the value of the test statistic such that F(a) = \alpha.
The parameter \delta (delta) quantifies the accuracy of the approximation, such that
|G(a) - \alpha| < \alpha \delta
with a given confidence, which is controlled by the conf.level argument.
Value
mcse |
Monte Carlo standard error. |
R |
Number of resamples. |
delta |
Accuracy of approximation. |
conf.level |
Confidence level. |
sig.level |
Significance level. |
alternative |
Alternative hypothesis. |
Note
This function is only relevant for non-exact tests. For exact tests, F(x) = G(x) so the Monte Carlo standard error is zero.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Helwig, N. E. (2019). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi: 10.1002/wics.1457
See Also
np.cor.test, np.loc.test, np.reg.test
Examples
###***### EXAMPLE 1 ###***###
# get the Monte Carlo standard error and the
# accuracy (i.e., delta) for given R = 10000
# using the default two-sided alternative hypothesis,
# the default confidence level (conf.level = 0.95),
# and the default significance level (sig.level = 0.05)
mcse(R = 10000)
# se = 0.0016
# delta = 0.1224
###***### EXAMPLE 2 ###***###
# get the Monte Carlo standard error and the
# number of resamples (i.e., R) for given delta = 0.01
# using a one-sided alternative hypothesis,
# the default confidence level (conf.level = 0.95),
# and the default significance level (sig.level = 0.05)
mcse(delta = 0.1, alternative = "one.sided")
# se = 0.0026
# R = 7299
Nonparametric One-Way and RM ANOVA Tests
Description
Assuming a one-way (fixed effects) ANOVA model of the form
Y_{ij} = \mu + \tau_j + \epsilon_{ij}
or a one-way repeated measures ANOVA model of the form
Y_{ij} = \mu + \beta_i + \tau_j + \epsilon_{ij}
this function implements permutation tests of H_0: (\forall j) \tau_j = \tau versus H_1: (\exists j) \tau_j \neq \tau.
Note that \mu is the overall mean/median ignoring block and group, \beta_i is the i-th subject's block effect, \tau_j is the j-th group's treatment effect, and \epsilon_{ij} is an error term with mean/median zero.
Usage
np.aov.test(x, groups, blocks = NULL,
var.equal = FALSE, median.test = FALSE,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
Arguments
x |
Numeric vector (or matrix) of data values (see Details). |
groups |
Factor vector giving the treatment group for each element/row of |
blocks |
Factor vector giving the block identification for each element/row of |
var.equal |
Logical indicating whether to treat the |
median.test |
Logical indicating whether the location test is for the median. Default is |
R |
Number of resamples for the permutation test (positive integer). |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
perm.dist |
Logical indicating if the permutation distribution should be returned. |
na.rm |
If |
Details
One-way ANOVA: the input x should be of length N = \sum_{j=1}^k n_j where n_j is size of j-th group.
RM ANOVA: the input x should be of length N = n k where n is number of blocks and k is number of groups.
For multivariate models, the input x should be a matrix with N rows and m columns, where each column has N = \sum_{j=1}^k n_j or N = n k observations.
Value
statistic |
Test statistic value. |
p.value |
p-value for testing |
perm.dist |
Permutation distribution of |
repeated |
Repeated-measures ANOVA? |
var.equal |
Assuming equal variances? |
median.test |
Testing the median? |
R |
Number of resamples. |
method |
Method used for permutation test. See Examples. |
ngroups |
Number of groups = |
nblocks |
Number of blocks = |
Note
For the one-way ANOVA, the number of elements of the exact (i.e., fully enumerated) permutation distribuion is given by the multinomial coefficient:
\frac{N!}{n_1! n_2! \cdots n_k!}
which will be quite large (much larger than typcailly choices for R) for any non-trivial sample sizes. Consequently, exact tests are **not** implemented by this function.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Helwig, N. E. (2019a). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi: 10.1002/wics.1457
Helwig, N. E. (2019b). Robust nonparametric tests of general linear model coefficients: A comparison of permutation methods and test statistics. NeuroImage, 201, 116030. doi: 10.1016/j.neuroimage.2019.116030
See Also
plot.np.aov.test S3 plotting method for visualizing the results
Examples
###***### ONE-WAY ANOVA ###***###
# data generation design
N <- 90
k <- 3
g <- factor(rep(LETTERS[1:k], each = N/k))
tau <- c(-1/2, 0, 1/2)
sd <- c(1/2, 1, 2)
# generate data
set.seed(0)
x <- rnorm(N, mean = tau[g], sd = sd[g])
# mean test with unequal variances (robust W statistic)
set.seed(1)
np.aov.test(x, g)
# mean test with equal variances (classic F statistic)
set.seed(1)
np.aov.test(x, g, var.equal = TRUE)
# median test with unequal variances (robust Kruskal-Wallis statistic)
set.seed(1)
np.aov.test(x, g, median.test = TRUE)
# median test with equal variances (classic Kruskal-Wallis test)
set.seed(1)
np.aov.test(x, g, var.equal = TRUE, median.test = TRUE)
# Kruskal-Wallis test (asymptotic p-value)
kruskal.test(x, g)
## Not run:
###***### REPEATED MEASURES ANOVA ###***###
# data generation design
N <- 90
k <- 3
n <- 30
g <- factor(rep(LETTERS[1:k], each = N/k))
b <- factor(rep(paste0("sub", 1:n), times = k),
levels = paste0("sub", 1:n))
tau <- c(-1/2, 0, 1/2)
sd <- c(1/2, 1, 2)
# generate random block effects
set.seed(773)
beta <- runif(30, -1, 1)
# generate data
set.seed(0)
x <- rnorm(N, mean = tau[g] + beta[b], sd = sd[g])
# mean test with unequal variances (robust W statistic)
set.seed(1)
np.aov.test(x, g, b)
# mean test with equal variances (classic F statistic)
set.seed(1)
np.aov.test(x, g, b, var.equal = TRUE)
# median test with unequal variances (robust Friedman statistic)
set.seed(1)
np.aov.test(x, g, b, median.test = TRUE)
# median test with equal variances (classic Friedman test)
set.seed(1)
np.aov.test(x, g, b, var.equal = TRUE, median.test = TRUE)
# Friedman test (asymptotic p-value)
friedman.test(x, g, b)
## End(Not run)
Nonparametric Bootstrap Resampling
Description
Nonparametric bootstrap resampling for univariate and multivariate statistics. Computes bootstrap estimates of the standard error, bias, and covariance. Also computes five different types of bootstrap confidence intervals: normal approximation interval, basic (reverse percentile) interval, percentile interval, studentized (bootstrap-t) interval, and bias-corrected and accelerated (BCa) interval.
