
Package ‘npRmpi’
February 16, 2026

Version 0.60-20

Date 2026-02-11

Imports boot, cubature, methods, quadprog, quantreg, stats, parallel

Suggests crs, MASS, logspline, ks, testthat, np, Rmpi

Title Parallel Nonparametric Kernel Smoothing Methods for Mixed Data
Types Using 'MPI'

Maintainer Jeffrey S. Racine <racinej@mcmaster.ca>

Description Nonparametric (and semiparametric) kernel methods that seamlessly
handle a mix of continuous, unordered, and ordered factor data types. This
package is a parallel implementation of the 'np' package based on the 'MPI'
specification that incorporates the 'Rmpi' package (Hao Yu
<hyu@stats.uwo.ca>) with minor modifications and we are extremely grateful
to Hao Yu for his contributions to the 'R' community. We would like to
gratefully acknowledge support from the Natural Sciences and Engineering
Research Council of Canada (NSERC, <https://www.nserc-crsng.gc.ca/>), the
Social Sciences and Humanities Research Council of Canada (SSHRC,
<https://www.sshrc-crsh.gc.ca/>), and the Shared Hierarchical Academic
Research Computing Network (SHARCNET, <https://sharcnet.ca/>). We would
also like to acknowledge the contributions of the 'GNU GSL' authors. In
particular, we adapt the 'GNU GSL' B-spline routine 'gsl_bspline.c' adding
automated support for quantile knots (in addition to uniform knots),
providing missing functionality for derivatives, and for extending the
splines beyond their endpoints.

License GPL

URL https://github.com/JeffreyRacine/R-Package-np

BugReports https://github.com/JeffreyRacine/R-Package-np/issues

Repository CRAN

NeedsCompilation yes

Author Jeffrey S. Racine [aut, cre],
Tristen Hayfield [aut],
Hao Yu [ctb, cph],
The GSL Team [cph],
Numerical Recipes Software [cph]

1

https://www.nserc-crsng.gc.ca/
https://www.sshrc-crsh.gc.ca/
https://sharcnet.ca/
https://github.com/JeffreyRacine/R-Package-np
https://github.com/JeffreyRacine/R-Package-np/issues

2 Contents

Date/Publication 2026-02-16 17:20:13 UTC

Contents
b.star . 4
cps71 . 5
Engel95 . 7
gradients . 10
Italy . 12
lamhosts . 14
mpi.abort . 15
mpi.any.source . 15
mpi.apply . 16
mpi.applyLB . 17
mpi.barrier . 19
mpi.bcast . 20
mpi.bcast.cmd . 21
mpi.bcast.Robj . 22
mpi.cart.coords . 23
mpi.cart.create . 24
mpi.cart.get . 25
mpi.cart.rank . 26
mpi.cart.shift . 27
mpi.cartdim.get . 28
mpi.comm.disconnect . 29
mpi.comm.free . 30
mpi.comm.get.parent . 31
mpi.comm.set.errhandler . 32
mpi.comm.size . 32
mpi.comm.spawn . 33
mpi.dims.create . 34
mpi.exit . 35
mpi.finalize . 36
mpi.gather . 37
mpi.gather.Robj . 38
mpi.get.count . 40
mpi.get.processor.name . 41
mpi.get.sourcetag . 41
mpi.iapplyLB . 42
mpi.info.create . 44
mpi.intercomm.merge . 45
mpi.parSim . 46
mpi.probe . 47
mpi.realloc . 48
mpi.reduce . 49
mpi.remote.exec . 51
mpi.scatter . 52
mpi.scatter.Robj . 53

Contents 3

mpi.send . 54
mpi.send.Robj . 56
mpi.sendrecv . 57
mpi.setup.rngstream . 59
mpi.spawn.Rslaves . 60
mpi.universe.size . 62
mpi.wait . 63
np.mpi.initialize . 64
np.pairs . 65
npcdens . 67
npcdensbw . 71
npcdist . 79
npcdistbw . 83
npcmstest . 91
npconmode . 95
npcopula . 98
npdeneqtest . 104
npdeptest . 107
npindex . 110
npindexbw . 114
npksum . 120
npplot . 125
npplreg . 137
npplregbw . 141
npqcmstest . 147
npqreg . 150
npquantile . 155
npreg . 158
npregbw . 164
npregiv . 172
npregivderiv . 181
npRmpi . 186
npRmpi.start . 190
npscoef . 191
npscoefbw . 196
npsdeptest . 203
npseed . 206
npsigtest . 208
npsymtest . 212
nptgauss . 216
npudens . 217
npudensbw . 222
npudist . 230
npudistbw . 234
npuniden.boundary . 243
npuniden.reflect . 247
npuniden.sc . 251
npunitest . 256

4 b.star

oecdpanel . 259
se . 260
uocquantile . 262
wage1 . 263

Index 265

b.star Compute Optimal Block Length for Stationary and Circular Bootstrap

Description

b.star is a function which computes the optimal block length for the continuous variable data
using the method described in Patton, Politis and White (2009).

Usage

b.star(data,
Kn = NULL,
mmax= NULL,
Bmax = NULL,
c = NULL,
round = FALSE)

Arguments

data data, an n x k matrix, each column being a data series.

Kn See footnote c, page 59, Politis and White (2004). Defaults to ceiling(log10(n)).

mmax See Politis and White (2004). Defaults to ceiling(sqrt(n))+Kn.

Bmax See Politis and White (2004). Defaults to ceiling(min(3*sqrt(n),n/3)).

c See Politis and White (2004). Defaults to qnorm(0.975).

round whether to round the result or not. Defaults to FALSE.

Details

b.star is a function which computes optimal block lengths for the stationary and circular boot-
straps. This allows the use of tsboot from the boot package to be fully automatic by using the
output from b.star as an input to the argument l = in tsboot. See below for an example.

Value

A kx2 matrix of optimal bootstrap block lengths computed from data for the stationary bootstrap
and circular bootstrap (column 1 is for the stationary bootstrap, column 2 the circular).

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

cps71 5

References

Patton, A. and D.N. Politis and H. White (2009), “CORRECTION TO "Automatic block-length
selection for the dependent bootstrap" by D. Politis and H. White”, Econometric Reviews 28(4),
372-375.

Politis, D.N. and J.P. Romano (1994), “Limit theorems for weakly dependent Hilbert space valued
random variables with applications to the stationary bootstrap”, Statistica Sinica 4, 461-476.

Politis, D.N. and H. White (2004), “Automatic block-length selection for the dependent bootstrap”,
Econometric Reviews 23(1), 53-70.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
set.seed(12345)

Function to generate an AR(1) series

ar.series <- function(phi,epsilon) {
n <- length(epsilon)
series <- numeric(n)
series[1] <- epsilon[1]/(1-phi)
for(i in 2:n) {
series[i] <- phi*series[i-1] + epsilon[i]

}
return(series)

}

yt <- ar.series(0.1,rnorm(10000))
b.star(yt,round=TRUE)

yt <- ar.series(0.9,rnorm(10000))
b.star(yt,round=TRUE)

End(Not run)

cps71 Canadian High School Graduate Earnings

Description

Canadian cross-section wage data consisting of a random sample taken from the 1971 Canadian
Census Public Use Tapes for male individuals having common education (grade 13). There are 205
observations in total.

Usage

data("cps71")

6 cps71

Format

A data frame with 2 columns, and 205 rows.

logwage the first column, of type numeric

age the second column, of type integer

Source

Aman Ullah

References

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("cps71")
mpi.bcast.Robj2slave(cps71)

attach(cps71)

plot(age, logwage, xlab="Age", ylab="log(wage)")

detach(cps71)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before

Engel95 7

loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

Engel95 1995 British Family Expenditure Survey

Description

British cross-section data consisting of a random sample taken from the British Family Expenditure
Survey for 1995. The households consist of married couples with an employed head-of-household
between the ages of 25 and 55 years. There are 1655 household-level observations in total.

Usage

data("Engel95")

Format

A data frame with 10 columns, and 1655 rows.

food expenditure share on food, of type numeric

catering expenditure share on catering, of type numeric

alcohol expenditure share on alcohol, of type numeric

fuel expenditure share on fuel, of type numeric

motor expenditure share on motor, of type numeric

fares expenditure share on fares, of type numeric

leisure expenditure share on leisure, of type numeric

logexp logarithm of total expenditure, of type numeric

logwages logarithm of total earnings, of type numeric

nkids number of children, of type numeric

Source

Richard Blundell and Dennis Kristensen

8 Engel95

References

Blundell, R. and X. Chen and D. Kristensen (2007), “Semi-Nonparametric IV Estimation of Shape-
Invariant Engel Curves,” Econometrica, 75, 1613-1669.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Examples

Not run:
Not run in checks: this IV example is computationally expensive and can
exceed check time limits in MPI environments.
Example - compute nonparametric instrumental regression using
Landweber-Fridman iteration of Fredholm integral equations of the
first kind.

We consider an equation with an endogenous regressor (`z') and an
instrument (`w'). Let y = phi(z) + u where phi(z) is the function of
interest. Here E(u|z) is not zero hence the conditional mean E(y|z)
does not coincide with the function of interest, but if there exists
an instrument w such that E(u|w) = 0, then we can recover the
function of interest by solving an ill-posed inverse problem.

The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data(Engel95)

Sort on logexp (the endogenous regressor) for plotting purposes

Engel95 <- Engel95[order(Engel95$logexp),]
mpi.bcast.Robj2slave(Engel95)

mpi.bcast.cmd(attach(Engel95),
caller.execute=TRUE)

mpi.bcast.cmd(model.iv <- npregiv(y=food,z=logexp,w=logwages,method="Landweber-Fridman"),
caller.execute=TRUE)

phi <- model.iv$phi

Compute the non-IV regression (i.e. regress y on z)

Engel95 9

mpi.bcast.cmd(ghat <- npreg(food~logexp,regtype="ll"),
caller.execute=TRUE)

For the plots, restrict focal attention to the bulk of the data
(i.e. for the plotting area trim out 1/4 of one percent from each
tail of y and z)

trim <- 0.0025

plot(logexp,food,
ylab="Food Budget Share",
xlab="log(Total Expenditure)",
xlim=quantile(logexp,c(trim,1-trim)),
ylim=quantile(food,c(trim,1-trim)),
main="Nonparametric Instrumental Kernel Regression",
type="p",
cex=.5,
col="lightgrey")

lines(logexp,phi,col="blue",lwd=2,lty=2)

lines(logexp,fitted(ghat),col="red",lwd=2,lty=4)

legend(quantile(logexp,trim),quantile(food,1-trim),
c(expression(paste("Nonparametric IV: ",hat(varphi)(logexp))),

"Nonparametric Regression: E(food | logexp)"),
lty=c(2,4),
col=c("blue","red"),
lwd=c(2,2))

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

10 gradients

End(Not run)

gradients Extract Gradients

Description

gradients is a generic function which extracts gradients from objects.

Usage

gradients(x, ...)

S3 method for class 'condensity'
gradients(x, errors = FALSE, ...)

S3 method for class 'condistribution'
gradients(x, errors = FALSE, ...)

S3 method for class 'npregression'
gradients(x, errors = FALSE, ...)

S3 method for class 'qregression'
gradients(x, errors = FALSE, ...)

S3 method for class 'singleindex'
gradients(x, errors = FALSE, ...)

Arguments

x an object for which the extraction of gradients is meaningful.

... other arguments.

errors a logical value specifying whether or not standard errors of gradients are desired.
Defaults to FALSE.

Details

This function provides a generic interface for extraction of gradients from objects.

Value

Gradients extracted from the model object x.

Note

This method currently only supports objects from the npRmpi library.

gradients 11

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

See the references for the method being interrogated via gradients in the appropriate help file.
For example, for the particulars of the gradients for nonparametric regression see the references in
npreg

See Also

fitted, residuals, coef, and se, for related methods; npRmpi for supported objects.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

set.seed(42)

x <- runif(10)
y <- x + rnorm(10, sd = 0.1)
mydat <- data.frame(x,y)
rm(x,y)

mpi.bcast.Robj2slave(mydat)

mpi.bcast.cmd(model <- npreg(y~x, data=mydat, gradients=TRUE),
caller.execute=TRUE)

gradients(model)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to

12 Italy

actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

Italy Italian GDP Panel

Description

Italian GDP growth panel for 21 regions covering the period 1951-1998 (millions of Lire, 1990=base).
There are 1008 observations in total.

Usage

data("Italy")

Format

A data frame with 2 columns, and 1008 rows.

year the first column, of type ordered

gdp the second column, of type numeric: millions of Lire, 1990=base

Source

Giovanni Baiocchi

References

Baiocchi, G. (2006), “Economic Applications of Nonparametric Methods,” Ph.D. Thesis, Univer-
sity of York.

Italy 13

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("Italy")
mpi.bcast.Robj2slave(Italy)

attach(Italy)

plot(ordered(year), gdp, xlab="Year (ordered factor)",
ylab="GDP (millions of Lire, 1990=base)")

detach(Italy)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

14 lamhosts

lamhosts Hosts Information

Description

lamhosts finds the host name associated with its node number. Can be used by mpi.spawn.Rslaves
to spawn R slaves on selected hosts. This is a MPI implementation specific function.

mpi.is.master checks if it is running on master or slaves.

mpi.hostinfo finds an individual host information including rank and size in a comm.

slave.hostinfo is executed only by master and find all master and slaves host information in a
comm.

Usage

lamhosts()
mpi.is.master()
mpi.hostinfo(comm = 1)
slave.hostinfo(comm = 1, short=TRUE)

Arguments

comm a communicator number

short if true, a short form is printed

Value

lamhosts returns CPUs nodes numbers with their host names.

mpi.is.master returns TRUE if it is on master and FALSE otherwise.

mpi.hostinfo sends to stdio a host name, rank, size and comm.

slave.hostname sends to stdio a list of host, rank, size, and comm information for all master and
slaves. With short=TRUE and 8 slaves or more, the first 3 and last 2 slaves are shown.

Author(s)

Hao Yu (minor modifications by Jeffrey S. Racine <racinej@mcmaster.ca>)

See Also

mpi.spawn.Rslaves

mpi.abort 15

mpi.abort MPI_Abort API

Description

mpi.abort makes a “best attempt" to abort all tasks in a comm.

Usage

mpi.abort(comm = 1)

Arguments

comm a communicator number

Value

1 if success. Otherwise 0.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.finalize

mpi.any.source MPI Constants

Description

Find MPI constants: MPI_ANY_SOURCE, MPI_ANY_TAG, or MPI_PROC_NULL

Usage

mpi.any.source()
mpi.any.tag()
mpi.proc.null()

Arguments

None

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

16 mpi.apply

Details

These constants are mainly used by mpi.send, mpi.recv, and mpi.probe. Different implementa-
tion of MPI may use different integers for MPI_ANY_SOURCE, MPI_ANY_TAG, and MPI_PROC_NULL.
Hence one should use these functions instead of real integers for MPI communications.

Value

Each function returns an integer value.

References

https://www.mpich.org, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.send, mpi.recv.

mpi.apply Scatter an array to slaves and then apply a FUN

Description

An array (length <= total number of slaves) is scattered to slaves so that the first slave calls FUN
with arguments x[[1]] and ..., the second one calls with arguments x[[2]] and ..., and so on.
mpi.iapply is a nonblocking version of mpi.apply so that it will not consume CPU on master
node.

Usage

mpi.apply(X, FUN, ..., comm=1)
mpi.iapply(X, FUN, ..., comm=1, sleep=0.01)

Arguments

X an array

FUN a function

... optional arguments to FUN

comm a communicator number

sleep a sleep interval on master node (in sec)

Value

A list of the results is returned. Its length is the same as that of x. In case the call FUN with arguments
x[[i]] and ... fails on ith slave, corresponding error message will be returned in the returning list.

https://www.mpich.org
https://www.mpich.org/static/docs/latest/www3/

mpi.applyLB 17

Author(s)

Hao Yu

Examples

Not run:
Not run in checks: requires pre-spawned slaves and a live worker communicator.
Running this without the expected MPI session can deadlock.
#Assume that there are at least 5 slaves running
#Otherwise run mpi.spawn.Rslaves(nslaves=5)
x=c(10,20)
mpi.apply(x,runif)
meanx=1:5
mpi.apply(meanx,rnorm,n=2,sd=4)

End(Not run)

mpi.applyLB (Load balancing) parallel apply

Description

(Load balancing) parallellapply and related functions.

Usage

mpi.applyLB(X, FUN, ..., apply.seq=NULL, comm=1)
mpi.parApply(X, MARGIN, FUN, ..., job.num = mpi.comm.size(comm)-1,

apply.seq=NULL, comm=1)
mpi.parLapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1)
mpi.parSapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify=TRUE, USE.NAMES = TRUE, comm=1)
mpi.parRapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1)
mpi.parCapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1)
mpi.parReplicate(n, expr, job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify = TRUE, comm=1)
mpi.parMM (A, B, job.num=mpi.comm.size(comm)-1, comm=1)

Arguments

X an array or matrix.

MARGIN vector specifying the dimensions to use.

FUN a function.

simplify logical; should the result be simplified to a vector or matrix if possible?

18 mpi.applyLB

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless it had
names already.

n number of replications.

A a matrix

B a matrix

expr expression to evaluate repeatedly.

job.num Total job numbers. If job numbers is bigger than total slave numbers (default
value), a load balancing approach is used.

apply.seq if reproducing the same computation (simulation) is desirable, set it to the inte-
ger vector .mpi.applyLB generated in previous computation (simulation).

... optional arguments to FUN

comm a communicator number

Details

Unless length of X is no more than total slave numbers (slave.num) and in this case mpi.applyLB is
the same as mpi.apply, mpi.applyLB sends a next job to a slave who just delivered a finished job.
The sequence of slaves who deliver results to master are saved into .mpi.applyLB. It keeps track
of which slaves do which parts of the results. .mpi.applyLB can be used to reproduce the same
simulation result if the same seed is used and the argument apply.seq is equal to .mpi.applyLB.

With the default value of argument job.num which is slave.num, mpi.parApply, mpi.parLapply,
mpi.parSapply, mpi.parRapply, mpi.parCapply, mpi.parSapply, and mpi.parMM are clones of
snow’s parApply, parLappy, parSapply, parRapply, parCapply, parSapply, and parMM, respectively.
When job.num is bigger than slave.num, a load balancing approach is used.

Value

Returns an object with the same structure as the corresponding base apply call (typically a list or
simplified vector/array when ‘simplify = TRUE‘).

Warning

When using the argument apply.seq with .mpi.applyLB, be sure all settings are the same as
before, i.e., the same data, job.num, slave.num, and seed. Otherwise a deadlock could occur. Notice
that apply.seq is useful only if job.num is bigger than slave.num.

See Also

mpi.apply

Examples

Not run:
Not run in checks: requires pre-spawned slaves and load-balancing state.
A mismatched communicator or apply.seq can deadlock.
#Assume that there are some slaves running

mpi.barrier 19

#mpi.applyLB
x=1:7
mpi.applyLB(x,rnorm,mean=2,sd=4)

#get the same simulation
mpi.remote.exec(set.seed(111))
mpi.applyLB(x,rnorm,mean=2,sd=4)
mpi.remote.exec(set.seed(111))
mpi.applyLB(x,rnorm,mean=2,sd=4,apply.seq=.mpi.applyLB)

#mpi.parApply
x=1:24
dim(x)=c(2,3,4)
mpi.parApply(x, MARGIN=c(1,2), FUN=mean,job.num = 5)

#mpi.parLapply
mdat <- matrix(c(1,2,3, 7,8,9), nrow = 2, ncol=3, byrow=TRUE,

dimnames = list(c("R.1", "R.2"), c("C.1", "C.2", "C.3")))
mpi.parLapply(mdat, rnorm)

#mpi.parSapply
mpi.parSapply(mdat, rnorm)

#mpi.parMM
A=matrix(1:1000^2,ncol=1000)
mpi.parMM(A,A)

End(Not run)

mpi.barrier MPI_Barrier API

Description

mpi.barrier blocks the caller until all members have called it.

Usage

mpi.barrier(comm = 1)

Arguments

comm a communicator number

Value

1 if success. Otherwise 0.

Author(s)

Hao Yu

20 mpi.bcast

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

mpi.bcast MPI_Bcast API

Description

mpi.bcast is a collective call among all members in a comm. It broadcasts a message from the
specified rank to all members.

Usage

mpi.bcast(x, type, rank = 0, comm = 1, buffunit=100)

Arguments

x data to be sent or received. Must be the same type among all members.
type 1 for integer, 2 for double, and 3 for character. Others are not supported.
rank the sender.
comm a communicator number.
buffunit a buffer unit number.

Details

mpi.bcast is a blocking call among all members in a comm, i.e, all members have to wait until
everyone calls it. All members have to prepare the same type of messages (buffers). Hence it is
relatively difficult to use in R environment since the receivers may not know what types of data to
receive, not to mention the length of data. Users should use various extensions of mpi.bcast in R.
They are mpi.bcast.Robj, mpi.bcast.cmd, and mpi.bcast.Robj2slave.

When type=5, MPI continuous datatype (double) is defined with unit given by buffunit. It is
used to transfer huge data where a double vector or matrix is divided into many chunks with unit
buffunit. Total ceiling(length(obj)/buffunit) units are transferred. Due to MPI specification, both
buffunit and total units transferred cannot be over 2^31-1. Notice that the last chunk may not have
full length of data due to rounding. Special care is needed.

Value

mpi.bcast returns the message broadcasted by the sender (specified by the rank).

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.bcast.Robj, mpi.bcast.cmd, mpi.bcast.Robj2slave.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/
https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.bcast.cmd 21

mpi.bcast.cmd Extension of MPI_Bcast API

Description

mpi.bcast.cmd is an extension of mpi.bcast. It is mainly used to transmit a command from master
to all R slaves spawned by using slavedaemon.R script.

Usage

mpi.bcast.cmd(cmd=NULL,
...,
rank = 0,
comm = 1,
nonblock=FALSE,
sleep=0.1,
caller.execute = FALSE)

Arguments

cmd a command to be sent from master.

... used as arguments to cmd (function command) for passing their (master) values
to R slaves, i.e., if ‘myfun(x)’ will be executed on R slaves with ‘x’ as master
variable, use mpi.bcast.cmd(cmd=myfun, x=x).

rank the sender

comm a communicator number

nonblock logical. If TRUE, a nonblock procedure is used on all receivers so that they will
consume none or little CPUs while waiting.

sleep a sleep interval, used when nonblock=TRUE. The smaller sleep is, the more
responsive slaves are, the more CPUs consume.

caller.execute a logical value indicating whether the master node is additionally to execute the
command

Details

mpi.bcast.cmd is a collective call. This means all members in a communicator must execute it at
the same time. If slaves are spawned (created) by using slavedaemon.R (Rprofile script), then they
are running mpi.bcast.cmd in infinite loop (idle state). Hence master can execute mpi.bcast.cmd
alone to start computation. On the master, cmd and ... are put together as a list which is then
broadcasted (after serialization) to all slaves (using for loop with mpi.send and mpi.recv pair). All
slaves will return an expression which will be evaluated by either slavedaemon.R, or by whatever
an R script based on slavedaemon.R.

If nonblock=TRUE, then on receiving side, a nonblock procedure is used to check if there is a
message. If not, it will sleep for the specied amount and repeat itself.

Please use mpi.remote.exec if you want the executed results returned from R slaves.

22 mpi.bcast.Robj

Value

mpi.bcast.cmd returns no value for the sender and an expression of the transmitted command for
others.

Warning

Be cautious of using mpi.bcast.cmd alone by master in the middle of comptuation. Only all
slaves in idle states (waiting instructions from master) can be used. Othewise it may result in
miscommunication with other MPI calls.

Author(s)

Hao Yu (minor modifications by Jeffrey S. Racine <racinej@mcmaster.ca>)

See Also

mpi.remote.exec

mpi.bcast.Robj Extensions of MPI_Bcast API

Description

mpi.bcast.Robj and mpi.bcast.Robj2slave are used to move a general R object around among
master and all slaves.

Usage

mpi.bcast.Robj(obj = NULL, rank = 0, comm = 1)
mpi.bcast.Robj2slave(obj, comm = 1, all = FALSE)
mpi.bcast.Rfun2slave(comm = 1)
mpi.bcast.data2slave(obj, comm = 1, buffunit = 100)

Arguments

obj an R object to be transmitted from the sender

rank the sender.

comm a communicator number.

all a logical. If TRUE, all R objects on master are transmitted to slaves.

buffunit a buffer unit number.

mpi.cart.coords 23

Details

mpi.bcast.Robj is an extension of mpi.bcast for moving a general R object around from a sender
to everyone. mpi.bcast.Robj2slave does an R object transmission from master to all slaves
unless all=TRUE in which case, all master’s objects with the global enviroment are transmitted to
all slavers.

mpi.bcast.data2slave transfers data (a double vector or a matrix) natively without (un)serilization.
It should be used with a huge vector or matrix. It results in less memory usage and faster transmis-
sion. Notice that data with missing values (NA) are allowed.

Value

mpi.bcast.Robj returns no value for the sender and the transmitted one for others. mpi.bcast.Robj2slave
returns no value for the master and the transmitted R object along its name on slaves. mpi.bcast.Rfun2slave
transmits all master’s functions to slaves and returns no value. mpi.bcast.data2slave transmits a
double vector or a matrix to slaves and returns no value.

Author(s)

Hao Yu

See Also

mpi.send.Robj, mpi.recv.Robj,

mpi.cart.coords MPI_Cart_coords

Description

mpi.cart.coords translates a rank to its Cartesian topology coordinate.

Usage

mpi.cart.coords(comm=3, rank, maxdims)

Arguments

comm Communicator with Cartesian structure

rank rank of a process within group

maxdims length of vector coord in the calling program

Details

This function is the rank-to-coordinates translator. It is the inverse map of mpi.cart.rank. maxdims
is at least as big as ndims as returned by mpi.cartdim.get.

24 mpi.cart.create

Value

mpi.cart.coords returns an integer array containing the Cartesian coordinates of a specified pro-
cess.

Author(s)

Alek Hunchak and Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.cart.rank

Examples

Not run:
Not run in checks: requires a Cartesian communicator built from spawned slaves.
#Need at least 9 slaves
mpi.bcast.cmd(mpi.cart.create(1,c(3,3),c(F,T)))
mpi.cart.create(1,c(3,3),c(F,T))
mpi.cart.coords(3,4,2)

End(Not run)

mpi.cart.create MPI_Cart_create

Description

mpi.cart.create creates a Cartesian structure of arbitrary dimension.

Usage

mpi.cart.create(commold=1, dims, periods, reorder=FALSE, commcart=3)

Arguments

commold Input communicator

dims Integery array of size ndims specifying the number of processes in each dimen-
sion

periods Logical array of size ndims specifying whether the grid is periodic or not in each
dimension

reorder ranks may be reordered or not

commcart The new communicator to which the Cartesian topology information is attached

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.cart.get 25

Details

If reorder = false, then the rank of each process in the new group is the same as its rank in the old
group. If the total size of the Cartesian grid is smaller than the size of the group of commold, then
some processes are returned mpi.comm.null. The call is erroneous if it specifies a grid that is larger
than the group size.

Value

mpi.cart.create returns 1 if success and 0 otherwise.

Author(s)

Alek Hunchak and Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

Examples

Not run:
Not run in checks: requires a multi-rank MPI session with spawned slaves.
#Need at least 9 slaves
mpi.bcast.cmd(mpi.cart.create(1,c(3,3),c(F,T)))
mpi.cart.create(1,c(3,3),c(F,T))

End(Not run)

mpi.cart.get MPI_Cart_get

Description

mpi.cart.get provides the user with information on the Cartesian topology associated with a
comm.

Usage

mpi.cart.get(comm=3, maxdims)

Arguments

comm Communicator with Cartesian structure

maxdims length of vectors dims, periods, and coords in the calling program

Details

The coords are as given for the rank of the calling process as shown.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

26 mpi.cart.rank

Value

mpi.cart.get returns a vector containing information on the Cartesian topology associated with
comm. maxdims must be at least ndims as returned by mpi.cartdim.get.

Author(s)

Alek Hunchak and Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.cart.create,mpi.cartdim.get

Examples

Not run:
Not run in checks: requires a Cartesian communicator built from spawned slaves.
#Need at least 9 slaves
mpi.bcast.cmd(mpi.cart.create(1,c(3,3),c(F,T)))
mpi.cart.create(1,c(3,3),c(F,T))
mpi.remote.exec(mpi.cart.get(3,2))

End(Not run)

mpi.cart.rank MPI_Cart_rank

Description

mpi.cart.rank translates a Cartesian topology coordinate to its rank.

Usage

mpi.cart.rank(comm=3, coords)

Arguments

comm Communicator with Cartesian structure

coords Specifies the Cartesian coordinates of a process

Details

For a process group with a Cartesian topology, this function translates the logical process coor-
dinates to process ranks as they are used by the point-to-point routines. It is the inverse map of
mpi.cart.coords.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.cart.shift 27

Value

mpi.cart.rank returns the rank of the specified process.

Author(s)

Alek Hunchak and Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.cart.coords

Examples

Not run:
Not run in checks: requires a Cartesian communicator built from spawned slaves.
#Need at least 9 slaves
mpi.bcast.cmd(mpi.cart.create(1,c(3,3),c(F,T)))
mpi.cart.create(1,c(3,3),c(F,T))
mpi.cart.rank(3,c(1,0))

End(Not run)

mpi.cart.shift MPI_Cart_shift

Description

mpi.cart.shift shifts the Cartesian topology in both manners, displacement and direction.

Usage

mpi.cart.shift(comm=3, direction, disp)

Arguments

comm Communicator with Cartesian structure
direction Coordinate dimension of the shift
disp displacement (>0 for upwards or left shift, <0 for downwards or right shift)

Details

mpi.cart.shift provides neighbor ranks from given direction and displacement. The direction ar-
gument indicates the dimension of the shift. direction=1 means the first dim, direction=2 means the
second dim, etc. disp=1 or -1 provides immediate neighbor ranks and disp=2 or -2 provides neigh-
bor’s neighbor ranks. Negative ranks mean out of boundary. They correspond to mpi.proc.null.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

28 mpi.cartdim.get

Value

mpi.cart.shift returns a vector containing information regarding the rank of the source process
and rank of the destination process.

Author(s)

Alek Hunchak and Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.cart.create,mpi.proc.null

Examples

Not run:
Not run in checks: requires a Cartesian communicator built from spawned slaves.
#Need at least 9 slaves
mpi.bcast.cmd(mpi.cart.create(1,c(3,3),c(F,T)))
mpi.cart.create(1,c(3,3),c(F,T))
mpi.remote.exec(mpi.cart.shift(3,2,1))#get neighbor ranks
mpi.remote.exec(mpi.cart.shift(3,1,1))

End(Not run)

mpi.cartdim.get MPI_Cartdim_get

Description

mpi.cartdim.get gets dim information about a Cartesian topology.

Usage

mpi.cartdim.get(comm=3)

Arguments

comm Communicator with Cartesian structure

Details

Can be used to provide other functions with the correct size of arrays.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.comm.disconnect 29

Value

mpi.cartdim.get returns the number of dimensions of the Cartesian structure

Author(s)

Alek Hunchak and Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.cart.get

Examples

Not run:
Not run in checks: requires a Cartesian communicator built from spawned slaves.
#Need at least 9 slaves
mpi.bcast.cmd(mpi.cart.create(1,c(3,3),c(F,T)))
mpi.cart.create(1,c(3,3),c(F,T))
mpi.cartdim.get(comm=3)

End(Not run)

mpi.comm.disconnect MPI_Comm_disconnect API

Description

mpi.comm.disconnect disconnects itself from a communicator and then deallocates the commu-
nicator so it points to MPI_COMM_NULL.

Usage

mpi.comm.disconnect(comm=1)

Arguments

comm a communicator number

Details

When members associated with a communicator finish jobs or exit, they have to call mpi.comm.disconnect
to release resource if the communicator was created from an intercommunicator by mpi.intercomm.merge.
If mpi.comm.free is used instead, mpi.finalize called by slaves may cause undefined impacts on
master who wishes to stay.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

30 mpi.comm.free

Value

1 if success. Otherwise 0.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.comm.free

mpi.comm.free MPI_Comm_free API

Description

mpi.comm.free deallocates a communicator so it points to MPI_COMM_NULL.

Usage

mpi.comm.free(comm=1)

Arguments

comm a communicator number

Details

When members associated with a communicator finish jobs or exit, they have to call mpi.comm.free
to release resource so mpi.comm.size will return 0. If the comm was created from an intercommu-
nicator by mpi.intercomm.merge, use mpi.comm.disconnect instead.

Value

1 if success. Otherwise 0.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/
https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.comm.get.parent 31

See Also

mpi.comm.disconnect

mpi.comm.get.parent MPI_Comm_get_parent, MPI_Comm_remote_size,
MPI_Comm_test_inter APIs

Description

mpi.comm.get.parent is mainly used by slaves to find the intercommunicator or the parent who
spawns them. The intercommunicator is saved in the specified comm number.

mpi.comm.remote.size is mainly used by master to find the total number of slaves spawned.

mpi.comm.test.inter tests if a comm is an intercomm or not.

Usage

mpi.comm.get.parent(comm = 2)
mpi.comm.remote.size(comm = 2)
mpi.comm.test.inter(comm = 2)

Arguments

comm an intercommunicator number.

Value

mpi.comm.get.parent and mpi.comm.test.inter return 1 if success and 0 otherwise.

mpi.comm.remote.size returns the total number of members in the remote group in an intercomm.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.intercomm.merge

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

32 mpi.comm.size

mpi.comm.set.errhandler

MPI_Comm_set_errhandler API

Description

mpi.comm.set.errhandler sets a communicator to MPI_ERRORS_RETURN instead of MPI_ERRORS_ARE_FATAL
(default) which crashes R on any type of MPI errors. Almost all MPI API calls return errcodes
which can map to specific MPI error messages. All MPI related error messages come from prede-
fined MPI_Error_string.

Usage

mpi.comm.set.errhandler(comm = 1)

Arguments

comm a communicator number

Value

1 if success. Otherwise 0.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

mpi.comm.size MPI_Comm_c2f, MPI_Comm_dup, MPI_Comm_rank, and
MPI_Comm_size APIs

Description

mpi.comm.c2f converts the comm (a C communicator) and returns an integer that can be used as
the communicator in external FORTRAN code. mpi.comm.dup duplicates (copies) a comm to a
new comm. mpi.comm.rank returns its rank in a comm. mpi.comm.size returns the total number
of members in a comm.

Usage

mpi.comm.c2f(comm=1)
mpi.comm.dup(comm, newcomm)
mpi.comm.rank(comm = 1)
mpi.comm.size(comm = 1)

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.comm.spawn 33

Arguments

comm a communicator number

newcomm a new communicator number

Value

• mpi.comm.c2f: integer communicator for use in FORTRAN code.

• mpi.comm.dup: integer identifier of the duplicated communicator.

• mpi.comm.rank: integer rank within the communicator.

• mpi.comm.size: integer size of the communicator.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

Examples

Not run:
Not run in checks when toggled to dontrun: communicator examples are
documented for manual MPI sessions.
mpi.comm.rank(comm=0)
mpi.comm.size(comm=0)
mpi.comm.dup(comm=0, newcomm=5)

End(Not run)

mpi.comm.spawn MPI_Comm_spawn API

Description

mpi.comm.spawn tries to start nslaves identical copies of slaves, establishing communication
with them and returning an intercommunicator. The spawned slaves are referred to as children,
and the process that spawned them is called the parent (master). The children have their own
MPI_COMM_WORLD represented by comm 0. To make communication possible among master
and slaves, all slaves should use mpi.comm.get.parent to find their parent and use mpi.intercomm.merge
to merger an intercomm to a comm.

Usage

mpi.comm.spawn(slave, slavearg = character(0),
nslaves = mpi.universe.size(), info = 0,
root = 0, intercomm = 2, quiet = FALSE)

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

34 mpi.dims.create

Arguments

slave a file name to an executable program.

slavearg an argument list (a char vector) to slave.

nslaves number of slaves to be spawned.

info an info number.

root the root member who spawns slaves.

intercomm an intercomm number.

quiet a logical. If TRUE, do not print anything unless an error occurs.

Value

Unless quiet = TRUE, a message is printed to indicate how many slaves are successfully spawned
and how many failed.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.comm.get.parent, mpi.intercomm.merge.

mpi.dims.create MPI_Dims_create

Description

mpi.dims.create Create a Cartesian dimension used by mpi.cart.create.

Usage

mpi.dims.create(nnodes, ndims, dims=integer(ndims))

Arguments

nnodes Number of nodes in a cluster

ndims Number of dimension in a Cartesian topology

dims Initial dimension numbers

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.exit 35

Details

The entries in the return value are set to describe a Cartesian grid with ndims dimensions and
a total of nnodes nodes. The dimensions are set to be as close to each other as possible, using
an appropriate divisibility algorithm. The return value can be constrained by specifying positive
number(s) in dims. Only those 0 values in dims are modified by mpi.dims.create.

Value

mpi.dims.create returns the dimension vector used by that in mpi.cart.create.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.cart.create

Examples

Not run:
Not run in checks when toggled to dontrun: this MPI utility example is
intended for manual interactive use.
#What is the dim numbers of 2 dim Cartersian topology under a grid of 36 nodes
mpi.dims.create(36,2) #return c(6,6)
#Constrained dim numbers
mpi.dims.create(12,2,c(0,4)) #return c(9,4)

End(Not run)

mpi.exit Exit MPI Environment

Description

mpi.exit terminates MPI execution environment and detaches the library Rmpi. After that, you
can still work on R.

mpi.quit terminates MPI execution environment and quits R.

Usage

mpi.exit()
mpi.quit(save = "no")

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

36 mpi.finalize

Arguments

save the same argument as quit but default to "no".

Details

Normally, mpi.finalize is used to clean all MPI states. However, it will not detach the library
Rmpi. To be more safe leaving MPI, mpi.exit not only calls mpi.finalize but also detaches the
library Rmpi. This will make reloading of the library Rmpi impossible.

If leaving MPI and R altogether, one simply uses mpi.quit.

Value

mpi.exit always returns 1

Author(s)

Hao Yu

See Also

mpi.finalize

mpi.finalize MPI_Finalize API

Description

Terminates MPI execution environment.

Usage

mpi.finalize()

Arguments

None

Details

This routines must be called by each slave (master) before it exits. This call cleans all MPI state.
Once mpi.finalize has been called, no MPI routine may be called. To be more safe leaving MPI,
please use mpi.exit which not only calls mpi.finalize but also detaches the library Rmpi. This
will make reload the library Rmpi impossible.

Value

Always return 1

mpi.gather 37

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.exit

mpi.gather MPI_Gather, MPI_Gatherv, MPI_Allgather, and MPI_Allgatherv
APIs

Description

mpi.gather and mpi.gatherv (vector variant) gather each member’s message to the member spec-
ified by the argument root. The root member receives the messages and stores them in rank order.
mpi.allgather and mpi.allgatherv are the same as mpi.gather and mpi.gatherv except that
all members receive the result instead of just the root.

Usage

mpi.gather(x, type, rdata, root = 0, comm = 1)
mpi.gatherv(x, type, rdata, rcounts, root = 0, comm = 1)

mpi.allgather(x, type, rdata, comm = 1)
mpi.allgatherv(x, type, rdata, rcounts, comm = 1)

Arguments

x data to be gathered. Must be the same type.
type 1 for integer, 2 for double, and 3 for character. Others are not supported.
rdata the receive buffer. Must be the same type as the sender and big enough to include

all message gathered.
rcounts int vector specifying the length of each message.
root rank of the receiver
comm a communicator number

Details

For mpi.gather and mpi.allgather, the message to be gathered must be the same dim and the
same type. The receive buffer can be prepared as either integer(size * dim) or double(size * dim),
where size is the total number of members in a comm. For mpi.gatherv and mpi.allgatherv, the
message to be gathered can have different dims but must be the same type. The argument rcounts
records these different dims into an integer vector in rank order. Then the receive buffer can be
prepared as either integer(sum(rcounts)) or double(sum(rcounts)).

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

38 mpi.gather.Robj

Value

For mpi.gather or mpi.gatherv, it returns the gathered message for the root member. For other
members, it returns what is in rdata, i.e., rdata (or rcounts) is ignored. For mpi.allgather or
mpi.allgatherv, it returns the gathered message for all members.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.scatter, mpi.scatterv.

Examples

Not run:
Not run in checks: requires a fixed number of spawned slaves and rank-specific buffers.
Running this with a different communicator layout can deadlock.
#Need 3 slaves to run properly
#Or use mpi.spawn.Rslaves(nslaves=3)
mpi.bcast.cmd(id <-mpi.comm.rank(.comm), comm=1)

mpi.bcast.cmd(mpi.gather(letters[id],type=3,rdata=string(1)))
mpi.gather(letters[10],type=3,rdata=string(4))

mpi.bcast.cmd(x<-rnorm(id))
mpi.bcast.cmd(mpi.gatherv(x,type=2,rdata=double(1),rcounts=1))
mpi.gatherv(double(1),type=2,rdata=double(sum(1:3)+1),rcounts=c(1,1:3))

mpi.bcast.cmd(out1<-mpi.allgatherv(x,type=2,rdata=double(sum(1:3)+1),
rcounts=c(1,1:3)))
mpi.allgatherv(double(1),type=2,rdata=double(sum(1:3)+1),rcounts=c(1,1:3))

End(Not run)

mpi.gather.Robj Extentions of MPI_Gather and MPI_Allgather APIs

Description

mpi.gather.Robj gathers each member’s object to the member specified by the argument root.
The root member receives the objects as a list. mpi.allgather.Robj is the same as mpi.gather.Robj
except that all members receive the result instead of just the root.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.gather.Robj 39

Usage

mpi.gather.Robj(obj=NULL, root = 0, comm = 1, ...)

mpi.allgather.Robj(obj=NULL, comm = 1)

Arguments

obj data to be gathered. Could be different type.

root rank of the gather

comm a communicator number

... optional arugments to sapply.

Details

Since sapply is used to gather all results, its default option "simplify=TRUE" is to simplify outputs.
In some situations, this option is not desirable. Using "simplify=FALSE" as in the place of ... will
tell sapply not to simplify and a list of outputs will be returned.

Value

For mpi.gather.Robj, it returns a list, the gathered message for the root member. For mpi.allgatherv.Robj,
it returns a list, the gathered message for all members.

Author(s)

Hao Yu and Wei Xia

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.gather, mpi.allgatherv.

Examples

Not run:
Not run in checks: requires pre-spawned slaves and a live worker communicator.
#Assume that there are some slaves running
mpi.bcast.cmd(id<-mpi.comm.rank())
mpi.bcast.cmd(x<-rnorm(id))
mpi.bcast.cmd(mpi.gather.Robj(x))
x<-"test mpi.gather.Robj"
mpi.gather.Robj(x)

mpi.bcast.cmd(obj<-rnorm(id+10))
mpi.bcast.cmd(nn<-mpi.allgather.Robj(obj))
obj<-rnorm(5)
mpi.allgather.Robj(obj)

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

40 mpi.get.count

mpi.remote.exec(nn)

End(Not run)

mpi.get.count MPI_Get_count API

Description

mpi.get.count finds the length of a received message.

Usage

mpi.get.count(type, status = 0)

Arguments

type 1 for integer, 2 for double, 3 for char.

status a status number

Details

When mpi.recv is used to receive a message, the receiver buffer can be set to be bigger than the
incoming message. To find the exact length of the received message, mpi.get.count is used to
find its exact length. mpi.get.count must be called immediately after calling mpi.recv otherwise
the status may be changed.

Value

the length of a received message.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.send, mpi.recv, mpi.get.sourcetag, mpi.probe.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.get.processor.name 41

mpi.get.processor.name

MPI_Get_processor_name API

Description

mpi.get.processor.name returns the host name (a string) where it is executed.

Usage

mpi.get.processor.name(short = TRUE)

Arguments

short a logical.

Value

a base host name if short = TRUE and a full host name otherwise.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

mpi.get.sourcetag Utility for finding the source and tag of a received message

Description

mpi.get.sourcetag finds the source and tag of a received message.

Usage

mpi.get.sourcetag(status = 0)

Arguments

status a status number

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

42 mpi.iapplyLB

Details

When mpi.any.source and/or mpi.any.tag are used by mpi.recv or mpi.probe, one can use
mpi.get.sourcetag to find who sends the message or with what tag number. mpi.get.sourcetag
must be called immediately after calling mpi.recv or mpi.probe otherwise the obtained informa-
tion may not be right.

Value

2 dim int vector. The first integer is the source and the second is the tag.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.send, mpi.recv, mpi.probe, mpi.get.count

mpi.iapplyLB (Load balancing) parallel apply with nonblocking features

Description

(Load balancing) parallellapply and related functions.

Usage

mpi.iapplyLB(X, FUN, ..., apply.seq=NULL, comm=1, sleep=0.01)
mpi.iparApply(X, MARGIN, FUN, ..., job.num = mpi.comm.size(comm)-1,

apply.seq=NULL, comm=1, sleep=0.01)
mpi.iparLapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,

comm=1,sleep=0.01)
mpi.iparSapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify=TRUE, USE.NAMES = TRUE, comm=1, sleep=0.01)
mpi.iparRapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1, sleep=0.01)
mpi.iparCapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1,sleep=0.01)
mpi.iparReplicate(n, expr, job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify = TRUE, comm=1,sleep=0.01)
mpi.iparMM(A, B, comm=1, sleep=0.01)

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.iapplyLB 43

Arguments

X an array or matrix.

MARGIN vector specifying the dimensions to use.

FUN a function.

simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless it had
names already.

n number of replications.

A a matrix

B a matrix

expr expression to evaluate repeatedly.

job.num Total job numbers. If job numbers is bigger than total slave numbers (default
value), a load balancing approach is used.

apply.seq if reproducing the same computation (simulation) is desirable, set it to the inte-
ger vector .mpi.applyLB generated in previous computation (simulation).

... optional arguments to Fun

comm a communicator number

sleep a sleep interval on master node (in sec)

Details

mpi.iparApply, mpi.iparLapply, mpi.iparSapply, mpi.iparRapply, mpi.iparCapply, mpi.iparSapply,
mi.iparReplicate, and mpi.iparMM are nonblocking versions of mpi.parApply, mpi.parLapply,
mpi.parSapply, mpi.parRapply, mpi.parCapply, mpi.parSapply, mpi.parReplicate, and mpi.parMM
respectively. The main difference is that mpi.iprobe and Sys.sleep are used so that master
node consumes almost no CPU cycles while waiting for slaves results. However, due to frequent
wake/sleep cycles on master, those functions are not suitable for running small jobs on slave nodes.
If anticipated computing time for each job is relatively long, e.g., minutes or hours, setting sleep to
be 1 second or longer will further reduce load on master (only slightly).

Value

Returns an object with the same structure as the corresponding base or ‘mpi.par*‘ apply call (typi-
cally a list or simplified vector/array when ‘simplify = TRUE‘).

See Also

mpi.iapply

44 mpi.info.create

mpi.info.create MPI_Info_create, MPI_Info_free, MPI_Info_get, MPI_Info_set APIs

Description

Many MPI APIs take an info argument for additional information passing. An info is an object
which consists of many (key,value) pairs. Rmpi uses an internal memory to store an info object.

mpi.info.create creates a new info object.

mpi.info.free frees an info object and sets it to MPI_INFO_NULL.

mpi.info.get retrieves the value associated with key in an info.

mpi.info.set adds the key and value pair to info.

Usage

mpi.info.create(info = 0)
mpi.info.free(info = 0)
mpi.info.get(info = 0, key, valuelen)
mpi.info.set(info = 0, key, value)

Arguments

info an info number.

key a char (length 1).

valuelen the length (nchar) of a key

value a char (length 1).

Value

mpi.info.create, mpi.info.free, and mpi.info.set return 1 if success and 0 otherwise.

mpi.info.get returns the value (a char) for a given info and valuelen.

Author(s)

Hao Yu

See Also

mpi.spawn.Rslaves

mpi.intercomm.merge 45

mpi.intercomm.merge MPI_Intercomm_merge API

Description

Creates an intracommunicator from an intercommunicator

Usage

mpi.intercomm.merge(intercomm=2, high=0, comm=1)

Arguments

intercomm an intercommunicator number

high Used to order the groups of the two intracommunicators within comm when
creating the new communicator

comm a (intra)communicator number

Details

When master spawns slaves, an intercommunicator is created. To make communications (point-to-
point or groupwise) among master and slaves, an intracommunicator must be created. mpi.intercomm.merge
is used for that purpose. This is a collective call so all master and slaves call together. R slaves
spawned by mpi.spawn.Rslaves should use mpi.comm.get.parent to get (set) an intercomm to
a number followed by merging antercomm to an intracomm. One can use mpi.comm.test.inter
to test if a communicator is an intercommunicator or not.

Value

1 if success. Otherwise 0.

Author(s)

Hao Yu

References

https://www.mpich.org, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.comm.test.inter

https://www.mpich.org
https://www.mpich.org/static/docs/latest/www3/

46 mpi.parSim

mpi.parSim Parallel Monte Carlo Simulation

Description

Carry out parallel Monte Carlo simulation on R slaves spawned by using slavedaemon.R script and
all executed results are returned back to master.

Usage

mpi.parSim(n=100, rand.gen=rnorm, rand.arg=NULL,statistic,
nsim=100, run=1, slaveinfo=FALSE, sim.seq=NULL, simplify=TRUE, comm=1, ...)

Arguments

n sample size.

rand.gen the random data generating function. See the details section

rand.arg additional argument list to rand.gen.

statistic the statistic function to be simulated. See the details section

nsim the number of simulation carried on a slave which is counted as one slave job.

run the number of looping. See the details section.

slaveinfo if TRUE, the numbers of jobs finished by slaves will be displayed.

sim.seq if reproducing the same simulation is desirable, set it to the integer vector .mpi.parSim
generated in previous simulation.

simplify logical; should the result be simplified to a vector or matrix if possible?

comm a communicator number

... optional arguments to statistic

Details

It is assumed that one simulation is carried out as statistic(rand.gen(n)), where rand.gen(n)
can return any values as long as statistic can take them. Additional arguments can be passed
to rand.gen by rand.arg as a list. Optional arguments can also be passed to statistic by the
argument

Each slave job consists of replicate(nsim,statistic(rand.gen(n))), i.e., each job runs nsim
number of simulation. The returned values are transported from slaves to master.

The total number of simulation (TNS) is calculated as follows. Let slave.num be the total number of
slaves in a comm and it is mpi.comm.size(comm)-1. Then TNS=slave.num*nsim*run and the total
number of slave jobs is slave.num*run, where run is the number of looping from master perspective.
If run=1, each slave will run one slave job. If run=2, each slave will run two slaves jobs on average,
and so on.

The purpose of using run has two folds. It allows a tuneup of slave job size and total number of
slave jobs to deal with two different cluster environments. On a cluster of slaves with equal CPU

mpi.probe 47

power, run=1 is often enough. But if nsim is too big, one can set run=2 and the slave job size to
be nsim/2 so that TNS=slave.num*(nsim/2)*(2*run). This may improve R computation efficiency
slightly. On a cluster of slaves with different CPU power, one can choose a big value of run and a
small value of nsim so that master can dispatch more jobs to slaves who run faster than others. This
will keep all slaves busy so that load balancing is achieved.

The sequence of slaves who deliver results to master are saved into .mpi.parSim. It keeps track
of which slaves do which parts of the results. .mpi.parSim can be used to reproduce the same
simulation result if the same seed is used and the argument sim.seq is equal to .mpi.parSim.

See the warning section before you use mpi.parSim.

Value

The returned values depend on values returned by replicate of statistic(rand.gen(n)) and
the total number of simulation (TNS). If statistic returns a single value, then the result is a
vector of length TNS. If statistic returns a vector (list) of length nrow, then the result is a matrix
of dimension c(nrow, TNS).

Warning

It is assumed that a parallel RNG is used on all slaves. Run mpi.setup.rngstream on the master to
set up a parallel RNG. Though mpi.parSim works without a parallel RNG, the quality of simulation
is not guarantied.

mpi.parSim will automatically transfer rand.gen and statistic to slaves. However, any func-
tions that rand.gen and statistic reply on but are not on slaves must be transfered to slaves
before using mpi.parSim. You can use mpi.bcast.Robj2slave for that purpose. The same
is applied to required packages or C/Fortran codes. You can use either mpi.bcast.cmd or put
required(package) and/or dyn.load(so.lib) into rand.gen and statistic.

If simplify is TRUE, sapply style simplication is applied. Otherwise a list of length slave.num*run
is returned.

Author(s)

Hao Yu

See Also

mpi.setup.rngstream mpi.bcast.cmd mpi.bcast.Robj2slave

mpi.probe MPI_Probe and MPI_Iprobe APIs

Description

mpi.probe uses the source and tag of incoming message to set a status. mpi.iprobe does the same
except it is a nonblocking call, i.e., returns immediately.

48 mpi.realloc

Usage

mpi.probe(source, tag, comm = 1, status = 0)
mpi.iprobe(source, tag, comm = 1, status = 0)

Arguments

source the source of incoming message or mpi.any.source() for any source.

tag a tag number or mpi.any.tag() for any tag.

comm a communicator number

status a status number

Details

When mpi.send or other nonblocking sends are used to send a message, the receiver may not
know the exact length before receiving it. mpi.probe is used to probe the incoming message and
put some information into a status. Then the exact length can be found by using mpi.get.count
to such a status. If the wild card mpi.any.source or mpi.any.tag are used, then one can use
mpi.get.sourcetag to find the exact source or tag of a sender.

Value

mpi.probe returns 1 only after a matching message has been found.

mpi.iproble returns TRUE if there is a message that can be received; FALSE otherwise.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.send, mpi.recv, mpi.get.count

mpi.realloc Find and increase the lengths of MPI opaques comm, request, and
status

Description

mpi.comm.maxsize, mpi.request.maxsize, and mpi.status.maxsize find the lengths of comm,
request, and status arrays respectively.

mpi.realloc.comm, mpi.realloc.request and mpi.realloc.status increase the lengths of
comm, request and status arrays to newmaxsize respectively if newmaxsize is bigger than the orig-
inal maximum size.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.reduce 49

Usage

mpi.realloc.comm(newmaxsize)
mpi.realloc.request(newmaxsize)
mpi.realloc.status(newmaxsize)
mpi.comm.maxsize()
mpi.request.maxsize()
mpi.status.maxsize()

Arguments

newmaxsize an integer.

Details

When Rmpi is loaded, Rmpi allocs comm array with size 10, request array with 10,000 and status
array with 5,000. They should be enough in most cases. They use less than 150KB system memory.
In rare case, one can use mpi.realloc.comm, mpi.realloc.request and mpi.realloc.status
to increase them to bigger arrays.

Value

• mpi.realloc.comm, mpi.realloc.request, mpi.realloc.status: no return value (called
for side effects).

• mpi.comm.maxsize, mpi.request.maxsize, mpi.status.maxsize: integer size limits.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

mpi.reduce MPI_Reduce and MPI_Allreduce APIs

Description

mpi.reduce and mpi.allreduce are global reduction operations. mpi.reduce combines each
member’s result, using the operation op, and returns the combined value(s) to the member spec-
ified by the argument dest. mpi.allreduce is the same as mpi.reduce except that all members
receive the combined value(s).

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

50 mpi.reduce

Usage

mpi.reduce(x, type=2, op=c("sum","prod","max","min","maxloc","minloc"),
dest = 0, comm = 1)

mpi.allreduce(x, type=2, op=c("sum","prod","max","min","maxloc","minloc"),
comm = 1)

Arguments

x data to be reduced. Must be the same dim and the same type for all members.

type 1 for integer and 2 for double. Others are not supported.

op one of "sum", "prod", "max", "min", "maxloc", or "minloc".

dest rank of destination

comm a communicator number

Details

It is important that all members in a comm call either all mpi.reduce or all mpi.allreduce even
though the master may not be in computation. They must provide exactly the same type and dim
vectors to be reduced. If the operation "maxloc" or "minloc" is used, the combined vector is twice
as long as the original one since the maximum or minimum ranks are included.

Value

mpi.reduce returns the combined value(s) to the member specified by dest. mpi.allreduce re-
turns the combined values(s) to every member in a comm. The combined value(s) may be the
summation, production, maximum, or minimum specified by the argument op. If the op is either
"maxloc" or "minloc", then the maximum (minimum) value(s) along the maximum (minimum)
rank(s) will be returned.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.gather.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.remote.exec 51

mpi.remote.exec Remote Executions on R slaves

Description

Remotely execute a command on R slaves spawned by using slavedaemon.R script and return all
executed results back to master.

Usage

mpi.remote.exec(cmd, ..., simplify = TRUE, comm = 1, ret = TRUE)

Arguments

cmd the command to be executed on R slaves

... used as arguments to cmd (function command) for passing their (master) values
to R slaves, i.e., if ‘myfun(x)’ will be executed on R slaves with ‘x’ as master
variable, use mpi.remote.exec(cmd=myfun, x).

simplify logical; should the result be simplified to a data.frame if possible?

comm a communicator number.

ret return executed results from R slaves if TRUE.

Details

Once R slaves are spawned by mpi.spawn.Rslaves with the slavedaemon.R script, they are waiting
for instructions from master. One can use mpi.bcast.cmd to send a command to R slaves. However
it will not return executed results. Hence mpi.remote.exec can be considered an extension to
mpi.bcast.cmd.

Value

return executed results from R slaves if the argument ret is set to be TRUE. The value could be a
data.frame if values (integer or double) from each slave have the same dimension. Otherwise a list
is returned.

Warning

mpi.remote.exec may have difficulty guessing invisible results on R slaves. Use ret = FALSE
instead.

Author(s)

Hao Yu

See Also

mpi.spawn.Rslaves, mpi.bcast.cmd

52 mpi.scatter

Examples

Not run:
Not run in checks: requires pre-spawned slaves and a live worker communicator.
mpi.remote.exec(mpi.comm.rank())
x=5

mpi.remote.exec(rnorm,x)

End(Not run)

mpi.scatter MPI_Scatter and MPI_Scatterv APIs

Description

mpi.scatter and mpi.scatterv are the inverse operations of mpi.gather and mpi.gatherv re-
spectively.

Usage

mpi.scatter(x, type, rdata, root = 0, comm = 1)
mpi.scatterv(x, scounts, type, rdata, root = 0, comm = 1)

Arguments

x data to be scattered.

type 1 for integer, 2 for double, and 3 for character. Others are not supported.

rdata the receive buffer. Must be the same type as the sender

scounts int vector specifying the block length inside a message to be scattered to other
members.

root rank of the receiver

comm a communicator number

Details

mpi.scatter scatters the message x to all members. Each member receives a portion of x with
dim as length(x)/size in rank order, where size is the total number of members in a comm. So
the receive buffer can be prepared as either integer(length(x)/size) or double(length(x)/size). For
mpi.scatterv, scounts counts the portions (different dims) of x sent to each member. Each member
needs to prepare the receive buffer as either integer(scounts[i]) or double(scounts[i]).

Value

For non-root members, mpi.scatter or scatterv returns the scattered message and ignores what-
ever is in x (or scounts). For the root member, it returns the portion belonging to itself.

mpi.scatter.Robj 53

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.gather, mpi.gatherv.

Examples

Not run:
Not run in checks: requires a fixed number of spawned slaves and rank-specific buffers.
Running this with a different communicator layout can deadlock.
#Need 3 slaves to run properly
#Or run mpi.spawn.Rslaves(nslaves=3)

num="123456789abcd"
scounts<-c(2,3,1,7)
mpi.bcast.cmd(strnum<-mpi.scatter(integer(1),type=1,rdata=integer(1),root=0))
strnum<-mpi.scatter(scounts,type=1,rdata=integer(1),root=0)
mpi.bcast.cmd(ans <- mpi.scatterv(string(1),scounts=0,type=3,rdata=string(strnum),

root=0))
mpi.scatterv(as.character(num),scounts=scounts,type=3,rdata=string(strnum),root=0)
mpi.remote.exec(ans)

End(Not run)

mpi.scatter.Robj Extensions of MPI_ SCATTER and MPI_SCATTERV

Description

mpi.scatter.Robj and mpi.scatter.Robj2slave are used to scatter a list to all members. They
are more efficient than using any parallel apply functions.

Usage

mpi.scatter.Robj(obj = NULL, root = 0, comm = 1)
mpi.scatter.Robj2slave(obj, comm = 1)

Arguments

obj a list object to be scattered from the root or master

root rank of the scatter.

comm a communicator number.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

54 mpi.send

Details

mpi.scatter.Robj is an extension of mpi.scatter for scattering a list object from a sender (root)
to everyone. mpi.scatter.Robj2slave scatters a list to all slaves.

Value

mpi.scatter.Robj for non-root members, returns the scattered R object. For the root member, it
returns the portion belonging to itself. mpi.scatter.Robj2slave returns no value for the mas-
ter and all slaves get their corresponding components in the list, i.e., the first slave gets the first
component in the list.

Author(s)

Hao Yu and Wei Xia

See Also

mpi.scatter, mpi.gather.Robj,

Examples

Not run:
Not run in checks: requires pre-spawned slaves and a live worker communicator.
#assume that there are three slaves running
mpi.bcast.cmd(x<-mpi.scatter.Robj())

xx <- list("master",rnorm(3),letters[2],1:10)
mpi.scatter.Robj(obj=xx)

mpi.remote.exec(x)

#scatter a matrix to slaves
dat=matrix(1:24,ncol=3)
splitmatrix = function(x, ncl) lapply(.splitIndices(nrow(x), ncl), function(i) x[i,])
dat2=splitmatrix(dat,3)
mpi.scatter.Robj2slave(dat2)
mpi.remote.exec(dat2)

End(Not run)

mpi.send MPI_Send, MPI_Isend, MPI_Recv, and MPI_Irecv APIs

Description

The pair mpi.send and mpi.recv are two most used blocking calls for point-to-point communica-
tions. An int, double or char vector can be transmitted from any source to any destination.
The pair mpi.isend and mpi.irecv are the same except that they are nonblocking calls.
Blocking and nonblocking calls are interchangeable, e.g., nonblocking sends can be matched with
blocking receives, and vice-versa.

mpi.send 55

Usage

mpi.send(x, type, dest, tag, comm = 1)
mpi.isend(x, type, dest, tag, comm = 1, request=0)
mpi.recv(x, type, source, tag, comm = 1, status = 0)
mpi.irecv(x, type, source, tag, comm = 1, request = 0)

Arguments

x data to be sent or received. Must be the same type for source and destination.
The receive buffer must be as large as the send buffer.

type 1 for integer, 2 for double, and 3 for character. Others are not supported.

dest the destination rank. Use mpi.proc.null for a fake destination.

source the source rank. Use mpi.any.source for any source. Use mpi.proc.null for
a fake source.

tag non-negative integer. Use mpi.any.tag for any tag flag.

comm a communicator number.

request a request number.

status a status number.

Details

The pair mpi.send (or mpi.isend) and mpi.recv (or mpi.irecv) must be used together, i.e., if
there is a sender, then there must be a receiver. Any mismatch will result a deadlock situation, i.e.,
programs stop responding. The receive buffer must be large enough to contain an incoming message
otherwise programs will be crashed. One can use mpi.probe (or mpi.iprobe) and mpi.get.count to
find the length of an incoming message before calling mpi.recv. If mpi.any.source or mpi.any.tag
is used in mpi.recv, one can use mpi.get.sourcetag to find out the source or tag of the received
message. To send/receive an R object rather than an int, double or char vector, please use the pair
mpi.send.Robj and mpi.recv.Robj.

Since mpi.irecv is a nonblocking call, x with enough buffer must be created before using it. Then
use nonblocking completion calls such as mpi.wait or mpi.test to test if x contains data from
sender.

If multiple nonblocking sends or receives are used, please use request number consecutively from 0.
For example, to receive two messages from two slaves, try mpi.irecv(x,1,source=1,tag=0,comm=1,request=0)
mpi.irecv(y,1,source=2,tag=0,comm=1,request=1) Then mpi.waitany, mpi.waitsome or mpi.waitall
can be used to complete the operations.

Value

mpi.send and mpi.isend return no value. mpi.recv returns the int, double or char vector sent
from source. However, mpi.irecv returns no value. See details for explanation.

Author(s)

Hao Yu

56 mpi.send.Robj

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.send.Robj, mpi.recv.Robj, mpi.probe, mpi.wait, mpi.get.count, mpi.get.sourcetag.

Examples

Not run:
Not run in checks: send/recv calls must be paired across ranks.
Running one side without a matching peer can deadlock.
#on a slave
mpi.send(1:10,1,0,0)

#on master
x <- integer(10)
mpi.irecv(x,1,1,0)
x
mpi.wait()
x

End(Not run)

mpi.send.Robj Extensions of MPI_Send and MPI_Recv APIs

Description

mpi.send.Robj and mpi.recv.Robj are two extensions of mpi.send and mpi.recv. They are used
to transmit a general R object from any source to any destination.

mpi.isend.Robj is a nonblocking version of mpi.send.Robj.

Usage

mpi.send.Robj(obj, dest, tag, comm = 1)
mpi.isend.Robj(obj, dest, tag, comm = 1, request=0)
mpi.recv.Robj(source, tag, comm = 1, status = 0)

Arguments

obj an R object. Can be any R object.
dest the destination rank.
source the source rank or mpi.any.source() for any source.
tag non-negative integer or mpi.any.tag() for any tag.
comm a communicator number.
request a request number.
status a status number.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.sendrecv 57

Details

mpi.send.Robj and mpi.isend.Robj use serialize to encode an R object into a binary char
vector. It sends the message to the destination. The receiver decode the message back into an R
object by using unserialize.

If mpi.isend.Robj is used, mpi.wait or mpi.test must be used to check the object has been sent.

Value

mpi.send.Robj or mpi.isend.Robj return no value. mpi.recv.Robj returns the the transmitted
R object.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.send, mpi.recv, mpi.wait, serialize, unserialize,

mpi.sendrecv MPI_Sendrecv and MPI_Sendrecv_replace APIs

Description

mpi.sendrecv and mpi.sendrecv.replace execute blocking send and receive operations. Both
of them combine the sending of one message to a destination and the receiving of another mes-
sage from a source in one call. The source and destination are possibly the same. The send
buffer and receive buffer are disjoint for mpi.sendrecv, while the buffers are not disjoint for
mpi.sendrecv.replace.

Usage

mpi.sendrecv(senddata, sendtype, dest, sendtag, recvdata, recvtype,
source, recvtag, comm = 1, status = 0)

mpi.sendrecv.replace(x, type, dest, sendtag, source, recvtag,
comm = 1, status = 0)

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

58 mpi.sendrecv

Arguments

x data to be sent or recieved. Must be the same type for source and destination.

senddata data to be sent. May have different datatypes and lengths

recvdata data to be recieved. May have different datatypes and lengths

type type of the data to be sent or recieved. 1 for integer, 2 for double, and 3 for
character. Others are not supported.

sendtype type of the data to be sent. 1 for integer, 2 for double, and 3 for character. Others
are not supported.

recvtype type of the data to be recieved. 1 for integer, 2 for double, and 3 for character.
Others are not supported.

dest the destination rank. Use mpi.proc.null for a fake destination.

source the source rank. Use mpi.any.source for any source. Use mpi.proc.null for
a fake source.

sendtag non-negative integer. Use mpi.any.tag for any tag flag.

recvtag non-negative integer. Use mpi.any.tag for any tag flag.

comm a communicator number.

status a status number.

Details

The receive buffer must be large enough to contain an incoming message otherwise programs will
be crashed. There is compatibility between send-receive and normal sends and receives. A message
sent by a send-receive can be received by a regular receive and a send-receive can receive a message
sent by a regular send.

Value

Returns the int, double or char vector sent from the send buffers.

Author(s)

Kris Chen

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.send.Robj, mpi.recv.Robj, mpi.probe. mpi.get.sourcetag.

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.setup.rngstream 59

Examples

Not run:
Not run in checks when toggled to dontrun: paired send/recv calls are
documented for manual MPI sessions.
mpi.sendrecv(as.integer(11:20),1,0,33,integer(10),1,0,33,comm=0)
mpi.sendrecv.replace(seq(1,2,by=0.1),2,0,99,0,99,comm=0)

End(Not run)

mpi.setup.rngstream Setup parallel RNG on all slaves

Description

mpi.setup.rngstream setups RNGstream on all slaves.

Usage

mpi.setup.rngstream(iseed=NULL, comm = 1)

Arguments

iseed An integer to be supplied to set.seed, or NULL not to set reproducible seeds.

comm A comm number.

Details

mpi.setup.rngstream can be run only on master node. It can be run later on with the same or
different iseed.

Value

No value returned.

Author(s)

Hao Yu

60 mpi.spawn.Rslaves

mpi.spawn.Rslaves Spawn and Close R Slaves

Description

mpi.spawn.Rslaves spawns R slaves to those hosts automatically chosen by MPI or specific hosts
assigned by the argument hosts. Those R slaves are running in R BATCH mode with a specific
Rscript file. The default Rscript file "slavedaemon.R" provides interactive R slave environments.

mpi.close.Rslaves shuts down R slaves spawned by mpi.spawn.Rslaves.

tailslave.log view (from tail) R slave log files (assuming they are all in one working directory).

Usage

mpi.spawn.Rslaves(Rscript=system.file("slavedaemon.R", package="npRmpi"),
nslaves=mpi.universe.size(),
root = 0,
intercomm = 2,
comm = 1,
hosts = NULL,
needlog = FALSE,
mapdrive=TRUE,
quiet = FALSE,
nonblock=TRUE,
sleep=0.1)

mpi.close.Rslaves(dellog = TRUE, comm = 1, force = FALSE)
tailslave.log(nlines = 3, comm = 1)

Arguments

Rscript an R script file used to run R in BATCH mode.

nslaves number of slaves to be spawned.

root the rank number of the member who spawns R slaves.

intercomm an intercommunicator number

comm a communicator number merged from an intercomm.

hosts NULL or LAM node numbers to specify where R slaves are to be spawned.

needlog a logical. If TRUE, R BATCH outputs will be saved in log files. If FALSE, the
outputs will send to /dev/null.

mapdrive a logical. If TRUE and master’s working dir is on a network, mapping network
drive is attemped on remote nodes under windows platform.

quiet a logical. If TRUE, do not print anything unless an error occurs.

nonblock a logical. If TRUE, a nonblock procedure is used on all slaves so that they will
consume none or little CPUs while waiting.

mpi.spawn.Rslaves 61

sleep a sleep interval, used when nonblock=TRUE. The smaller sleep is, the more
responsive slaves are, the more CPUs consume.

dellog a logical specifying if R slave’s log files are deleted or not.

force a logical. If TRUE, force a hard shutdown of slave daemons. When options(npRmpi.reuse.slaves=TRUE)
and force=FALSE, mpi.close.Rslaves() performs a soft-close (i.e., keeps
daemons alive for reuse).

nlines number of lines to view from tail in R slave’s log files.

Details

The R slaves that mpi.spawn.Rslaves spawns are really running a shell program which can be
found in system.file("Rslaves.sh",package="npRmpi") which takes a Rscript file as one of
its arguments. Other arguments are used to see if a log file (R output) is needed and how to name
it. The master process id and the comm number, along with host names where R slaves are running
are used to name these log files.

Once R slaves are successfully spawned, the mergers from an intercomm (default ‘intercomm = 2’)
to a comm (default ‘comm = 1’) are automatically done on master and slaves (should be done if
the default Rscript is replaced). If additional sets of R slaves are needed, please use ‘comm = 3’,
‘comm = 4’, etc to spawn them. At most a comm number up to 10 can be used. Notice that the
default comm number for R slaves (using slavedaemon.R) is always 1 which is saved as .comm.

On some systems (notably macOS+MPICH), repeatedly spawning and tearing down slaves in the
same R session can lead to hangs/crashes. To avoid this, npRmpi may reuse an existing slave pool
when options(npRmpi.reuse.slaves=TRUE). In this mode, mpi.spawn.Rslaves() becomes idem-
potent and mpi.close.Rslaves(force=FALSE) performs a soft-close.

To spawn R slaves to specific hosts, please use the argument hosts with a list of those node
numbers (an integer vector). Total node numbers along their host names can be found by using
mpi.hostinfo. Notice that this is MPI implementation specific.

Value

Unless quiet = TRUE, mpi.spawn.Rslaves prints to stdio how many slaves are successfully spawned
and where they are running.

mpi.close.Rslaves returns a status code. When options(npRmpi.reuse.slaves=TRUE) and
force=FALSE, this may be a no-op (soft-close) so that spawned daemons can be reused within the
same R session.

tailslave.log returns last lines of R slave’s log files.

Author(s)

Hao Yu

See Also

mpi.comm.spawn, mpi.hostinfo.

62 mpi.universe.size

Examples

Not run:
Not run in checks: spawning/tearing down MPI daemons is environment-dependent
and can interfere with later examples in the same session.
mpi.spawn.Rslaves(nslaves=2)
tailslave.log()
mpi.remote.exec(rnorm(10))
mpi.close.Rslaves()

End(Not run)

mpi.universe.size MPI_Universe_size API

Description

mpi.universe.size returns the total number of CPUs available in a cluster. Some MPI implements
may not have this MPI call available.

Usage

mpi.universe.size()

Arguments

None.

Value

An integer giving the total number of CPUs available in the MPI universe for the current configura-
tion.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

mpi.wait 63

mpi.wait Nonblocking completion operations

Description

mpi.cancel cancels a nonblocking send or receive request.

mpi.test.cancelled tests if mpi.cancel cancels or not.

wait, waitall, waitany, and waitsome are used to complete nonblocking send or receive requests.
They are not local.

test, testall, testany, and testsome are used to complete nonblocking send and receive re-
quests. They are local.

Usage

mpi.cancel(request)
mpi.test.cancelled(status=0)
mpi.test(request, status=0)
mpi.testall(count)
mpi.testany(count, status=0)
mpi.testsome(count)
mpi.wait(request, status=0)
mpi.waitall(count)
mpi.waitany(count, status=0)
mpi.waitsome(count)

Arguments

count total number of nonblocking operations.

request a request number.

status a status number.

Details

mpi.wait and mpi.test are used to complete a nonblocking send and receive request: use the
same request number by mpi.isend or mpi.irecv. Once completed, the associated request is
set to MPI_REQUEST_NULL and status contains information such as source, tag, and length of
message.

If multiple nonblocking sends or receives are initiated, the following calls are more efficient. Make
sure that request numbers are used consecutively as request=0, request=1, request=2, etc. In this
way, the following calls can find request information in system memory.

mpi.waitany and mpi.testany are used to complete one out of several requests.

mpi.waitall and mpi.testall are used to complete all requests.

mpi.waitsome and mpi.testsome are used to complete all enabled requests.

64 np.mpi.initialize

Value

mpi.cancel returns no value.

mpi.test.cancelled returns TRUE if a nonblocking call is cancelled; FALSE otherwise.

mpi.wait returns no value. Instead status contains information that can be retrieved by mpi.get.count
and mpi.get.sourcetag.

mpi.test returns TRUE if a request is complete; FALSE otherwise. If TRUE, it is the same as
mpi.wait.

mpi.waitany returns which request (index) has been completed. In addition, status contains infor-
mation that can be retrieved by mpi.get.count and mpi.get.sourcetag.

mpi.testany returns a list: index— request index; flag—TRUE if a request is complete; FALSE
otherwise (index is no use in this case). If flag is TRUE, it is the same as mpi.waitany.

mpi.waitall returns no value. Instead statuses 0, 1, ..., count-1 contain corresponding information
that can be retrieved by mpi.get.count and mpi.get.sourcetag.

mpi.testall returns TRUE if all requests are complete; FALSE otherwise. If TRUE, it is the same
as mpi.waitall.

mpi.waitsome returns a list: count— number of requests that have been completed; indices—an in-
teger vector of size count of those completed request numbers (in 0, 1 ,..., count-1). In addition, sta-
tuses 0, 1, ..., count-1 contain corresponding information that can be retrieved by mpi.get.count
and mpi.get.sourcetag.

mpi.testsome is the same as mpi.waitsome except that count may be 0 and in this case indices
is no use.

Author(s)

Hao Yu

References

https://www.mpich.org/, https://www.mpich.org/static/docs/latest/www3/

See Also

mpi.isend, mpi.irecv, mpi.get.count, mpi.get.sourcetag.

np.mpi.initialize Initialize Master and Slave Nodes for the np Package

Description

np.mpi.initialize is used to initialize master and slave nodes.

Usage

np.mpi.initialize()

https://www.mpich.org/
https://www.mpich.org/static/docs/latest/www3/

np.pairs 65

Value

np.mpi.initialize returns no value for the sender and an expression of the transmitted command
for others.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

np.pairs Cross-Validated Pairs Plot (Helper Functions)

Description

Compute pairwise nonparametric regressions and densities for a set of variables, then plot a pairs-
style display with fitted smoothers.