Usage
np.boot(x, statistic, ..., R = 9999, level = c(0.9, 0.95, 0.99),
method = c("norm", "basic", "perc", "stud", "bca")[-4],
sdfun = NULL, sdrep = 99, jackknife = NULL,
parallel = FALSE, cl = NULL, boot.dist = TRUE)
Arguments
x |
vector of data (for univariate data), data frame (for basic multivariate data), or vector of row indices (for advanced multivariate data). See examples. |
statistic |
function that takes in |
... |
additional named arguments for the |
R |
number of bootstrap replicates |
level |
desired confidence level(s) for the computed intervals. Default computes 90%, 95%, and 99% confidence intervals. |
method |
method(s) for computing confidence intervals. Partial matching is allowed. Any subset of allowable methods is permitted (default computes all intervals except studentized). Set |
sdfun |
function for computing the standard deviation of |
sdrep |
number of bootstrap replicates for the inner bootstrap used to estimate the standard deviation of |
jackknife |
function that takes in |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
boot.dist |
Logical indicating if the bootstrap distribution should be returned (see Note). |
Details
The first three intervals (normal, basic, and percentile) are only first-order accurate, whereas the last two intervals (studentized and BCa) are both second-order accurate. Thus, the results from the studentized and BCa intervals tend to provide more accurate coverage rates.
Unless the standard deviation function for the studentized interval is input via the sdfun argument, the studentized interval can be quite computationally costly. This is because an inner bootstrap is needed to estimate the standard deviation of the statistic for each (outer) bootstrap replicate—and you may want to increase the default number of inner bootstrap replicates (see Note).
The efficiency of the BCa interval will depend on the sample size n and the computational complexity of the (jackknife) statistic estimate. Assuming that n is not too large and the jackknife statistic is not too difficult to compute, the BCa interval can be computed reasonably quickly—especially in comparison the studentized interval with an inner bootstrap.
Computational details of the various confidence intervals are described in Efron and Tibshirani (1994) and in Davison and Hinkley (1997). For a useful and concise discussion of the various intervals, see Carpenter and Bithell (2000).
Value
t0 |
Observed statistic, computed using |
se |
Bootstrap estimate of the standard error. |
bias |
Bootstrap estimate of the bias. |
cov |
Bootstrap estimate of the covariance (for multivariate statistics). |
normal |
Normal approximation confidence interval(s). |
basic |
Basic (reverse percentile) confidence interval(s). |
percent |
Percentile confidence interval(s). |
student |
Studentized (bootstrap-t) confidence interval(s). |
bca |
Bias-corrected and accelerated (BCa) confidence interval(s). |
z0 |
Bias-correction factor(s). Only provided if |
acc |
Acceleration factor(s). Only provided if |
boot.dist |
Bootstrap distribution of statistic(s). Only provided if |
statistic |
Statistic function (same as input). |
R |
Number of bootstrap replicates (same as input). |
level |
Confidence level (same as input). |
sdfun |
Standard deviation function for statistic (same as input). |
sdrep |
Number of inner bootstrap replicates (same as input). |
jackknife |
Jackknife function (same as input). |
Note
If boot.dist = TRUE, the output boot.dist will be a matrix of dimension R by length(statistic(x, ...)) if the statistic is multivariate. Otherwise the bootstrap distribution will be a vector of length R.
For the "stud" method, the default of sdrep = 99 may produce a crude estimate of the standard deviation of the statistic(s). For more accurate estimates, the value of sdrep may need to be set substantially larger, e.g., sdrep = 999.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Carpenter, J., & Bithell, J. (2000). Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Statistics in Medicine, 19(9), 1141-1164. doi: 10.1002/(SICI)1097-0258(20000515)19:9%3C1141::AID-SIM479%3E3.0.CO;2-F
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge University Press. doi: 10.1017/CBO9780511802843
Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Boostrap. Chapman & Hall/CRC. doi: 10.1201/9780429246593
Examples
######***###### UNIVARIATE DATA ######***######
### Example 1: univariate statistic (median)
# generate 100 standard normal observations
set.seed(1)
n <- 100
x <- rnorm(n)
# nonparametric bootstrap
npbs <- np.boot(x = x, statistic = median)
npbs
### Example 2: multivariate statistic (quartiles)
# generate 100 standard normal observations
set.seed(1)
n <- 100
x <- rnorm(n)
# nonparametric bootstrap
npbs <- np.boot(x = x, statistic = quantile,
probs = c(0.25, 0.5, 0.75))
npbs
## Not run:
######***###### MULTIVARIATE DATA ######***######
### Example 1: univariate statistic (correlation)
## Generate bivariate data with population var = 1 and cor = 0.5
# correlation matrix square root (with rho = 0.5)
rho <- 0.5
val <- c(sqrt(1 + rho), sqrt(1 - rho))
corsqrt <- matrix(c(val[1], -val[2], val), 2, 2) / sqrt(2)
# generate 100 bivariate observations (with rho = 0.5)
n <- 100
set.seed(1)
data <- cbind(rnorm(n), rnorm(n)) %*% corsqrt
## Method A: x = data frame; statistic of x
# define statistic function
statfun <- function(data) cor(data[,1], data[,2])
# nonparametric bootstrap
set.seed(2)
npbs <- np.boot(x = data, statistic = statfun)