Usage

np.pairs(y_vars, y_dat, ...)
np.pairs.plot(pair_list)

Arguments

y_vars character vector of column names in y_dat. If y_vars is named, the names are
used as plot labels.

y_dat data frame containing the variables listed in y_vars.

... additional arguments passed to npudens and npreg.

pair_list list returned by np.pairs.

Details

On the diagonal, npudens is used to compute kernel density estimates. Off-diagonal panels use
npreg with residuals to draw scatterplots and smoothers.

Value

np.pairs returns a list with components y_vars, pair_names, and pair_kerns. np.pairs.plot
returns NULL (invisibly).

See Also

npudens, npreg

66 np.pairs

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("USArrests")
y_vars <- c("Murder", "UrbanPop")
names(y_vars) <- c("Murder Arrests per 100K", "Pop. Percent Urban")

mpi.bcast.Robj2slave(USArrests)
mpi.bcast.Robj2slave(y_vars)

mpi.bcast.cmd(pair_list <- np.pairs(y_vars = y_vars, y_dat = USArrests,
ckertype = "epanechnikov",
bwscaling = TRUE),

caller.execute=TRUE)

np.pairs.plot(pair_list)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

npcdens 67

End(Not run)

npcdens Kernel Conditional Density Estimation with Mixed Data Types

Description

npcdens computes kernel conditional density estimates on p+ q-variate evaluation data, given a set
of training data (both explanatory and dependent) and a bandwidth specification (a conbandwidth
object or a bandwidth vector, bandwidth type, and kernel type) using the method of Hall, Racine,
and Li (2004). The data may be continuous, discrete (unordered and ordered factors), or some
combination thereof.

Usage

npcdens(bws, ...)

S3 method for class 'formula'
npcdens(bws, data = NULL, newdata = NULL, ...)

S3 method for class 'call'
npcdens(bws, ...)

S3 method for class 'conbandwidth'
npcdens(bws,

txdat = stop("invoked without training data 'txdat'"),
tydat = stop("invoked without training data 'tydat'"),
exdat,
eydat,
gradients = FALSE,
...)

Default S3 method:
npcdens(bws, txdat, tydat, ...)

Arguments

bws a bandwidth specification. This can be set as a conbandwidth object returned
from a previous invocation of npcdensbw, or as a p + q-vector of bandwidths,
with each element i up to i = q corresponding to the bandwidth for column i in
tydat, and each element i from i = q + 1 to i = p + q corresponding to the
bandwidth for column i − q in txdat. If specified as a vector, then additional
arguments will need to be supplied as necessary to specify the bandwidth type,
kernel types, training data, and so on.

68 npcdens

gradients a logical value specifying whether to return estimates of the gradients at the
evaluation points. Defaults to FALSE.

... additional arguments supplied to specify the bandwidth type, kernel types, and
so on. This is necessary if you specify bws as a p+q-vector and not a conbandwidth
object, and you do not desire the default behaviours. To do this, you may specify
any of bwmethod, bwscaling, bwtype, cxkertype, cxkerorder, cykertype,
cykerorder, uxkertype, uykertype, oxkertype, oykertype, as described in
npcdensbw.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npcdensbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

txdat a p-variate data frame of sample realizations of explanatory data (training data).
Defaults to the training data used to compute the bandwidth object.

tydat a q-variate data frame of sample realizations of dependent data (training data).
Defaults to the training data used to compute the bandwidth object.

exdat a p-variate data frame of explanatory data on which conditional densities will be
evaluated. By default, evaluation takes place on the data provided by txdat.

eydat a q-variate data frame of dependent data on which conditional densities will be
evaluated. By default, evaluation takes place on the data provided by tydat.

Details

npcdens implements a variety of methods for estimating multivariate conditional distributions (p+
q-variate) defined over a set of possibly continuous and/or discrete (unordered, ordered) data. The
approach is based on Li and Racine (2004) who employ ‘generalized product kernels’ that admit a
mix of continuous and discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

Training and evaluation input data may be a mix of continuous (default), unordered discrete (to
be specified in the data frames using factor), and ordered discrete (to be specified in the data
frames using ordered). Data can be entered in an arbitrary order and data types will be detected
automatically by the routine (see npRmpi for details).

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

Value

npcdens returns a condensity object. The generic accessor functions fitted, se, and gradients,
extract estimated values, asymptotic standard errors on estimates, and gradients, respectively, from

npcdens 69

the returned object. Furthermore, the functions predict, summary and plot support objects of both
classes. The returned objects have the following components:

xbw bandwidth(s), scale factor(s) or nearest neighbours for the explanatory data,
txdat

ybw bandwidth(s), scale factor(s) or nearest neighbours for the dependent data, tydat

xeval the evaluation points of the explanatory data

yeval the evaluation points of the dependent data

condens estimates of the conditional density at the evaluation points

conderr standard errors of the conditional density estimates

congrad if invoked with gradients = TRUE, estimates of the gradients at the evaluation
points

congerr if invoked with gradients = TRUE, standard errors of the gradients at the evalu-
ation points

log_likelihood log likelihood of the conditional density estimate

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

npudens

70 npcdens

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(data("Italy"),
caller.execute=TRUE)

mpi.bcast.cmd(attach(Italy),
caller.execute=TRUE)

mpi.bcast.cmd(bw <- npcdensbw(formula=gdp~ordered(year)),
caller.execute=TRUE)

mpi.bcast.cmd(fhat <- npcdens(bws=bw),
caller.execute=TRUE)

summary(fhat)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

npcdensbw 71

End(Not run)

npcdensbw Kernel Conditional Density Bandwidth Selection with Mixed Data
Types

Description

npcdensbw computes a conbandwidth object for estimating the conditional density of a p + q-
variate kernel density estimator defined over mixed continuous and discrete (unordered, ordered)
data using either the normal-reference rule-of-thumb, likelihood cross-validation, or least-squares
cross validation using the method of Hall, Racine, and Li (2004).

Usage

npcdensbw(...)

S3 method for class 'formula'
npcdensbw(formula, data, subset, na.action, call, ...)

S3 method for class 'NULL'
npcdensbw(xdat = stop("data 'xdat' missing"),

ydat = stop("data 'ydat' missing"),
bws, ...)

S3 method for class 'conbandwidth'
npcdensbw(xdat = stop("data 'xdat' missing"),

ydat = stop("data 'ydat' missing"),
bws,
bandwidth.compute = TRUE,
nmulti,
remin = TRUE,
itmax = 10000,
ftol = 1.490116e-07,
tol = 1.490116e-04,
small = 1.490116e-05,
memfac = 500,
lbc.dir = 0.5,
dfc.dir = 3,
cfac.dir = 2.5*(3.0-sqrt(5)),
initc.dir = 1.0,
lbd.dir = 0.1,
hbd.dir = 1,
dfac.dir = 0.25*(3.0-sqrt(5)),
initd.dir = 1.0,
lbc.init = 0.1,
hbc.init = 2.0,

72 npcdensbw

cfac.init = 0.5,
lbd.init = 0.1,
hbd.init = 0.9,
dfac.init = 0.375,
scale.init.categorical.sample = FALSE,
transform.bounds = FALSE,
invalid.penalty = c("baseline","dbmax"),
penalty.multiplier = 10,
...)

Default S3 method:
npcdensbw(xdat = stop("data 'xdat' missing"),

ydat = stop("data 'ydat' missing"),
bws,
bandwidth.compute = TRUE,
nmulti,
remin,
itmax,
ftol,
tol,
small,
memfac,
lbc.dir,
dfc.dir,
cfac.dir,
initc.dir,
lbd.dir,
hbd.dir,
dfac.dir,
initd.dir,
lbc.init,
hbc.init,
cfac.init,
lbd.init,
hbd.init,
dfac.init,
scale.init.categorical.sample,
transform.bounds,
invalid.penalty,
penalty.multiplier,
bwmethod,
bwscaling,
bwtype,
cxkertype,
cxkerorder,
cykertype,
cykerorder,
uxkertype,

npcdensbw 73

uykertype,
oxkertype,
oykertype,
...)

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

xdat a p-variate data frame of explanatory data on which bandwidth selection will be
performed. The data types may be continuous, discrete (unordered and ordered
factors), or some combination thereof.

ydat a q-variate data frame of dependent data on which bandwidth selection will be
performed. The data types may be continuous, discrete (unordered and ordered
factors), or some combination thereof.

bws a bandwidth specification. This can be set as a conbandwidth object returned
from a previous invocation, or as a p+q-vector of bandwidths, with each element
i up to i = q corresponding to the bandwidth for column i in ydat, and each
element i from i = q + 1 to i = p + q corresponding to the bandwidth for
column i − q in xdat. In either case, the bandwidth supplied will serve as a
starting point in the numerical search for optimal bandwidths. If specified as
a vector, then additional arguments will need to be supplied as necessary to
specify the bandwidth type, kernel types, selection methods, and so on. This
can be left unset.

... additional arguments supplied to specify the bandwidth type, kernel types, se-
lection methods, and so on, detailed below.

bwmethod which method to use to select bandwidths. cv.ml specifies likelihood cross-
validation, cv.ls specifies least-squares cross-validation, and normal-reference
just computes the ‘rule-of-thumb’ bandwidth hj using the standard formula
hj = 1.06σjn

−1/(2P+l), where σj is an adaptive measure of spread of the
jth continuous variable defined as min(standard deviation, mean absolute de-
viation/1.4826, interquartile range/1.349), n the number of observations, P the
order of the kernel, and l the number of continuous variables. Note that when
there exist factors and the normal-reference rule is used, there is zero smoothing
of the factors. Defaults to cv.ml.

74 npcdensbw

bwscaling a logical value that when set to TRUE the supplied bandwidths are interpreted as
‘scale factors’ (cj), otherwise when the value is FALSE they are interpreted as
‘raw bandwidths’ (hj for continuous data types, λj for discrete data types). For
continuous data types, cj and hj are related by the formula hj = cjσjn

−1/(2P+l),
where σj is an adaptive measure of spread of continuous variable j defined as
min(standard deviation, mean absolute deviation/1.4826, interquartile range/1.349),
n the number of observations, P the order of the kernel, and l the number of con-
tinuous variables. For discrete data types, cj and hj are related by the formula
hj = cjn

−2/(2P+l), where here j denotes discrete variable j. Defaults to FALSE.
bwtype character string used for the continuous variable bandwidth type, specifying the

type of bandwidth to compute and return in the conbandwidth object. Defaults
to fixed. Option summary:
fixed: compute fixed bandwidths
generalized_nn: compute generalized nearest neighbors
adaptive_nn: compute adaptive nearest neighbors

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a conbandwidth object will be returned with bandwidths
set to those specified in bws. Defaults to TRUE.

cxkertype character string used to specify the continuous kernel type for xdat. Can be set
as gaussian, epanechnikov, or uniform. Defaults to gaussian.

cxkerorder numeric value specifying kernel order for xdat (one of (2,4,6,8)). Kernel
order specified along with a uniform continuous kernel type will be ignored.
Defaults to 2.

cykertype character string used to specify the continuous kernel type for ydat. Can be set
as gaussian, epanechnikov, or uniform. Defaults to gaussian.

cykerorder numeric value specifying kernel order for ydat (one of (2,4,6,8)). Kernel
order specified along with a uniform continuous kernel type will be ignored.
Defaults to 2.

uxkertype character string used to specify the unordered categorical kernel type. Can be
set as aitchisonaitken or liracine. Defaults to aitchisonaitken.

uykertype character string used to specify the unordered categorical kernel type. Can be
set as aitchisonaitken or liracine.

oxkertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine. Defaults to liracine.

oykertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points

remin a logical value which when set as TRUE the search routine restarts from located
minima for a minor gain in accuracy. Defaults to TRUE.

itmax integer number of iterations before failure in the numerical optimization routine.
Defaults to 10000.

ftol fractional tolerance on the value of the cross-validation function evaluated at lo-
cated minima (of order the machine precision or perhaps slightly larger so as not
to be diddled by roundoff). Defaults to 1.490116e-07 (1.0e+01*sqrt(.Machine$double.eps)).

npcdensbw 75

tol tolerance on the position of located minima of the cross-validation function (tol
should generally be no smaller than the square root of your machine’s floating
point precision). Defaults to 1.490116e-04 (1.0e+04*sqrt(.Machine$double.eps)).

small a small number used to bracket a minimum (it is hopeless to ask for a bracketing
interval of width less than sqrt(epsilon) times its central value, a fractional width
of only about 10-04 (single precision) or 3x10-8 (double precision)). Defaults
to small = 1.490116e-05 (1.0e+03*sqrt(.Machine$double.eps)).

lbc.dir, dfc.dir, cfac.dir, initc.dir
lower bound, chi-square degrees of freedom, stretch factor, and initial non-
random values for direction set search for Powell’s algorithm for numeric vari-
ables. See Details

lbd.dir, hbd.dir, dfac.dir, initd.dir
lower bound, upper bound, stretch factor, and initial non-random values for di-
rection set search for Powell’s algorithm for categorical variables. See Details

lbc.init, hbc.init, cfac.init
lower bound, upper bound, and non-random initial values for scale factors for
numeric variables for Powell’s algorithm. See Details

lbd.init, hbd.init, dfac.init
lower bound, upper bound, and non-random initial values for scale factors for
categorical variables for Powell’s algorithm. See Details

scale.init.categorical.sample

a logical value that when set to TRUE scales lbd.dir, hbd.dir, dfac.dir, and
initd.dir by n−2/(2P+l), n the number of observations, P the order of the
kernel, and l the number of numeric variables. See Details

transform.bounds

a logical value that when set to TRUE applies an internal transformation that maps
the unconstrained search to the feasible bandwidth domain. Defaults to FALSE.

invalid.penalty

a character string specifying the penalty used when the optimizer encounters
invalid bandwidths. "baseline" returns a finite penalty based on a baseline
objective; "dbmax" returns DBL_MAX. Defaults to "baseline".

penalty.multiplier

a numeric multiplier applied to the baseline penalty when invalid.penalty="baseline".
Defaults to 10.

memfac The algorithm to compute the least-squares objective function uses a block-
based algorithm to eliminate or minimize redundant kernel evaluations. Due
to memory, hardware and software constraints, a maximum block size must be
imposed by the algorithm. This block size is roughly equal to memfac*10^5
elements. Empirical tests on modern hardware find that a memfac of 500 per-
forms well. If you experience out of memory errors, or strange behaviour for
large data sets (>100k elements) setting memfac to a lower value may fix the
problem.

Details

npcdensbw implements a variety of methods for choosing bandwidths for multivariate distributions
(p + q-variate) defined over a set of possibly continuous and/or discrete (unordered, ordered) data.

76 npcdensbw

The approach is based on Li and Racine (2004) who employ ‘generalized product kernels’ that
admit a mix of continuous and discrete data types.

The cross-validation methods employ multivariate numerical search algorithms (direction set (Pow-
ell’s) methods in multidimensions).

Bandwidths can (and will) differ for each variable which is, of course, desirable.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

npcdensbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the xdat and ydat parameters. Use of these two interfaces is mutually
exclusive.

Data contained in the data frames xdat and ydat may be a mix of continuous (default), unordered
discrete (to be specified in the data frames using factor), and ordered discrete (to be specified in
the data frames using ordered). Data can be entered in an arbitrary order and data types will be
detected automatically by the routine (see npRmpi for details).

Data for which bandwidths are to be estimated may be specified symbolically. A typical descrip-
tion has the form dependent data ~ explanatory data, where dependent data and explanatory
data are both series of variables specified by name, separated by the separation character ’+’. For
example, y1 + y2 ~ x1 + x2 specifies that the bandwidths for the joint distribution of variables y1
and y2 conditioned on x1 and x2 are to be estimated. See below for further examples.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

The optimizer invoked for search is Powell’s conjugate direction method which requires the setting
of (non-random) initial values and search directions for bandwidths, and, when restarting, random
values for successive invocations. Bandwidths for numeric variables are scaled by robust measures
of spread, the sample size, and the number of numeric variables where appropriate. Two sets of
parameters for bandwidths for numeric can be modified, those for initial values for the parameters
themselves, and those for the directions taken (Powell’s algorithm does not involve explicit compu-
tation of the function’s gradient). The default values are set by considering search performance for
a variety of difficult test cases and simulated cases. We highly recommend restarting search a large
number of times to avoid the presence of local minima (achieved by modifying nmulti). Further
refinement for difficult cases can be achieved by modifying these sets of parameters. However,
these parameters are intended more for the authors of the package to enable ‘tuning’ for various
methods rather than for the user themselves.

Value

npcdensbw returns a conbandwidth object, with the following components:

xbw bandwidth(s), scale factor(s) or nearest neighbours for the explanatory data,
xdat

npcdensbw 77

ybw bandwidth(s), scale factor(s) or nearest neighbours for the dependent data, ydat

fval objective function value at minimum

if bwtype is set to fixed, an object containing bandwidths (or scale factors if bwscaling = TRUE)
is returned. If it is set to generalized_nn or adaptive_nn, then instead the kth nearest neighbors
are returned for the continuous variables while the discrete kernel bandwidths are returned for the
discrete variables.

The functions predict, summary and plot support objects of type conbandwidth.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due
to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting ftol=.01 and tol=.01
and conduct multistarting (the default is to restart min(5, ncol(xdat,ydat)) times) as is done for a
number of examples. Once the procedure terminates, you can restart search with default tolerances
using those bandwidths obtained from the less rigorous search (i.e., set bws=bw on subsequent calls
to this routine where bw is the initial bandwidth object). A version of this package using the Rmpi
wrapper is under development that allows one to deploy this software in a clustered computing
environment to facilitate computation involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

78 npcdensbw

See Also

bw.nrd, bw.SJ, hist, npudens, npudist

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(data("Italy"),
caller.execute=TRUE)

mpi.bcast.cmd(attach(Italy),
caller.execute=TRUE)

mpi.bcast.cmd(bw <- npcdensbw(formula=gdp~ordered(year)),
caller.execute=TRUE)

summary(bw)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

npcdist 79

End(Not run)

npcdist Kernel Conditional Distribution Estimation with Mixed Data Types

Description

npcdist computes kernel cumulative conditional distribution estimates on p+ q-variate evaluation
data, given a set of training data (both explanatory and dependent) and a bandwidth specification (a
condbandwidth object or a bandwidth vector, bandwidth type, and kernel type) using the method
of Li and Racine (2008) and Li, Lin, and Racine (2013). The data may be continuous, discrete
(unordered and ordered factors), or some combination thereof.

Usage

npcdist(bws, ...)

S3 method for class 'formula'
npcdist(bws, data = NULL, newdata = NULL, ...)

S3 method for class 'call'
npcdist(bws, ...)

S3 method for class 'condbandwidth'
npcdist(bws,

txdat = stop("invoked without training data 'txdat'"),
tydat = stop("invoked without training data 'tydat'"),
exdat,
eydat,
gradients = FALSE,
...)

Default S3 method:
npcdist(bws, txdat, tydat, ...)

Arguments

bws a bandwidth specification. This can be set as a condbandwidth object returned
from a previous invocation of npcdistbw, or as a p + q-vector of bandwidths,
with each element i up to i = q corresponding to the bandwidth for column i in
tydat, and each element i from i = q + 1 to i = p + q corresponding to the
bandwidth for column i − q in txdat. If specified as a vector, then additional
arguments will need to be supplied as necessary to specify the bandwidth type,
kernel types, training data, and so on.

80 npcdist

gradients a logical value specifying whether to return estimates of the gradients at the
evaluation points. Defaults to FALSE.

... additional arguments supplied to specify the bandwidth type, kernel types, and
so on. This is necessary if you specify bws as a p+q-vector and not a condbandwidth
object, and you do not desire the default behaviours. To do this, you may specify
any of bwmethod, bwscaling, bwtype, cxkertype, cxkerorder, cykertype,
cykerorder, uxkertype, oxkertype, oykertype, as described in npcdistbw.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npcdistbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

txdat a p-variate data frame of sample realizations of explanatory data (training data).
Defaults to the training data used to compute the bandwidth object.

tydat a q-variate data frame of sample realizations of dependent data (training data).
Defaults to the training data used to compute the bandwidth object.

exdat a p-variate data frame of explanatory data on which cumulative conditional dis-
tributions will be evaluated. By default, evaluation takes place on the data pro-
vided by txdat.

eydat a q-variate data frame of dependent data on which cumulative conditional distri-
butions will be evaluated. By default, evaluation takes place on the data provided
by tydat.

Details

npcdist implements a variety of methods for estimating multivariate conditional cumulative distri-
butions (p+q-variate) defined over a set of possibly continuous and/or discrete (unordered, ordered)
data. The approach is based on Li and Racine (2004) who employ ‘generalized product kernels’
that admit a mix of continuous and discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the cumulative conditional distribution
at the point x. Generalized nearest-neighbor bandwidths change with the point at which the cumu-
lative conditional distribution is estimated, x. Fixed bandwidths are constant over the support of
x.

Training and evaluation input data may be a mix of continuous (default), unordered discrete (to
be specified in the data frames using factor), and ordered discrete (to be specified in the data
frames using ordered). Data can be entered in an arbitrary order and data types will be detected
automatically by the routine (see npRmpi for details).

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

npcdist 81

Value

npcdist returns a condistribution object. The generic accessor functions fitted, se, and
gradients, extract estimated values, asymptotic standard errors on estimates, and gradients, re-
spectively, from the returned object. Furthermore, the functions predict, summary and plot sup-
port objects of both classes. The returned objects have the following components:

xbw bandwidth(s), scale factor(s) or nearest neighbours for the explanatory data,
txdat

ybw bandwidth(s), scale factor(s) or nearest neighbours for the dependent data, tydat

xeval the evaluation points of the explanatory data

yeval the evaluation points of the dependent data

condist estimates of the conditional cumulative distribution at the evaluation points

conderr standard errors of the cumulative conditional distribution estimates

congrad if invoked with gradients = TRUE, estimates of the gradients at the evaluation
points

congerr if invoked with gradients = TRUE, standard errors of the gradients at the evalu-
ation points

log_likelihood log likelihood of the cumulative conditional distribution estimate

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2008), “Nonparametric estimation of conditional CDF and quantile functions
with mixed categorical and continuous data,” Journal of Business and Economic Statistics, 26, 423-
434.

Li, Q. and J. Lin and J.S. Racine (2013), “Optimal bandwidth selection for nonparametric condi-
tional distribution and quantile functions”, Journal of Business and Economic Statistics, 31, 57-65.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

82 npcdist

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

npudens

Examples

Not run:
Not run in checks: this example performs bandwidth search on panel data and
can be too slow/unstable for automated MPI checks.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("Italy")

mpi.bcast.Robj2slave(Italy)

mpi.bcast.cmd(bw <- npcdistbw(formula=gdp~ordered(year),
data=Italy),

caller.execute=TRUE)

mpi.bcast.cmd(F <- npcdist(bws=bw),
caller.execute=TRUE)

summary(F)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npcdistbw 83

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npcdistbw Kernel Conditional Distribution Bandwidth Selection with Mixed Data
Types

Description

npcdistbw computes a condbandwidth object for estimating a p + q-variate kernel conditional
cumulative distribution estimator defined over mixed continuous and discrete (unordered xdat, or-
dered xdat and ydat) data using either the normal-reference rule-of-thumb or least-squares cross
validation method of Li and Racine (2008) and Li, Lin and Racine (2013).

Usage

npcdistbw(...)

S3 method for class 'formula'
npcdistbw(formula, data, subset, na.action, call, gdata = NULL,...)

S3 method for class 'NULL'
npcdistbw(xdat = stop("data 'xdat' missing"),

ydat = stop("data 'ydat' missing"),
bws, ...)

S3 method for class 'condbandwidth'
npcdistbw(xdat = stop("data 'xdat' missing"),

ydat = stop("data 'ydat' missing"),
gydat = NULL,
bws,
bandwidth.compute = TRUE,
nmulti,
remin = TRUE,
itmax = 10000,
do.full.integral = FALSE,
ngrid = 100,
ftol = 1.490116e-07,
tol = 1.490116e-04,

84 npcdistbw

small = 1.490116e-05,
memfac = 500.0,
lbc.dir = 0.5,
dfc.dir = 3,
cfac.dir = 2.5*(3.0-sqrt(5)),
initc.dir = 1.0,
lbd.dir = 0.1,
hbd.dir = 1,
dfac.dir = 0.25*(3.0-sqrt(5)),
initd.dir = 1.0,
lbc.init = 0.1,
hbc.init = 2.0,
cfac.init = 0.5,
lbd.init = 0.1,
hbd.init = 0.9,
dfac.init = 0.375,
scale.init.categorical.sample = FALSE,
transform.bounds = FALSE,
invalid.penalty = c("baseline","dbmax"),
penalty.multiplier = 10,
...)

Default S3 method:
npcdistbw(xdat = stop("data 'xdat' missing"),

ydat = stop("data 'ydat' missing"),
gydat,
bws,
bandwidth.compute = TRUE,
nmulti,
remin,
itmax,
do.full.integral,
ngrid,
ftol,
tol,
small,
memfac,
lbc.dir,
dfc.dir,
cfac.dir,
initc.dir,
lbd.dir,
hbd.dir,
dfac.dir,
initd.dir,
lbc.init,
hbc.init,
cfac.init,

npcdistbw 85

lbd.init,
hbd.init,
dfac.init,
scale.init.categorical.sample,
transform.bounds,
invalid.penalty,
penalty.multiplier,
bwmethod,
bwscaling,
bwtype,
cxkertype,
cxkerorder,
cykertype,
cykerorder,
uxkertype,
oxkertype,
oykertype,
...)

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

gdata a grid of data on which the indicator function for least-squares cross-validation
is to be computed (can be the sample or a grid of quantiles).

xdat a p-variate data frame of explanatory data on which bandwidth selection will be
performed. The data types may be continuous, discrete (unordered and ordered
factors), or some combination thereof.

ydat a q-variate data frame of dependent data on which bandwidth selection will be
performed. The data types may be continuous, discrete (ordered factors), or
some combination thereof.

gydat a grid of data on which the indicator function for least-squares cross-validation
is to be computed (can be the sample or a grid of quantiles for ydat).

86 npcdistbw

bws a bandwidth specification. This can be set as a condbandwidth object returned
from a previous invocation, or as a p+q-vector of bandwidths, with each element
i up to i = q corresponding to the bandwidth for column i in ydat, and each
element i from i = q + 1 to i = p + q corresponding to the bandwidth for
column i − q in xdat. In either case, the bandwidth supplied will serve as a
starting point in the numerical search for optimal bandwidths. If specified as
a vector, then additional arguments will need to be supplied as necessary to
specify the bandwidth type, kernel types, selection methods, and so on. This
can be left unset.

... additional arguments supplied to specify the bandwidth type, kernel types, se-
lection methods, and so on, detailed below.

bwmethod which method to use to select bandwidths. cv.ls specifies least-squares cross-
validation (Li, Lin and Racine (2013), and normal-reference just computes
the ‘rule-of-thumb’ bandwidth hj using the standard formula hj = 1.06σjn

−1/(2P+l),
where σj is an adaptive measure of spread of the jth continuous variable de-
fined as min(standard deviation, mean absolute deviation/1.4826, interquartile
range/1.349), n the number of observations, P the order of the kernel, and l
the number of continuous variables. Note that when there exist factors and the
normal-reference rule is used, there is zero smoothing of the factors. Defaults to
cv.ls.

bwscaling a logical value that when set to TRUE the supplied bandwidths are interpreted as
‘scale factors’ (cj), otherwise when the value is FALSE they are interpreted as
‘raw bandwidths’ (hj for continuous data types, λj for discrete data types). For
continuous data types, cj and hj are related by the formula hj = cjσjn

−1/(2P+l),
where σj is an adaptive measure of spread of continuous variable j defined as
min(standard deviation, mean absolute deviation/1.4826, interquartile range/1.349),
n the number of observations, P the order of the kernel, and l the number of con-
tinuous variables. For discrete data types, cj and hj are related by the formula
hj = cjn

−2/(2P+l), where here j denotes discrete variable j. Defaults to FALSE.

bwtype character string used for the continuous variable bandwidth type, specifying the
type of bandwidth to compute and return in the condbandwidth object. Defaults
to fixed. Option summary:
fixed: compute fixed bandwidths
generalized_nn: compute generalized nearest neighbors
adaptive_nn: compute adaptive nearest neighbors

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a condbandwidth object will be returned with band-
widths set to those specified in bws. Defaults to TRUE.

cxkertype character string used to specify the continuous kernel type for xdat. Can be set
as gaussian, epanechnikov, or uniform. Defaults to gaussian.

cxkerorder numeric value specifying kernel order for xdat (one of (2,4,6,8)). Kernel
order specified along with a uniform continuous kernel type will be ignored.
Defaults to 2.

cykertype character string used to specify the continuous kernel type for ydat. Can be set
as gaussian, epanechnikov, or uniform. Defaults to gaussian.

npcdistbw 87

cykerorder numeric value specifying kernel order for ydat (one of (2,4,6,8)). Kernel
order specified along with a uniform continuous kernel type will be ignored.
Defaults to 2.

uxkertype character string used to specify the unordered categorical kernel type. Can be
set as aitchisonaitken or liracine. Defaults to aitchisonaitken.

oxkertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine. Defaults to liracine.

oykertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points

remin a logical value which when set as TRUE the search routine restarts from located
minima for a minor gain in accuracy. Defaults to TRUE.

itmax integer number of iterations before failure in the numerical optimization routine.
Defaults to 10000.

do.full.integral

a logical value which when set as TRUE evaluates the moment-based integral on
the entire sample.

ngrid integer number of grid points to use when computing the moment-based integral.
Defaults to 100.

ftol fractional tolerance on the value of the cross-validation function evaluated at lo-
cated minima (of order the machine precision or perhaps slightly larger so as not
to be diddled by roundoff). Defaults to 1.490116e-07 (1.0e+01*sqrt(.Machine$double.eps)).

tol tolerance on the position of located minima of the cross-validation function (tol
should generally be no smaller than the square root of your machine’s floating
point precision). Defaults to 1.490116e-04 (1.0e+04*sqrt(.Machine$double.eps)).

small a small number used to bracket a minimum (it is hopeless to ask for a bracketing
interval of width less than sqrt(epsilon) times its central value, a fractional width
of only about 10-04 (single precision) or 3x10-8 (double precision)). Defaults
to small = 1.490116e-05 (1.0e+03*sqrt(.Machine$double.eps)).

lbc.dir, dfc.dir, cfac.dir, initc.dir
lower bound, chi-square degrees of freedom, stretch factor, and initial non-
random values for direction set search for Powell’s algorithm for numeric vari-
ables. See Details

lbd.dir, hbd.dir, dfac.dir, initd.dir
lower bound, upper bound, stretch factor, and initial non-random values for di-
rection set search for Powell’s algorithm for categorical variables. See Details

lbc.init, hbc.init, cfac.init
lower bound, upper bound, and non-random initial values for scale factors for
numeric variables for Powell’s algorithm. See Details

lbd.init, hbd.init, dfac.init
lower bound, upper bound, and non-random initial values for scale factors for
categorical variables for Powell’s algorithm. See Details

88 npcdistbw

scale.init.categorical.sample

a logical value that when set to TRUE scales lbd.dir, hbd.dir, dfac.dir, and
initd.dir by n−2/(2P+l), n the number of observations, P the order of the
kernel, and l the number of numeric variables. See Details

transform.bounds

a logical value that when set to TRUE applies an internal transformation that maps
the unconstrained search to the feasible bandwidth domain. Defaults to FALSE.

invalid.penalty

a character string specifying the penalty used when the optimizer encounters
invalid bandwidths. "baseline" returns a finite penalty based on a baseline
objective; "dbmax" returns DBL_MAX. Defaults to "baseline".

penalty.multiplier

a numeric multiplier applied to the baseline penalty when invalid.penalty="baseline".
Defaults to 10.

memfac The algorithm to compute the least-squares objective function uses a block-
based algorithm to eliminate or minimize redundant kernel evaluations. Due
to memory, hardware and software constraints, a maximum block size must be
imposed by the algorithm. This block size is roughly equal to memfac*10^5 el-
ements. Empirical tests on modern hardware find that a memfac of around 500
performs well. If you experience out of memory errors, or strange behaviour for
large data sets (>100k elements) setting memfac to a lower value may fix the
problem.

Details

npcdistbw implements a variety of methods for choosing bandwidths for multivariate distributions
(p + q-variate) defined over a set of possibly continuous and/or discrete (unordered xdat, ordered
xdat and ydat) data. The approach is based on Li and Racine (2004) who employ ‘generalized
product kernels’ that admit a mix of continuous and discrete data types.

The cross-validation methods employ multivariate numerical search algorithms (direction set (Pow-
ell’s) methods in multidimensions).

Bandwidths can (and will) differ for each variable which is, of course, desirable.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the cumulative distribution at the point
x. Generalized nearest-neighbor bandwidths change with the point at which the cumulative distri-
bution is estimated, x. Fixed bandwidths are constant over the support of x.

npcdistbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the xdat and ydat parameters. Use of these two interfaces is mutually
exclusive.

Data contained in the data frame xdat may be a mix of continuous (default), unordered discrete
(to be specified in the data frames using factor), and ordered discrete (to be specified in the data
frames using ordered). Data contained in the data frame ydat may be a mix of continuous (default)
and ordered discrete (to be specified in the data frames using ordered). Data can be entered in an
arbitrary order and data types will be detected automatically by the routine (see npRmpi for details).

npcdistbw 89

Data for which bandwidths are to be estimated may be specified symbolically. A typical descrip-
tion has the form dependent data ~ explanatory data, where dependent data and explanatory
data are both series of variables specified by name, separated by the separation character ’+’. For
example, y1 + y2 ~ x1 + x2 specifies that the bandwidths for the joint distribution of variables y1
and y2 conditioned on x1 and x2 are to be estimated. See below for further examples.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

The optimizer invoked for search is Powell’s conjugate direction method which requires the setting
of (non-random) initial values and search directions for bandwidths, and, when restarting, random
values for successive invocations. Bandwidths for numeric variables are scaled by robust measures
of spread, the sample size, and the number of numeric variables where appropriate. Two sets of
parameters for bandwidths for numeric can be modified, those for initial values for the parameters
themselves, and those for the directions taken (Powell’s algorithm does not involve explicit compu-
tation of the function’s gradient). The default values are set by considering search performance for
a variety of difficult test cases and simulated cases. We highly recommend restarting search a large
number of times to avoid the presence of local minima (achieved by modifying nmulti). Further
refinement for difficult cases can be achieved by modifying these sets of parameters. However,
these parameters are intended more for the authors of the package to enable ‘tuning’ for various
methods rather than for the user themselves.

Value

npcdistbw returns a condbandwidth object, with the following components:

xbw bandwidth(s), scale factor(s) or nearest neighbours for the explanatory data,
xdat

ybw bandwidth(s), scale factor(s) or nearest neighbours for the dependent data, ydat

fval objective function value at minimum

if bwtype is set to fixed, an object containing bandwidths (or scale factors if bwscaling = TRUE)
is returned. If it is set to generalized_nn or adaptive_nn, then instead the kth nearest neighbors
are returned for the continuous variables while the discrete kernel bandwidths are returned for the
discrete variables.

The functions predict, summary and plot support objects of type condbandwidth.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due

90 npcdistbw

to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting ftol=.01 and tol=.01
and conduct multistarting (the default is to restart min(5, ncol(xdat,ydat)) times) as is done for a
number of examples. Once the procedure terminates, you can restart search with default tolerances
using those bandwidths obtained from the less rigorous search (i.e., set bws=bw on subsequent calls
to this routine where bw is the initial bandwidth object). A version of this package using the Rmpi
wrapper is under development that allows one to deploy this software in a clustered computing
environment to facilitate computation involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2008), “Nonparametric estimation of conditional CDF and quantile functions
with mixed categorical and continuous data,” Journal of Business and Economic Statistics, 26, 423-
434.

Li, Q. and J. Lin and J.S. Racine (2013), “Optimal bandwidth selection for nonparametric condi-
tional distribution and quantile functions”, Journal of Business and Economic Statistics, 31, 57-65.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

bw.nrd, bw.SJ, hist, npudens, npudist

Examples

Not run:
Not run in checks: data-driven conditional CDF bandwidth selection is
computationally intensive and may exceed check limits under MPI.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see

npcmstest 91

the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("Italy")

mpi.bcast.Robj2slave(Italy)

mpi.bcast.cmd(bw <- npcdistbw(formula=gdp~ordered(year),
data=Italy),

caller.execute=TRUE)

summary(bw)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npcmstest Kernel Consistent Model Specification Test with Mixed Data Types

Description

npcmstest implements a consistent test for correct specification of parametric regression models
(linear or nonlinear) as described in Hsiao, Li, and Racine (2007).

92 npcmstest

Usage

npcmstest(formula,
data = NULL,
subset,
xdat,
ydat,
model = stop(paste(sQuote("model")," has not been provided")),
distribution = c("bootstrap", "asymptotic"),
boot.method = c("iid","wild","wild-rademacher"),
boot.num = 399,
pivot = TRUE,
density.weighted = TRUE,
random.seed = 42,
...)

Arguments

formula a symbolic description of variables on which the test is to be performed. The
details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used.

model a model object obtained from a call to lm (or glm). Important: the call to either
glm or lm must have the arguments x=TRUE and y=TRUE or npcmstest will not
work. Also, the test is based on residual bootstrapping hence the outcome must
be continuous (which rules out Logit, Probit, and Count models).

xdat a p-variate data frame of explanatory data (training data) used to calculate the
regression estimators.

ydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of xdat.

distribution a character string used to specify the method of estimating the distribution of the
statistic to be calculated. bootstrap will conduct bootstrapping. asymptotic
will use the normal distribution. Defaults to bootstrap.

boot.method a character string used to specify the bootstrap method. iid will generate inde-
pendent identically distributed draws. wild will use a wild bootstrap. wild-rademacher
will use a wild bootstrap with Rademacher variables. Defaults to iid.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

pivot a logical value specifying whether the statistic should be normalised such that it
approaches N(0, 1) in distribution. Defaults to TRUE.

density.weighted

a logical value specifying whether the statistic should be weighted by the density
of xdat. Defaults to TRUE.

npcmstest 93

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

... additional arguments supplied to control bandwidth selection on the residuals.
One can specify the bandwidth type, kernel types, and so on. To do this, you
may specify any of bwscaling, bwtype, ckertype, ckerorder, ukertype,
okertype, as described in npregbw. This is necessary if you specify bws as
a p-vector and not a bandwidth object, and you do not desire the default be-
haviours.

Value

npcmstest returns an object of type cmstest with the following components, components will
contain information related to Jn or In depending on the value of pivot:

Jn the statistic Jn

In the statistic In

Omega.hat as described in Hsiao, C. and Q. Li and J.S. Racine.

q.* the various quantiles of the statistic Jn (or In if pivot=FALSE) are in components
q.90, q.95, q.99 (one-sided 1%, 5%, 10% critical values)

P the P-value of the statistic

Jn.bootstrap if pivot=TRUE contains the bootstrap replications of Jn

In.bootstrap if pivot=FALSE contains the bootstrap replications of In

summary supports object of type cmstest.

Usage Issues

npcmstest supports regression objects generated by lm and uses features specific to objects of type
lm hence if you attempt to pass objects of a different type the function cannot be expected to work.

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hsiao, C. and Q. Li and J.S. Racine (2007), “A consistent model specification test with mixed
categorical and continuous data,” Journal of Econometrics, 140, 802-826.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Maasoumi, E. and J.S. Racine and T. Stengos (2007), “Growth and convergence: a profile of distri-
bution dynamics and mobility,” Journal of Econometrics, 136, 483-508.

94 npcmstest

Murphy, K. M. and F. Welch (1990), “Empirical age-earnings profiles,” Journal of Labor Eco-
nomics, 8, 202-229.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(data(cps71),
caller.execute=TRUE)

mpi.bcast.cmd(attach(cps71),
caller.execute=TRUE)

mpi.bcast.cmd(model <- lm(logwage~age+I(age^2), x=TRUE, y=TRUE),
caller.execute=TRUE)

mpi.bcast.cmd(npcmstest(model = model, xdat = age, ydat = logwage,
boot.num = 29),

caller.execute=TRUE)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

npconmode 95

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npconmode Kernel Modal Regression with Mixed Data Types

Description

npconmode performs kernel modal regression on mixed data, and finds the conditional mode given
a set of training data, consisting of explanatory data and dependent data, and possibly evaluation
data. Automatically computes various in sample and out of sample measures of accuracy.

Usage

npconmode(bws, ...)

S3 method for class 'formula'
npconmode(bws, data = NULL, newdata = NULL, ...)

S3 method for class 'call'
npconmode(bws, ...)

Default S3 method:
npconmode(bws, txdat, tydat, ...)

S3 method for class 'conbandwidth'
npconmode(bws,

txdat = stop("invoked without training data 'txdat'"),
tydat = stop("invoked without training data 'tydat'"),
exdat,
eydat,
...)

Arguments

bws a bandwidth specification. This can be set as a conbandwidth object returned
from an invocation of npcdensbw

... additional arguments supplied to specify the bandwidth type, kernel types, and
so on, detailed below. This is necessary if you specify bws as a p+ q-vector and
not a conbandwidth object, and you do not desire the default behaviours.

96 npconmode

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npcdensbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

txdat a p-variate data frame of explanatory data (conditioning data) used to calculate
the regression estimators. Defaults to the training data used to compute the
bandwidth object.

tydat a one (1) dimensional vector of unordered or ordered factors, containing the
dependent data. Defaults to the training data used to compute the bandwidth
object.

exdat a p-variate data frame of points on which the regression will be estimated (eval-
uation data). By default, evaluation takes place on the data provided by txdat.

eydat a one (1) dimensional numeric or integer vector of the true values (outcomes) of
the dependent variable. By default, evaluation takes place on the data provided
by tydat.

Value

npconmode returns a conmode object with the following components:

conmode a vector of type factor (or ordered factor) containing the conditional mode
at each evaluation point

condens a vector of numeric type containing the modal density estimates at each evalua-
tion point

xeval a data frame of evaluation points

yeval a vector of type factor (or ordered factor) containing the actual outcomes,
or NA if not provided

confusion.matrix

the confusion matrix or NA if outcomes are not available

CCR.overall the overall correct classification ratio, or NA if outcomes are not available

CCR.byoutcome a numeric vector containing the correct classification ratio by outcome, or NA if
outcomes are not available

fit.mcfadden the McFadden-Puig-Kerschner performance measure or NA if outcomes are not
available

The functions mode, and fitted may be used to extract the conditional mode estimates, and the
conditional density estimates at the conditional mode, respectively, from the resulting object. Also,
summary supports conmode objects.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

npconmode 97

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

McFadden, D. and C. Puig and D. Kerschner (1977), “Determinants of the long-run demand for
electricity,” Proceedings of the American Statistical Association (Business and Economics Section),
109-117.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(library(MASS),caller.execute=TRUE)
mpi.bcast.cmd(data(birthwt),caller.execute=TRUE)

birthwt$low <- factor(birthwt$low)
birthwt$smoke <- factor(birthwt$smoke)
birthwt$race <- factor(birthwt$race)
birthwt$ht <- factor(birthwt$ht)
birthwt$ui <- factor(birthwt$ui)
birthwt$ftv <- ordered(birthwt$ftv)

98 npcopula

mpi.bcast.Robj2slave(birthwt)

mpi.bcast.cmd(bw <- npcdensbw(low~
smoke+
race+
ht+
ui+
ftv+
age+
lwt,
data=birthwt),

caller.execute=TRUE)

summary(bw)

mpi.bcast.cmd(model <- npconmode(bws=bw),
caller.execute=TRUE)

summary(model)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npcopula Kernel Copula Estimation with Mixed Data Types

npcopula 99

Description

npcopula implements the nonparametric mixed data kernel copula approach of Racine (2015) for
an arbitrary number of dimensions

Usage

npcopula(bws,
data,
u = NULL,
n.quasi.inv = 1000,
er.quasi.inv = 1)

Arguments

bws an unconditional joint distribution (npudistbw) or joint density (npudensbw)
bandwidth object (if bws is delivered via npudistbw the copula distribution is
estimated, while if bws is delivered via npudensbw the copula density is esti-
mated)

data a data frame containing variables used to construct bws

u an optional matrix of real numbers lying in [0,1], each column of which cor-
responds to the vector of uth quantile values desired for each variable in the
copula (otherwise the u values returned are those corresponding to the sample
realizations)

n.quasi.inv number of grid points generated when u is provided in order to compute the
quasi-inverse of each marginal distribution (see details)

er.quasi.inv number passed to extendrange when u is provided specifying the fraction by
which the data range should be extended when constructing the grid used to
compute the quasi-inverse (see details)

Details

npcopula computes the nonparametric copula or copula density using inversion (Nelsen (2006),
page 51). For the inversion approach, we exploit Sklar’s theorem (Corollary 2.3.7, Nelsen (2006)) to
produce copulas directly from the joint distribution function using C(u, v) = H(F−1(u), G−1(v))
rather than the typical approach that instead uses H(x, y) = C(F (x), G(y)). Whereas the latter
requires kernel density estimation on a d-dimensional unit hypercube which necessitates the use of
boundary correction methods, the former does not.

Note that if u is provided then expand.grid is called on u. As the dimension increases this can
become unwieldy and potentially consume an enormous amount of memory unless the number of
grid points is kept very small. Given that computing the copula on a grid is typically done for
graphical purposes, providing u is typically done for two-dimensional problems only. Even here,
however, providing a grid of length 100 will expand into a matrix of dimension 10000 by 2 which,
though not memory intensive, may be computationally burdensome.

The ‘quasi-inverse’ is computed via Definition 2.3.6 from Nelsen (2006). We compute an equi-
quantile grid on the range of the data of length n.quasi.inv/2. We then extend the range of the data
by the factor er.quasi.inv and compute an equi-spaced grid of points of length n.quasi.inv/2
(e.g. using the default er.quasi.inv=1 we go from the minimum data value minus 1× the range

100 npcopula

to the maximum data value plus 1× the range for each marginal). We then take these two grids,
concatenate and sort, and these form the final grid of length n.quasi.inv for computing the quasi-
inverse.

Note that if u is provided and any elements of (the columns of) u are such that they lie beyond the
respective values of F for the evaluation data for the respective marginal, such values are reset to the
minimum/maximum values of F for the respective marginal. It is therefore prudent to inspect the
values of u returned by npcopula when u is provided.

Note that copula are only defined for data of type numeric or ordered.

Value

npcopula returns an object of type data.frame with the following components

copula the copula (bandwidth object obtained from npudistbw) or copula density (band-
width object obtained from npudensbw)

u the matrix of marginal u values associated with the sample realizations (u=NULL)
or those created via expand.grid when u is provided

data the matrix of marginal quantiles constructed when u is provided (data returned
has the same names as data inputted)

Usage Issues

See the example below for proper usage.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Nelsen, R. B. (2006), An Introduction to Copulas, Second Edition, Springer-Verlag.

Racine, J.S. (2015), “Mixed Data Kernel Copulas,” Empirical Economics, 48, 37-59.

See Also

npudensbw,npudens,npudist

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
Example 1: Bivariate Mixed Data

The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via

npcopula 101

vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(library(MASS),caller.execute=TRUE)

set.seed(42)

Simulate correlated Gaussian data (rho(x,y)=0.99)

n <- 1000
n.eval <- 100
rho <- 0.99
mu <- c(0,0)
Sigma <- matrix(c(1,rho,rho,1),2,2)
mydat <- mvrnorm(n=n, mu, Sigma)
mydat <- data.frame(x=mydat[,1],

y=ordered(as.integer(cut(mydat[,2],
quantile(mydat[,2],seq(0,1,by=.1)),
include.lowest=TRUE))-1))

q.min <- 0.0
q.max <- 1.0
grid.seq <- seq(q.min,q.max,length=n.eval)
grid.dat <- cbind(grid.seq,grid.seq)

mpi.bcast.Robj2slave(mydat)
mpi.bcast.Robj2slave(grid.dat)

Estimate the copula (bw object obtained from npudistbw())

mpi.bcast.cmd(bw.cdf <- npudistbw(~x+y,data=mydat),
caller.execute=TRUE)

mpi.bcast.cmd(copula <- npcopula(bws=bw.cdf,data=mydat,u=grid.dat),
caller.execute=TRUE)

Plot the copula

contour(grid.seq,grid.seq,matrix(copula$copula,n.eval,n.eval),
xlab="u1",
ylab="u2",
main="Copula Contour")

persp(grid.seq,grid.seq,matrix(copula$copula,n.eval,n.eval),
ticktype="detailed",
xlab="u1",
ylab="u2",
zlab="Copula",zlim=c(0,1))

102 npcopula

Plot the empirical copula

mpi.bcast.cmd(copula.emp <- npcopula(bws=bw.cdf,data=mydat),
caller.execute=TRUE)

plot(copula.emp$u1,copula.emp$u2,xlab="u1",ylab="u2",cex=.25,main="Empirical Copula")

Estimate the copula density (bw object obtained from npudensbw())

mpi.bcast.cmd(bw.pdf <- npudensbw(~x+y,data=mydat),
caller.execute=TRUE)

mpi.bcast.cmd(copula <- npcopula(bws=bw.pdf,data=mydat,u=grid.dat),
caller.execute=TRUE)

Plot the copula density

persp(grid.seq,grid.seq,matrix(copula$copula,n.eval,n.eval),
ticktype="detailed",
xlab="u1",
ylab="u2",
zlab="Copula Density")

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

Example 2: Bivariate Continuous Data

The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

npcopula 103

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(library(MASS),caller.execute=TRUE)

set.seed(42)

Simulate correlated Gaussian data (rho(x,y)=0.99)

n <- 1000
n.eval <- 100
rho <- 0.99
mu <- c(0,0)
Sigma <- matrix(c(1,rho,rho,1),2,2)
mydat <- mvrnorm(n=n, mu, Sigma)
mydat <- data.frame(x=mydat[,1],y=mydat[,2])

q.min <- 0.0
q.max <- 1.0
grid.seq <- seq(q.min,q.max,length=n.eval)
grid.dat <- cbind(grid.seq,grid.seq)

mpi.bcast.Robj2slave(mydat)
mpi.bcast.Robj2slave(grid.dat)

Estimate the copula (bw object obtained from npudistbw())

mpi.bcast.cmd(bw.cdf <- npudistbw(~x+y,data=mydat),
caller.execute=TRUE)

mpi.bcast.cmd(copula <- npcopula(bws=bw.cdf,data=mydat,u=grid.dat),
caller.execute=TRUE)

Plot the copula

contour(grid.seq,grid.seq,matrix(copula$copula,n.eval,n.eval),
xlab="u1",
ylab="u2",
main="Copula Contour")

persp(grid.seq,grid.seq,matrix(copula$copula,n.eval,n.eval),
ticktype="detailed",
xlab="u1",
ylab="u2",
zlab="Copula",
zlim=c(0,1))

Plot the empirical copula

mpi.bcast.cmd(copula.emp <- npcopula(bws=bw.cdf,data=mydat),
caller.execute=TRUE)

104 npdeneqtest

plot(copula.emp$u1,copula.emp$u2,xlab="u1",ylab="u2",cex=.25,main="Empirical Copula")

Estimate the copula density (bw object obtained from npudensbw())

mpi.bcast.cmd(bw.pdf <- npudensbw(~x+y,data=mydat),
caller.execute=TRUE)

mpi.bcast.cmd(copula <- npcopula(bws=bw.pdf,data=mydat,u=grid.dat),
caller.execute=TRUE)

Plot the copula density

persp(grid.seq,grid.seq,matrix(copula$copula,n.eval,n.eval),ticktype="detailed",xlab="u1",
ylab="u2",zlab="Copula Density")

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npdeneqtest Kernel Consistent Density Equality Test with Mixed Data Types

Description

npdeneqtest implements a consistent integrated squared difference test for equality of densities as
described in Li, Maasoumi, and Racine (2009).

Usage

npdeneqtest(x = NULL,
y = NULL,

npdeneqtest 105

bw.x = NULL,
bw.y = NULL,
boot.num = 399,
random.seed = 42,
...)

Arguments

x, y data frames for the two samples for which one wishes to test equality of den-
sities. The variables in each data frame must be the same (i.e. have identical
names).

bw.x, bw.y optional bandwidth objects for x,y

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

... additional arguments supplied to specify the bandwidth type, kernel types, and
so on. This is used if you do not pass in bandwidth objects and you do not desire
the default behaviours. To do this, you may specify any of bwscaling, bwtype,
ckertype, ckerorder, ukertype, okertype.

Details

npdeneqtest computes the integrated squared density difference between the estimated densi-
ties/probabilities of two samples having identical variables/datatypes. See Li, Maasoumi, and
Racine (2009) for details.

Value

npdeneqtest returns an object of type deneqtest with the following components

Tn the (standardized) statistic Tn

In the (unstandardized) statistic In

Tn.bootstrap contains the bootstrap replications of Tn

In.bootstrap contains the bootstrap replications of In

Tn.P the P-value of the Tn statistic

In.P the P-value of the In statistic

boot.num number of bootstrap replications

summary supports object of type deneqtest.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

It is crucial that both data frames have the same variable names.

106 npdeneqtest

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Li, Q. and E. Maasoumi and J.S. Racine (2009), “A Nonparametric Test for Equality of Distributions
with Mixed Categorical and Continuous Data,” Journal of Econometrics, 148, pp 186-200.

See Also

npdeptest,npsdeptest,npsymtest,npunitest

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

n <- 100

sample.A <- data.frame(x=rnorm(n))
sample.B <- data.frame(x=rnorm(n))

mpi.bcast.Robj2slave(sample.A)
mpi.bcast.Robj2slave(sample.B)

mpi.bcast.cmd(output <- npdeneqtest(sample.A,sample.B,boot.num=29),
caller.execute=TRUE)

output

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.

npdeptest 107

npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npdeptest Kernel Consistent Pairwise Nonlinear Dependence Test for Univari-
ate Processes

Description

npdeptest implements the consistent metric entropy test of pairwise independence as described in
Maasoumi and Racine (2002).

Usage

npdeptest(data.x = NULL,
data.y = NULL,
method = c("integration","summation"),
bootstrap = TRUE,
boot.num = 399,
random.seed = 42)

Arguments

data.x, data.y two univariate vectors containing two variables that are of type numeric.

method a character string used to specify whether to compute the integral version or the
summation version of the statistic. Can be set as integration or summation
(see below for details). Defaults to integration.

bootstrap a logical value which specifies whether to conduct the bootstrap test or not. If
set to FALSE, only the statistic will be computed. Defaults to TRUE.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

108 npdeptest

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

Details

npsdeptest computes the nonparametric metric entropy (normalized Hellinger of Granger, Maa-
soumi and Racine (2004)) for testing pairwise nonlinear dependence between the densities of two
data series. See Maasoumi and Racine (2002) for details. Default bandwidths are of the Kullback-
Leibler variety obtained via likelihood cross-validation. The null distribution is obtained via boot-
strap resampling under the null of pairwise independence.

npdeptest computes the distance between the joint distribution and the product of marginals (i.e.
the joint distribution under the null), D[f(y, ŷ), f(y)× f(ŷ)]. Examples include, (a) a measure/test
of “fit”, for in-sample values of a variable y and its fitted values, ŷ, and (b) a measure of “pre-
dictability” for a variable y and its predicted values ŷ (from a user implemented model).

The summation version of this statistic will be numerically unstable when data.x and data.y
lack common support or are sparse (the summation version involves division of densities while
the integration version involves differences). Warning messages are produced should this occur
(‘integration recommended’) and should be heeded.

Value

npdeptest returns an object of type deptest with the following components

Srho the statistic Srho
Srho.bootstrap.vec

contains the bootstrap replications of Srho

P the P-value of the Srho statistic

bootstrap a logical value indicating whether bootstrapping was performed

boot.num number of bootstrap replications

bw.data.x the numeric bandwidth for data.x marginal density

bw.data.y the numeric bandwidth for data.y marginal density

bw.joint the numeric matrix of bandwidths for data and lagged data joint density at lag
num.lag

summary supports object of type deptest.

Usage Issues

The integration version of the statistic uses multidimensional numerical methods from the cu-
bature package. See adaptIntegrate for details. The integration version of the statistic will be
substantially slower than the summation version, however, it will likely be both more accurate and
powerful.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

npdeptest 109

References

Granger, C.W. and E. Maasoumi and J.S. Racine (2004), “A dependence metric for possibly non-
linear processes”, Journal of Time Series Analysis, 25, 649-669.

Maasoumi, E. and J.S. Racine (2002), “Entropy and Predictability of Stock Market Returns,” Jour-
nal of Econometrics, 107, 2, pp 291-312.

See Also

npdeneqtest,npsdeptest,npsymtest,npunitest

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

n <- 100

x <- rnorm(n)
y <- 1 + x + rnorm(n)
model <- lm(y~x)
y.fit <- fitted(model)

mpi.bcast.Robj2slave(y)
mpi.bcast.Robj2slave(y.fit)

mpi.bcast.cmd(output <- npdeptest(y,
y.fit,
boot.num=29,
method="summation"),

caller.execute=TRUE)

summary(output)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

110 npindex

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npindex Semiparametric Single Index Model

Description

npindex computes a semiparametric single index model for a dependent variable and p-variate
explanatory data using the model Y = G(Xβ) + ϵ, given a set of evaluation points, training points
(consisting of explanatory data and dependent data), and a npindexbw bandwidth specification.
Note that for this semiparametric estimator, the bandwidth object contains parameters for the single
index model and the (scalar) bandwidth for the index function.

Usage

npindex(bws, ...)

S3 method for class 'formula'
npindex(bws,

data = NULL,
newdata = NULL,
y.eval = FALSE,
...)

S3 method for class 'call'
npindex(bws,

...)

Default S3 method:

npindex 111

npindex(bws,
txdat,
tydat,
...)

S3 method for class 'sibandwidth'
npindex(bws,

txdat = stop("training data 'txdat' missing"),
tydat = stop("training data 'tydat' missing"),
exdat,
eydat,
gradients = FALSE,
residuals = FALSE,
errors = FALSE,
boot.num = 399,
...)

Arguments

bws a bandwidth specification. This can be set as a sibandwidth object returned
from an invocation of npindexbw, or as a vector of parameters (beta) with each
element i corresponding to the coefficient for column i in txdat where the first
element is normalized to 1, and a scalar bandwidth (h).

gradients a logical value indicating that you want gradients and the asymptotic covariance
matrix for beta computed and returned in the resulting singleindex object.
Defaults to FALSE.

residuals a logical value indicating that you want residuals computed and returned in the
resulting singleindex object. Defaults to FALSE.

errors a logical value indicating that you want (bootstrapped) standard errors for the
conditional mean, gradients (when gradients=TRUE is set), and average gra-
dients (when gradients=TRUE is set), computed and returned in the resulting
singleindex object. Defaults to FALSE.

boot.num an integer specifying the number of bootstrap replications to use when perform-
ing standard error calculations. Defaults to 399.

... additional arguments supplied to specify the parameters to the sibandwidth S3
method, which is called during estimation.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npindexbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

y.eval If newdata contains dependent data and y.eval = TRUE, npRmpi will compute
goodness of fit statistics on these data and return them. Defaults to FALSE.

txdat a p-variate data frame of explanatory data (training data) used to calculate the re-
gression estimators. Defaults to the training data used to compute the bandwidth
object.

112 npindex

tydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of txdat. Defaults to the training
data used to compute the bandwidth object.

exdat a p-variate data frame of points on which the regression will be estimated (eval-
uation data). By default, evaluation takes place on the data provided by txdat.

eydat a one (1) dimensional numeric or integer vector of the true values of the depen-
dent variable. Optional, and used only to calculate the true errors.

Details

A matrix of gradients along with average derivatives are computed and returned if gradients=TRUE
is used.

Value

npindex returns a npsingleindex object. The generic functions fitted, residuals, coef, vcov,
se, predict, and gradients, extract (or generate) estimated values, residuals, coefficients, variance-
covariance matrix, bootstrapped standard errors on estimates, predictions, and gradients, respec-
tively, from the returned object. Furthermore, the functions summary and plot support objects of
this type. The returned object has the following components:

eval evaluation points
mean estimates of the regression function (conditional mean) at the evaluation points
beta the model coefficients
betavcov the asymptotic covariance matrix for the model coefficients
merr standard errors of the regression function estimates
grad estimates of the gradients at each evaluation point
gerr standard errors of the gradient estimates
mean.grad mean (average) gradient over the evaluation points
mean.gerr bootstrapped standard error of the mean gradient estimates
R2 if method="ichimura", coefficient of determination (Doksum and Samarov (1995))
MSE if method="ichimura", mean squared error
MAE if method="ichimura", mean absolute error
MAPE if method="ichimura", mean absolute percentage error
CORR if method="ichimura", absolute value of Pearson’s correlation coefficient
SIGN if method="ichimura", fraction of observations where fitted and observed val-

ues agree in sign
confusion.matrix

if method="kleinspady", the confusion matrix or NA if outcomes are not avail-
able

CCR.overall if method="kleinspady", the overall correct classification ratio, or NA if out-
comes are not available

CCR.byoutcome if method="kleinspady", a numeric vector containing the correct classification
ratio by outcome, or NA if outcomes are not available

fit.mcfadden if method="kleinspady", the McFadden-Puig-Kerschner performance measure
or NA if outcomes are not available

npindex 113

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

vcov requires that gradients=TRUE be set.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Doksum, K. and A. Samarov (1995), “Nonparametric estimation of global functionals and a mea-
sure of the explanatory power of covariates regression,” The Annals of Statistics, 23 1443-1473.

Ichimura, H., (1993), “Semiparametric least squares (SLS) and weighted SLS estimation of single-
index models,” Journal of Econometrics, 58, 71-120.

Klein, R. W. and R. H. Spady (1993), “An efficient semiparametric estimator for binary response
models,” Econometrica, 61, 387-421.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

McFadden, D. and C. Puig and D. Kerschner (1977), “Determinants of the long-run demand for
electricity,” Proceedings of the American Statistical Association (Business and Economics Section),
109-117.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

114 npindexbw

n <- 500

x1 <- runif(n, min=-1, max=1)
x2 <- runif(n, min=-1, max=1)
y <- x1 - x2 + rnorm(n)
mydat <- data.frame(x1,x2,y)
rm(y,x1,x2)

mpi.bcast.Robj2slave(mydat)

Ichimura, continuous y

mpi.bcast.cmd(bw <- npindexbw(formula=y~x1+x2,
data=mydat),

caller.execute=TRUE)

summary(bw)

mpi.bcast.cmd(model <- npindex(bws=bw,
gradients=TRUE),

caller.execute=TRUE)

summary(model)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npindexbw Semiparametric Single Index Model Parameter and Bandwidth Selec-
tion

npindexbw 115

Description

npindexbw computes a npindexbw bandwidth specification using the model Y = G(Xβ) + ϵ. For
continuous Y , the approach is that of Hardle, Hall and Ichimura (1993) which jointly minimizes
a least-squares cross-validation function with respect to the parameters and bandwidth. For binary
Y , a likelihood-based cross-validation approach is employed which jointly maximizes a likelihood
cross-validation function with respect to the parameters and bandwidth. The bandwidth object
contains parameters for the single index model and the (scalar) bandwidth for the index function.

Usage

npindexbw(...)

S3 method for class 'formula'
npindexbw(formula, data, subset, na.action, call, ...)

S3 method for class 'NULL'
npindexbw(xdat = stop("training data xdat missing"),

ydat = stop("training data ydat missing"),
bws,
...)

Default S3 method:
npindexbw(xdat = stop("training data xdat missing"),

ydat = stop("training data ydat missing"),
bws,
bandwidth.compute = TRUE,
nmulti,
random.seed,
optim.method,
optim.maxattempts,
optim.reltol,
optim.abstol,
optim.maxit,
only.optimize.beta,
...)

S3 method for class 'sibandwidth'
npindexbw(xdat = stop("training data xdat missing"),

ydat = stop("training data ydat missing"),
bws,
bandwidth.compute = TRUE,
nmulti,
random.seed = 42,
optim.method = c("Nelder-Mead", "BFGS", "CG"),
optim.maxattempts = 10,
optim.reltol = sqrt(.Machine$double.eps),
optim.abstol = .Machine$double.eps,
optim.maxit = 500,

116 npindexbw

only.optimize.beta = FALSE,
...)

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

xdat a p-variate data frame of explanatory data (training data) used to calculate the
regression estimators.

ydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of xdat.

bws a bandwidth specification. This can be set as a singleindexbandwidth object
returned from an invocation of npindexbw, or as a vector of parameters (beta)
with each element i corresponding to the coefficient for column i in xdat where
the first element is normalized to 1, and a scalar bandwidth (h). If specified
as a vector, then additional arguments will need to be supplied as necessary to
specify the bandwidth type, kernel types, and so on.

method the single index model method, one of either “ichimura” (Ichimura (1993)) or
“kleinspady” (Klein and Spady (1993)). Defaults to ichimura.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points. Defaults to min(5,ncol(xdat)).

random.seed an integer used to seed R’s random number generator. This ensures replicability
of the numerical search. Defaults to 42.

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a bandwidth object will be returned with bandwidths set
to those specified in bws. Defaults to TRUE.

optim.method method used by optim for minimization of the objective function. See ?optim
for references. Defaults to "Nelder-Mead".
the default method is an implementation of that of Nelder and Mead (1965),
that uses only function values and is robust but relatively slow. It will work
reasonably well for non-differentiable functions.

npindexbw 117

method "BFGS" is a quasi-Newton method (also known as a variable metric algo-
rithm), specifically that published simultaneously in 1970 by Broyden, Fletcher,
Goldfarb and Shanno. This uses function values and gradients to build up a
picture of the surface to be optimized.
method "CG" is a conjugate gradients method based on that by Fletcher and
Reeves (1964) (but with the option of Polak-Ribiere or Beale-Sorenson up-
dates). Conjugate gradient methods will generally be more fragile than the
BFGS method, but as they do not store a matrix they may be successful in much
larger optimization problems.

optim.maxattempts

maximum number of attempts taken trying to achieve successful convergence in
optim. Defaults to 100.

optim.abstol the absolute convergence tolerance used by optim. Only useful for non-negative
functions, as a tolerance for reaching zero. Defaults to .Machine$double.eps.

optim.reltol relative convergence tolerance used by optim. The algorithm stops if it is unable
to reduce the value by a factor of ’reltol * (abs(val) + reltol)’ at a step. Defaults
to sqrt(.Machine$double.eps), typically about 1e-8.

optim.maxit maximum number of iterations used by optim. Defaults to 500.
only.optimize.beta

signals the routine to only minimize the objective function with respect to beta

... additional arguments supplied to specify the parameters to the sibandwidth S3
method, which is called during the numerical search. In particular, bwtype may
be supplied here to request "fixed", "generalized_nn", or "adaptive_nn"
bandwidth types.

Details

We implement Ichimura’s (1993) method via joint estimation of the bandwidth and coefficient vec-
tor using leave-one-out nonlinear least squares. We implement Klein and Spady’s (1993) method
maximizing the leave-one-out log likelihood function jointly with respect to the bandwidth and co-
efficient vector. Note that Klein and Spady’s (1993) method is for binary outcomes only, while
Ichimura’s (1993) method can be applied for any outcome data type (i.e., continuous or discrete).

We impose the identification condition that the first element of the coefficient vector beta is equal to
one, while identification also requires that the explanatory variables contain at least one continuous
variable.

npindexbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the xdat and ydat parameters. Use of these two interfaces is mutually
exclusive.

Note that, unlike most other bandwidth methods in the npRmpi package, this implementation uses
the R optim nonlinear minimization routines and npksum. We have implemented multistarting and
strongly encourage its use in practice. For exploratory purposes, you may wish to override the
default search tolerances, say, setting optim.reltol=.1 and conduct multistarting (the default is to
restart min(5, ncol(xdat)) times) as is done for a number of examples.

Data for which bandwidths are to be estimated may be specified symbolically. A typical descrip-
tion has the form dependent data ~ explanatory data, where dependent data is a univariate

118 npindexbw

response, and explanatory data is a series of variables specified by name, separated by the sepa-
ration character ’+’. For example y1 ~ x1 + x2 specifies that the bandwidth object for the regression
of response y1 and semiparametric regressors x1 and x2 are to be estimated. See below for further
examples.

Value

npindexbw returns a sibandwidth object, with the following components:

bw bandwidth(s), scale factor(s) or nearest neighbours for the data, xdat

beta coefficients of the model

fval objective function value at minimum

If bwtype is set to fixed, an object containing a scalar bandwidth for the function G(Xβ) and an
estimate of the parameter vector β is returned.

If bwtype is set to generalized_nn or adaptive_nn, then instead the scalar kth nearest neighbor
is returned.

The functions coef, predict, summary, and plot support objects of this class.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due
to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting optim.reltol=.1
and conduct multistarting (the default is to restart min(5, ncol(xdat)) times). Once the procedure
terminates, you can restart search with default tolerances using those bandwidths obtained from
the less rigorous search (i.e., set bws=bw on subsequent calls to this routine where bw is the initial
bandwidth object). A version of this package using the Rmpi wrapper is under development that
allows one to deploy this software in a clustered computing environment to facilitate computation
involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

npindexbw 119

Hardle, W. and P. Hall and H. Ichimura (1993), “Optimal Smoothing in Single-Index Models,” The
Annals of Statistics, 21, 157-178.

Ichimura, H., (1993), “Semiparametric least squares (SLS) and weighted SLS estimation of single-
index models,” Journal of Econometrics, 58, 71-120.

Klein, R. W. and R. H. Spady (1993), “An efficient semiparametric estimator for binary response
models,” Econometrica, 61, 387-421.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

n <- 500

x1 <- runif(n, min=-1, max=1)
x2 <- runif(n, min=-1, max=1)
y <- x1 - x2 + rnorm(n)
mydat <- data.frame(x1,x2,y)
rm(y,x1,x2)

mpi.bcast.Robj2slave(mydat)

Ichimura, continuous y

mpi.bcast.cmd(bw <- npindexbw(formula=y~x1+x2,
data=mydat),

caller.execute=TRUE)

summary(bw)

For the interactive run only we close the slaves perhaps to proceed

120 npksum

with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npksum Kernel Sums with Mixed Data Types

Description

npksum computes kernel sums on evaluation data, given a set of training data, data to be weighted
(optional), and a bandwidth specification (any bandwidth object).

Usage

npksum(...)

S3 method for class 'formula'
npksum(formula, data, newdata, subset, na.action, ...)

Default S3 method:
npksum(bws,

txdat = stop("training data 'txdat' missing"),
tydat = NULL,
exdat = NULL,
weights = NULL,
leave.one.out = FALSE,
kernel.pow = 1.0,
bandwidth.divide = FALSE,
operator = names(ALL_OPERATORS),
permutation.operator = names(PERMUTATION_OPERATORS),

npksum 121

compute.score = FALSE,
compute.ocg = FALSE,
return.kernel.weights = FALSE,
...)

S3 method for class 'numeric'
npksum(bws,

txdat = stop("training data 'txdat' missing"),
tydat,
exdat,
weights,
leave.one.out,
kernel.pow,
bandwidth.divide,
operator,
permutation.operator,
compute.score,
compute.ocg,
return.kernel.weights,
...)

Arguments

formula a symbolic description of variables on which the sum is to be performed. The
details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

newdata An optional data frame in which to look for evaluation data. If omitted, data is
used.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

... additional arguments supplied to specify the parameters to the default S3 method,
which is called during estimation.

txdat a p-variate data frame of sample realizations (training data) used to compute the
sum.

tydat a numeric vector of data to be weighted. The ith kernel weight is applied to the
ith element. Defaults to 1.

exdat a p-variate data frame of sum evaluation points (if omitted, defaults to the train-
ing data itself).

bws a bandwidth specification. This can be set as any suitable bandwidth object
returned from a bandwidth-generating function, or a numeric vector.

122 npksum

weights a n by q matrix of weights which can optionally be applied to tydat in the sum.
See details.

leave.one.out a logical value to specify whether or not to compute the leave one out sums.
Will not work if exdat is specified. Defaults to FALSE.

kernel.pow an integer specifying the power to which the kernels will be raised in the sum.
Defaults to 1.

bandwidth.divide

a logical specifying whether or not to divide continuous kernel weights by their
bandwidths. Use this with nearest-neighbor methods. Defaults to FALSE.

operator a string specifying whether the normal, convolution, derivative, or integral
kernels are to be used. Operators scale results by factors of h or 1/h where ap-
propriate. Defaults to normal and applies to all elements in a multivariate object.
See details.

permutation.operator

a string which can have a value of none, normal, derivative, or integral.
If set to something other than none (the default), then a separate result will
be returned for each term in the product kernel, with the operator applied to
that term. Permutation operators scale results by factors of h or 1/h where
appropriate. This is useful for computing gradients, for example.

compute.score a logical specifying whether or not to return the score (the ‘grad h’ terms) for
each dimension in addition to the kernel sum. Cannot be TRUE if a permutation
operator other than "none" is selected.

compute.ocg a logical specifying whether or not to return a separate result for each unordered
and ordered dimension, where the product kernel term for that dimension is
evaluated at an appropriate reference category. This is used primarily in npRmpi
to compute ordered and unordered categorical gradients. See details.

return.kernel.weights

a logical specifying whether or not to return the matrix of generalized product
kernel weights. Defaults to FALSE. See details.

Details

npksum exists so that you can create your own kernel objects with or without a variable to be
weighted (default Y = 1). With the options available, you could create new nonparametric tests or
even new kernel estimators. The convolution kernel option would allow you to create, say, the least
squares cross-validation function for kernel density estimation.

npksum uses highly-optimized C code that strives to minimize its ‘memory footprint’, while there
is low overhead involved when using repeated calls to this function (see, by way of illustration, the
example below that conducts leave-one-out cross-validation for a local constant regression estimator
via calls to the R function nlm, and compares this to the npregbw function).

npksum implements a variety of methods for computing multivariate kernel sums (p-variate) defined
over a set of possibly continuous and/or discrete (unordered, ordered) data. The approach is based
on Li and Racine (2003) who employ ‘generalized product kernels’ that admit a mix of continuous
and discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change

npksum 123

with each sample realization in the set, xi, when estimating the kernel sum at the point x. Gener-
alized nearest-neighbor bandwidths change with the point at which the sum is computed, x. Fixed
bandwidths are constant over the support of x.

npksum computes
∑n

j=1 W
′
jYjK(Xj), where Wj represents a row vector extracted from W . That

is, it computes the kernel weighted sum of the outer product of the rows of W and Y . In the
examples, the uses of such sums are illustrated.

npksum may be invoked either with a formula-like symbolic description of variables on which the
sum is to be performed or through a simpler interface whereby data is passed directly to the function
via the txdat and tydat parameters. Use of these two interfaces is mutually exclusive.

Data contained in the data frame txdat (and also exdat) may be a mix of continuous (default), un-
ordered discrete (to be specified in the data frame txdat using the factor command), and ordered
discrete (to be specified in the data frame txdat using the ordered command). Data can be entered
in an arbitrary order and data types will be detected automatically by the routine (see npRmpi for
details).

Data for which bandwidths are to be estimated may be specified symbolically. A typical descrip-
tion has the form dependent data ~ explanatory data, where dependent data and explanatory
data are both series of variables specified by name, separated by the separation character ’+’. For
example, y1 ~ x1 + x2 specifies that y1 is to be kernel-weighted by x1 and x2 throughout the sum.
See below for further examples.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel (see
npRmpi for details).

The option operator= can be used to ‘mix and match’ operator strings to create a ‘hybrid’ kernel
provided they match the dimension of the data. For example, for a two-dimensional data frame of
numeric datatypes, operator=c("normal","derivative") will use the normal (i.e. PDF) kernel
for variable one and the derivative of the PDF kernel for variable two. Please note that applying
operators will scale the results by factors of h or 1/h where appropriate.

The option permutation.operator= can be used to ‘mix and match’ operator strings to create
a ‘hybrid’ kernel, in addition to the kernel sum with no operators applied, one for each continu-
ous dimension in the data. For example, for a two-dimensional data frame of numeric datatypes,
permutation.operator=c("derivative") will return the usual kernel sum as if operator =
c("normal","normal") in the ksum member, and in the p.ksum member, it will return kernel sums
for operator = c("derivative","normal"), and operator = c("normal","derivative"). This
makes the computation of gradients much easier.

The option compute.score= can be used to compute the gradients with respect to h in addition to
the normal kernel sum. Like permutations, the additional results are returned in the p.ksum. This
option does not work in conjunction with permutation.operator.