npbs
## Method B: x = 1:n; statistic of data[ix,] with data passed via ...
# define statistic function
statfun <- function(ix, data) cor(data[ix,1], data[ix,2])
# nonparametric bootstrap
set.seed(2)
npbs <- np.boot(x = 1:n, statistic = statfun, data = data)
npbs
### Example 2: multivariate statistic (variances and covariance)
## Generate bivariate data with population var = 1 and cor = 0.5
# correlation matrix square root (with rho = 0.5)
rho <- 0.5
val <- c(sqrt(1 + rho), sqrt(1 - rho))
corsqrt <- matrix(c(val[1], -val[2], val), 2, 2) / sqrt(2)
# generate 100 bivariate observations (with rho = 0.5)
n <- 100
set.seed(1)
data <- cbind(rnorm(n), rnorm(n)) %*% corsqrt
## Method A: x = data frame; statistic of x
# define statistic function
statfun <- function(data) {
cmat <- cov(data)
ltri <- lower.tri(cmat, diag = TRUE)
cvec <- cmat[ltri]
names(cvec) <- c("var(x1)", "cov(x1,x2)", "var(x2)")
cvec
}
# nonparametric bootstrap
set.seed(2)
npbs <- np.boot(x = data, statistic = statfun)
npbs
## Method B: x = 1:n; statistic of data[ix,] with data passed via ...
# define statistic function
statfun <- function(ix, data) {
cmat <- cov(data[ix,])
ltri <- lower.tri(cmat, diag = TRUE)
cvec <- cmat[ltri]
names(cvec) <- c("var(x1)", "cov(x1,x2)", "var(x2)")
cvec
}
# nonparametric bootstrap
set.seed(2)
npbs <- np.boot(x = 1:n, statistic = statfun, data = data)
npbs
######***###### REGRESSION ######***######
### Example 1: bootstrap cases
## Generate bivariate data with E(y|x) = 1 + 2 * x
# generate 100 observations
n <- 100
set.seed(1)
x <- seq(0, 1, length.out = n)
y <- 1 + 2 * x + rnorm(n)
data <- data.frame(x = x, y = y)
## Method A: x = data frame; statistic of x
# define statistic function
statfun <- function(data) {
lm(y ~ x, data = data)$coefficients
}
# nonparametric bootstrap
set.seed(2)
npbs <- np.boot(x = data, statistic = statfun)
npbs
## Method B: x = 1:n; statistic of data[ix,] with data passed via ...
# define statistic function
statfun <- function(ix, data) {
lm(y ~ x, data = data[ix,])$coefficients
}
# nonparametric bootstrap
set.seed(2)
npbs <- np.boot(x = 1:n, statistic = statfun, data = data)
npbs
### Example 2: bootstrap residuals
# generate 100 observations
n <- 100
set.seed(1)
x <- seq(0, 1, length.out = n)
y <- 1 + 2 * x + rnorm(n)
data <- data.frame(x = x, y = y)
# prepare data
mod0 <- lm(y ~ x, data = data)
df <- data.frame(x = x, y = y, fit = mod0$fitted.values, resid = mod0$residuals)
# define statistic function
statfun <- function(ix, data) {
data$y <- data$fit + data$resid[ix]
lm(y ~ x, data = data)$coefficients
}
# define jackknife function
jackfun <- function(ix, data){
lm(y ~ x, data = data[ix,])$coefficients
}
# nonparametric bootstrap
npbs <- np.boot(x = 1:n, statistic = statfun, data = df, jackknife = jackfun)
npbs
## End(Not run)
Nonparametric Distribution Tests
Description
Peforms one- or two-sample nonparametric (randomization) tests of cumulative distribution functions. Implements Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov test statistics.
Usage
np.cdf.test(x, y = NULL,
method = c("AD", "CVM", "KS"),
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
Arguments
x |
Numeric vector (or matrix) of data values. |
y |
One-sample: name of distribution family with "p" and "r" components (see Note). Two-sample: numeric vector (or matrix) of data values. |
method |
Test statistic to use: AD = Anderson-Darling, CVM = Cramer-Von Mises, KS = Kolmogorov-Smirnov |
R |
Number of resamples for the permutation test (positive integer). |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
perm.dist |
Logical indicating if the permutation distribution should be returned. |
na.rm |
If |
Details
One-sample statistics:
AD | \omega^2 = \int w(x) (F_n(x) - F_0(x))^2 d F_0(x) with w(x) = [F_0(x)(1 - F_0(x))]^{-1} |
|
CVM | \omega^2 = \int w(x) (F_n(x) - F_0(x))^2 d F_0(x) with w(x) = 1 |
|
KS | \omega^2 = \sup_{x} (F_n(x) - F_0(x))^2
|
where F_n(x) is the empirical cumulative distribution function (estimated by ecdf) and F_0 is the null hypothesized distribution (specified by the y argument).
Two-sample statistics:
AD | \omega^2 = \int w(z) (F_{x}(z) - F_{y}(z))^2 d F_0(z) with w(z) = [F_0(z)(1 - F_0(z))]^{-1} |
|
CVM | \omega^2 = \int w(z) (F_{x}(z) - F_{y}(z))^2 d F_0(z) with w(z) = 1 |
|
KS | \omega^2 = \sup_{z} (F_{x}(z) - F_{y}(z))^2
|
where F_x and F_y are the groupwise ECDF functions (estimated by applying ecdf separately to x and y) and F_0 is the joint ECDF (estimated by applying ecdf to z = c(x,y) ).
Value
statistic |
Test statistic value. |
p.value |
p-value for testing |
perm.dist |
Permutation distribution of |
method |
Method used for permutation test. See Examples. |
R |
Number of resamples. |
exact |
Exact permutation test? See Note. |
Note
For one-sample tests, the y argument should satisfy:
paste("p", y) gives the name of a function specifying the CDF
paste("r", y) gives the name of a function sampling from the distribution
If y = NULL, the default sets y = "norm", which tests the null hypothesis that x follows a standard normal distribution. See the examples for how to test a user-specified distribution.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Anderson, T. W. and Darling., D. A. (1952). Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Annals of Mathematical Statistics, 23(2), 193-212. doi:10.1214/aoms/1177729437
Anderson, T. W., and Darling, D. A. (1954). A test of goodness of fit. Journal of the American Statistical Association, 49(268), 765-769. doi:10.1080/01621459.1954.10501232
Anderson, T. W. (1962). On the distribution of the two-sample Cramer-von Mises criterion. Annals of Mathematical Statistics, 33(3) 1148-1159. doi:10.1214/aoms/1177704477
Cramer, H. (1928). On the composition of elementary errors: First paper: Mathematical deductions. Scandinavian Actuarial Journal, 1928(1), 13-74. doi:10.1080/03461238.1928.10416862
Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari 4, 83-91.