The option compute.ocg= works much like permutation.operator, but for discrete variables.
The kernel is evaluated at a reference category in each dimension: for ordered data, the next lowest
category is selected, except in the case of the lowest category, where the second lowest category is
selected; for unordered data, the first category is selected. These additional data are returned in the
p.ksum member. This option can be set simultaneously with permutation.operator.

The option return.kernel.weights=TRUE returns a matrix of dimension ‘number of training ob-
servations’ by ‘number of evaluation observations’ and contains only the generalized product kernel

124 npksum

weights ignoring all other objects and options that may be provided to npksum (e.g. bandwidth.divide=TRUE
will be ignored, etc.). Summing the columns of the weight matrix and dividing by ‘number of train-
ing observations’ times the product of the bandwidths (i.e. colMeans(foo$kw)/prod(h)) would
produce the kernel estimator of a (multivariate) density (operator="normal") or multivariate cu-
mulative distribution (operator="integral").

Value

npksum returns a npkernelsum object with the following components:

eval the evaluation points

ksum the sum at the evaluation points

kw the kernel weights (when return.kernel.weights=TRUE is specified)

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “ Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data,” Journal of Multivariate Analysis, 86, 266-292.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi

npplot 125

vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

n <- 100000
x <- rnorm(n)
x.eval <- seq(-4, 4, length=50)

mpi.bcast.Robj2slave(x)
mpi.bcast.Robj2slave(x.eval)

mpi.bcast.cmd(bw <- npudensbw(dat=x, bwmethod="normal-reference"),
caller.execute=TRUE)

mpi.bcast.cmd(den.ksum <- npksum(txdat=x, exdat=x.eval, bws=bw$bw,
bandwidth.divide=TRUE)$ksum/n,

caller.execute=TRUE)

den.ksum

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npplot General Purpose Plotting of Nonparametric Objects

126 npplot

Description

npplot is invoked by plot and generates plots of nonparametric statistical objects such as regres-
sions, quantile regressions, partially linear regressions, single-index models, densities and distribu-
tions, given training data and a bandwidth object.

Usage

npplot(bws = stop("'bws' has not been set"), ..., random.seed = 42)

S3 method for class 'bandwidth'
npplot(bws,

xdat,
data = NULL,
xq = 0.5,
xtrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),

npplot 127

plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed)

S3 method for class 'conbandwidth'
npplot(bws,

xdat,
ydat,
data = NULL,
xq = 0.5,
yq = 0.5,
xtrim = 0.0,
ytrim = 0.0,
neval = 50,
gradients = FALSE,
common.scale = TRUE,
perspective = TRUE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
tau = 0.5,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),

128 npplot

plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed)

S3 method for class 'plbandwidth'
npplot(bws,

xdat,
ydat,
zdat,
data = NULL,
xq = 0.5,
zq = 0.5,
xtrim = 0.0,
ztrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,

npplot 129

plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed)

S3 method for class 'rbandwidth'
npplot(bws,

xdat,
ydat,
data = NULL,
xq = 0.5,
xtrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.num = 399,
plot.errors.boot.method = c("inid", "fixed", "geom"),

130 npplot

plot.errors.boot.blocklen = NULL,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed)

S3 method for class 'scbandwidth'
npplot(bws,

xdat,
ydat,
zdat = NULL,
data = NULL,
xq = 0.5,
zq = 0.5,
xtrim = 0.0,
ztrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),

npplot 131

plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.num = 399,
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed)

S3 method for class 'sibandwidth'
npplot(bws,

xdat,
ydat,
data = NULL,
common.scale = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
lty = NULL,
lwd = NULL,
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.num = 399,
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = NULL,

132 npplot

plot.par.mfrow = TRUE,
...,
random.seed)

Arguments

bws a bandwidth specification. This should be a bandwidth object returned from
an invocation of npudensbw, npcdensbw, npregbw, npplregbw, npindexbw, or
npscoefbw.

... additional arguments supplied to control various aspects of plotting, depending
on the type of object to be plotted, detailed below.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment where
the bandwidth object was generated.

xdat a p-variate data frame of sample realizations (training data).

ydat a q-variate data frame of sample realizations (training data). In a regression or
conditional density context, this is the dependent data.

zdat a p-variate data frame of sample realizations (training data).

xq a numeric p-vector of quantiles. Each element i of xq corresponds to the ith
column of txdat. Defaults to the median (0.5). See details.

yq a numeric q-vector of quantiles. Each element i of yq corresponds to the ith
column of tydat. Only to be specified in a conditional density context. Defaults
to the median (0.5). See details.

zq a numeric q-vector of quantiles. Each element i of zq corresponds to the ith col-
umn of tzdat. Only to be specified in a semiparametric model context. Defaults
to the median (0.5). See details.

xtrim a numeric p-vector of quantiles. Each element i of xtrim corresponds to the ith
column of txdat. Defaults to 0.0. See details.

ytrim a numeric q-vector of quantiles. Each element i of ytrim corresponds to the ith
column of tydat. Defaults to 0.0. See details.

ztrim a numeric q-vector of quantiles. Each element i of ztrim corresponds to the ith
column of tzdat. Defaults to 0.0. See details.

neval an integer specifying the number of evaluation points. Only applies to con-
tinuous variables however, as discrete variables will be evaluated once at each
category. Defaults to 50.

common.scale a logical value specifying whether or not all graphs are to be plotted on a com-
mon scale. Defaults to TRUE.

perspective a logical value specifying whether a perspective plot should be displayed (if
possible). Defaults to TRUE.

gradients a logical value specifying whether gradients should be plotted (if possible). De-
faults to FALSE.

main optional title, see title. Defaults to NULL.

npplot 133

sub optional subtitle, see sub. Defaults to NULL.

type optional character indicating the type of plotting; actually any of the types as in
plot.default. Defaults to NULL.

border optional character indicating the border of plotting; actually any of the borders
as in plot.default. Defaults to NULL.

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex.

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex.

cex.main The magnification to be used for main titles relative to the current setting of cex.

cex.sub The magnification to be used for sub-titles relative to the current setting of cex.

col optional character indicating the color of plotting; actually any of the colours as
in plot.default. Defaults to NULL.

ylab optional character indicating the y axis label of plotting; actually any of the ylabs
as in plot.default. Defaults to NULL.

xlab optional character indicating the x axis label of plotting; actually any of the xlabs
as in plot.default. Defaults to NULL.

zlab optional character indicating the z axis label of plotting; actually any of the zlabs
as in plot.default. Defaults to NULL.

ylim optional a two-element numeric vector of the minimum and maximum y plotting
limits. Defaults to NULL.

xlim a two-element numeric vector of the minimum and maximum x plotting limits.
Defaults to NULL.

zlim a two-element numeric vector of the minimum and maximum z plotting limits.
Defaults to NULL.

lty a numeric value indicating the line type of plotting; actually any of the ltys as in
plot.default. Defaults to 1.

lwd a numeric value indicating the width of the line of plotting; actually any of the
lwds as in plot.default. Defaults to 1.

theta a numeric value specifying the starting azimuthal angle of the perspective plot.
Defaults to 0.0.

phi a numeric value specifying the starting zenith angle of the perspective plot. De-
faults to 10.0.

tau a numeric value specifying the τ th quantile is desired when plotting quantile
regressions. Defaults to 0.5.

view a character string used to specify the viewing mode of the perspective plot. Can
be set as rotate or fixed. Defaults to rotate.

plot.behavior a character string used to specify the net behavior of npplot. Can be set as plot,
plot-data or data. Defaults to plot. See value.

plot.errors.method

a character string used to specify the method to calculate errors. Can be set as
none, bootstrap, or asymptotic. Defaults to none.

134 npplot

plot.errors.boot.method

a character string used to specify the bootstrap method. Can be set as inid,
fixed, or geom (see below for details). Defaults to inid.

plot.errors.boot.blocklen

an integer used to specify the block length b for the fixed or geom bootstrap
(see below for details).

plot.errors.boot.num

an integer used to specify the number of bootstrap samples to use for the calcu-
lation of errors. Defaults to 399.

plot.errors.center

a character string used to specify where to center the errors on the plot(s). Can
be set as estimate or bias-corrected. Defaults to estimate.

plot.errors.type

a character string used to specify the type of error to calculate. Can be set as
standard or quantiles. Defaults to standard.

plot.errors.quantiles

a numeric vector specifying the quantiles of the statistic to calculate for the
purpose of error plotting. Defaults to c(0.025,0.975).

plot.errors.style

a character string used to specify the style of error plotting. Can be set as band
or bar. Defaults to band. Bands are not drawn for discrete variables.

plot.errors.bar

a character string used to specify the error bar shape. Can be set as | (vertical
bar character) for a dashed vertical bar, or as I for an ‘I’ shaped error bar with
horizontal bounding bars. Defaults to |.

plot.errors.bar.num

an integer specifying the number of error bars to plot. Defaults to min(neval,25).

plot.bxp a logical value specifying whether boxplots should be produced when appropri-
ate. Defaults to FALSE.

plot.bxp.out a logical value specifying whether outliers should be plotted on boxplots. De-
faults to TRUE.

plot.par.mfrow a logical value specifying whether par(mfrow=c(,)) should be called before
plotting. Defaults to TRUE.

random.seed an integer used to seed R’s random number generator. This ensures replicability
of the bootstrapped errors. Defaults to 42.

Details

npplot is a general purpose plotting routine for visually exploring objects generated by the npRmpi
library, such as regressions, quantile regressions, partially linear regressions, single-index models,
densities and distributions. There is no need to call npplot directly as it is automatically invoked
when plot is used with an object generated by the npRmpi package.

Visualizing one and two dimensional datasets is a straightforward process. The default behavior
of npplot is to generate a standard 2D plot to visualize univariate data, and a perspective plot for
bivariate data. When visualizing higher dimensional data, npplot resorts to plotting a series of 1D
slices of the data. For a slice along dimension i, all other variables at indices j ̸= i are held constant
at the quantiles specified in the jth element of xq. The default is the median.

npplot 135

The slice itself is evaluated on a uniformly spaced sequence of neval points. The interval of evalu-
ation is determined by the training data. The default behavior is to evaluate from min(txdat[,i])
to max(txdat[,i]). The xtrim variable allows for control over this behavior. When xtrim is set,
data is evaluated from the xtrim[i]th quantile of txdat[,i] to the 1.0-xtrim[i]th quantile of
txdat[,i].

Furthermore, xtrim can be set to a negative value in which case it will expand the limits of the
evaluation interval beyond the support of the training data, by measuring the distance between
min(txdat[,i]) and the xtrim[i]th quantile of txdat[,i], and extending the support by that
distance on the lower limit of the interval. npplot uses an analogous procedure to extend the upper
limit of the interval.

Bootstrap resampling is conducted pairwise on (y,X,Z) (i.e., by resampling from rows of the
(y,X) data or (y,X,Z) data where appropriate). inid admits general heteroskedasticity of un-
known form, though it does not allow for dependence. fixed conducts Kunsch’s (1988) block
bootstrap for dependent data, while geom conducts Politis and Romano’s (1994) stationary boot-
strap.

For consistency of the block and stationary bootstrap, the (mean) block length b should grow with
the sample size n at an appropriate rate. If b is not given, then a default growth rate of const×n1/3

is used. This rate is “optimal” under certain conditions (see Politis and Romano (1994) for more
details). However, in general the growth rate depends on the specific properties of the DGP. A
default value for const (3.15) has been determined by a Monte Carlo simulation using a Gaussian
AR(1) process (AR(1)-parameter of 0.5, 500 observations). const has been chosen such that the
mean square error for the bootstrap estimate of the variance of the empirical mean is minimized.

Value

Setting plot.behavior will instruct npplot what data to return. Option summary:
plot: instruct npplot to just plot the data and return NULL
plot-data: instruct npplot to plot the data and return the data used to generate the plots. The data
will be a list of objects of the appropriate type, with one object per plot. For example, invoking
npplot on 3D density data will have it return a list of three npdensity objects. If biases were
calculated, they are stored in a component named bias
data: instruct npplot to generate data only and no plots

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

136 npplot

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Kunsch, H.R. (1989), “The jackknife and the bootstrap for general stationary observations,” The
Annals of Statistics, 17, 1217-1241.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Politis, D.N. and J.P. Romano (1994), “The stationary bootstrap,” Journal of the American Statistical
Association, 89, 1303-1313.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

x <- rnorm(100)
mpi.bcast.Robj2slave(x)
mpi.bcast.cmd(fhat <- npudens(~x),

caller.execute=TRUE)

mpi.bcast.cmd(plot(fhat),
caller.execute=TRUE)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.

npplreg 137

##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npplreg Partially Linear Kernel Regression with Mixed Data Types

Description

npplreg computes a partially linear kernel regression estimate of a one (1) dimensional dependent
variable on p + q-variate explanatory data, using the model Y = Xβ + Θ(Z) + ϵ given a set
of estimation points, training points (consisting of explanatory data and dependent data), and a
bandwidth specification, which can be a rbandwidth object, or a bandwidth vector, bandwidth type
and kernel type.

Usage

npplreg(bws, ...)

S3 method for class 'formula'
npplreg(bws, data = NULL, newdata = NULL, y.eval =
FALSE, ...)

S3 method for class 'call'
npplreg(bws, ...)

S3 method for class 'plbandwidth'
npplreg(bws,

txdat = stop("training data txdat missing"),
tydat = stop("training data tydat missing"),
tzdat = stop("training data tzdat missing"),
exdat,
eydat,
ezdat,
residuals = FALSE,
...)

138 npplreg

Arguments

bws a bandwidth specification. This can be set as a plbandwidth object returned
from an invocation of npplregbw, or as a matrix of bandwidths, where each row
is a set of bandwidths for Z, with a column for each variable Zi. In the first
row are the bandwidths for the regression of Y on Z, the following rows contain
the bandwidths for the regressions of the columns of X on Z. If specified as a
matrix additional arguments will need to be supplied as necessary to specify the
bandwidth type, kernel types, training data, and so on.

... additional arguments supplied to specify the regression type, bandwidth type,
kernel types, selection methods, and so on. To do this, you may specify any
of regtype, bwmethod, bwscaling, bwtype (one of fixed, generalized_nn,
adaptive_nn), ckertype, ckerorder, ukertype, okertype, as described in
npregbw.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npplregbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

y.eval If newdata contains dependent data and y.eval = TRUE, npRmpi will compute
goodness of fit statistics on these data and return them. Defaults to FALSE.

txdat a p-variate data frame of explanatory data (training data), corresponding to X
in the model equation, whose linear relationship with the dependent data Y is
posited. Defaults to the training data used to compute the bandwidth object.

tydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of txdat. Defaults to the training
data used to compute the bandwidth object.

tzdat a q-variate data frame of explanatory data (training data), corresponding to Z in
the model equation, whose relationship to the dependent variable is unspecified
(nonparametric). Defaults to the training data used to compute the bandwidth
object.

exdat a p-variate data frame of points on which the regression will be estimated (eval-
uation data). By default, evaluation takes place on the data provided by txdat.

eydat a one (1) dimensional numeric or integer vector of the true values of the depen-
dent variable. Optional, and used only to calculate the true errors. By default,
evaluation takes place on the data provided by tydat.

ezdat a q-variate data frame of points on which the regression will be estimated (eval-
uation data). By default, evaluation takes place on the data provided by tzdat.

residuals a logical value indicating that you want residuals computed and returned in the
resulting plregression object. Defaults to FALSE.

Details

npplreg uses a combination of OLS and nonparametric regression to estimate the parameter β in
the model Y = Xβ +Θ(Z) + ϵ.

npplreg 139

npplreg implements a variety of methods for nonparametric regression on multivariate (q-variate)
explanatory data defined over a set of possibly continuous and/or discrete (unordered, ordered)
data. The approach is based on Li and Racine (2003) who employ ‘generalized product kernels’
that admit a mix of continuous and discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

Data contained in the data frame tzdat may be a mix of continuous (default), unordered discrete
(to be specified in the data frame tzdat using factor), and ordered discrete (to be specified in the
data frame tzdat using ordered). Data can be entered in an arbitrary order and data types will be
detected automatically by the routine (see npRmpi for details).

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

Value

npplreg returns a plregression object. The generic accessor functions coef, fitted, residuals,
predict, and vcov, extract (or estimate) coefficients, estimated values, residuals, predictions, and
variance-covariance matrices, respectively, from the returned object. Furthermore, the functions
summary and plot support objects of this type. The returned object has the following components:

evalx evaluation points
evalz evaluation points
mean estimation of the regression, or conditional mean, at the evaluation points
xcoef coefficient(s) corresponding to the components βi in the model
xcoeferr standard errors of the coefficients
xcoefvcov covariance matrix of the coefficients
bw the bandwidths, stored as a plbandwidth object
resid if residuals = TRUE, in-sample or out-of-sample residuals where appropriate

(or possible)
R2 coefficient of determination (Doksum and Samarov (1995))
MSE mean squared error
MAE mean absolute error
MAPE mean absolute percentage error
CORR absolute value of Pearson’s correlation coefficient
SIGN fraction of observations where fitted and observed values agree in sign

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

140 npplreg

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Doksum, K. and A. Samarov (1995), “Nonparametric estimation of global functionals and a mea-
sure of the explanatory power of covariates in regression,” The Annals of Statistics, 23 1443-1473.

Gao, Q. and L. Liu and J.S. Racine (2015), “A partially linear kernel estimator for categorical data,”
Econometric Reviews, 34 (6-10), 958-977.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2004), “Cross-validated local linear nonparametric regression,” Statistica
Sinica, 14, 485-512.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Racine, J.S. and Q. Li (2004), “Nonparametric estimation of regression functions with both cate-
gorical and continuous data,” Journal of Econometrics, 119, 99-130.

Robinson, P.M. (1988), “Root-n-consistent semiparametric regression,” Econometrica, 56, 931-954.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

npregbw, npreg

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

set.seed(42)

n <- 250
x1 <- rnorm(n)

npplregbw 141

x2 <- rbinom(n, 1, .5)

z1 <- rbinom(n, 1, .5)
z2 <- rnorm(n)

y <- 1 + x1 + x2 + z1 + sin(z2) + rnorm(n)

x2 <- factor(x2)
z1 <- factor(z1)

mpi.bcast.Robj2slave(x1)
mpi.bcast.Robj2slave(x2)
mpi.bcast.Robj2slave(z1)
mpi.bcast.Robj2slave(z2)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(bw <- npplregbw(formula=y~x1+x2|z1+z2),
caller.execute=TRUE)

mpi.bcast.cmd(pl <- npplreg(bws=bw),
caller.execute=TRUE)

summary(pl)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npplregbw Partially Linear Kernel Regression Bandwidth Selection with Mixed
Data Types

142 npplregbw

Description

npplregbw computes a bandwidth object for a partially linear kernel regression estimate of a
one (1) dimensional dependent variable on p + q-variate explanatory data, using the model Y =
Xβ+Θ(Z)+ ϵ given a set of estimation points, training points (consisting of explanatory data and
dependent data), and a bandwidth specification, which can be a rbandwidth object, or a bandwidth
vector, bandwidth type and kernel type.

Usage

npplregbw(...)

S3 method for class 'formula'
npplregbw(formula, data, subset, na.action, call, ...)

S3 method for class 'NULL'
npplregbw(xdat = stop("invoked without data `xdat'"),

ydat = stop("invoked without data `ydat'"),
zdat = stop("invoked without data `zdat'"),
bws,
...)

Default S3 method:
npplregbw(xdat = stop("invoked without data `xdat'"),

ydat = stop("invoked without data `ydat'"),
zdat = stop("invoked without data `zdat'"),
bws,
...,
bandwidth.compute = TRUE,
nmulti,
remin,
itmax,
ftol,
tol,
small)

S3 method for class 'plbandwidth'
npplregbw(xdat = stop("invoked without data `xdat'"),

ydat = stop("invoked without data `ydat'"),
zdat = stop("invoked without data `zdat'"),
bws,
nmulti,
...)

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

npplregbw 143

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

xdat a p-variate data frame of explanatory data (training data), corresponding to X
in the model equation, whose linear relationship with the dependent data Y is
posited.

ydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of xdat.

zdat a q-variate data frame of explanatory data (training data), corresponding to Z in
the model equation, whose relationship to the dependent variable is unspecified
(nonparametric)

bws a bandwidth specification. This can be set as a plbandwidth object returned
from an invocation of npplregbw, or as a matrix of bandwidths, where each row
is a set of bandwidths for Z, with a column for each variable Zi. In the first row
are the bandwidths for the regression of Y on Z. The following rows contain
the bandwidths for the regressions of the columns of X on Z. If specified as a
matrix, additional arguments will need to be supplied as necessary to specify the
bandwidth type, kernel types, and so on.
If left unspecified, npplregbw will search for optimal bandwidths using npregbw
in the course of calculations. If specified, npplregbw will use the given band-
widths as the starting point for the numerical search for optimal bandwidths,
unless you specify bandwidth.compute = FALSE.

... additional arguments supplied to specify the regression type, bandwidth type,
kernel types, selection methods, and so on. To do this, you may specify any
of regtype, bwmethod, bwscaling, bwtype (one of fixed, generalized_nn,
adaptive_nn), ckertype, ckerorder, ukertype, okertype, as described in
npregbw.

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a plbandwidth object will be returned with bandwidths
set to those specified in bws. Defaults to TRUE.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points. Defaults to min(5,ncol(zdat)).

remin a logical value which when set as TRUE the search routine restarts from located
minima for a minor gain in accuracy. Defaults to TRUE

itmax integer number of iterations before failure in the numerical optimization routine.
Defaults to 10000

144 npplregbw

ftol tolerance on the value of the cross-validation function evaluated at located min-
ima. Defaults to 1.19e-07 (FLT_EPSILON)

tol tolerance on the position of located minima of the cross-validation function.
Defaults to 1.49e-08 (sqrt(DBL_EPSILON))

small a small number, at about the precision of the data type used. Defaults to 2.22e-16
(DBL_EPSILON)

Details

npplregbw implements a variety of methods for nonparametric regression on multivariate (q-variate)
explanatory data defined over a set of possibly continuous and/or discrete (unordered, ordered) data.
The approach is based on Li and Racine (2003), who employ ‘generalized product kernels’ that ad-
mit a mix of continuous and discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

npplregbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the xdat, ydat, and zdat parameters. Use of these two interfaces is
mutually exclusive.

Data contained in the data frame zdat may be a mix of continuous (default), unordered discrete
(to be specified in the data frame zdat using factor), and ordered discrete (to be specified in the
data frame zdat using ordered). Data can be entered in an arbitrary order and data types will be
detected automatically by the routine (see npRmpi for details).

Data for which bandwidths are to be estimated may be specified symbolically. A typical description
has the form dependent data ~ parametric explanatory data | nonparametric explanatory
data, where dependent data is a univariate response, and parametric explanatory data and
nonparametric explanatory data are both series of variables specified by name, separated by the
separation character ’+’. For example, y1 ~ x1 + x2 | z1 specifies that the bandwidth object for the
partially linear model with response y1, linear parametric regressors x1 and x2, and nonparametric
regressor z1 is to be estimated. See below for further examples.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

Value

if bwtype is set to fixed, an object containing bandwidths (or scale factors if bwscaling = TRUE)
is returned. If it is set to generalized_nn or adaptive_nn, then instead the kth nearest neighbors
are returned for the continuous variables while the discrete kernel bandwidths are returned for the
discrete variables. Bandwidths are stored in a list under the component name bw. Each element is
an rbandwidth object. The first element of the list corresponds to the regression of Y on Z. Each
subsequent element is the bandwidth object corresponding to the regression of the ith column of X
on Z. See examples for more information.

npplregbw 145

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due
to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting ftol=.01 and tol=.01
and conduct multistarting (the default is to restart min(5, ncol(zdat)) times) as is done for a number
of examples. Once the procedure terminates, you can restart search with default tolerances using
those bandwidths obtained from the less rigorous search (i.e., set bws=bw on subsequent calls to this
routine where bw is the initial bandwidth object). A version of this package using the Rmpi wrapper
is under development that allows one to deploy this software in a clustered computing environment
to facilitate computation involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Gao, Q. and L. Liu and J.S. Racine (2015), “A partially linear kernel estimator for categorical data,”
Econometric Reviews, 34 (6-10), 958-977.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2004), “Cross-validated local linear nonparametric regression,” Statistica
Sinica, 14, 485-512.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Racine, J.S. and Q. Li (2004), “Nonparametric estimation of regression functions with both cate-
gorical and continuous data,” Journal of Econometrics, 119, 99-130.

Robinson, P.M. (1988), “Root-n-consistent semiparametric regression,” Econometrica, 56, 931-954.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

npregbw, npreg

146 npplregbw

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

set.seed(42)

n <- 250
x1 <- rnorm(n)
x2 <- rbinom(n, 1, .5)

z1 <- rbinom(n, 1, .5)
z2 <- rnorm(n)

y <- 1 + x1 + x2 + z1 + sin(z2) + rnorm(n)

x2 <- factor(x2)
z1 <- factor(z1)

mpi.bcast.Robj2slave(x1)
mpi.bcast.Robj2slave(x2)
mpi.bcast.Robj2slave(z1)
mpi.bcast.Robj2slave(z2)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(bw <- npplregbw(formula=y~x1+x2|z1+z2),
caller.execute=TRUE)

summary(bw)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by

npqcmstest 147

setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npqcmstest Kernel Consistent Quantile Regression Model Specification Test with
Mixed Data Types

Description

npqcmstest implements a consistent test for correct specification of parametric quantile regression
models (linear or nonlinear) as described in Racine (2006) which extends the work of Zheng (1998).

Usage

npqcmstest(formula,
data = NULL,
subset,
xdat,
ydat,
model = stop(paste(sQuote("model")," has not been provided")),
tau = 0.5,
distribution = c("bootstrap", "asymptotic"),
bwydat = c("y","varepsilon"),
boot.method = c("iid","wild","wild-rademacher"),
boot.num = 399,
pivot = TRUE,
density.weighted = TRUE,
random.seed = 42,
...)

Arguments

formula a symbolic description of variables on which the test is to be performed. The
details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

148 npqcmstest

subset an optional vector specifying a subset of observations to be used.

model a model object obtained from a call to rq. Important: the call to rq must have
the argument model=TRUE or npqcmstest will not work.

xdat a p-variate data frame of explanatory data (training data) used to calculate the
quantile regression estimators.

ydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of xdat.

tau a numeric value specifying the τ th quantile is desired

distribution a character string used to specify the method of estimating the distribution of the
statistic to be calculated. bootstrap will conduct bootstrapping. asymptotic
will use the normal distribution. Defaults to bootstrap.

bwydat a character string used to specify the left hand side variable used in bandwidth
selection. "varepsilon" uses 1−τ,−τ for ydat while "y" will use y. Defaults
to "y".

boot.method a character string used to specify the bootstrap method. iid will generate inde-
pendent identically distributed draws. wild will use a wild bootstrap. wild-rademacher
will use a wild bootstrap with Rademacher variables. Defaults to iid.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

pivot a logical value specifying whether the statistic should be normalised such that it
approaches N(0, 1) in distribution. Defaults to TRUE.

density.weighted

a logical value specifying whether the statistic should be weighted by the density
of xdat. Defaults to TRUE.

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

... additional arguments supplied to control bandwidth selection on the residuals.
One can specify the bandwidth type, kernel types, and so on. To do this, you
may specify any of bwscaling, bwtype, ckertype, ckerorder, ukertype,
okertype, as described in npregbw. This is necessary if you specify bws as
a p-vector and not a bandwidth object, and you do not desire the default be-
haviours.

Value

npqcmstest returns an object of type cmstest with the following components. Components will
contain information related to Jn or In depending on the value of pivot:

Jn the statistic Jn

In the statistic In

Omega.hat as described in Racine, J.S. (2006).

q.* the various quantiles of the statistic Jn (or In if pivot=FALSE) are in components
q.90, q.95, q.99 (one-sided 1%, 5%, 10% critical values)

P the P-value of the statistic

npqcmstest 149

Jn.bootstrap if pivot=TRUE contains the bootstrap replications of Jn

In.bootstrap if pivot=FALSE contains the bootstrap replications of In

summary supports object of type cmstest.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Koenker, R.W. and G.W. Bassett (1978), “Regression quantiles,” Econometrica, 46, 33-50.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Murphy, K. M. and F. Welch (1990), “Empirical age-earnings profiles,” Journal of Labor Eco-
nomics, 8, 202-229.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Racine, J.S. (2006), “Consistent specification testing of heteroskedastic parametric regression quan-
tile models with mixed data,” manuscript.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Zheng, J. (1998), “A consistent nonparametric test of parametric regression models under condi-
tional quantile restrictions,” Econometric Theory, 14, 123-138.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.

150 npqreg

npRmpi.start(nslaves=1)

mpi.bcast.cmd(library("quantreg"),
caller.execute=TRUE)

mpi.bcast.cmd(data("cps71"),
caller.execute=TRUE)

mpi.bcast.cmd(attach(cps71),
caller.execute=TRUE)

mpi.bcast.cmd(model <- rq(logwage~age+I(age^2), tau=0.5, model=TRUE),
caller.execute=TRUE)

mpi.bcast.cmd(X <- data.frame(age),
caller.execute=TRUE)

Note - this may take a few minutes depending on the speed of your
computer...

mpi.bcast.cmd(output <- npqcmstest(model=model, xdat=X,
ydat=logwage, tau=0.5,
boot.num=29),

caller.execute=TRUE)

summary(output)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npqreg Kernel Quantile Regression with Mixed Data Types

npqreg 151

Description

npqreg computes a kernel quantile regression estimate of a one (1) dimensional dependent vari-
able on p-variate explanatory data, given a set of evaluation points, training points (consisting of
explanatory data and dependent data), and a bandwidth specification using the methods of Li and
Racine (2008) and Li, Lin and Racine (2013). A bandwidth specification can be a condbandwidth
object, or a bandwidth vector, bandwidth type and kernel type.

Usage

npqreg(bws, ...)

S3 method for class 'formula'
npqreg(bws, data = NULL, newdata = NULL, ...)

S3 method for class 'call'
npqreg(bws, ...)

S3 method for class 'condbandwidth'
npqreg(bws,

txdat = stop("training data 'txdat' missing"),
tydat = stop("training data 'tydat' missing"),
exdat,
tau = 0.5,
gradients = FALSE,
ftol = 1.490116e-07,
tol = 1.490116e-04,
small = 1.490116e-05,
itmax = 10000,
lbc.dir = 0.5,
dfc.dir = 3,
cfac.dir = 2.5*(3.0-sqrt(5)),
initc.dir = 1.0,
lbd.dir = 0.1,
hbd.dir = 1,
dfac.dir = 0.25*(3.0-sqrt(5)),
initd.dir = 1.0,
...)

Default S3 method:
npqreg(bws, txdat, tydat, ...)

Arguments

bws a bandwidth specification. This can be set as a condbandwidth object returned
from an invocation of npcdistbw, or as a vector of bandwidths, with each el-
ement i corresponding to the bandwidth for column i in txdat. If specified
as a vector, then additional arguments will need to be supplied as necessary to

152 npqreg

specify the bandwidth type, kernel types, and so on.
tau a numeric value specifying the τ th quantile is desired. Defaults to 0.5.
... additional arguments supplied to specify the regression type, bandwidth type,

kernel types, training data, and so on. To do this, you may specify any of
bwmethod, bwscaling, bwtype, cxkertype, cxkerorder, cykertype, cykerorder,
uxkertype, uykertype, oxkertype, oykertype, as described in npcdistbw.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npcdistbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

txdat a p-variate data frame of explanatory data (training data) used to calculate the re-
gression estimators. Defaults to the training data used to compute the bandwidth
object.

tydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of txdat. Defaults to the training
data used to compute the bandwidth object.

exdat a p-variate data frame of points on which the regression will be estimated (eval-
uation data). By default, evaluation takes place on the data provided by txdat.

gradients [currently not supported] a logical value indicating that you want gradients com-
puted and returned in the resulting npregression object. Defaults to FALSE.

itmax integer number of iterations before failure in the numerical optimization routine.
Defaults to 10000.

ftol fractional tolerance on the value of the cross-validation function evaluated at lo-
cated minima (of order the machine precision or perhaps slightly larger so as not
to be diddled by roundoff). Defaults to 1.490116e-07 (1.0e+01*sqrt(.Machine$double.eps)).

tol tolerance on the position of located minima of the cross-validation function (tol
should generally be no smaller than the square root of your machine’s floating
point precision). Defaults to 1.490116e-04 (1.0e+04*sqrt(.Machine$double.eps)).

small a small number used to bracket a minimum (it is hopeless to ask for a bracketing
interval of width less than sqrt(epsilon) times its central value, a fractional width
of only about 10-04 (single precision) or 3x10-8 (double precision)). Defaults
to small = 1.490116e-05 (1.0e+03*sqrt(.Machine$double.eps)).

lbc.dir, dfc.dir, cfac.dir, initc.dir
lower bound, chi-square degrees of freedom, stretch factor, and initial non-
random values for direction set search for Powell’s algorithm for numeric vari-
ables. See Details

lbd.dir, hbd.dir, dfac.dir, initd.dir
lower bound, upper bound, stretch factor, and initial non-random values for di-
rection set search for Powell’s algorithm for categorical variables. See Details

Details

The optimizer invoked for search is Powell’s conjugate direction method which requires the setting
of (non-random) initial values and search directions for bandwidths, and, when restarting, random

npqreg 153

values for successive invocations. Bandwidths for numeric variables are scaled by robust measures
of spread, the sample size, and the number of numeric variables where appropriate. Two sets of
parameters for bandwidths for numeric can be modified, those for initial values for the parameters
themselves, and those for the directions taken (Powell’s algorithm does not involve explicit compu-
tation of the function’s gradient). The default values are set by considering search performance for
a variety of difficult test cases and simulated cases. We highly recommend restarting search a large
number of times to avoid the presence of local minima (achieved by modifying nmulti). Further
refinement for difficult cases can be achieved by modifying these sets of parameters. However,
these parameters are intended more for the authors of the package to enable ‘tuning’ for various
methods rather than for the user themselves.

Value

npqreg returns a npqregression object. The generic functions fitted (or quantile), se, predict
(when using predict you must add the argument tau= to generate predictions other than the me-
dian), and gradients, extract (or generate) estimated values, asymptotic standard errors on esti-
mates, predictions, and gradients, respectively, from the returned object. Furthermore, the functions
summary and plot support objects of this type. The returned object has the following components:

eval evaluation points

quantile estimation of the quantile regression function (conditional quantile) at the eval-
uation points

quanterr standard errors of the quantile regression estimates

quantgrad gradients at each evaluation point

tau the τ th quantile computed

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Koenker, R. W. and G.W. Bassett (1978), “Regression quantiles,” Econometrica, 46, 33-50.

Koenker, R. (2005), Quantile Regression, Econometric Society Monograph Series, Cambridge Uni-
versity Press.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

154 npqreg

Li, Q. and J.S. Racine (2008), “Nonparametric estimation of conditional CDF and quantile functions
with mixed categorical and continuous data,” Journal of Business and Economic Statistics, 26, 423-
434.

Li, Q. and J. Lin and J.S. Racine (2013), “Optimal Bandwidth Selection for Nonparametric Con-
ditional Distribution and Quantile Functions”, Journal of Business and Economic Statistics, 31,
57-65.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

quantreg

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("Italy")
mpi.bcast.Robj2slave(Italy)

A quantile regression example

mpi.bcast.cmd(bw <- npcdistbw(gdp~ordered(year),data=Italy),
caller.execute=TRUE)

summary(bw)

mpi.bcast.cmd(model <- npqreg(bws=bw, tau=0.50),
caller.execute=TRUE)

summary(model)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.

npquantile 155

npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npquantile Kernel Univariate Quantile Estimation

Description

npquantile computes smooth quantiles from a univariate unconditional kernel cumulative distri-
bution estimate given data and, optionally, a bandwidth specification i.e. a dbandwidth object using
the bandwidth selection method of Li, Li and Racine (2017).

Usage

npquantile(x = NULL,
tau = c(0.01,0.05,0.25,0.50,0.75,0.95,0.99),
num.eval = 10000,
bws = NULL,
f = 1,
...)

Arguments

x a univariate vector of type numeric containing sample realizations (training
data) used to estimate the cumulative distribution (must be the same training
data used to compute the bandwidth object bws passed in).

tau an optional vector containing the probabilities for quantile(s) to be estimated
(must contain numbers in [0, 1]). Defaults to c(0.01,0.05,0.25,0.50,0.75,0.95,0.99).

num.eval an optional integer specifying the length of the grid on which the quasi-inverse
is computed. Defaults to 10000.

156 npquantile

bws an optional dbandwidth specification (if already computed avoid unnecessary
computation inside npquantile). This must be set as a dbandwidth object re-
turned from an invocation of npudistbw. If not provided npudistbw is invoked
with optional arguments passed via

f an optional argument fed to extendrange. Defaults to 1. See ?extendrange
for details.

... additional arguments supplied to specify the bandwidth type, kernel types, band-
width selection methods, and so on. See ?npudistbw for details.

Details

Typical usage is

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
set.seed(42)
x <- rchisq(100,df=10)
mpi.bcast.Robj2slave(x)
mpi.bcast.cmd(npquantile(x),caller.execute=TRUE)
npRmpi.stop()

The quantile function qτ is defined to be the left-continuous inverse of the distribution function
F (x), i.e. qτ = inf{x : F (x) ≥ τ}.

A traditional estimator of qτ is the τ th sample quantile. However, these estimates suffer from lack
of efficiency arising from variability of individual order statistics; see Sheather and Marron (1990)
and Hyndman and Fan (1996) for methods that interpolate/smooth the order statistics, each of which
discussed in the latter can be invoked through quantile via type=j, j=1,...,9.

The function npquantile implements a method for estimating smooth quantiles based on the quasi-
inverse of a npudist object where F (x) is replaced with its kernel estimator and bandwidth selec-
tion is that appropriate for such objects; see Definition 2.3.6, page 21, Nelsen 2006 for a definition
of the quasi-inverse of F (x).

For construction of the quasi-inverse we create a grid of evaluation points based on the function
extendrange along with the sample quantiles themselves computed from invocation of quantile.
The coarseness of the grid defined by extendrange (which has been passed the option f=1) is
controlled by num.eval.

Note that for any value of τ less/greater than the smallest/largest value of F (x) computed for the
evaluation data (i.e. that outlined in the paragraph above), the quantile returned for such values is
that associated with the smallest/largest value of F (x), respectively.