Kolmogorov, A. N. (1941). Confidence limits for an unknown distribution function. Annals of Mathematical Statistics 12(4), 461-483. doi:10.1214/aoms/1177731684
Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical Statistics 19(2) 279-281. doi:10.1214/aoms/1177730256
von Mises, R. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Julius Springer.
See Also
plot.np.cdf.test S3 plotting method for visualizing the results
Examples
###***### ONE SAMPLE ###***###
## generate standard normal data
n <- 100
set.seed(0)
x <- rnorm(n)
## Example 1: Fn = norm, F0 = norm
# Anderson-Darling test of H0: Fx = pnorm
set.seed(1)
np.cdf.test(x, y = "norm")
## Not run:
# Cramer-von Mises test of H0: Fx = pnorm
set.seed(1)
np.cdf.test(x, y = "norm", method = "CVM")
# Kolmogorov-Smirnov test of H0: Fx = pnorm
set.seed(1)
np.cdf.test(x, y = "norm", method = "KS")
## Example 2: Fn = norm, F0 = t3
# user-defined distribution (Student's t with df = 3)
pt3 <- function(q) pt(q, df = 3) # cdf = paste("p", y)
rt3 <- function(n) rt(n, df = 3) # sim = paste("r", y)
# Anderson-Darling test of H0: Fx = t3
set.seed(1)
np.cdf.test(x, y = "t3")
# Cramer-von Mises test of H0: Fx = t3
set.seed(1)
np.cdf.test(x, y = "t3", method = "CVM")
# Kolmogorov-Smirnov test of H0: Fx = t3
set.seed(1)
np.cdf.test(x, y = "t3", method = "KS")
###***### TWO SAMPLE ###***###
# generate N(0, 1) and N(2/3, 1) data
m <- 25
n <- 25
set.seed(0)
x <- rnorm(m)
y <- rnorm(n, mean = 2/3)
# Anderson-Darling test of H0: Fx = Fy
set.seed(1)
np.cdf.test(x, y)
# Cramer-von Mises test of H0: Fx = Fy
set.seed(1)
np.cdf.test(x, y, method = "CVM")
# Kolmogorov-Smirnov test of H0: Fx = Fy
set.seed(1)
np.cdf.test(x, y, method = "KS")
## End(Not run)
Nonparametric Tests of Correlation Coefficients
Description
Denoting the Pearson product-moment correlation coefficient as
\rho = Cov(X, Y) / \sqrt{Var(X) Var(Y)}
this function implements permutation tests of H_0: \rho = \rho_0 where \rho_0 is the user-specified null value. Can also implement tests of partial correlations, semi-partial (or part) correlations, and independence.
Usage
np.cor.test(x, y, z = NULL,
alternative = c("two.sided", "less", "greater"),
rho = 0, independent = FALSE, partial = TRUE,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
Arguments
x |
|
y |
|
z |
Optional |
alternative |
Alternative hypothesis. Must be either "two.sided" ( |
rho |
Null hypothesis value |
independent |
If |
partial |
Only applicable if |
R |
Number of resamples for the permutation test (positive integer). |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
perm.dist |
Logical indicating if the permutation distribution should be returned. |
na.rm |
If |
Details
Default use of this function tests the Pearson correlation between X and Y using the studentized test statistic proposed by DiCiccio and Romano (2017). If independent = TRUE, the classic (unstudentized) test statistic is used to test the null hypothesis of independence.
If Z is provided, the partial or semi-partial correlation between X and Y controlling for Z is tested. For the semi-partial correlation, the effect of Z is partialled out of X.
Value
statistic |
Test statistic value. |
p.value |
p-value for testing |
perm.dist |
Permutation distribution of |
alternative |
Alternative hypothesis. |
null.value |
Null hypothesis value for |
independent |
Independence test? |
R |
Number of resamples. |
exact |
Exact permutation test? See Note. |
estimate |
Sample estimate of correlation coefficient |
Note
The permutation test will be exact when the requested number of resamples R is greater than factorial(n) minus one. In this case, the permutation distribution perm.dist contains all factorial(n) possible values of the test statistic.
If z = NULL, the result will be the same as using np.reg.test with method = "perm".
If z is supplied and partial = TRUE, the result will be the same as using np.reg.test with method = "KC" and homosced = FALSE.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
DiCiccio, C. J., & Romano, J. P. (2017). Robust permutation tests for correlation and regression coefficients. Journal of the American Statistical Association, 112(519), 1211-1220. doi: 10.1080/01621459.2016.1202117
Helwig, N. E. (2019). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi: 10.1002/wics.1457
Pitman, E. J. G. (1937b). Significance tests which may be applied to samples from any populations. ii. the correlation coefficient test. Supplement to the Journal of the Royal Statistical Society, 4(2), 225-232. doi: 10.2307/2983647
See Also
plot.np.cor.test S3 plotting method for visualizing the results
Examples
# generate data
rho <- 0.5
val <- c(sqrt(1 + rho), sqrt(1 - rho))
corsqrt <- matrix(c(val[1], -val[2], val), 2, 2) / sqrt(2)
set.seed(1)
n <- 10
z <- cbind(rnorm(n), rnorm(n)) %*% corsqrt
x <- z[,1]
y <- z[,2]
# test H0: rho = 0
set.seed(0)
np.cor.test(x, y)
# test H0: X and Y are independent
set.seed(0)
np.cor.test(x, y, independent = TRUE)
Nonparametric Tests of Linear Model Terms
Description
Performs type III sums-of-squares tests of linear model terms or coefficients.
Usage
np.lm.test(formula, data, ..., anova.test = TRUE,
method = "perm", homosced = FALSE, lambda = 0,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
Arguments
formula |
|
data |
Optional data frame containing variables used in |
... |
Additional arguments passed to the |
anova.test |
If |
method |
Permutation method: |
homosced |
Are the |
lambda |
Scalar or vector of ridge parameter(s). Defaults to vector of zeros. |
R |
Number of resamples for the permutation test (positive integer). |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
perm.dist |
Logical indicating if the permutation distribution should be returned. |
na.rm |
If |
Details
The recommended default of method = "perm" is equivalent to using Manly's (1986) permutation method separately for each of the model terms. Assuming that the random seed is set the same for each variable's test, equivalent results could be obtained from repeated calls to np.reg.test where a different term/coefficient is tested each time (see Example 2). This implementation is more efficient than repeated calls to np.reg.test because this function computes all of the type III SS tests simultaneously for each permutation.
Value
statistic |
Test statistic values (one for each term or coefficient). |
p.value |
p-values for testing |
perm.dist |
Permutation distribution of |
method |
Method used for permutation test. See Examples. |
homosced |
Homoscedastic errors? |
lambda |
Ridge parameters. |
R |
Number of resamples. |
exact |
Exact permutation test? See Note. |
coefficients |
Least squares estimates of intercept and slope coefficients. |
se.coef |
Standard errors of estimated coefficients. |
signif.table |
Data frame with type III tests of model terms of coefficients. |
anova.test |
Testing terms ( |
Note
The "perm" method should be sufficient for most applications. Note that the "flip" and "both" methods require adding an additional (symmetry) assumption, which should be avoided unless one is reasonably certain the error distribution is symmetric. See np.reg.test or the below references (Helwig, 2019a,b) for details.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
DiCiccio, C. J., & Romano, J. P. (2017). Robust permutation tests for correlation and regression coefficients. Journal of the American Statistical Association, 112(519), 1211-1220. doi: 10.1080/01621459.2016.1202117
Helwig, N. E. (2019a). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi:10.1002/wics.1457
Helwig, N. E. (2019b). Robust nonparametric tests of general linear model coefficients: A comparison of permutation methods and test statistics. NeuroImage, 201, 116030. doi:10.1016/j.neuroimage.2019.116030
Manly, B. (1986). Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Researches on Population Ecology, 28(2), 201-218. doi:10.1007/BF02515450
See Also
plot.np.lm.test S3 plotting method for visualizing the results
Examples
### Example 1: anova.test and homosced options
# data generation design
n <- 90
z <- factor(rep(LETTERS[1:3], times = 30))
x <- seq(-1, 1, length.out = n)
tau <- c(-1, 0, 1)
# generate data
set.seed(0)
y <- tau[z] + 2 * x + rnorm(n)
data <- data.frame(x = x, y = y, z = z)
# test of model terms (heteroscedastic)
set.seed(1)
np.lm.test(y ~ x + z, data = data)
# test of coefficients (heteroscedastic)
set.seed(1)
np.lm.test(y ~ x + z, data = data, anova.test = FALSE)
# test of model terms (homoscedastic)
set.seed(1)
np.lm.test(y ~ x + z, data = data, homosced = TRUE)
# test of coefficients (homoscedastic)
set.seed(1)
np.lm.test(y ~ x + z, data = data, homosced = TRUE, anova.test = FALSE)
### Example 2: equivalence with np.reg.test()
# type III tests of all coefficients
set.seed(1)
mod.lm <- np.lm.test(y ~ x + z, data = data, anova.test = FALSE)
# make design matrix
xmat <- model.matrix(y ~ x + z, data = data)[,-1]
# test effect of x given zB and zC
set.seed(1)
mod.x <- np.reg.test(x = xmat[,1], y = y, z = xmat[,2:3], method = "MA")
# test effect of zB given x and zC
set.seed(1)
mod.zB <- np.reg.test(x = xmat[,2], y = y, z = xmat[,c(1,3)], method = "MA")
# test effect of zC given x and zB
set.seed(1)
mod.zC <- np.reg.test(x = xmat[,3], y = y, z = xmat[,1:2], method = "MA")
# compare np.lm.test() and np.reg.test() results --- identical!
mod.reg <- data.frame(terms = colnames(xmat), df = rep(1, 3),
statistic = c(mod.x$stat, mod.zB$stat, mod.zC$stat),
p.value = c(mod.x$p.valu, mod.zB$p.valu, mod.zC$p.valu))
mod.lm$signif.table
mod.reg
Nonparametric Tests of Location Parameters
Description
Performs one and two sample nonparametric (randomization) tests of location parameters, i.e., means and medians. Implements univariate and multivariate tests using eight different test statistics: Student's one-sample t-test, Johnson's modified t-test, Wilcoxon's Signed Rank test, Fisher's Sign test, Student's two-sample t-test, Welch's t-test, Wilcoxon's Rank Sum test (i.e., Mann-Whitney's U test), and a studentized Wilcoxon test for unequal variances.
Usage
np.loc.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
median.test = FALSE, symmetric = TRUE,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
Arguments
x |
Numeric vector (or matrix) of data values. |
y |
Optional numeric vector (or matrix) of data values. |
alternative |
Alternative hypothesis. Must be either "two.sided" ( |
mu |
Null hypothesis value |
paired |
Logical indicating whether you want a paired location test. |
var.equal |
Logical indicating whether to treat the two variances as being equal. |
median.test |
Logical indicating whether the location test is for the median. Default is |
symmetric |
Logical indicating if the distribution of |
R |
Number of resamples for the permutation test (positive integer). |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
perm.dist |
Logical indicating if the permutation distribution should be returned. |
na.rm |
If |
Details
| One sample | \mu is the mean (or median) of X |
| Paired | \mu is the mean (or median) of X - Y |
| Two sample | \mu is the mean difference E(X) - E(Y) |
or the median of the differences X - Y
|
For one (or paired) sample tests, the different test statistics can be obtained using
median.test = F | median.test = T |
|
symmetric = F | Johnson t test | Fisher sign test |
symmetric = T | Student t test | Wilcoxon signed rank test |
For two sample tests, the different test statistics can be obtained using
median.test = F | median.test = T |
|
var.equal = F | Welch t test | Studentized Wilcoxon test |
var.equal = T | Student t test | Wilcoxon rank sum test |
Value
statistic |
Test statistic value. |
p.value |
p-value for testing |
perm.dist |
Permutation distribution of |
alternative |
Alternative hypothesis. |
null.value |
Null hypothesis value for |
var.equal |
Assuming equal variances? Only for two sample tests. |
median.test |
Testing the median? |
symmetric |
Assuming symmetry? Only for one sample and paired tests. |
R |
Number of resamples. |
exact |
Exact permutation test? See Note. |
estimate |
Estimate of parameter |
univariate |
Univariate test statistic value for |
adj.p.value |
Adjusted p-value for testing significance of |
method |
Method used for permutation test. See Details. |
Multivariate Tests
If the input x (and possibly y) is a matrix with m > 1 columns, the multivariate test statistic is defined as
alternative | statistic |
two.sided | max(abs(univariate)) |
less | min(univariate) |
greater | max(univariate)
|
The global null hypothesis (across all m variables) is tested by comparing the observed statistic to the permutation distribution perm.dist. This produces the p.value for testing the global null hypothesis.