Value

npquantile returns a vector of quantiles corresponding to tau.

npquantile 157

Usage Issues

Cross-validated bandwidth selection is used by default (npudistbw). For large datasets this can be
computationally demanding. In such cases one might instead consider a rule-of-thumb bandwidth
(bwmethod="normal-reference") or, alternatively, use kd-trees (options(np.tree=TRUE) along
with a bounded kernel (ckertype="epanechnikov")), both of which will reduce the computational
burden appreciably.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Cheng, M.-Y. and Sun, S. (2006), “Bandwidth selection for kernel quantile estimation,” Journal of
the Chinese Statistical Association, 44, 271-295.

Hyndman, R.J. and Fan, Y. (1996), “Sample quantiles in statistical packages,” American Statisti-
cian, 50, 361-365.

Li, Q. and J.S. Racine (2017), “Smooth Unconditional Quantile Estimation,” Manuscript.

Li, C. and H. Li and J.S. Racine (2017), “Cross-Validated Mixed Datatype Bandwidth Selection for
Nonparametric Cumulative Distribution/Survivor Functions,” Econometric Reviews, 36, 970-987.

Nelsen, R.B. (2006), An Introduction to Copulas, Second Edition, Springer-Verlag.

Sheather, S. and J.S. Marron (1990), “Kernel quantile estimators,” Journal of the American Statis-
tical Association, Vol. 85, No. 410, 410-416.

Yang, S.-S. (1985), “A Smooth Nonparametric Estimator of a Quantile Function,” Journal of the
American Statistical Association, 80, 1004-1011.

See Also

quantile for various types of sample quantiles; ecdf for empirical distributions of which quantile
is an inverse; boxplot.stats and fivenum for computing other versions of quartiles; qlogspline
for logspline density quantiles; qkde for alternative kernel quantiles, etc.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.

158 npreg

npRmpi.start(nslaves=1)

set.seed(42)

Simulate data from a chi-square distribution
df <- 50
x <- rchisq(100,df=df)

Vector of quantiles desired
tau <- c(0.01,0.05,0.25,0.50,0.75,0.95,0.99)

mpi.bcast.Robj2slave(x)
mpi.bcast.Robj2slave(tau)

Compute kernel smoothed sample quantiles
mpi.bcast.cmd(q <- npquantile(x,tau),

caller.execute=TRUE)

q

Compute sample quantiles using the default method in R (Type 7)
quantile(x,tau)

True quantiles based on known distribution
qchisq(tau,df=df)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npreg Kernel Regression with Mixed Data Types

npreg 159

Description

npreg computes a kernel regression estimate of a one (1) dimensional dependent variable on p-
variate explanatory data, given a set of evaluation points, training points (consisting of explanatory
data and dependent data), and a bandwidth specification using the method of Racine and Li (2004)
and Li and Racine (2004). A bandwidth specification can be a rbandwidth object, or a bandwidth
vector, bandwidth type and kernel type.

Usage

npreg(bws, ...)

S3 method for class 'formula'
npreg(bws, data = NULL, newdata = NULL, y.eval =
FALSE, ...)

S3 method for class 'call'
npreg(bws, ...)

Default S3 method:
npreg(bws, txdat, tydat, ...)

S3 method for class 'rbandwidth'
npreg(bws,

txdat = stop("training data 'txdat' missing"),
tydat = stop("training data 'tydat' missing"),
exdat,
eydat,
gradients = FALSE,
residuals = FALSE,
...)

Arguments

bws a bandwidth specification. This can be set as a rbandwidth object returned
from an invocation of npregbw, or as a vector of bandwidths, with each element
i corresponding to the bandwidth for column i in txdat. If specified as a vector,
then additional arguments will need to be supplied as necessary to specify the
bandwidth type, kernel types, and so on.

... additional arguments supplied to specify the regression type, bandwidth type,
kernel types, training data, and so on, detailed below.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npregbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

y.eval If newdata contains dependent data and y.eval = TRUE, npRmpi will compute
goodness of fit statistics on these data and return them. Defaults to FALSE.

160 npreg

txdat a p-variate data frame of explanatory data (training data) used to calculate the re-
gression estimators. Defaults to the training data used to compute the bandwidth
object.

tydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of txdat. Defaults to the training
data used to compute the bandwidth object.

exdat a p-variate data frame of points on which the regression will be estimated (eval-
uation data). By default, evaluation takes place on the data provided by txdat.

eydat a one (1) dimensional numeric or integer vector of the true values of the depen-
dent variable. Optional, and used only to calculate the true errors.

gradients a logical value indicating that you want gradients computed and returned in the
resulting npregression object. Defaults to FALSE.

residuals a logical value indicating that you want residuals computed and returned in the
resulting npregression object. Defaults to FALSE.

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

Usage 1: first compute the bandwidth object via npregbw and then
compute the conditional mean:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(x)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(bw <- npregbw(y~x),caller.execute=TRUE)
mpi.bcast.cmd(ghat <- npreg(bw),caller.execute=TRUE)
npRmpi.stop()

Usage 2: alternatively, compute the bandwidth object indirectly:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(x)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(ghat <- npreg(y~x),caller.execute=TRUE)
npRmpi.stop()

Usage 3: modify the default kernel and order:

npreg 161

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(x)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(ghat <- npreg(y~x, ckertype="epanechnikov", ckerorder=4),

caller.execute=TRUE)
npRmpi.stop()

Usage 4: use the data frame interface rather than the formula
interface:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(x)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(ghat <- npreg(tydat=y, txdat=x, ckertype="epanechnikov", ckerorder=4),
caller.execute=TRUE)

npRmpi.stop()

npreg implements a variety of methods for regression on multivariate (p-variate) data, the types of
which are possibly continuous and/or discrete (unordered, ordered). The approach is based on Li
and Racine (2003) who employ ‘generalized product kernels’ that admit a mix of continuous and
discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

Data contained in the data frame txdat may be a mix of continuous (default), unordered discrete
(to be specified in the data frame txdat using factor), and ordered discrete (to be specified in the
data frame txdat using ordered). Data can be entered in an arbitrary order and data types will be
detected automatically by the routine (see npRmpi for details).

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

The use of compactly supported kernels or the occurrence of small bandwidths can lead to numerical
problems for the local linear estimator when computing the locally weighted least squares solution.
To overcome this problem we rely on a form or ‘ridging’ proposed by Cheng, Hall, and Titterington

162 npreg

(1997), modified so that we solve the problem pointwise rather than globally (i.e. only when it is
needed).

Value

npreg returns a npregression object. The generic functions fitted, residuals, se, predict,
and gradients, extract (or generate) estimated values, residuals, asymptotic standard errors on esti-
mates, predictions, and gradients, respectively, from the returned object. Furthermore, the functions
summary and plot support objects of this type. The returned object has the following components:

eval evaluation points

mean estimates of the regression function (conditional mean) at the evaluation points

merr standard errors of the regression function estimates

grad estimates of the gradients at each evaluation point

gerr standard errors of the gradient estimates

resid if residuals = TRUE, in-sample or out-of-sample residuals where appropriate
(or possible)

R2 coefficient of determination (Doksum and Samarov (1995))

MSE mean squared error

MAE mean absolute error

MAPE mean absolute percentage error

CORR absolute value of Pearson’s correlation coefficient

SIGN fraction of observations where fitted and observed values agree in sign

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Cheng, M.-Y. and P. Hall and D.M. Titterington (1997), “On the shrinkage of local linear curve
estimators,” Statistics and Computing, 7, 11-17.

Doksum, K. and A. Samarov (1995), “Nonparametric estimation of global functionals and a mea-
sure of the explanatory power of covariates in regression,” The Annals of Statistics, 23 1443-1473.

Hall, P. and Q. Li and J.S. Racine (2007), “Nonparametric estimation of regression functions in the
presence of irrelevant regressors,” The Review of Economics and Statistics, 89, 784-789.

npreg 163

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2004), “Cross-validated local linear nonparametric regression,” Statistica
Sinica, 14, 485-512.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Racine, J.S. and Q. Li (2004), “Nonparametric estimation of regression functions with both cate-
gorical and continuous data,” Journal of Econometrics, 119, 99-130.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

loess

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

set.seed(42)

n <- 250

x <- runif(n)
z1 <- rbinom(n,1,.5)
z2 <- rbinom(n,1,.5)
y <- cos(2*pi*x) + z1 + rnorm(n,sd=.25)
z1 <- factor(z1)
z2 <- factor(z2)
mydat <- data.frame(y,x,z1,z2)
rm(x,y,z1,z2)

mpi.bcast.Robj2slave(mydat)

mpi.bcast.cmd(bw <- npregbw(y~x+z1+z2,
regtype="lc",
bwmethod="cv.ls",
data=mydat),

164 npregbw

caller.execute=TRUE)

summary(bw)

mpi.bcast.cmd(model <- npreg(bws=bw,
data=mydat),

caller.execute=TRUE)

summary(model)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npregbw Kernel Regression Bandwidth Selection with Mixed Data Types

Description

npregbw computes a bandwidth object for a p-variate kernel regression estimator defined over
mixed continuous and discrete (unordered, ordered) data using expected Kullback-Leibler cross-
validation, or least-squares cross validation using the method of Racine and Li (2004) and Li and
Racine (2004).

Usage

npregbw(...)

S3 method for class 'formula'
npregbw(formula, data, subset, na.action, call, ...)

S3 method for class 'NULL'
npregbw(xdat = stop("invoked without data 'xdat'"),

npregbw 165

ydat = stop("invoked without data 'ydat'"),
bws,
...)

Default S3 method:
npregbw(xdat = stop("invoked without data 'xdat'"),

ydat = stop("invoked without data 'ydat'"),
bws,
bandwidth.compute = TRUE,
nmulti,
remin,
itmax,
ftol,
tol,
small,
lbc.dir,
dfc.dir,
cfac.dir,
initc.dir,
lbd.dir,
hbd.dir,
dfac.dir,
initd.dir,
lbc.init,
hbc.init,
cfac.init,
lbd.init,
hbd.init,
dfac.init,
scale.init.categorical.sample,
transform.bounds = FALSE,
invalid.penalty = c("baseline","dbmax"),
penalty.multiplier = 10,
regtype,
bwmethod,
bwscaling,
bwtype,
ckertype,
ckerorder,
ukertype,
okertype,
...)

S3 method for class 'rbandwidth'
npregbw(xdat = stop("invoked without data 'xdat'"),

ydat = stop("invoked without data 'ydat'"),
bws,
bandwidth.compute = TRUE,

166 npregbw

nmulti,
remin = TRUE,
itmax = 10000,
ftol = 1.490116e-07,
tol = 1.490116e-04,
small = 1.490116e-05,
lbc.dir = 0.5,
dfc.dir = 3,
cfac.dir = 2.5*(3.0-sqrt(5)),
initc.dir = 1.0,
lbd.dir = 0.1,
hbd.dir = 1,
dfac.dir = 0.25*(3.0-sqrt(5)),
initd.dir = 1.0,
lbc.init = 0.1,
hbc.init = 2.0,
cfac.init = 0.5,
lbd.init = 0.1,
hbd.init = 0.9,
dfac.init = 0.375,
scale.init.categorical.sample = FALSE,
transform.bounds = FALSE,
invalid.penalty = c("baseline","dbmax"),
penalty.multiplier = 10,
...)

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

xdat a p-variate data frame of regressors on which bandwidth selection will be per-
formed. The data types may be continuous, discrete (unordered and ordered
factors), or some combination thereof.

ydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of xdat.

npregbw 167

bws a bandwidth specification. This can be set as a rbandwidth object returned
from a previous invocation, or as a vector of bandwidths, with each element i
corresponding to the bandwidth for column i in xdat. In either case, the band-
width supplied will serve as a starting point in the numerical search for optimal
bandwidths. If specified as a vector, then additional arguments will need to
be supplied as necessary to specify the bandwidth type, kernel types, selection
methods, and so on. This can be left unset.

... additional arguments supplied to specify the bandwidth type, kernel types, se-
lection methods, and so on, detailed below.

regtype a character string specifying which type of kernel regression estimator to use.
lc specifies a local-constant estimator (Nadaraya-Watson) and ll specifies a
local-linear estimator. Defaults to lc.

bwmethod which method to use to select bandwidths. cv.aic specifies expected Kullback-
Leibler cross-validation (Hurvich, Simonoff, and Tsai (1998)), and cv.ls spec-
ifies least-squares cross-validation. Defaults to cv.ls.

bwscaling a logical value that when set to TRUE the supplied bandwidths are interpreted as
‘scale factors’ (cj), otherwise when the value is FALSE they are interpreted as
‘raw bandwidths’ (hj for continuous data types, λj for discrete data types). For
continuous data types, cj and hj are related by the formula hj = cjσjn

−1/(2P+l),
where σj is an adaptive measure of spread of continuous variable j defined as
min(standard deviation, mean absolute deviation/1.4826, interquartile range/1.349),
n the number of observations, P the order of the kernel, and l the number of con-
tinuous variables. For discrete data types, cj and hj are related by the formula
hj = cjn

−2/(2P+l), where here j denotes discrete variable j. Defaults to FALSE.

bwtype character string used for the continuous variable bandwidth type, specifying the
type of bandwidth to compute and return in the bandwidth object. Defaults to
fixed. Option summary:
fixed: compute fixed bandwidths
generalized_nn: compute generalized nearest neighbors
adaptive_nn: compute adaptive nearest neighbors

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a rbandwidth object will be returned with bandwidths
set to those specified in bws. Defaults to TRUE.

ckertype character string used to specify the continuous kernel type. Can be set as gaussian,
epanechnikov, or uniform. Defaults to gaussian.

ckerorder numeric value specifying kernel order (one of (2,4,6,8)). Kernel order spec-
ified along with a uniform continuous kernel type will be ignored. Defaults to
2.

ukertype character string used to specify the unordered categorical kernel type. Can be
set as aitchisonaitken or liracine. Defaults to aitchisonaitken.

okertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine. Defaults to liracine.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points. Defaults to min(5,ncol(xdat)).

168 npregbw

remin a logical value which when set as TRUE the search routine restarts from located
minima for a minor gain in accuracy. Defaults to TRUE.

itmax integer number of iterations before failure in the numerical optimization routine.
Defaults to 10000.

ftol fractional tolerance on the value of the cross-validation function evaluated at lo-
cated minima (of order the machine precision or perhaps slightly larger so as not
to be diddled by roundoff). Defaults to 1.490116e-07 (1.0e+01*sqrt(.Machine$double.eps)).

tol tolerance on the position of located minima of the cross-validation function (tol
should generally be no smaller than the square root of your machine’s floating
point precision). Defaults to 1.490116e-04 (1.0e+04*sqrt(.Machine$double.eps)).

small a small number used to bracket a minimum (it is hopeless to ask for a bracketing
interval of width less than sqrt(epsilon) times its central value, a fractional width
of only about 10-04 (single precision) or 3x10-8 (double precision)). Defaults
to small = 1.490116e-05 (1.0e+03*sqrt(.Machine$double.eps)).

lbc.dir, dfc.dir, cfac.dir, initc.dir
lower bound, chi-square degrees of freedom, stretch factor, and initial non-
random values for direction set search for Powell’s algorithm for numeric vari-
ables. See Details

lbd.dir, hbd.dir, dfac.dir, initd.dir
lower bound, upper bound, stretch factor, and initial non-random values for di-
rection set search for Powell’s algorithm for categorical variables. See Details

lbc.init, hbc.init, cfac.init
lower bound, upper bound, and non-random initial values for scale factors for
numeric variables for Powell’s algorithm. See Details

lbd.init, hbd.init, dfac.init
lower bound, upper bound, and non-random initial values for scale factors for
categorical variables for Powell’s algorithm. See Details

scale.init.categorical.sample

a logical value that when set to TRUE scales lbd.dir, hbd.dir, dfac.dir, and
initd.dir by n−2/(2P+l), n the number of observations, P the order of the
kernel, and l the number of numeric variables. See Details

transform.bounds

a logical value that when set to TRUE applies an internal transformation that maps
the unconstrained search to the feasible bandwidth domain. Defaults to FALSE.

invalid.penalty

a character string specifying the penalty used when the optimizer encounters
invalid bandwidths. "baseline" returns a finite penalty based on a baseline
objective; "dbmax" returns DBL_MAX. Defaults to "baseline".

penalty.multiplier

a numeric multiplier applied to the baseline penalty when invalid.penalty="baseline".
Defaults to 10.

Details

npregbw implements a variety of methods for choosing bandwidths for multivariate (p-variate)
regression data defined over a set of possibly continuous and/or discrete (unordered, ordered) data.

npregbw 169

The approach is based on Li and Racine (2003) who employ ‘generalized product kernels’ that
admit a mix of continuous and discrete data types.

The cross-validation methods employ multivariate numerical search algorithms (direction set (Pow-
ell’s) methods in multidimensions).

Bandwidths can (and will) differ for each variable which is, of course, desirable.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

npregbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the xdat and ydat parameters. Use of these two interfaces is mutually
exclusive.

Data contained in the data frame xdat may be a mix of continuous (default), unordered discrete
(to be specified in the data frame xdat using factor), and ordered discrete (to be specified in the
data frame xdat using ordered). Data can be entered in an arbitrary order and data types will be
detected automatically by the routine (see npRmpi for details).

Data for which bandwidths are to be estimated may be specified symbolically. A typical descrip-
tion has the form dependent data ~ explanatory data, where dependent data is a univariate
response, and explanatory data is a series of variables specified by name, separated by the sep-
aration character ’+’. For example, y1 ~ x1 + x2 specifies that the bandwidths for the regression
of response y1 and nonparametric regressors x1 and x2 are to be estimated. See below for further
examples.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

The use of compactly supported kernels or the occurrence of small bandwidths during cross-validation
can lead to numerical problems for the local linear estimator when computing the locally weighted
least squares solution. To overcome this problem we rely on a form or ‘ridging’ proposed by Cheng,
Hall, and Titterington (1997), modified so that we solve the problem pointwise rather than globally
(i.e. only when it is needed).

The optimizer invoked for search is Powell’s conjugate direction method which requires the setting
of (non-random) initial values and search directions for bandwidths, and, when restarting, random
values for successive invocations. Bandwidths for numeric variables are scaled by robust measures
of spread, the sample size, and the number of numeric variables where appropriate. Two sets of
parameters for bandwidths for numeric can be modified, those for initial values for the parameters
themselves, and those for the directions taken (Powell’s algorithm does not involve explicit compu-
tation of the function’s gradient). The default values are set by considering search performance for
a variety of difficult test cases and simulated cases. We highly recommend restarting search a large
number of times to avoid the presence of local minima (achieved by modifying nmulti). Further
refinement for difficult cases can be achieved by modifying these sets of parameters. However,
these parameters are intended more for the authors of the package to enable ‘tuning’ for various
methods rather than for the user themselves.

170 npregbw

Value

npregbw returns a rbandwidth object, with the following components:

bw bandwidth(s), scale factor(s) or nearest neighbours for the data, xdat
fval objective function value at minimum

if bwtype is set to fixed, an object containing bandwidths (or scale factors if bwscaling = TRUE)
is returned. If it is set to generalized_nn or adaptive_nn, then instead the kth nearest neigh-
bors are returned for the continuous variables while the discrete kernel bandwidths are returned for
the discrete variables. Bandwidths are stored under the component name bw, with each element i
corresponding to column i of input data xdat.

The functions predict, summary, and plot support objects of this class.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due
to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting ftol=.01 and tol=.01
and conduct multistarting (the default is to restart min(5, ncol(xdat)) times) as is done for a number
of examples. Once the procedure terminates, you can restart search with default tolerances using
those bandwidths obtained from the less rigorous search (i.e., set bws=bw on subsequent calls to this
routine where bw is the initial bandwidth object). A version of this package using the Rmpi wrapper
is under development that allows one to deploy this software in a clustered computing environment
to facilitate computation involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Cheng, M.-Y. and P. Hall and D.M. Titterington (1997), “On the shrinkage of local linear curve
estimators,” Statistics and Computing, 7, 11-17.

Hall, P. and Q. Li and J.S. Racine (2007), “Nonparametric estimation of regression functions in the
presence of irrelevant regressors,” The Review of Economics and Statistics, 89, 784-789.

Hurvich, C.M. and J.S. Simonoff and C.L. Tsai (1998), “Smoothing parameter selection in nonpara-
metric regression using an improved Akaike information criterion,” Journal of the Royal Statistical
Society B, 60, 271-293.

npregbw 171

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2004), “Cross-validated local linear nonparametric regression,” Statistica
Sinica, 14, 485-512.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Racine, J.S. and Q. Li (2004), “Nonparametric estimation of regression functions with both cate-
gorical and continuous data,” Journal of Econometrics, 119, 99-130.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

npreg

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

set.seed(42)

n <- 250

x <- runif(n)
z1 <- rbinom(n,1,.5)
z2 <- rbinom(n,1,.5)
y <- cos(2*pi*x) + z1 + rnorm(n,sd=.25)
z1 <- factor(z1)
z2 <- factor(z2)
mydat <- data.frame(y,x,z1,z2)
rm(x,y,z1,z2)

mpi.bcast.Robj2slave(mydat)

mpi.bcast.cmd(bw <- npregbw(y~x+z1+z2,
regtype="lc",
bwmethod="cv.ls",
data=mydat),

172 npregiv

caller.execute=TRUE)

summary(bw)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npregiv Nonparametric Instrumental Regression

Description

npregiv computes nonparametric estimation of an instrumental regression function φ defined by
conditional moment restrictions stemming from a structural econometric model: E[Y−φ(Z,X)|W] =
0, and involving endogenous variables Y and Z and exogenous variables X and instruments W .
The function φ is the solution of an ill-posed inverse problem.

When method="Tikhonov", npregiv uses the approach of Darolles, Fan, Florens and Renault
(2011) modified for local polynomial kernel regression of any order (Darolles et al use local constant
kernel weighting which corresponds to setting p=0; see below for details). When method="Landweber-Fridman",
npregiv uses the approach of Horowitz (2011) again using local polynomial kernel regression
(Horowitz uses B-spline weighting).

Usage

npregiv(y,
z,
w,
x = NULL,

npregiv 173

zeval = NULL,
xeval = NULL,
alpha = NULL,
alpha.iter = NULL,
alpha.max = 1e-01,
alpha.min = 1e-10,
alpha.tol = .Machine$double.eps^0.25,
bw = NULL,
constant = 0.5,
iterate.diff.tol = 1.0e-08,
iterate.max = 1000,
iterate.Tikhonov = TRUE,
iterate.Tikhonov.num = 1,
method = c("Landweber-Fridman","Tikhonov"),
nmulti = NULL,
optim.abstol = .Machine$double.eps,
optim.maxattempts = 10,
optim.maxit = 500,
optim.method = c("Nelder-Mead", "BFGS", "CG"),
optim.reltol = sqrt(.Machine$double.eps),
p = 1,
penalize.iteration = TRUE,
random.seed = 42,
return.weights.phi = FALSE,
return.weights.phi.deriv.1 = FALSE,
return.weights.phi.deriv.2 = FALSE,
smooth.residuals = TRUE,
start.from = c("Eyz","EEywz"),
starting.values = NULL,
stop.on.increase = TRUE,
...)

Arguments

y a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of z.

z a p-variate data frame of endogenous regressors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof.

w a q-variate data frame of instruments. The data types may be continuous, dis-
crete (unordered and ordered factors), or some combination thereof.

x an r-variate data frame of exogenous regressors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof.

zeval a p-variate data frame of endogenous regressors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by z.

xeval an r-variate data frame of exogenous regressors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by x.

174 npregiv

alpha a numeric scalar that, if supplied, is used rather than numerically solving for
alpha, when using method="Tikhonov".

alpha.iter a numeric scalar that, if supplied, is used for iterated Tikhonov rather than nu-
merically solving for alpha, when using method="Tikhonov".

alpha.max maximum of search range for α, the Tikhonov regularization parameter, when
using method="Tikhonov".

alpha.min minimum of search range for α, the Tikhonov regularization parameter, when
using method="Tikhonov".

alpha.tol the search tolerance for optimize when solving for α, the Tikhonov regulariza-
tion parameter, when using method="Tikhonov".

bw an object which, if provided, contains bandwidths and parameters (obtained
from a previous invocation of npregiv) required to re-compute the estimator
without having to re-run cross-validation and/or numerical optimization which
is particularly costly in this setting (see details below for an illustration of its
use)

constant the constant to use when using method="Landweber-Fridman".
iterate.diff.tol

the search tolerance for the difference in the stopping rule from iteration to iter-
ation when using method="Landweber-Fridman" (disable by setting to zero).

iterate.max an integer indicating the maximum number of iterations permitted before termi-
nation occurs when using method="Landweber-Fridman".

iterate.Tikhonov

a logical value indicating whether to use iterated Tikhonov (one iteration) or not
when using method="Tikhonov".

iterate.Tikhonov.num

an integer indicating the number of iterations to conduct when using method="Tikhonov".

method the regularization method employed (defaults to "Landweber-Fridman", see
Horowitz (2011); see Darolles, Fan, Florens and Renault (2011) for details for
"Tikhonov").

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points.

optim.abstol the absolute convergence tolerance used by optim. Only useful for non-negative
functions, as a tolerance for reaching zero. Defaults to .Machine$double.eps.

optim.maxattempts

maximum number of attempts taken trying to achieve successful convergence in
optim. Defaults to 100.

optim.maxit maximum number of iterations used by optim. Defaults to 500.

optim.method method used by optim for minimization of the objective function. See ?optim
for references. Defaults to "Nelder-Mead".
the default method is an implementation of that of Nelder and Mead (1965),
that uses only function values and is robust but relatively slow. It will work
reasonably well for non-differentiable functions.
method "BFGS" is quasi-Newton method (also known as a variable metric algo-
rithm), specifically that published simultaneously in 1970 by Broyden, Fletcher,

npregiv 175

Goldfarb and Shanno. This uses function values and gradients to build up a
picture of the surface to be optimized.
method "CG" is a conjugate gradients method based on that by Fletcher and
Reeves (1964) (but with the option of Polak-Ribiere or Beale-Sorenson up-
dates). Conjugate gradient methods will generally be more fragile than the
BFGS method, but as they do not store a matrix they may be successful in much
larger optimization problems.

optim.reltol relative convergence tolerance used by optim. The algorithm stops if it is unable
to reduce the value by a factor of ’reltol * (abs(val) + reltol)’ at a step. Defaults
to sqrt(.Machine$double.eps), typically about 1e-8.

p the order of the local polynomial regression (defaults to p=1, i.e. local linear).

penalize.iteration

a logical value indicating whether to penalize the norm by the number of itera-
tions or not (default TRUE)

random.seed an integer used to seed R’s random number generator. This ensures replicability
of the numerical search. Defaults to 42.

return.weights.phi

a logical value (defaults to FALSE) indicating whether to return the weight matrix
which when postmultiplied by the response y delivers the instrumental regres-
sion

return.weights.phi.deriv.1

a logical value (defaults to FALSE) indicating whether to return the weight matrix
which when postmultiplied by the response y delivers the first partial derivative
of the instrumental regression with respect to z

return.weights.phi.deriv.2

a logical value (defaults to FALSE) indicating whether to return the weight ma-
trix which when postmultiplied by the response y delivers the second partial
derivative of the instrumental regression with respect to z

smooth.residuals

a logical value indicating whether to optimize bandwidths for the regression of
(y − φ(z)) on w (defaults to TRUE) or for the regression of φ(z) on w during
iteration

start.from a character string indicating whether to start from E(Y |z) (default, "Eyz") or
from E(E(Y |z)|z) (this can be overridden by providing starting.values be-
low)

starting.values

a value indicating whether to commence Landweber-Fridman assuming φ−1 =
starting.values (proper Landweber-Fridman) or instead begin from E(y|z)
(defaults to NULL, see details below)

stop.on.increase

a logical value (defaults to TRUE) indicating whether to halt iteration if the stop-
ping criterion (see below) increases over the course of one iteration (i.e. it may
be above the iteration tolerance but increased)

... additional arguments supplied to npksum.

176 npregiv

Details

Tikhonov regularization requires computation of weight matrices of dimension n× n which can be
computationally costly in terms of memory requirements and may be unsuitable for large datasets.
Landweber-Fridman will be preferred in such settings as it does not require construction and stor-
age of these weight matrices while it also avoids the need for numerical optimization methods to
determine α.

method="Landweber-Fridman" uses an optimal stopping rule based upon ||E(y|w)−E(φk(z, x)|w)||2.
However, if local rather than global optima are encountered the resulting estimates can be overly
noisy. To best guard against this eventuality set nmulti to a larger number than the default nmulti=5
for the first iteration.

Note that for subsequent Landweber-Fridman iterations, a “warm start” strategy is employed. The
optimal bandwidths from the previous iteration are used as starting values for the current iteration.
The user-supplied nmulti is respected for all iterations. For iterations after the first successful one,
these optimal bandwidths serve as the first of the multiple initial points (a warm start), while any
remaining restarts are cold starts. If nmulti is not explicitly supplied by the user, it defaults to 5
for the first iteration and to 1 for all subsequent iterations. This strategy provides a balance between
computational efficiency and robustness, allowing the numerical optimizer to refine the structural
bandwidths as the residuals evolve incrementally while still guarding against local optima.

When using method="Landweber-Fridman", iteration will terminate when either the change in the
value of ||(E(y|w)−E(φk(z, x)|w))/E(y|w)||2 from iteration to iteration is less than iterate.diff.tol
or we hit iterate.max or ||(E(y|w)−E(φk(z, x)|w))/E(y|w)||2 stops falling in value and starts
rising.

The option bw= would be useful, say, when bootstrapping is necessary. Note that when passing bw,
it must be obtained from a previous invocation of npregiv. For instance, if model.iv was obtained
from an invocation of npregiv with method="Landweber-Fridman", then the following needs to
be fed to the subsequent invocation of npregiv:

model.iv <- npregiv(\dots)

bw <- NULL
bw$bw.E.y.w <- model.iv$bw.E.y.w
bw$bw.E.y.z <- model.iv$bw.E.y.z
bw$bw.resid.w <- model.iv$bw.resid.w
bw$bw.resid.fitted.w.z <- model.iv$bw.resid.fitted.w.z
bw$norm.index <- model.iv$norm.index

foo <- npregiv(\dots,bw=bw)

If, on the other hand model.iv was obtained from an invocation of npregiv with method="Tikhonov",
then the following needs to be fed to the subsequent invocation of npregiv:

model.iv <- npregiv(\dots)

npregiv 177

bw <- NULL
bw$alpha <- model.iv$alpha
bw$alpha.iter <- model.iv$alpha.iter
bw$bw.E.y.w <- model.iv$bw.E.y.w
bw$bw.E.E.y.w.z <- model.iv$bw.E.E.y.w.z
bw$bw.E.phi.w <- model.iv$bw.E.phi.w
bw$bw.E.E.phi.w.z <- model.iv$bw.E.E.phi.w.z

foo <- npregiv(\dots,bw=bw)

Or, if model.iv was obtained from an invocation of npregiv with either method="Landweber-Fridman"
or method="Tikhonov", then the following would also work:

model.iv <- npregiv(\dots)

foo <- npregiv(\dots,bw=model.iv)

When exogenous predictors x (xeval) are passed, they are appended to both the endogenous predic-
tors z and the instruments w as additional columns. If this is not desired, one can manually append
the exogenous variables to z (or w) prior to passing z (or w), and then they will only appear among
the z or w as desired.

Value

npregiv returns a npregiv object. The generic functions print, summary, and plot support objects
of this type.

npregiv returns a list with components phi, phi.mat and either alpha when method="Tikhonov"
or norm.index, norm.stop and convergence when method="Landweber-Fridman", among oth-
ers.

In addition, if any of return.weights.* are invoked (*=1,2), then phi.weights and phi.deriv.*.weights
return weight matrices for computing the instrumental regression and its partial derivatives. Note
that these weights, post multiplied by the response vector y, will deliver the estimates returned
in phi, phi.deriv.1, and phi.deriv.2 (the latter only being produced when p is 2 or greater).
When invoked with evaluation data, similar matrices are returned but named phi.eval.weights
and phi.deriv.eval.*.weights. These weights can be used for constrained estimation, among
others.

When method="Landweber-Fridman" is invoked, bandwidth objects are returned in bw.E.y.w
(scalar/vector), bw.E.y.z (scalar/vector), and bw.resid.w (matrix) and bw.resid.fitted.w.z,
the latter matrices containing bandwidths for each iteration stored as rows. When method="Tikhonov"
is invoked, bandwidth objects are returned in bw.E.y.w, bw.E.E.y.w.z, and bw.E.phi.w and
bw.E.E.phi.w.z.

178 npregiv

Note

This function should be considered to be in ‘beta test’ status until further notice.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>, Samuele Centorrino <samuele.centorrino@univ-tlse1.fr>

References

Carrasco, M. and J.P. Florens and E. Renault (2007), “Linear Inverse Problems in Structural Econo-
metrics Estimation Based on Spectral Decomposition and Regularization,” In: James J. Heckman
and Edward E. Leamer, Editor(s), Handbook of Econometrics, Elsevier, 2007, Volume 6, Part 2,
Chapter 77, Pages 5633-5751

Darolles, S. and Y. Fan and J.P. Florens and E. Renault (2011), “Nonparametric instrumental re-
gression,” Econometrica, 79, 1541-1565.

Feve, F. and J.P. Florens (2010), “The practice of non-parametric estimation by solving inverse
problems: the example of transformation models,” Econometrics Journal, 13, S1-S27.

Florens, J.P. and J.S. Racine and S. Centorrino (2018), “Nonparametric instrumental derivatives,”
Journal of Nonparametric Statistics, 30 (2), 368-391.

Fridman, V. M. (1956), “A method of successive approximations for Fredholm integral equations
of the first kind,” Uspeskhi, Math. Nauk., 11, 233-334, in Russian.

Horowitz, J.L. (2011), “Applied nonparametric instrumental variables estimation,” Econometrica,
79, 347-394.

Landweber, L. (1951), “An iterative formula for Fredholm integral equations of the first kind,”
American Journal of Mathematics, 73, 615-24.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2004), “Cross-validated Local Linear Nonparametric Regression,” Statistica
Sinica, 14, 485-512.

See Also

npregivderiv,npreg

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and

npregiv 179

`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

This illustration was made possible by Samuele Centorrino
<samuele.centorrino@univ-tlse1.fr>
#
set.seed(42)
n <- 1500
#
The DGP is as follows:
#
1) y = phi(z) + u
#
2) E(u|z) != 0 (endogeneity present)
#
3) Suppose there exists an instrument w such that z = f(w) + v and
E(u|w) = 0
#
4) We generate v, w, and generate u such that u and z are
correlated. To achieve this we express u as a function of v (i.e. u =
gamma v + eps)
#
v <- rnorm(n,mean=0,sd=0.27)
eps <- rnorm(n,mean=0,sd=0.05)
u <- -0.5*v + eps
w <- rnorm(n,mean=0,sd=1)
#
In Darolles et al (2011) there exist two DGPs. The first is
phi(z)=z^2 and the second is phi(z)=exp(-abs(z)) (which is
discontinuous and has a kink at zero).
#
fun1 <- function(z) { z^2 }
fun2 <- function(z) { exp(-abs(z)) }
#
z <- 0.2*w + v
#
Generate two y vectors for each function.
#
y1 <- fun1(z) + u
y2 <- fun2(z) + u
#
You set y to be either y1 or y2 (ditto for phi) depending on which
DGP you are considering:
#
y <- y1
phi <- fun1
#
Sort on z (for plotting)
#
ivdata <- data.frame(y,z,w)
ivdata <- ivdata[order(ivdata$z),]

180 npregiv

rm(y,z,w)
#
mpi.bcast.Robj2slave(ivdata)
mpi.bcast.cmd(attach(ivdata),
caller.execute=TRUE)
#
mpi.bcast.cmd(model.iv <- npregiv(y=y,z=z,w=w),
caller.execute=TRUE)
phi.iv <- model.iv$phi
#
Now the non-iv local linear estimator of E(y|z)
#
mpi.bcast.cmd(ll.mean <- fitted(npreg(y~z,regtype="ll")),
caller.execute=TRUE)
#
For the plots, restrict focal attention to the bulk of the data
(i.e. for the plotting area trim out 1/4 of one percent from each
tail of y and z)
#
trim <- 0.0025
#
curve(phi,min(z),max(z),
xlim=quantile(z,c(trim,1-trim)),
ylim=quantile(y,c(trim,1-trim)),
ylab="Y",
xlab="Z",
main="Nonparametric Instrumental Kernel Regression",
lwd=2,lty=1)
#
points(z,y,type="p",cex=.25,col="grey")
#
lines(z,phi.iv,col="blue",lwd=2,lty=2)
#
lines(z,ll.mean,col="red",lwd=2,lty=4)
#
legend(quantile(z,trim),quantile(y,1-trim),
c(expression(paste(varphi(z))),
expression(paste("Nonparametric ",hat(varphi)(z))),
"Nonparametric E(y|z)"),
lty=c(1,2,4),
col=c("black","blue","red"),
lwd=c(2,2,2))
#
For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by

npregivderiv 181

setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npregivderiv Nonparametric Instrumental Derivatives

Description

npregivderiv uses the approach of Florens, Racine and Centorrino (2018) to compute the partial
derivative of a nonparametric estimation of an instrumental regression function φ defined by condi-
tional moment restrictions stemming from a structural econometric model: E[Y−φ(Z,X)|W] = 0,
and involving endogenous variables Y and Z and exogenous variables X and instruments W .
The derivative function φ′ is the solution of an ill-posed inverse problem, and is computed using
Landweber-Fridman regularization.

Usage

npregivderiv(y,
z,
w,
x = NULL,
zeval = NULL,
weval = NULL,
xeval = NULL,
constant = 0.5,
iterate.break = TRUE,
iterate.max = 1000,
nmulti = NULL,
random.seed = 42,
smooth.residuals = TRUE,
start.from = c("Eyz","EEywz"),
starting.values = NULL,
stop.on.increase = TRUE,
...)