The local null hypothesis (separately for each variable) is tested by comparing the univariate test statistic to perm.dist. This produces the adjusted p-values (adj.p.values), which control the familywise Type I error rate across the m tests.
Note
For one sample (or paired) tests, the permutation test will be exact when the requested number of resamples R is greater than 2^n minus one. In this case, the permutation distribution perm.dist contains all 2^n possible values of the test statistic.
For two sample tests, the permutation test will be exact when the requested number of resamples R is greater than choose(N, n) minus one, where m = length(x), n = length(y), and N = m + n. In this case, the permutation distribution perm.dist contains all choose(N, n) possible values of the test statistic.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Blair, R. C., Higgins, J. J., Karniski, W., & Kromrey, J. D. (1994). A study of multivariate permutation tests which may replace Hotelling's T2 test in prescribed circumstances. Multivariate Behavioral Research, 29(2), 141-163. doi: 10.1207/s15327906mbr2902_2
Chung, E., & Romano, J. P. (2016). Asymptotically valid and exact permutation tests based on two-sample U-statistics. Journal of Statistical Planning and Inference, 168, 97-105. doi: 10.1016/j.jspi.2015.07.004
Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Helwig, N. E. (2019). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi: 10.1002/wics.1457
Janssen, A. (1997). Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem. Statistics & Probability Letters , 36 (1), 9-21. doi: 10.1016/S0167-7152(97)00043-6
Johnson, N. J. (1978). Modified t tests and confidence intervals for asymmetrical populations. Journal of the American Statistical Association, 73 (363), 536-544. doi: 10.2307/2286597
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals Of Mathematical Statistics, 18(1), 50-60. doi: 10.1214/aoms/1177730491
Pitman, E. J. G. (1937a). Significance tests which may be applied to samples from any populations. Supplement to the Journal of the Royal Statistical Society, 4(1), 119-130. doi: 10.2307/2984124
Romano, J. P. (1990). On the behavior of randomization tests without a group invariance assumption. Journal of the American Statistical Association, 85(411), 686-692. doi: 10.1080/01621459.1990.10474928
Student. (1908). The probable error of a mean. Biometrika, 6(1), 1-25. doi: 10.2307/2331554
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 39(3/4), 350-362. doi: 10.2307/2332010
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80-83. doi: 10.2307/3001968
See Also
plot.np.loc.test S3 plotting method for visualizing the results
Examples
######******###### UNIVARIATE ######******######
###***### ONE SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n, mean = 0.5)
# one sample t-test
set.seed(0)
np.loc.test(x)
# Johnson t-test
set.seed(0)
np.loc.test(x, symmetric = FALSE)
# Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, median.test = TRUE)
# Fisher sign test
set.seed(0)
np.loc.test(x, median.test = TRUE, symmetric = FALSE)
###***### PAIRED SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n, mean = 0.5)
y <- rnorm(n)
# paired t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE)
# paired Johnson t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE, symmetric = FALSE)
# paired Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test = TRUE)
# paired Fisher sign test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test = TRUE, symmetric = FALSE)
###***### TWO SAMPLE ###***###
# generate data
set.seed(1)
m <- 7
n <- 8
x <- rnorm(m, mean = 0.5)
y <- rnorm(n)
# Welch t-test
set.seed(0)
np.loc.test(x, y)
# Student t-test
set.seed(0)
np.loc.test(x, y, var.equal = TRUE)
# Studentized Wilcoxon test
set.seed(0)
np.loc.test(x, y, median.test = TRUE)
# Wilcoxon rank sum test
set.seed(0)
np.loc.test(x, y, var.equal = TRUE, median.test = TRUE)
## Not run:
######******###### MULTIVARIATE ######******######
###***### ONE SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))
# multivariate one sample t-test
set.seed(0)
ptest <- np.loc.test(x)
ptest
ptest$univariate
ptest$adj.p.values
###***### PAIRED SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)
# multivariate paired t-test
set.seed(0)
ptest <- np.loc.test(x, y, paired = TRUE)
ptest
ptest$univariate
ptest$adj.p.values
###***### TWO SAMPLE ###***###
# generate data
set.seed(1)
m <- 7
n <- 8
x <- cbind(rnorm(m, mean = 0.5),
rnorm(m, mean = 1),
rnorm(m, mean = 1.5))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)
# multivariate Welch t-test
set.seed(0)
ptest <- np.loc.test(x, y)
ptest
ptest$univariate
ptest$adj.p.values
## End(Not run)
Nonparametric Tests of Regression Coefficients
Description
Assuming a linear model of the form
Y = \alpha + X \beta + \epsilon
or
Y = \alpha + X \beta + Z \gamma + \epsilon
this function implements permutation tests of H_0: \beta = \beta_0 where \beta_0 is the user-specified null vector.
Usage
np.reg.test(x, y, z = NULL, method = NULL,
beta = NULL, homosced = FALSE, lambda = 0,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
Arguments
x |
Matrix of predictor variables ( |
y |
Response vector or matrix ( |
z |
Optional matrix of nuisance variables ( |
method |
Permutation method. See Details. |
beta |
Null hypothesis value for |
homosced |
Are the |
lambda |
Scalar or vector of ridge parameter(s). Defaults to vector of zeros. |
R |
Number of resamples for the permutation test (positive integer). |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
perm.dist |
Logical indicating if the permutation distribution should be returned. |
na.rm |
If |
Details
With no nuisance variables in the model (i.e., z = NULL), there are three possible options for the method argument:
| Method | Model |
| perm | P Y = \alpha + X \beta + \epsilon |
| flip | S Y = \alpha + X \beta + \epsilon |
| both | P S Y = \alpha + X \beta + \epsilon
|
where P is a permutation matrix and S is a sign-flipping matrix.
With nuisance variables in the model, there are eight possible options for the method argument:
| Method | Name | Model |
| HJ | Huh-Jhun | P Q' R_z Y = \alpha + Q' R_z X \beta + \epsilon |
| KC | Kennedy-Cade | P R_z Y = \alpha + R_z X \beta + \epsilon |
| SW | Still-White | P R_z Y = \alpha + X \beta + \epsilon |
| TB | ter Braak | (P R_m + H_m) Y = \alpha + X \beta + Z \gamma + \epsilon |
| FL | Freedman-Lane | (P R_z + H_z) Y = \alpha + X \beta + Z \gamma + \epsilon |
| MA | Manly | P Y = \alpha + X \beta + Z \gamma + \epsilon |
| OS | O'Gorman-Smith | Y = \alpha + P R_z X \beta + Z \gamma + \epsilon |
| DS | Draper-Stoneman | Y = \alpha + P X \beta + Z \gamma + \epsilon
|
where P is permutation matrix and Q is defined as R_z = Q Q' with Q'Q = I.
Note that H_z is the hat matrix for the nuisance variable design matrix, and R_z = I - H_z is the corresponding residual forming matrix. Similarly, H_m and R_m are the hat and residual forming matrices for the full model including the predictor and nuisance variables.
Value
statistic |
Test statistic value. |
p.value |
p-value for testing |
perm.dist |
Permutation distribution of |
method |
Permutation method. |
null.value |
Null hypothesis value for |
homosced |
Homoscedastic errors? |
lambda |
Ridge parameters. |
R |
Number of resamples. |
exact |
Exact permutation test? See Note. |
coefficients |
Least squares estimates of |
univariate |
Univariate test statistic value for |
adj.p.value |
Adjusted p-value for testing significance of |
Multivariate Tests
If the input y is a matrix with m > 1 columns, the multivariate test statistic is defined as statistic = max(univariate) given that the univariate test statistics are non-negative.
The global null hypothesis (across all m variables) is tested by comparing the observed statistic to the permutation distribution perm.dist. This produces the p.value for testing the global null hypothesis.
The local null hypothesis (separately for each variable) is tested by comparing the univariate test statistic to perm.dist. This produces the adjusted p-values (adj.p.values), which control the familywise Type I error rate across the m tests.
Note
If method = "flip", the permutation test will be exact when the requested number of resamples R is greater than 2^n minus one. In this case, the permutation distribution perm.dist contains all 2^n possible values of the test statistic.
If method = "both", the permutation test will be exact when the requested number of resamples R is greater than factorial(n) * (2^n) minus one. In this case, the permutation distribution perm.dist contains all factorial(n) * (2^n) possible values of the test statistic.
If method = "HJ", the permutation test will be exact when the requested number of resamples R is greater than factorial(n-q-1) minus one. In this case, the permutation distribution perm.dist contains all factorial(n-q-1) possible values of the test statistic.
Otherwise the permutation test will be exact when the requested number of resamples R is greater than factorial(n) minus one. In this case, the permutation distribution perm.dist contains all factorial(n) possible values of the test statistic.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
DiCiccio, C. J., & Romano, J. P. (2017). Robust permutation tests for correlation and regression coefficients. Journal of the American Statistical Association, 112(519), 1211-1220. doi: 10.1080/01621459.2016.1202117
Draper, N. R., & Stoneman, D. M. (1966). Testing for the inclusion of variables in linear regression by a randomisation technique. Technometrics, 8(4), 695-699. doi: 10.2307/1266641
Freedman, D., & Lane, D. (1983). A nonstochastic interpretation of reported significance levels. Journal of Business and Economic Statistics, 1(4), 292-298. doi: 10.2307/1391660
Helwig, N. E. (2019a). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi: 10.1002/wics.1457
Helwig, N. E. (2019b). Robust nonparametric tests of general linear model coefficients: A comparison of permutation methods and test statistics. NeuroImage, 201, 116030. doi: 10.1016/j.neuroimage.2019.116030
Huh, M.-H., & Jhun, M. (2001). Random permutation testing in multiple linear regression. Communications in Statistics - Theory and Methods, 30(10), 2023-2032. doi: 10.1081/STA-100106060
Kennedy, P. E., & Cade, B. S. (1996). Randomization tests for multiple regression. Communications in Statistics - Simulation and Computation, 25(4), 923-936. doi: 10.1080/03610919608813350
Manly, B. (1986). Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Researches on Population Ecology, 28(2), 201-218. doi: 10.1007/BF02515450
Nichols, T. E., Ridgway, G. R., Webster, M. G., & Smith, S. M. (2008). GLM permutation: nonparametric inference for arbitrary general linear models. NeuroImage, 41(S1), S72.
O'Gorman, T. W. (2005). The performance of randomization tests that use permutations of independent variables. Communications in Statistics - Simulation and Computation, 34(4), 895-908. doi: 10.1080/03610910500308230
Still, A. W., & White, A. P. (1981). The approximate randomization test as an alternative to the F test in analysis of variance. British Journal of Mathematical and Statistical Psychology, 34(2), 243-252. doi: 10.1111/j.2044-8317.1981.tb00634.x
ter Braak, C. J. F. (1992). Permutation versus bootstrap significance tests in multiple regression and ANOVA. In K. H. Jockel, G. Rothe, & W. Sendler (Eds.), Bootstrapping and related techniques. Lecture notes in economics and mathematical systems, vol 376 (pp. 79-86). Springer.