182 npregivderiv

Arguments

y a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of z.

z a p-variate data frame of endogenous regressors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof.

w a q-variate data frame of instruments. The data types may be continuous, dis-
crete (unordered and ordered factors), or some combination thereof.

x an r-variate data frame of exogenous regressors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof.

zeval a p-variate data frame of endogenous regressors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by z.

weval a q-variate data frame of instruments on which the regression will be estimated
(evaluation data). By default, evaluation takes place on the data provided by w.

xeval an r-variate data frame of exogenous regressors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by x.

constant the constant to use for Landweber-Fridman iteration.

iterate.break a logical value indicating whether to compute all objects up to iterate.max or
to break when a potential optimum arises (useful for inspecting full stopping
rule profile up to iterate.max)

iterate.max an integer indicating the maximum number of iterations permitted before termi-
nation occurs for Landweber-Fridman iteration.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points.

random.seed an integer used to seed R’s random number generator. This ensures replicability
of the numerical search. Defaults to 42.

smooth.residuals

a logical value (defaults to TRUE) indicating whether to optimize bandwidths
for the regression of y − φ(z) on w or for the regression of φ(z) on w during
Landweber-Fridman iteration.

start.from a character string indicating whether to start from E(Y |z) (default, "Eyz") or
from E(E(Y |z)|z) (this can be overridden by providing starting.values be-
low)

starting.values

a value indicating whether to commence Landweber-Fridman assuming φ′
−1 =

starting.values (proper Landweber-Fridman) or instead begin from E(y|z)
(defaults to NULL, see details below)

stop.on.increase

a logical value (defaults to TRUE) indicating whether to halt iteration if the stop-
ping criterion (see below) increases over the course of one iteration (i.e. it may
be above the iteration tolerance but increased).

... additional arguments supplied to npreg and npksum.

npregivderiv 183

Details

Note that Landweber-Fridman iteration presumes that φ−1 = 0, and so for derivative estimation we
commence iterating from a model having derivatives all equal to zero. Given this starting point it
may require a fairly large number of iterations in order to converge. Other perhaps more reasonable
starting values might present themselves. When start.phi.zero is set to FALSE iteration will
commence instead using derivatives from the conditional mean model E(y|z). Should the default
iteration terminate quickly or you are concerned about your results, it would be prudent to verify
that this alternative starting value produces the same result. Also, check the norm.stop vector for
any anomalies (such as the error criterion increasing immediately).

Landweber-Fridman iteration uses an optimal stopping rule based upon ||E(y|w)−E(φk(z, x)|w)||2.
However, if local rather than global optima are encountered the resulting estimates can be overly
noisy. To best guard against this eventuality set nmulti to a larger number than the default nmulti=5
for the first iteration.

Note that for subsequent Landweber-Fridman iterations, a “warm start” strategy is employed. The
optimal bandwidths from the previous iteration are used as starting values for the current iteration.
The user-supplied nmulti is respected for all iterations. For iterations after the first successful one,
these optimal bandwidths serve as the first of the multiple initial points (a warm start), while any
remaining restarts are cold starts. If nmulti is not explicitly supplied by the user, it defaults to 5
for the first iteration and to 1 for all subsequent iterations. This strategy provides a balance between
computational efficiency and robustness, allowing the numerical optimizer to refine the structural
bandwidths as the residuals evolve incrementally while still guarding against local optima.

Iteration will terminate when either the change in the value of ||(E(y|w)−E(φk(z, x)|w))/E(y|w)||2
from iteration to iteration is less than iterate.diff.tol or we hit iterate.max or ||(E(y|w) −
E(φk(z, x)|w))/E(y|w)||2 stops falling in value and starts rising.

Value

npregivderiv returns a npregivderiv object. The generic functions print, summary, and plot
support objects of this type.

npregivderiv returns a list with components phi.prime, phi, num.iterations, norm.stop and
convergence.

Note

This function currently supports univariate z only. This function should be considered to be in ‘beta
test’ status until further notice.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Carrasco, M. and J.P. Florens and E. Renault (2007), “Linear Inverse Problems in Structural Econo-
metrics Estimation Based on Spectral Decomposition and Regularization,” In: James J. Heckman
and Edward E. Leamer, Editor(s), Handbook of Econometrics, Elsevier, 2007, Volume 6, Part 2,
Chapter 77, Pages 5633-5751

184 npregivderiv

Darolles, S. and Y. Fan and J.P. Florens and E. Renault (2011), “Nonparametric instrumental re-
gression,” Econometrica, 79, 1541-1565.

Feve, F. and J.P. Florens (2010), “The practice of non-parametric estimation by solving inverse
problems: the example of transformation models,” Econometrics Journal, 13, S1-S27.

Florens, J.P. and J.S. Racine and S. Centorrino (2018), “Nonparametric instrumental derivatives,”
Journal of Nonparametric Statistics, 30 (2), 368-391.

Fridman, V. M. (1956), “A method of successive approximations for Fredholm integral equations
of the first kind,” Uspeskhi, Math. Nauk., 11, 233-334, in Russian.

Horowitz, J.L. (2011), “Applied nonparametric instrumental variables estimation,” Econometrica,
79, 347-394.

Landweber, L. (1951), “An iterative formula for Fredholm integral equations of the first kind,”
American Journal of Mathematics, 73, 615-24.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2004), “Cross-validated Local Linear Nonparametric Regression,” Statistica
Sinica, 14, 485-512.

See Also

npregiv,npreg

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

This illustration was made possible by Samuele Centorrino
<samuele.centorrino@univ-tlse1.fr>
#
set.seed(42)
n <- 1500
#
For trimming the plot (trim .5% from each tail)
#
trim <- 0.005
#

npregivderiv 185

The DGP is as follows:
#
1) y = phi(z) + u
#
2) E(u|z) != 0 (endogeneity present)
#
3) Suppose there exists an instrument w such that z = f(w) + v and
E(u|w) = 0
#
4) We generate v, w, and generate u such that u and z are
correlated. To achieve this we express u as a function of v (i.e. u =
gamma v + eps)
#
v <- rnorm(n,mean=0,sd=0.27)
eps <- rnorm(n,mean=0,sd=0.05)
u <- -0.5*v + eps
w <- rnorm(n,mean=0,sd=1)
#
In Darolles et al (2011) there exist two DGPs. The first is
phi(z)=z^2 and the second is phi(z)=exp(-abs(z)) (which is
discontinuous and has a kink at zero).
#
fun1 <- function(z) { z^2 }
fun2 <- function(z) { exp(-abs(z)) }
#
z <- 0.2*w + v
#
Generate two y vectors for each function.
#
y1 <- fun1(z) + u
y2 <- fun2(z) + u
#
You set y to be either y1 or y2 (ditto for phi) depending on which
DGP you are considering:
#
y <- y1
phi <- fun1
#
Sort on z (for plotting)
#
ivdata <- data.frame(y,z,w,u,v)
ivdata <- ivdata[order(ivdata$z),]
rm(y,z,w,u,v)
#
mpi.bcast.Robj2slave(ivdata)
mpi.bcast.cmd(attach(ivdata),
caller.execute=TRUE)
#
mpi.bcast.cmd(model.ivderiv <- npregivderiv(y=y,z=z,w=w),
caller.execute=TRUE)
#
ylim <-c(quantile(model.ivderiv$phi.prime,trim),
quantile(model.ivderiv$phi.prime,1-trim))

186 npRmpi

#
plot(z,model.ivderiv$phi.prime,
xlim=quantile(z,c(trim,1-trim)),
main="",
ylim=ylim,
xlab="Z",
ylab="Derivative",
type="l",
lwd=2)
rug(z)
#
For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npRmpi Parallel Nonparametric Kernel Smoothing Methods for Mixed Data
Types

Description

This package provides a variety of nonparametric and semiparametric kernel methods that seam-
lessly handle a mix of continuous, unordered, and ordered factor data types (unordered and ordered
factors are often referred to as ‘nominal’ and ‘ordinal’ categorical variables respectively). A vignette
containing many of the examples found in the help files accompanying the npRmpi package that is
intended to serve as a gentle introduction to this package can be accessed via vignette("npRmpi",
package="npRmpi").

For a listing of all routines in the npRmpi package type: ‘library(help="npRmpi")’.

npRmpi 187

Bandwidth selection is a key aspect of sound nonparametric and semiparametric kernel estimation.
npRmpi is designed from the ground up to make bandwidth selection the focus of attention. To
this end, one typically begins by creating a ‘bandwidth object’ which embodies all aspects of the
method, including specific kernel functions, data names, data types, and the like. One then passes
these bandwidth objects to other functions, and those functions can grab the specifics from the band-
width object thereby removing potential inconsistencies and unnecessary repetition. Furthermore,
many functions such as plot (which automatically calls npplot) can work with the bandwidth
object directly without having to do the subsequent companion function evaluation.

As of npRmpi version 0.20-0, we allow the user to combine these steps. When using npRmpi ver-
sions 0.20-0 and higher, if the first step (bandwidth selection) is not performed explicitly then the
second step will automatically call the omitted first step bandwidth selector using defaults unless
otherwise specified, and the bandwidth object could then be retrieved retroactively if so desired
via objectname$bws. Furthermore, options for bandwidth selection will be passed directly to the
bandwidth selector function. Note that the combined approach would not be a wise choice for cer-
tain applications such as when bootstrapping (as it would involve unnecessary computation since
the bandwidths would properly be those for the original sample and not the bootstrap resamples) or
when conducting quantile regression (as it would involve unnecessary computation when different
quantiles are computed from the same conditional cumulative distribution estimate).

There are two ways in which you can interact with functions in npRmpi, either i) using data frames,
or ii) using a formula interface, where appropriate.

To some, it may be natural to use the data frame interface. The R data.frame function preserves
a variable’s type once it has been cast (unlike cbind, which we avoid for this reason). If you find
this most natural for your project, you first create a data frame casting data according to their type
(i.e., one of continuous (default, numeric), factor, ordered). Then you would simply pass this
data frame to the appropriate npRmpi function, for example npudensbw(dat=data).

To others, however, it may be natural to use the formula interface that is used for the regression
examples, among others. For nonparametric regression functions such as npreg, you would proceed
as you would using lm (e.g., bw <- npregbw(y~factor(x1)+x2)) except that you would of course
not need to specify, e.g., polynomials in variables, interaction terms, or create a number of dummy
variables for a factor. Every function in npRmpi supports both interfaces, where appropriate.

Note that if your factor is in fact a character string such as, say, X being either "MALE" or "FEMALE",
npRmpi will handle this directly, i.e., there is no need to map the string values into unique integers
such as (0,1). Once the user casts a variable as a particular data type (i.e., factor, ordered, or
continuous (default, numeric)), all subsequent methods automatically detect the type and use the
appropriate kernel function and method where appropriate.

All estimation methods are fully multivariate, i.e., there are no limitations on the number of variables
one can model (or number of observations for that matter). Execution time for most routines is,
however, exponentially increasing in the number of observations and increases with the number of
variables involved.

Nonparametric methods include unconditional density (distribution), conditional density (distri-
bution), regression, mode, and quantile estimators along with gradients where appropriate, while
semiparametric methods include single index, partially linear, and smooth (i.e., varying) coefficient
models.

A number of tests are included such as consistent specification tests for parametric regression and
quantile regression models along with tests of significance for nonparametric regression.

188 npRmpi

A variety of bootstrap methods for computing standard errors, nonparametric confidence bounds,
and bias-corrected bounds are implemented.

A variety of bandwidth methods are implemented including fixed, nearest-neighbor, and adaptive
nearest-neighbor.

A variety of data-driven methods of bandwidth selection are implemented, while the user can spec-
ify their own bandwidths should they so choose (either a raw bandwidth or scaling factor).

A flexible plotting utility, npplot (which is automatically invoked by plot) , facilitates graphing of
multivariate objects. An example for creating postscript graphs using the npplot utility and pulling
this into a LaTeX document is provided.

The function npksum allows users to create or implement their own kernel estimators or tests should
they so desire.

The underlying functions are written in C for computational efficiency. Despite this, due to their
nature, data-driven bandwidth selection methods involving multivariate numerical search can be
time-consuming, particularly for large datasets. A version of this package using the Rmpi wrapper
is under development that allows one to deploy this software in a clustered computing environment
to facilitate computation involving large datasets.

To cite the npRmpi package, type citation("npRmpi") from within R for details.

Details

The kernel methods in npRmpi employ the so-called ‘generalized product kernels’ found in Hall,
Racine, and Li (2004), Li, Lin, and Racine (2013), Li, Ouyang, and Racine (2013), Li and Racine
(2003), Li and Racine (2004), Li and Racine (2007), Li and Racine (2010), Ouyang, Li, and Racine
(2006), and Racine and Li (2004), among others. For details on a particular method, kindly refer to
the original references listed above.

We briefly describe the particulars of various univariate kernels used to generate the generalized
product kernels that underlie the kernel estimators implemented in the npRmpi package. In a nut-
shell, the generalized kernel functions that underlie the kernel estimators in npRmpi are formed by
taking the product of univariate kernels such as those listed below. When you cast your data as a
particular type (continuous, factor, or ordered factor) in a data frame or formula, the routines will
automatically recognize the type of variable being modelled and use the appropriate kernel type for
each variable in the resulting estimator.

Second Order Gaussian (x is continuous) k(z) = exp(−z2/2)/
√
2π where z = (xi−x)/h, and

h > 0.

Second Order Truncated Gaussian (x is continuous) k(z) = (exp(−z2/2)−exp(−b2/2))/(erf(b/
√
2)
√
2π−

2b exp(−b2/2)) where z = (xi − x)/h, b > 0, |z| ≤ b and h > 0.
See nptgauss for details on modifying b.

Second Order Epanechnikov (x is continuous) k(z) = 3
(
1− z2/5

)
/(4

√
5) if z2 < 5, 0 other-

wise, where z = (xi − x)/h, and h > 0.

Uniform (x is continuous) k(z) = 1/2 if |z| < 1, 0 otherwise, where z = (xi − x)/h, and h > 0.

Aitchison and Aitken (x is a (discrete) factor) l(xi, x, λ) = 1 − λ if xi = x, and λ/(c − 1) if
xi ̸= x, where c is the number of (discrete) outcomes assumed by the factor x.
Note that λ must lie between 0 and (c− 1)/c.

npRmpi 189

Wang and van Ryzin (x is a (discrete) ordered factor) l(xi, x, λ) = 1 − λ if |xi − x| = 0, and
((1− λ)/2)λ|xi−x| if |xi − x| ≥ 1.
Note that λ must lie between 0 and 1.

Li and Racine (x is a (discrete) factor) l(xi, x, λ) = 1 if xi = x, and λ if xi ̸= x.
Note that λ must lie between 0 and 1.

Li and Racine Normalised for Unconditional Objects (x is a (discrete) factor) l(xi, x, λ) = 1/(1+
(c− 1)λ) if xi = x, and λ/(1 + (c− 1)λ) if xi ̸= x.
Note that λ must lie between 0 and 1.

Li and Racine (x is a (discrete) ordered factor) l(xi, x, λ) = 1 if |xi − x| = 0, and λ|xi−x| if
|xi − x| ≥ 1.
Note that λ must lie between 0 and 1.

Li and Racine Normalised for Unconditional Objects (x is a (discrete) ordered factor) l(xi, x, λ) =
(1− λ)/(1 + λ) if |xi − x| = 0, and (1− λ)/(1 + λ)λ|xi−x| if |xi − x| ≥ 1.
Note that λ must lie between 0 and 1.

So, if you had two variables, xi1 and xi2, and xi1 was continuous while xi2 was, say, binary
(0/1), and you created a data frame of the form X <- data.frame(x1,factor(x2)), then the kernel
function used by npRmpi would be K(·) = k(·)× l(·) where the particular kernel functions k(·) and
l(·) would be, say, the second order Gaussian (ckertype="gaussian") and Aitchison and Aitken
(ukertype="aitchisonaitken") kernels by default, respectively.

Note that higher order continuous kernels (i.e., fourth, sixth, and eighth order) are derived from the
second order kernels given above (see Li and Racine (2007) for details).

For particulars on any given method, kindly see the references listed for the method in question.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

Maintainer: Jeffrey S. Racine <racinej@mcmaster.ca>

We are grateful to John Fox and Achim Zeleis for their valuable input and encouragement. We
would like to gratefully acknowledge support from the Natural Sciences and Engineering Research
Council of Canada (NSERC:www.nserc.ca), the Social Sciences and Humanities Research Council
of Canada (SSHRC:www.sshrc.ca), and the Shared Hierarchical Academic Research Computing
Network (SHARCNET:www.sharcnet.ca)

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Hall, P. and J.S. Racine and Q. Li (2004), “Cross-validation and the estimation of conditional prob-
ability densities,” Journal of the American Statistical Association, 99, 1015-1026.

Li, Q. and J. Lin and J.S. Racine (2013), “Optimal bandwidth selection for nonparametric condi-
tional distribution and quantile functions”, Journal of Business and Economic Statistics, 31, 57-65.

Li, Q. and D. Ouyang and J.S. Racine (2013), “Categorical Semiparametric Varying-Coefficient
Models,” Journal of Applied Econometrics, 28, 551-589.

190 npRmpi.start

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data,” Journal of Multivariate Analysis, 86, 266-292.

Li, Q. and J.S. Racine (2004), “Cross-validated local linear nonparametric regression,” Statistica
Sinica, 14, 485-512.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2010), “Smooth varying-coefficient estimation and inference for qualitative
and quantitative data,” Econometric Theory, 26, 1-31.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data,” Journal of Nonparametric Statistics, 18, 69-100.

Racine, J.S. and Q. Li (2004), “Nonparametric estimation of regression functions with both cate-
gorical and continuous data,” Journal of Econometrics, 119, 99-130.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation: Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

npRmpi.start Start/Stop Helpers for Interactive npRmpi Sessions

Description

Convenience helpers for interactive use of npRmpi. These functions provide a recommended,
robust workflow: initialize a slave pool once and reuse it across multiple examples within the same
R session.

Usage

npRmpi.start(..., nslaves = 1, comm = 1)

npRmpi.stop(force = FALSE, dellog = TRUE, comm = 1)

npRmpi.session.info(comm = 1)

Arguments

... Additional arguments passed to mpi.spawn.Rslaves().

nslaves Number of slaves to spawn for interactive execution.

comm Communicator used for the master+slaves pool (defaults to 1).

force Logical; when TRUE, force a hard shutdown of slave daemons.

dellog Logical; when TRUE, remove slave log files (if applicable).

npscoef 191

Details

npRmpi.start() ensures that a slave pool exists (spawning if needed) and runs np.mpi.initialize()
on all ranks via mpi.bcast.cmd().

npRmpi.stop() is idempotent: if no slaves are running it returns silently. When options(npRmpi.reuse.slaves=TRUE)
(default on some systems), force=FALSE performs a soft-close to keep daemons alive for reuse
within the session; use force=TRUE to actually shut down the slaves.

npRmpi.session.info() prints and returns a list of useful version, platform, and MPI/communicator
details to aid reproducibility and bug reports.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
Start once, run many examples, then stop.
npRmpi.start(nslaves=1)

... run np* calls here ...

Soft-stop (may keep daemons alive for reuse)
npRmpi.stop()

Hard-stop (actually shuts down slaves)
npRmpi.stop(force=TRUE)

End(Not run)

npscoef Smooth Coefficient Kernel Regression

Description

npscoef computes a kernel regression estimate of a one (1) dimensional dependent variable on
p-variate explanatory data, using the model Yi = W ′

iγ(Zi) + ui where W ′
i = (1, X ′

i), given a
set of evaluation points, training points (consisting of explanatory data and dependent data), and a
bandwidth specification. A bandwidth specification can be a scbandwidth object, or a bandwidth
vector, bandwidth type and kernel type.

Usage

npscoef(bws, ...)

S3 method for class 'formula'
npscoef(bws, data = NULL, newdata = NULL, y.eval =
FALSE, ...)

S3 method for class 'call'
npscoef(bws, ...)

192 npscoef

Default S3 method:
npscoef(bws, txdat, tydat, tzdat, ...)

S3 method for class 'scbandwidth'
npscoef(bws,

txdat = stop("training data 'txdat' missing"),
tydat = stop("training data 'tydat' missing"),
tzdat = NULL,
exdat,
eydat,
ezdat,
residuals = FALSE,
errors = TRUE,
iterate = TRUE,
maxiter = 100,
tol = .Machine$double.eps,
leave.one.out = FALSE,
betas = FALSE,
...)

Arguments

bws a bandwidth specification. This can be set as a scbandwidth object returned
from an invocation of npscoefbw, or as a vector of bandwidths, with each ele-
ment i corresponding to the bandwidth for column i in tzdat. If specified as a
vector additional arguments will need to be supplied as necessary to specify the
bandwidth type, kernel types, training data, and so on.

... additional arguments supplied to specify the regression type, bandwidth type,
kernel types, selection methods, and so on. To do this, you may specify any of
bwscaling, bwtype (one of fixed, generalized_nn, adaptive_nn), ckertype,
ckerorder, as described in npscoefbw.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npscoefbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

y.eval If newdata contains dependent data and y.eval = TRUE, npRmpi will compute
goodness of fit statistics on these data and return them. Defaults to FALSE.

txdat a p-variate data frame of explanatory data (training data), which, by default,
populates the columns 2 through p + 1 of W in the model equation, and in the
absence of zdat, will also correspond to Z from the model equation. Defaults
to the training data used to compute the bandwidth object.

tydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of txdat. Defaults to the training
data used to compute the bandwidth object.

npscoef 193

tzdat an optionally specified q-variate data frame of explanatory data (training data),
which corresponds to Z in the model equation. Defaults to the training data used
to compute the bandwidth object.

exdat a p-variate data frame of points on which the regression will be estimated (eval-
uation data).By default, evaluation takes place on the data provided by txdat.

eydat a one (1) dimensional numeric or integer vector of the true values of the depen-
dent variable. Optional, and used only to calculate the true errors.

ezdat an optionally specified q-variate data frame of points on which the regression
will be estimated (evaluation data), which corresponds to Z in the model equa-
tion. Defaults to be the same as txdat.

errors a logical value indicating whether or not asymptotic standard errors should be
computed and returned in the resulting smoothcoefficient object. Defaults to
TRUE.

residuals a logical value indicating that you want residuals computed and returned in the
resulting smoothcoefficient object. Defaults to FALSE.

iterate a logical value indicating whether or not backfitted estimates should be iterated
for self-consistency. Defaults to TRUE.

maxiter integer specifying the maximum number of times to iterate the backfitted esti-
mates while attempting to make the backfitted estimates converge to the desired
tolerance. Defaults to 100.

tol desired tolerance on the relative convergence of backfit estimates. Defaults to
.Machine$double.eps.

leave.one.out a logical value to specify whether or not to compute the leave one out estimates.
Will not work if e[xyz]dat is specified. Defaults to FALSE.

betas a logical value indicating whether or not estimates of the components of γ should
be returned in the smoothcoefficient object along with the regression esti-
mates. Defaults to FALSE.

Value

npscoef returns a smoothcoefficient object. The generic functions fitted, residuals, coef,
se, and predict, extract (or generate) estimated values, residuals, coefficients, bootstrapped stan-
dard errors on estimates, and predictions, respectively, from the returned object. Furthermore, the
functions summary and plot support objects of this type. The returned object has the following
components:

eval evaluation points

mean estimation of the regression function (conditional mean) at the evaluation points

merr if errors = TRUE, standard errors of the regression estimates

beta if betas = TRUE, estimates of the coefficients γ at the evaluation points

resid if residuals = TRUE, in-sample or out-of-sample residuals where appropriate
(or possible)

R2 coefficient of determination (Doksum and Samarov (1995))

MSE mean squared error

194 npscoef

MAE mean absolute error

MAPE mean absolute percentage error

CORR absolute value of Pearson’s correlation coefficient

SIGN fraction of observations where fitted and observed values agree in sign

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Support for backfitted bandwidths is experimental and is limited in functionality. The code does not
support asymptotic standard errors or out of sample estimates with backfitting.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Cai Z. (2007), “Trending time-varying coefficient time series models with serially correlated errors,”
Journal of Econometrics, 136, 163-188.

Doksum, K. and A. Samarov (1995), “Nonparametric estimation of global functionals and a mea-
sure of the explanatory power of covariates in regression,” The Annals of Statistics, 23 1443-1473.

Hastie, T. and R. Tibshirani (1993), “Varying-coefficient models,” Journal of the Royal Statistical
Society, B 55, 757-796.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2010), “Smooth varying-coefficient estimation and inference for qualitative
and quantitative data,” Econometric Theory, 26, 1-31.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Li, Q. and D. Ouyang and J.S. Racine (2013), “Categorical semiparametric varying-coefficient mod-
els,” Journal of Applied Econometrics, 28, 551-589.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

bw.nrd, bw.SJ, hist, npudens, npudist, npudensbw, npscoefbw

npscoef 195

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

n <- 500

x <- runif(n)
z <- runif(n, min=-2, max=2)
y <- x*exp(z)*(1.0+rnorm(n,sd = 0.2))
mydat <- data.frame(x,y,z)
rm(x,y,z)

mpi.bcast.Robj2slave(mydat)

A smooth coefficient model example

mpi.bcast.cmd(bw <- npscoefbw(y~x|z,data=mydat),
caller.execute=TRUE)

summary(bw)

mpi.bcast.cmd(model <- npscoef(bws=bw, gradients=TRUE),
caller.execute=TRUE)

summary(model)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by

196 npscoefbw

setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npscoefbw Smooth Coefficient Kernel Regression Bandwidth Selection

Description

npscoefbw computes a bandwidth object for a smooth coefficient kernel regression estimate of
a one (1) dimensional dependent variable on p + q-variate explanatory data, using the model
Yi = W ′

iγ(Zi) + ui where W ′
i = (1, X ′

i) given training points (consisting of explanatory data
and dependent data), and a bandwidth specification, which can be a rbandwidth object, or a band-
width vector, bandwidth type and kernel type.

Usage

npscoefbw(...)

S3 method for class 'formula'
npscoefbw(formula, data, subset, na.action, call, ...)

S3 method for class 'NULL'
npscoefbw(xdat = stop("invoked without data 'xdat'"),

ydat = stop("invoked without data 'ydat'"),
zdat = NULL,
bws,
...)

Default S3 method:
npscoefbw(xdat = stop("invoked without data 'xdat'"),

ydat = stop("invoked without data 'ydat'"),
zdat = NULL,
bws,
nmulti,
random.seed,
cv.iterate,
cv.num.iterations,

npscoefbw 197

backfit.iterate,
backfit.maxiter,
backfit.tol,
bandwidth.compute = TRUE,
bwmethod,
bwscaling,
bwtype,
ckertype,
ckerorder,
ukertype,
okertype,
optim.method,
optim.maxattempts,
optim.reltol,
optim.abstol,
optim.maxit,
...)

S3 method for class 'scbandwidth'
npscoefbw(xdat = stop("invoked without data 'xdat'"),

ydat = stop("invoked without data 'ydat'"),
zdat = NULL,
bws,
nmulti,
random.seed = 42,
cv.iterate = FALSE,
cv.num.iterations = 1,
backfit.iterate = FALSE,
backfit.maxiter = 100,
backfit.tol = .Machine$double.eps,
bandwidth.compute = TRUE,
optim.method = c("Nelder-Mead", "BFGS", "CG"),
optim.maxattempts = 10,
optim.reltol = sqrt(.Machine$double.eps),
optim.abstol = .Machine$double.eps,
optim.maxit = 500,
...)

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

198 npscoefbw

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

xdat a p-variate data frame of explanatory data (training data), which, by default,
populates the columns 2 through p + 1 of W in the model equation, and in the
absence of zdat, will also correspond to Z from the model equation.

ydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of xdat.

zdat an optionally specified q-variate data frame of explanatory data (training data),
which corresponds to Z in the model equation. Defaults to be the same as xdat.

bws a bandwidth specification. This can be set as a scbandwidth object returned
from a previous invocation, or as a vector of bandwidths, with each element i
corresponding to the bandwidth for column i in xdat. In either case, the band-
width supplied will serve as a starting point in the numerical search for optimal
bandwidths. If specified as a vector, then additional arguments will need to
be supplied as necessary to specify the bandwidth type, kernel types, selection
methods, and so on. This can be left unset.

... additional arguments supplied to specify the regression type, bandwidth type,
kernel types, selection methods, and so on, detailed below.

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a scbandwidth object will be returned with bandwidths
set to those specified in bws. Defaults to TRUE.

bwmethod which method was used to select bandwidths. cv.ls specifies least-squares
cross-validation, which is all that is currently supported. Defaults to cv.ls.

bwscaling a logical value that when set to TRUE the supplied bandwidths are interpreted as
‘scale factors’ (cj), otherwise when the value is FALSE they are interpreted as
‘raw bandwidths’ (hj for continuous data types, λj for discrete data types). For
continuous data types, cj and hj are related by the formula hj = cjσjn

−1/(2P+l),
where σj is an adaptive measure of spread of continuous variable j defined as
min(standard deviation, mean absolute deviation, interquartile range/1.349), n
the number of observations, P the order of the kernel, and l the number of con-
tinuous variables. For discrete data types, cj and hj are related by the formula
hj = cjn

−2/(2P+l), where here j denotes discrete variable j. Defaults to FALSE.

bwtype character string used for the continuous variable bandwidth type, specifying the
type of bandwidth provided. Defaults to fixed. Option summary:
fixed: fixed bandwidths or scale factors
generalized_nn: generalized nearest neighbors
adaptive_nn: adaptive nearest neighbors

ckertype character string used to specify the continuous kernel type. Can be set as gaussian,
epanechnikov, or uniform. Defaults to gaussian.

npscoefbw 199

ckerorder numeric value specifying kernel order (one of (2,4,6,8)). Kernel order spec-
ified along with a uniform continuous kernel type will be ignored. Defaults to
2.

ukertype character string used to specify the unordered categorical kernel type. Can be
set as aitchisonaitken or liracine. Defaults to aitchisonaitken.

okertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine. Defaults to liracine.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points. Defaults to min(5,ncol(xdat)).

random.seed an integer used to seed R’s random number generator. This ensures replicability
of the numerical search. Defaults to 42.

optim.method method used by optim for minimization of the objective function. See ?optim
for references. Defaults to "Nelder-Mead".
the default method is an implementation of that of Nelder and Mead (1965),
that uses only function values and is robust but relatively slow. It will work
reasonably well for non-differentiable functions.
method "BFGS" is a quasi-Newton method (also known as a variable metric algo-
rithm), specifically that published simultaneously in 1970 by Broyden, Fletcher,
Goldfarb and Shanno. This uses function values and gradients to build up a
picture of the surface to be optimized.
method "CG" is a conjugate gradients method based on that by Fletcher and
Reeves (1964) (but with the option of Polak-Ribiere or Beale-Sorenson up-
dates). Conjugate gradient methods will generally be more fragile than the
BFGS method, but as they do not store a matrix they may be successful in much
larger optimization problems.

optim.maxattempts

maximum number of attempts taken trying to achieve successful convergence in
optim. Defaults to 100.

optim.abstol the absolute convergence tolerance used by optim. Only useful for non-negative
functions, as a tolerance for reaching zero. Defaults to .Machine$double.eps.

optim.reltol relative convergence tolerance used by optim. The algorithm stops if it is unable
to reduce the value by a factor of ’reltol * (abs(val) + reltol)’ at a step. Defaults
to sqrt(.Machine$double.eps), typically about 1e-8.

optim.maxit maximum number of iterations used by optim. Defaults to 500.

cv.iterate boolean value specifying whether or not to perform iterative, cross-validated
backfitting on the data. See details for limitations of the backfitting procedure.
Defaults to FALSE.

cv.num.iterations

integer specifying the number of times to iterate the backfitting process over all
covariates. Defaults to 1.

backfit.iterate

boolean value specifying whether or not to iterate evaluations of the smooth
coefficient estimator, for extra accuracy, during the cross-validated backfitting
procedure. Defaults to FALSE.

200 npscoefbw

backfit.maxiter

integer specifying the maximum number of times to iterate the evaluation of
the smooth coefficient estimator in the attempt to obtain the desired accuracy.
Defaults to 100.

backfit.tol tolerance to determine convergence of iterated evaluations of the smooth coeffi-
cient estimator. Defaults to .Machine$double.eps.

Details

npscoefbw implements a variety of methods for semiparametric regression on multivariate (p+ q-
variate) explanatory data defined over a set of possibly continuous data. The approach is based on
Li and Racine (2003) who employ ‘generalized product kernels’ that admit a mix of continuous and
discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

npscoefbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the xdat, ydat, and zdat parameters. Use of these two interfaces is
mutually exclusive.

Data contained in the data frame xdat may be continuous and in zdat may be of mixed type. Data
can be entered in an arbitrary order and data types will be detected automatically by the routine (see
npRmpi for details).

Data for which bandwidths are to be estimated may be specified symbolically. A typical description
has the form dependent data ~ parametric explanatory data | nonparametric explanatory
data, where dependent data is a univariate response, and parametric explanatory data and
nonparametric explanatory data are both series of variables specified by name, separated by
the separation character ’+’. For example, y1 ~ x1 + x2 | z1 specifies that the bandwidth object
for the smooth coefficient model with response y1, linear parametric regressors x1 and x2, and
nonparametric regressor (that is, the slope-changing variable) z1 is to be estimated. See below for
further examples. In the case where the nonparametric (slope-changing) variable is not specified, it
is assumed to be the same as the parametric variable.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

Value

if bwtype is set to fixed, an object containing bandwidths (or scale factors if bwscaling = TRUE)
is returned. If it is set to generalized_nn or adaptive_nn, then instead the kth nearest neighbors
are returned for the continuous variables while the discrete kernel bandwidths are returned for the
discrete variables. Bandwidths are stored in a vector under the component name bw. Backfitted
bandwidths are stored under the component name bw.fitted.

The functions predict, summary, and plot support objects of this class.

npscoefbw 201

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due
to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting optim.reltol=.1 and
conduct multistarting (the default is to restart min(5,ncol(zdat)) times). Once the procedure termi-
nates, you can restart search with default tolerances using those bandwidths obtained from the less
rigorous search (i.e., set bws=bw on subsequent calls to this routine where bw is the initial bandwidth
object). A version of this package using the Rmpi wrapper is under development that allows one to
deploy this software in a clustered computing environment to facilitate computation involving large
datasets.

Support for backfitted bandwidths is experimental and is limited in functionality. The code does not
support asymptotic standard errors or out of sample estimates with backfitting.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Cai Z. (2007), “Trending time-varying coefficient time series models with serially correlated errors,”
Journal of Econometrics, 136, 163-188.

Hastie, T. and R. Tibshirani (1993), “Varying-coefficient models,” Journal of the Royal Statistical
Society, B 55, 757-796.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2010), “Smooth varying-coefficient estimation and inference for qualitative
and quantitative data,” Econometric Theory, 26, 1-31.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Li, Q. and D. Ouyang and J.S. Racine (2013), “Categorical semiparametric varying-coefficient mod-
els,” Journal of Applied Econometrics, 28, 551-589.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

npregbw, npreg

202 npscoefbw

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

n <- 500

x <- runif(n)
z <- runif(n, min=-2, max=2)
y <- x*exp(z)*(1.0+rnorm(n,sd = 0.2))
mydat <- data.frame(x,y,z)
rm(x,y,z)

mpi.bcast.Robj2slave(mydat)

A smooth coefficient model example

mpi.bcast.cmd(bw <- npscoefbw(y~x|z,data=mydat),
caller.execute=TRUE)

summary(bw)

mpi.bcast.cmd(model <- npscoef(bws=bw, gradients=TRUE),
caller.execute=TRUE)

summary(model)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by

npsdeptest 203

setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npsdeptest Kernel Consistent Serial Dependence Test for Univariate Nonlinear
Processes

Description

npsdeptest implements the consistent metric entropy test of nonlinear serial dependence as de-
scribed in Granger, Maasoumi and Racine (2004).

Usage

npsdeptest(data = NULL,
lag.num = 1,
method = c("integration","summation"),
bootstrap = TRUE,
boot.num = 399,
random.seed = 42)

Arguments

data a vector containing the variable that can be of type numeric or ts.

lag.num an integer value specifying the maximum number of lags to use. Defaults to 1.

method a character string used to specify whether to compute the integral version or the
summation version of the statistic. Can be set as integration or summation
(see below for details). Defaults to integration.

bootstrap a logical value which specifies whether to conduct the bootstrap test or not. If
set to FALSE, only the statistic will be computed. Defaults to TRUE.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

204 npsdeptest

Details

npsdeptest computes the nonparametric metric entropy (normalized Hellinger of Granger, Maa-
soumi and Racine (2004)) for testing for nonlinear serial dependence, D[f(yt, ŷt−k), f(yt) ×
f(ŷt−k)]. Default bandwidths are of the Kullback-Leibler variety obtained via likelihood cross-
validation.

The test may be applied to a raw data series or to residuals of user estimated models.

The summation version of this statistic may be numerically unstable when data is sparse (the sum-
mation version involves division of densities while the integration version involves differences).
Warning messages are produced should this occur (‘integration recommended’) and should be
heeded.

Value

npsdeptest returns an object of type deptest with the following components

Srho the statistic vector Srho

Srho.cumulant the cumulant statistic vector Srho.cumulant
Srho.bootstrap.mat

contains the bootstrap replications of Srho
Srho.cumulant.bootstrap.mat

contains the bootstrap replications of Srho.cumulant

P the P-value vector of the Srho statistic vector

P.cumulant the P-value vector of the cumulant Srho statistic vector

bootstrap a logical value indicating whether bootstrapping was performed

boot.num number of bootstrap replications

lag.num the number of lags

bw.y the numeric vector of bandwidths for data marginal density at lag num.lag

bw.y.lag the numeric vector of bandwidths for lagged data marginal density at lag num.lag

bw.joint the numeric matrix of bandwidths for data and lagged data joint density at lag
num.lag

summary supports object of type deptest.

Usage Issues

The integration version of the statistic uses multidimensional numerical methods from the cu-
bature package. See adaptIntegrate for details. The integration version of the statistic will be
substantially slower than the summation version, however, it will likely be both more accurate and
powerful.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

npsdeptest 205

References

Granger, C.W. and E. Maasoumi and J.S. Racine (2004), “A dependence metric for possibly non-
linear processes”, Journal of Time Series Analysis, 25, 649-669.

See Also

npdeptest,npdeneqtest,npsymtest,npunitest

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

ar.series <- function(phi,epsilon) {
n <- length(epsilon)
series <- numeric(n)
series[1] <- epsilon[1]/(1-phi)
for(i in 2:n) {
series[i] <- phi*series[i-1] + epsilon[i]

}
return(series)

}

n <- 100

yt <- ar.series(0.95,rnorm(n))

mpi.bcast.Robj2slave(yt)

mpi.bcast.cmd(output <- npsdeptest(yt,
lag.num=2,
boot.num=29,
method="summation"),

caller.execute=TRUE)

summary(output)

206 npseed

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npseed Set Random Seed

Description

npseed is a function which sets the random seed in the npRmpi C backend, resetting the random
number generator.

Usage

npseed(seed)

Arguments

seed an integer seed for the random number generator.