White, H. (1980). A heteroscedasticity-consistent covariance matrix and a direct test for heteroscedasticity. Econometrica, 48(4), 817-838. doi: 10.2307/1912934
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381-397. doi: 10.1016/j.neuroimage.2014.01.060
See Also
plot.np.reg.test S3 plotting method for visualizing the results
Examples
######******###### UNIVARIATE ######******######
###***### TEST ALL COEFFICIENTS ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n), rnorm(n))
y <- rnorm(n)
# Wald test (method = "perm")
set.seed(0)
np.reg.test(x, y)
# F test (method = "perm")
set.seed(0)
np.reg.test(x, y, homosced = TRUE)
###***### TEST SUBSET OF COEFFICIENTS ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n)
z <- rnorm(n)
y <- 3 + 2 * z + rnorm(n)
# Wald test (method = "HJ")
set.seed(0)
np.reg.test(x, y, z)
# F test (method = "HJ")
set.seed(0)
np.reg.test(x, y, z, homosced = TRUE)
## Not run:
######******###### MULTIVARIATE ######******######
###***### TEST ALL COEFFICIENTS ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n), rnorm(n))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)
# multivariate Wald test (method = "perm")
set.seed(0)
np.reg.test(x, y)
# multivariate F test (method = "perm")
set.seed(0)
np.reg.test(x, y, homosced = TRUE)
###***### TEST SUBSET OF COEFFICIENTS ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n)
z <- rnorm(n)
y <- cbind(1 + 3 * z + rnorm(n),
2 + 2 * z + rnorm(n),
3 + 1 * z + rnorm(n))
# multivariate Wald test (method = "HJ")
set.seed(0)
np.reg.test(x, y, z)
# multivariate F test (method = "HJ")
set.seed(0)
np.reg.test(x, y, z, homosced = TRUE)
## End(Not run)
Internal 'nptest' Functions
Description
Internal functions for 'nptest' package.
Details
These functions are not to be called by the user.
Generate All Permutations of n Elements
Description
Generates all n! vectors of length n consisting of permutations of the integers 1 to n.
Usage
permn(n)
Arguments
n |
Number of elements. |
Details
Adapted from the "permutations" function in the e1071 R package.
Value
Matrix of dimension n by n! where each column contains a unique permutation vector.
Warning
For large n this function will consume a lot of memory and may even crash R.
Note
Used for exact tests in np.cor.test and np.reg.test.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2018). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-0. https://CRAN.R-project.org/package=e1071
Examples
permn(2)
permn(3)
Plots Permutation Distribution for Nonparametric Tests
Description
plot methods for object classes "np.cor.test", "np.loc.test", and "np.reg.test"
Usage
## S3 method for class 'np.aov.test'
plot(x, alpha = 0.05, col = "grey", col.rr = "red",
col.stat = "black", lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic", main = "Permutation Distribution",
breaks = "scott", border = NA, box = TRUE, ...)
## S3 method for class 'np.cdf.test'
plot(x, alpha = 0.05, col = "grey", col.rr = "red",
col.stat = "black", lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic", main = "Permutation Distribution",
breaks = "scott", border = NA, box = TRUE, ...)
## S3 method for class 'np.cor.test'
plot(x, alpha = 0.05, col = "grey", col.rr = "red",
col.stat = "black", lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic", main = "Permutation Distribution",
breaks = "scott", border = NA, box = TRUE, ...)
## S3 method for class 'np.loc.test'
plot(x, alpha = 0.05, col = "grey", col.rr = "red",
col.stat = "black", lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic", main = "Permutation Distribution",
breaks = "scott", border = NA, box = TRUE, ...)
## S3 method for class 'np.lm.test'
plot(x, which = 1, alpha = 0.05, col = "grey", col.rr = "red",
col.stat = "black", lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic", main = "Permutation Distribution",
breaks = "scott", border = NA, box = TRUE, SQRT = TRUE, ...)
## S3 method for class 'np.reg.test'
plot(x, alpha = 0.05, col = "grey", col.rr = "red",
col.stat = "black", lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic", main = "Permutation Distribution",
breaks = "scott", border = NA, box = TRUE, SQRT = TRUE, ...)
Arguments
x |
an object of class "np.aov.test" output by the |
which |
which term to plot |
alpha |
significance level of the nonparametric test |
col |
color for plotting the non-rejection region |
col.rr |
color for plotting the rejection region |
col.stat |
color for plotting the observed test statistic |
lty.stat |
line type for plotting the observed test statistic |
lwd.stat |
line width for plotting the observed test statistic |
xlab |
x-axis label for the plot |
main |
title for the plot |
breaks |
defines the breaks of the histogram (see |
border |
color of the border around the bars |
box |
should a box be drawn around the plot? |
SQRT |
for regression tests, should the permutation distribution (and test statistic) be plotted on the square-root scale? |
... |
additional arguments to be passed to |
Details
Plots a histogram of the permutation distribution and the observed test statistic. The argument 'alpha' controls the rejection region of the nonparametric test, which is plotted using a separate color (default is red).
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Helwig, N. E. (2019). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi: 10.1002/wics.1457
See Also
np.aov.test for information on nonparametric ANOVA tests
np.aov.test for information on nonparametric distribution tests
np.cor.test for information on nonparametric correlation tests
np.loc.test for information on nonparametric location tests
np.lm.test for information on nonparametric linear model tests
np.reg.test for information on nonparametric regression tests
Examples
######******###### np.cor.test ######******######
# generate data
rho <- 0.5
val <- c(sqrt(1 + rho), sqrt(1 - rho))
corsqrt <- matrix(c(val[1], -val[2], val), 2, 2) / sqrt(2)
set.seed(1)
n <- 50
z <- cbind(rnorm(n), rnorm(n)) %*% corsqrt
x <- z[,1]
y <- z[,2]
# test H0: rho = 0
set.seed(0)
test <- np.cor.test(x, y)
# plot results
plot(test)
######******###### np.loc.test ######******######
# generate data
set.seed(1)
n <- 50
x <- rnorm(n, mean = 0.5)
# one sample t-test
set.seed(0)
test <- np.loc.test(x)
# plot results
plot(test)
######******###### np.reg.test ######******######
# generate data
set.seed(1)
n <- 50
x <- cbind(rnorm(n), rnorm(n))
beta <- c(0.25, 0.5)
y <- x %*% beta + rnorm(n)
# Wald test (method = "perm")
set.seed(0)
test <- np.reg.test(x, y)
# plot results
plot(test)