Details

npseed provides an interface for setting the random seed (and resetting the random number genera-
tor) used by npRmpi. The random number generator is used during the bandwidth search procedure
to set the search starting point, and in subsequent searches when using multistarting, to avoid being
trapped in local minima if the objective function is not globally concave.

Calling npseed will only affect the numerical search if it is performed by the C backend. The
affected functions include: npudensbw, npcdensbw, npregbw, npplregbw, npqreg, npcmstest (via
npregbw), npqcmstest (via npregbw), npsigtest (via npregbw).

npseed 207

Value

None.

Note

This method currently only supports objects from the npRmpi library.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

See Also

set.seed

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(npseed(712),
caller.execute=TRUE)

x <- runif(10)
y <- x + rnorm(10, sd = 0.1)
mydat <- data.frame(x,y)
rm(x,y)

mpi.bcast.Robj2slave(mydat)

mpi.bcast.cmd(bw <- npregbw(y~x, data=mydat),
caller.execute=TRUE)

208 npsigtest

summary(bw)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npsigtest Kernel Regression Significance Test with Mixed Data Types

Description

npsigtest implements a consistent test of significance of an explanatory variable(s) in a nonpara-
metric regression setting that is analogous to a simple t-test (F -test) in a parametric regression
setting. The test is based on Racine, Hart, and Li (2006) and Racine (1997).

Usage

npsigtest(bws, ...)

S3 method for class 'formula'
npsigtest(bws, data = NULL, ...)

S3 method for class 'call'
npsigtest(bws, ...)

S3 method for class 'npregression'
npsigtest(bws, ...)

Default S3 method:

npsigtest 209

npsigtest(bws, xdat, ydat, ...)

S3 method for class 'rbandwidth'
npsigtest(bws,

xdat = stop("data xdat missing"),
ydat = stop("data ydat missing"),
boot.num = 399,
boot.method = c("iid","wild","wild-rademacher","pairwise"),
boot.type = c("I","II"),
pivot=TRUE,
joint=FALSE,
index = seq(1,ncol(xdat)),
random.seed = 42,
...)

Arguments

bws a bandwidth specification. This can be set as a rbandwidth object returned from
a previous invocation, or as a vector of bandwidths, with each element i corre-
sponding to the bandwidth for column i in xdat. In either case, the bandwidth
supplied will serve as a starting point in the numerical search for optimal band-
widths when using boot.type="II". If specified as a vector, then additional
arguments will need to be supplied as necessary to specify the bandwidth type,
kernel types, selection methods, and so on.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npregbw was called.

xdat a p-variate data frame of explanatory data (training data) used to calculate the
regression estimators.

ydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of xdat.

boot.method a character string used to specify the bootstrap method for determining the null
distribution. pairwise resamples pairwise, while the remaining methods use
a residual bootstrap procedure. iid will generate independent identically dis-
tributed draws. wild will use a wild bootstrap. wild-rademacher will use a
wild bootstrap with Rademacher variables. Defaults to iid.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

boot.type a character string specifying whether to use a ‘Bootstrap I’ or ‘Bootstrap II’
method (see Racine, Hart, and Li (2006) for details). The ‘Bootstrap II’ method
re-runs cross-validation for each bootstrap replication and uses the new cross-
validated bandwidth for variable i and the original ones for the remaining vari-
ables. Defaults to boot.type="I".

pivot a logical value which specifies whether to bootstrap a pivotal statistic or not
(pivoting is achieved by dividing gradient estimates by their asymptotic standard

210 npsigtest

errors). Defaults to TRUE.

joint a logical value which specifies whether to conduct a joint test or individual test.
This is to be used in conjunction with index where index contains two or more
integers corresponding to the variables being tested, where the integers corre-
spond to the variables in the order in which they appear among the set of ex-
planatory variables in the function call to npreg/npregbw. Defaults to FALSE.

index a vector of indices for the columns of xdat for which the test of significance is
to be conducted. Defaults to (1,2,. . . ,p) where p is the number of columns in
xdat.

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

... additional arguments supplied to specify the bandwidth type, kernel types, se-
lection methods, and so on, detailed below.

Details

npsigtest implements a variety of methods for computing the null distribution of the test statistic
and allows the user to investigate the impact of a variety of default settings including whether or not
to pivot the statistic (pivot), whether pairwise or residual resampling is to be used (boot.method),
and whether or not to recompute the bandwidths for the variables being tested (boot.type), among
others.

Defaults are chosen so as to provide reasonable behaviour in a broad range of settings and this
involves a trade-off between computational expense and finite-sample performance. However, the
default boot.type="I", though computationally expedient, can deliver a test that can be slightly
over-sized in small sample settings (e.g. at the 5% level the test might reject 8% of the time for sam-
ples of size n = 100 for some data generating processes). If the default setting (boot.type="I")
delivers a P-value that is in the neighborhood (i.e. slightly smaller) of any classical level (e.g. 0.05)
and you only have a modest amount of data, it might be prudent to re-run the test using the more
computationally intensive boot.type="II" setting to confirm the original result. Note also that
boot.method="pairwise" is not recommended for the multivariate local linear estimator due to
substantial size distortions that may arise in certain cases.

Value

npsigtest returns an object of type sigtest. summary supports sigtest objects. It has the
following components:

In the vector of statistics In

P the vector of P-values for each statistic in In

In.bootstrap contains a matrix of the bootstrap replications of the vector In, each column cor-
responding to replications associated with explanatory variables in xdat indexed
by index (e.g., if you selected index = c(1,4) then In.bootstrap will have two
columns, the first being the bootstrap replications of In associated with variable
1, the second with variable 4).

npsigtest 211

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: bootstrap methods are, by their nature, computationally intensive. This can be frustrating
for users possessing large datasets. For exploratory purposes, you may wish to override the default
number of bootstrap replications, say, setting them to boot.num=99. A version of this package
using the Rmpi wrapper is under development that allows one to deploy this software in a clustered
computing environment to facilitate computation involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Racine, J.S., J. Hart, and Q. Li (2006), “Testing the significance of categorical predictor variables
in nonparametric regression models,” Econometric Reviews, 25, 523-544.

Racine, J.S. (1997), “Consistent significance testing for nonparametric regression,” Journal of Busi-
ness and Economic Statistics 15, 369-379.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

Significance testing with z irrelevant

212 npsymtest

n <- 250

z <- factor(rbinom(n,1,.5))
x1 <- rnorm(n)
x2 <- runif(n,-2,2)
y <- x1 + x2 + rnorm(n)
mydat <- data.frame(z,x1,x2,y)
rm(z,x1,x2,y)

mpi.bcast.Robj2slave(mydat)

mpi.bcast.cmd(model <- npreg(y~z+x1+x2,
regtype="ll",
bwmethod="cv.aic",
data=mydat),

caller.execute=TRUE)

mpi.bcast.cmd(output <- npsigtest(model,boot.num=29),
caller.execute=TRUE)

summary(output)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npsymtest Kernel Consistent Density Asymmetry Test with Mixed Data Types

npsymtest 213

Description

npsymtest implements the consistent metric entropy test of asymmetry as described in Maasoumi
and Racine (2009).

Usage

npsymtest(data = NULL,
method = c("integration","summation"),
boot.num = 399,
bw = NULL,
boot.method = c("iid", "geom"),
random.seed = 42,
...)

Arguments

data a vector containing the variable.

method a character string used to specify whether to compute the integral version or the
summation version of the statistic. Can be set as integration or summation
(see below for details). Defaults to integration.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

bw a numeric (scalar) bandwidth. Defaults to plug-in (see details below).

boot.method a character string used to specify the bootstrap method. Can be set as iid or
geom (see below for details). Defaults to iid.

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

... additional arguments supplied to specify the bandwidth type, kernel types, and
so on. This is used since we specify bw as a numeric scalar and not a bandwidth
object, and is of interest if you do not desire the default behaviours. To change
the defaults, you may specify any of bwscaling, bwtype, ckertype, ckerorder,
ukertype, okertype.

Details

npsymtest computes the nonparametric metric entropy (normalized Hellinger of Granger, Maa-
soumi and Racine (2004)) for testing symmetry using the densities/probabilities of the data and the
rotated data, D[f(y), f(ỹ)]. See Maasoumi and Racine (2009) for details. Default bandwidths are
of the plug-in variety (bw.SJ for continuous variables and direct plug-in for discrete variables).

For bootstrapping the null distribution of the statistic, iid conducts simple random resampling,
while geom conducts Politis and Romano’s (1994) stationary bootstrap using automatic block length
selection via the b.star function in the npRmpi package. See the boot package for details.

The summation version of this statistic may be numerically unstable when y is sparse (the summa-
tion version involves division of densities while the integration version involves differences). Warn-
ing messages are produced should this occur (‘integration recommended’) and should be heeded.

214 npsymtest

Value

npsymtest returns an object of type symtest with the following components

Srho the statistic Srho

Srho.bootstrap contains the bootstrap replications of Srho

P the P-value of the statistic

boot.num number of bootstrap replications

data.rotate the rotated data series

bw the numeric (scalar) bandwidth

summary supports object of type symtest.

Usage Issues

When using data of type factor it is crucial that the variable not be an alphabetic character string
(i.e. the factor must be integer-valued). The rotation is conducted about the median after conver-
sion to type numeric which is then converted back to type factor. Failure to do so will have
unpredictable results. See the example below for proper usage.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Granger, C.W. and E. Maasoumi and J.S. Racine (2004), “A dependence metric for possibly non-
linear processes”, Journal of Time Series Analysis, 25, 649-669.

Maasoumi, E. and J.S. Racine (2009), “A robust entropy-based test of asymmetry for discrete and
continuous processes,” Econometric Reviews, 28, 246-261.

Politis, D.N. and J.P. Romano (1994), “The stationary bootstrap,” Journal of the American Statistical
Association, 89, 1303-1313.

See Also

npdeneqtest,npdeptest,npsdeptest,npunitest

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

npsymtest 215

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

A function to create a time series

ar.series <- function(phi,epsilon) {
n <- length(epsilon)
series <- numeric(n)
series[1] <- epsilon[1]/(1-phi)
for(i in 2:n) {
series[i] <- phi*series[i-1] + epsilon[i]

}
return(series)

}

n <- 250

Stationary persistent symmetric time-series

yt <- ar.series(0.5,rnorm(n))

mpi.bcast.Robj2slave(yt)

A simple example of the test for symmetry

mpi.bcast.cmd(output <- npsymtest(yt,
boot.num=29,
boot.method="geom",
method="summation"),

caller.execute=TRUE)

summary(output)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)

216 nptgauss

npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

nptgauss Truncated Second-order Gaussian Kernels

Description

nptgauss provides an interface for setting the truncation radius of the truncated second-order Gaus-
sian kernel used by npRmpi.

Usage

nptgauss(b)

Arguments

b Truncation radius of the kernel.

Details

nptgauss allows one to set the truncation radius of the truncated Gaussian kernel used by npRmpi,
which defaults to 3. It automatically computes the constants describing the truncated gaussian
kernel for the user.

We define the truncated gaussion kernel on the interval [−b, b] as:

K =
α√
2π

(
e−z2/2 − e−b2/2

)
The constant α is computed as:

α =

[∫ b

−b

1√
2π

(
e−z2/2 − e−b2/2

)]−1

Given these definitions, the derivative kernel is simply:

K ′ = (−z)
α√
2π

e−z2/2

The CDF kernel is:
G =

α

2
erf(z/

√
2) +

1

2
− c0z

npudens 217

The convolution kernel on [−2b, 0] has the general form:

H− = a0 erf(z/2 + b)e−z2/4 + a1z + a2 erf((z + b)/
√
2)− c0

and on [0, 2b] it is:

H+ = −a0 erf(z/2− b)e−z2/4 − a1z − a2 erf((z − b)/
√
2)− c0

where a0 is determined by the normalisation condition on H, a2 is determined by considering the
value of the kernel at z = 0 and a1 is determined by the requirement that H = 0 at [−2b, 2b].

Value

No return value, called for side effects (sets kernel constants in the npRmpi C backend).

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The default kernel, a gaussian truncated at +- 3
nptgauss(b = 3.0)

End(Not run)

npudens Kernel Density Estimation with Mixed Data Types

Description

npudens computes kernel unconditional density estimates on evaluation data, given a set of training
data and a bandwidth specification (a bandwidth object or a bandwidth vector, bandwidth type, and
kernel type) using the method of Li and Racine (2003).

Usage

npudens(bws, ...)

S3 method for class 'formula'
npudens(bws, data = NULL, newdata = NULL, ...)

S3 method for class 'bandwidth'
npudens(bws,

tdat = stop("invoked without training data 'tdat'"),
edat,

218 npudens

...)

S3 method for class 'call'
npudens(bws, ...)

Default S3 method:
npudens(bws, tdat, ...)

Arguments

bws a bandwidth specification. This can be set as a bandwidth object returned from
an invocation of npudensbw, or as a p-vector of bandwidths, with an element for
each variable in the training data. If specified as a vector, then additional argu-
ments will need to be supplied as necessary to change them from the defaults to
specify the bandwidth type, kernel types, training data, and so on.

... additional arguments supplied to specify, the training data, the bandwidth type,
kernel types, and so on. This is necessary if you specify bws as a p-vector and
not a bandwidth object, and you do not desire the default behaviours. To do this,
you may specify any of bwscaling, bwtype, ckertype, ckerorder, ukertype,
okertype, as described in npudensbw.

tdat a p-variate data frame of sample realizations (training data) used to estimate the
density. Defaults to the training data used to compute the bandwidth object.

edat a p-variate data frame of density evaluation points. By default, evaluation takes
place on the data provided by tdat.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npudensbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

Usage 1: first compute the bandwidth object via npudensbw and then
compute the density:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(bw <- npudensbw(~y),caller.execute=TRUE)
mpi.bcast.cmd(fhat <- npudens(bw),caller.execute=TRUE)
npRmpi.stop()

npudens 219

Usage 2: alternatively, compute the bandwidth object indirectly:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(fhat <- npudens(~y),caller.execute=TRUE)
npRmpi.stop()

Usage 3: modify the default kernel and order:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(fhat <- npudens(~y, ckertype="epanechnikov", ckerorder=4),

caller.execute=TRUE)
npRmpi.stop()

Usage 4: use the data frame interface rather than the formula
interface:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(fhat <- npudens(tdat = y, ckertype="epanechnikov", ckerorder=4),
caller.execute=TRUE)

npRmpi.stop()

npudens implements a variety of methods for estimating multivariate density functions (p-variate)
defined over a set of possibly continuous and/or discrete (unordered, ordered) data. The approach
is based on Li and Racine (2003) who employ ‘generalized product kernels’ that admit a mix of
continuous and discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

Data contained in the data frame tdat (and also edat) may be a mix of continuous (default), un-

220 npudens

ordered discrete (to be specified in the data frame tdat using the factor command), and ordered
discrete (to be specified in the data frame tdat using the ordered command). Data can be entered
in an arbitrary order and data types will be detected automatically by the routine (see npRmpi for
details).

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

Value

npudens returns a npdensity object. The generic accessor functions fitted, and se, extract es-
timated values and asymptotic standard errors on estimates, respectively, from the returned object.
Furthermore, the functions predict, summary and plot support objects of both classes. The re-
turned objects have the following components:

eval the evaluation points.

dens estimation of the density at the evaluation points

derr standard errors of the density estimates

log_likelihood log likelihood of the density estimates

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “ Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data,” Journal of Multivariate Analysis, 86, 266-292.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data,” Journal of Nonparametric Statistics, 18, 69-100.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation: Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

npudens 221

See Also

npudensbw , density

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(data("Italy"),
caller.execute=TRUE)

mpi.bcast.cmd(attach(Italy),
caller.execute=TRUE)

mpi.bcast.cmd(bw <- npudensbw(formula=~year+gdp),
caller.execute=TRUE)

mpi.bcast.cmd(fhat <- npudens(bws=bw),
caller.execute=TRUE)

summary(fhat)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

222 npudensbw

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npudensbw Kernel Density Bandwidth Selection with Mixed Data Types

Description

npudensbw computes a bandwidth object for a p-variate kernel unconditional density estimator
defined over mixed continuous and discrete (unordered, ordered) data using either the normal refer-
ence rule-of-thumb, likelihood cross-validation, or least-squares cross validation using the method
of Li and Racine (2003).

Usage

npudensbw(...)

S3 method for class 'formula'
npudensbw(formula, data, subset, na.action, call, ...)

S3 method for class 'NULL'
npudensbw(dat = stop("invoked without input data 'dat'"),

bws,
...)

S3 method for class 'bandwidth'
npudensbw(dat = stop("invoked without input data 'dat'"),

bws,
bandwidth.compute = TRUE,
nmulti,
remin = TRUE,
itmax = 10000,
ftol = 1.490116e-07,
tol = 1.490116e-04,
small = 1.490116e-05,
lbc.dir = 0.5,
dfc.dir = 3,
cfac.dir = 2.5*(3.0-sqrt(5)),
initc.dir = 1.0,
lbd.dir = 0.1,
hbd.dir = 1,
dfac.dir = 0.25*(3.0-sqrt(5)),
initd.dir = 1.0,
lbc.init = 0.1,

npudensbw 223

hbc.init = 2.0,
cfac.init = 0.5,
lbd.init = 0.1,
hbd.init = 0.9,
dfac.init = 0.375,
scale.init.categorical.sample = FALSE,
transform.bounds = FALSE,
invalid.penalty = c("baseline","dbmax"),
penalty.multiplier = 10,
...)

Default S3 method:
npudensbw(dat = stop("invoked without input data 'dat'"),

bws,
bandwidth.compute = TRUE,
nmulti,
remin,
itmax,
ftol,
tol,
small,
lbc.dir,
dfc.dir,
cfac.dir,
initc.dir,
lbd.dir,
hbd.dir,
dfac.dir,
initd.dir,
lbc.init,
hbc.init,
cfac.init,
lbd.init,
hbd.init,
dfac.init,
scale.init.categorical.sample,
transform.bounds,
invalid.penalty,
penalty.multiplier,
bwmethod,
bwscaling,
bwtype,
ckertype,
ckerorder,
ukertype,
okertype,
...)

224 npudensbw

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

dat a p-variate data frame on which bandwidth selection will be performed. The
data types may be continuous, discrete (unordered and ordered factors), or some
combination thereof.

bws a bandwidth specification. This can be set as a bandwidth object returned from
a previous invocation, or as a vector of bandwidths, with each element i cor-
responding to the bandwidth for column i in dat. In either case, the band-
width supplied will serve as a starting point in the numerical search for optimal
bandwidths. If specified as a vector, then additional arguments will need to
be supplied as necessary to specify the bandwidth type, kernel types, selection
methods, and so on. This can be left unset.

... additional arguments supplied to specify the bandwidth type, kernel types, se-
lection methods, and so on, detailed below.

bwmethod a character string specifying the bandwidth selection method. cv.ml specifies
likelihood cross-validation, cv.ls specifies least-squares cross-validation, and
normal-reference just computes the ‘rule-of-thumb’ bandwidth hj using the
standard formula hj = 1.06σjn

−1/(2P+l), where σj is an adaptive measure of
spread of the jth continuous variable defined as min(standard deviation, mean
absolute deviation/1.4826, interquartile range/1.349), n the number of observa-
tions, P the order of the kernel, and l the number of continuous variables. Note
that when there exist factors and the normal-reference rule is used, there is zero
smoothing of the factors. Defaults to cv.ml.

bwscaling a logical value that when set to TRUE the supplied bandwidths are interpreted as
‘scale factors’ (cj), otherwise when the value is FALSE they are interpreted as
‘raw bandwidths’ (hj for continuous data types, λj for discrete data types). For
continuous data types, cj and hj are related by the formula hj = cjσjn

−1/(2P+l),
where σj is an adaptive measure of spread of the jth continuous variable de-
fined as min(standard deviation, mean absolute deviation/1.4826, interquartile
range/1.349), n the number of observations, P the order of the kernel, and l the
number of continuous variables. For discrete data types, cj and hj are related
by the formula hj = cjn

−2/(2P+l), where here j denotes discrete variable j.
Defaults to FALSE.

npudensbw 225

bwtype character string used for the continuous variable bandwidth type, specifying the
type of bandwidth to compute and return in the bandwidth object. Defaults to
fixed. Option summary:
fixed: compute fixed bandwidths
generalized_nn: compute generalized nearest neighbors
adaptive_nn: compute adaptive nearest neighbors

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a bandwidth object will be returned with bandwidths set
to those specified in bws. Defaults to TRUE.

ckertype character string used to specify the continuous kernel type. Can be set as gaussian,
epanechnikov, or uniform. Defaults to gaussian.

ckerorder numeric value specifying kernel order (one of (2,4,6,8)). Kernel order spec-
ified along with a uniform continuous kernel type will be ignored. Defaults to
2.

ukertype character string used to specify the unordered categorical kernel type. Can be
set as aitchisonaitken or liracine.

okertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points.

remin a logical value which when set as TRUE the search routine restarts from located
minima for a minor gain in accuracy. Defaults to TRUE.

itmax integer number of iterations before failure in the numerical optimization routine.
Defaults to 10000.

ftol fractional tolerance on the value of the cross-validation function evaluated at lo-
cated minima (of order the machine precision or perhaps slightly larger so as not
to be diddled by roundoff). Defaults to 1.490116e-07 (1.0e+01*sqrt(.Machine$double.eps)).

tol tolerance on the position of located minima of the cross-validation function (tol
should generally be no smaller than the square root of your machine’s floating
point precision). Defaults to 1.490116e-04 (1.0e+04*sqrt(.Machine$double.eps)).

small a small number used to bracket a minimum (it is hopeless to ask for a bracketing
interval of width less than sqrt(epsilon) times its central value, a fractional width
of only about 10-04 (single precision) or 3x10-8 (double precision)). Defaults
to small = 1.490116e-05 (1.0e+03*sqrt(.Machine$double.eps)).

lbc.dir, dfc.dir, cfac.dir, initc.dir
lower bound, chi-square degrees of freedom, stretch factor, and initial non-
random values for direction set search for Powell’s algorithm for numeric vari-
ables. See Details

lbd.dir, hbd.dir, dfac.dir, initd.dir
lower bound, upper bound, stretch factor, and initial non-random values for di-
rection set search for Powell’s algorithm for categorical variables. See Details

lbc.init, hbc.init, cfac.init
lower bound, upper bound, and non-random initial values for scale factors for
numeric variables for Powell’s algorithm. See Details

226 npudensbw

lbd.init, hbd.init, dfac.init
lower bound, upper bound, and non-random initial values for scale factors for
categorical variables for Powell’s algorithm. See Details

scale.init.categorical.sample

a logical value that when set to TRUE scales lbd.dir, hbd.dir, dfac.dir, and
initd.dir by n−2/(2P+l), n the number of observations, P the order of the
kernel, and l the number of numeric variables. See Details

transform.bounds

a logical value that when set to TRUE applies an internal transformation that maps
the unconstrained search to the feasible bandwidth domain. Defaults to FALSE.

invalid.penalty

a character string specifying the penalty used when the optimizer encounters
invalid bandwidths. "baseline" returns a finite penalty based on a baseline
objective; "dbmax" returns DBL_MAX. Defaults to "baseline".

penalty.multiplier

a numeric multiplier applied to the baseline penalty when invalid.penalty="baseline".
Defaults to 10.

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

Usage 1: compute a bandwidth object using the formula interface:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(bw <- npudensbw(~y),caller.execute=TRUE)
npRmpi.stop()

Usage 2: compute a bandwidth object using the data frame interface
and change the default kernel and order:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(fhat <- npudensbw(tdat = y, ckertype="epanechnikov", ckerorder=4),
caller.execute=TRUE)

npRmpi.stop()

npudensbw 227

npudensbw implements a variety of methods for choosing bandwidths for multivariate (p-variate)
distributions defined over a set of possibly continuous and/or discrete (unordered, ordered) data.
The approach is based on Li and Racine (2003) who employ ‘generalized product kernels’ that
admit a mix of continuous and discrete data types.

The cross-validation methods employ multivariate numerical search algorithms (direction set (Pow-
ell’s) methods in multidimensions).

Bandwidths can (and will) differ for each variable which is, of course, desirable.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the density at the point x. General-
ized nearest-neighbor bandwidths change with the point at which the density is estimated, x. Fixed
bandwidths are constant over the support of x.

npudensbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the dat parameter. Use of these two interfaces is mutually exclusive.

Data contained in the data frame dat may be a mix of continuous (default), unordered discrete (to
be specified in the data frame dat using factor), and ordered discrete (to be specified in the data
frame dat using ordered). Data can be entered in an arbitrary order and data types will be detected
automatically by the routine (see npRmpi for details).

Data for which bandwidths are to be estimated may be specified symbolically. A typical description
has the form ~ data, where data is a series of variables specified by name, separated by the sepa-
ration character ’+’. For example, ~ x + y specifies that the bandwidths for the joint distribution of
variables x and y are to be estimated. See below for further examples.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth order Gaussian and Epanechnikov kernels, and the
uniform kernel. Unordered discrete data types use a variation on Aitchison and Aitken’s (1976)
kernel, while ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

The optimizer invoked for search is Powell’s conjugate direction method which requires the setting
of (non-random) initial values and search directions for bandwidths, and, when restarting, random
values for successive invocations. Bandwidths for numeric variables are scaled by robust measures
of spread, the sample size, and the number of numeric variables where appropriate. Two sets of
parameters for bandwidths for numeric can be modified, those for initial values for the parameters
themselves, and those for the directions taken (Powell’s algorithm does not involve explicit compu-
tation of the function’s gradient). The default values are set by considering search performance for
a variety of difficult test cases and simulated cases. We highly recommend restarting search a large
number of times to avoid the presence of local minima (achieved by modifying nmulti). Further
refinement for difficult cases can be achieved by modifying these sets of parameters. However,
these parameters are intended more for the authors of the package to enable ‘tuning’ for various
methods rather than for the user themselves.

Value

npudensbw returns a bandwidth object, with the following components:

bw bandwidth(s), scale factor(s) or nearest neighbours for the data, dat

fval objective function value at minimum

228 npudensbw

if bwtype is set to fixed, an object containing bandwidths, of class bandwidth (or scale factors if
bwscaling = TRUE) is returned. If it is set to generalized_nn or adaptive_nn, then instead the
kth nearest neighbors are returned for the continuous variables while the discrete kernel bandwidths
are returned for the discrete variables. Bandwidths are stored under the component name bw, with
each element i corresponding to column i of input data dat.

The functions predict, summary and plot support objects of type bandwidth.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due
to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting ftol=.01 and tol=.01
and conduct multistarting (the default is to restart min(5, ncol(dat)) times) as is done for a number
of examples. Once the procedure terminates, you can restart search with default tolerances using
those bandwidths obtained from the less rigorous search (i.e., set bws=bw on subsequent calls to this
routine where bw is the initial bandwidth object). A version of this package using the Rmpi wrapper
is under development that allows one to deploy this software in a clustered computing environment
to facilitate computation involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and , C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data,” Journal of Multivariate Analysis, 86, 266-292.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data,” Journal of Nonparametric Statistics, 18, 69-100.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

npudensbw 229

See Also

bw.nrd, bw.SJ, hist, npudens, npudist

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(data("Italy"),
caller.execute=TRUE)

mpi.bcast.cmd(attach(Italy),
caller.execute=TRUE)

mpi.bcast.cmd(bw <- npudensbw(formula=~year+gdp),
caller.execute=TRUE)

summary(bw)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

230 npudist

End(Not run)

npudist Kernel Distribution Estimation with Mixed Data Types

Description

npudist computes kernel unconditional cumulative distribution estimates on evaluation data, given
a set of training data and a bandwidth specification (a dbandwidth object or a bandwidth vector,
bandwidth type, and kernel type) using the method of Li, Li and Racine (2017).

Usage

npudist(bws, ...)

S3 method for class 'formula'
npudist(bws, data = NULL, newdata = NULL, ...)

S3 method for class 'dbandwidth'
npudist(bws,

tdat = stop("invoked without training data 'tdat'"),
edat,
...)

S3 method for class 'call'
npudist(bws, ...)

Default S3 method:
npudist(bws, tdat, ...)

Arguments

bws a dbandwidth specification. This can be set as a dbandwidth object returned
from an invocation of npudistbw, or as a p-vector of bandwidths, with an ele-
ment for each variable in the training data. If specified as a vector, then addi-
tional arguments will need to be supplied as necessary to change them from the
defaults to specify the bandwidth type, kernel types, training data, and so on.

... additional arguments supplied to specify the training data, the bandwidth type,
kernel types, and so on. This is necessary if you specify bws as a p-vector
and not a dbandwidth object, and you do not desire the default behaviours. To
do this, you may specify any of bwscaling, bwtype, ckertype, ckerorder,
okertype, as described in npudistbw.

tdat a p-variate data frame of sample realizations (training data) used to estimate
the cumulative distribution. Defaults to the training data used to compute the
bandwidth object.

npudist 231

edat a p-variate data frame of cumulative distribution evaluation points. By default,
evaluation takes place on the data provided by tdat.

data an optional data frame, list or environment (or object coercible to a data frame by
as.data.frame) containing the variables in the model. If not found in data, the
variables are taken from environment(bws), typically the environment from
which npudistbw was called.

newdata An optional data frame in which to look for evaluation data. If omitted, the
training data are used.

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

Usage 1: first compute the bandwidth object via npudistbw and then
compute the cumulative distribution:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(bw <- npudistbw(~y),caller.execute=TRUE)
mpi.bcast.cmd(Fhat <- npudist(bw),caller.execute=TRUE)
npRmpi.stop()

Usage 2: alternatively, compute the bandwidth object indirectly:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(Fhat <- npudist(~y),caller.execute=TRUE)
npRmpi.stop()

Usage 3: modify the default kernel and order:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(Fhat <- npudist(~y, ckertype="epanechnikov", ckerorder=4),

caller.execute=TRUE)

232 npudist

npRmpi.stop()

Usage 4: use the data frame interface rather than the formula
interface:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(Fhat <- npudist(tdat = y, ckertype="epanechnikov", ckerorder=4),
caller.execute=TRUE)

npRmpi.stop()

npudist implements a variety of methods for estimating multivariate cumulative distributions (p-
variate) defined over a set of possibly continuous and/or discrete (ordered) data. The approach
is based on Li and Racine (2003) who employ ‘generalized product kernels’ that admit a mix of
continuous and discrete data types.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the cumulative distribution at the point
x. Generalized nearest-neighbor bandwidths change with the point at which the cumulative distri-
bution is estimated, x. Fixed bandwidths are constant over the support of x.

Data contained in the data frame tdat (and also edat) may be a mix of continuous (default) and
ordered discrete (to be specified in the data frame tdat using the ordered command). Data can
be entered in an arbitrary order and data types will be detected automatically by the routine (see
npRmpi for details).

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth-order Gaussian and Epanechnikov kernels, and the
uniform kernel. Ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

Value

npudist returns a npdistribution object. The generic accessor functions fitted and se extract
estimated values and asymptotic standard errors on estimates, respectively, from the returned ob-
ject. Furthermore, the functions predict, summary and plot support objects of both classes. The
returned objects have the following components:

eval the evaluation points.
dist estimate of the cumulative distribution at the evaluation points
derr standard errors of the cumulative distribution estimates

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

npudist 233

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “ Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data,” Journal of Multivariate Analysis, 86, 266-292.

Li, C. and H. Li and J.S. Racine (2017), “Cross-Validated Mixed Datatype Bandwidth Selection for
Nonparametric Cumulative Distribution/Survivor Functions,” Econometric Reviews, 36, 970-987.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data,” Journal of Nonparametric Statistics, 18, 69-100.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Density Estimation. Theory, Practice and Visualization, New
York: Wiley.

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

npudistbw , density

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("Italy")

mpi.bcast.Robj2slave(Italy)

234 npudistbw

mpi.bcast.cmd(bw <- npudistbw(formula=~ordered(year)+gdp,
data=Italy),

caller.execute=TRUE)

mpi.bcast.cmd(F <- npudist(bws=bw),
caller.execute=TRUE)

summary(F)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npudistbw Kernel Distribution Bandwidth Selection with Mixed Data Types

Description

npudistbw computes a bandwidth object for a p-variate kernel cumulative distribution estimator
defined over mixed continuous and discrete (ordered) data using either the normal reference rule-
of-thumb or least-squares cross validation using the method of Li, Li and Racine (2017).

Usage

npudistbw(...)

S3 method for class 'formula'
npudistbw(formula, data, subset, na.action, call, gdata = NULL,...)

S3 method for class 'NULL'

npudistbw 235

npudistbw(dat = stop("invoked without input data 'dat'"),
bws,
...)

S3 method for class 'dbandwidth'
npudistbw(dat = stop("invoked without input data 'dat'"),

bws,
gdat = NULL,
bandwidth.compute = TRUE,
nmulti,
remin = TRUE,
itmax = 10000,
do.full.integral = FALSE,
ngrid = 100,
ftol = 1.490116e-07,
tol = 1.490116e-04,
small = 1.490116e-05,
lbc.dir = 0.5,
dfc.dir = 3,
cfac.dir = 2.5*(3.0-sqrt(5)),
initc.dir = 1.0,
lbd.dir = 0.1,
hbd.dir = 1,
dfac.dir = 0.25*(3.0-sqrt(5)),
initd.dir = 1.0,
lbc.init = 0.1,
hbc.init = 2.0,
cfac.init = 0.5,
lbd.init = 0.1,
hbd.init = 0.9,
dfac.init = 0.375,
scale.init.categorical.sample = FALSE,
memfac = 500.0,
transform.bounds = FALSE,
invalid.penalty = c("baseline","dbmax"),
penalty.multiplier = 10,
...)

Default S3 method:
npudistbw(dat = stop("invoked without input data 'dat'"),

bws,
gdat,
bandwidth.compute = TRUE,
nmulti,
remin,
itmax,
do.full.integral,
ngrid,

236 npudistbw

ftol,
tol,
small,
lbc.dir,
dfc.dir,
cfac.dir,
initc.dir,
lbd.dir,
hbd.dir,
dfac.dir,
initd.dir,
lbc.init,
hbc.init,
cfac.init,
lbd.init,
hbd.init,
dfac.init,
scale.init.categorical.sample,
memfac,
transform.bounds,
invalid.penalty,
penalty.multiplier,
bwmethod,
bwscaling,
bwtype,
ckertype,
ckerorder,
okertype,
...)

Arguments

formula a symbolic description of variables on which bandwidth selection is to be per-
formed. The details of constructing a formula are described below.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which the function is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The (recommended) default is na.omit.

call the original function call. This is passed internally by npRmpi when a bandwidth
search has been implied by a call to another function. It is not recommended that
the user set this.

npudistbw 237

gdata a grid of data on which the indicator function for least-squares cross-validation
is to be computed (can be the sample or a grid of quantiles).

dat a p-variate data frame on which bandwidth selection will be performed. The
data types may be continuous, discrete (ordered factors), or some combination
thereof.

bws a bandwidth specification. This can be set as a bandwidth object returned from
a previous invocation, or as a vector of bandwidths, with each element i cor-
responding to the bandwidth for column i in dat. In either case, the band-
width supplied will serve as a starting point in the numerical search for optimal
bandwidths. If specified as a vector, then additional arguments will need to
be supplied as necessary to specify the bandwidth type, kernel types, selection
methods, and so on. This can be left unset.

gdat a grid of data on which the indicator function for least-squares cross-validation
is to be computed (can be the sample or a grid of quantiles).

... additional arguments supplied to specify the bandwidth type, kernel types, se-
lection methods, and so on, detailed below.

bwmethod a character string specifying the bandwidth selection method. cv.cdf speci-
fies least-squares cross-validation for cumulative distribution functions (Li, Li
and Racine (2017)), and normal-reference just computes the ‘rule-of-thumb’
bandwidth hj using the standard formula hj = 1.587σjn

−1/(P+l), where σj is
an adaptive measure of spread of the jth continuous variable defined as min(standard
deviation, mean absolute deviation/1.4826, interquartile range/1.349), n the num-
ber of observations, P the order of the kernel, and l the number of continuous
variables. Note that when there exist factors and the normal-reference rule is
used, there is zero smoothing of the factors. Defaults to cv.cdf.

bwscaling a logical value that when set to TRUE the supplied bandwidths are interpreted as
‘scale factors’ (cj), otherwise when the value is FALSE they are interpreted as
‘raw bandwidths’ (hj for continuous data types, λj for discrete data types). For
continuous data types, cj and hj are related by the formula hj = cjσjn

−1/(P+l),
where σj is an adaptive measure of spread of the jth continuous variable de-
fined as min(standard deviation, mean absolute deviation/1.4826, interquartile
range/1.349), n the number of observations, P the order of the kernel, and l the
number of continuous variables. For discrete data types, cj and hj are related
by the formula hj = cjn

−2/(P+l), where here j denotes discrete variable j.
Defaults to FALSE.

bwtype character string used for the continuous variable bandwidth type, specifying the
type of bandwidth to compute and return in the bandwidth object. Defaults to
fixed. Option summary:
fixed: compute fixed bandwidths
generalized_nn: compute generalized nearest neighbors
adaptive_nn: compute adaptive nearest neighbors

bandwidth.compute

a logical value which specifies whether to do a numerical search for bandwidths
or not. If set to FALSE, a bandwidth object will be returned with bandwidths set
to those specified in bws. Defaults to TRUE.

ckertype character string used to specify the continuous kernel type. Can be set as gaussian,
epanechnikov, or uniform. Defaults to gaussian.

238 npudistbw

ckerorder numeric value specifying kernel order (one of (2,4,6,8)). Kernel order spec-
ified along with a uniform continuous kernel type will be ignored. Defaults to
2.

okertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin.

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points.

remin a logical value which when set as TRUE the search routine restarts from located
minima for a minor gain in accuracy. Defaults to TRUE.

itmax integer number of iterations before failure in the numerical optimization routine.
Defaults to 10000.

do.full.integral

a logical value which when set as TRUE evaluates the moment-based integral on
the entire sample. Defaults to FALSE.

ngrid integer number of grid points to use when computing the moment-based integral.
Defaults to 100.

ftol fractional tolerance on the value of the cross-validation function evaluated at lo-
cated minima (of order the machine precision or perhaps slightly larger so as not
to be diddled by roundoff). Defaults to 1.490116e-07 (1.0e+01*sqrt(.Machine$double.eps)).

tol tolerance on the position of located minima of the cross-validation function (tol
should generally be no smaller than the square root of your machine’s floating
point precision). Defaults to 1.490116e-04 (1.0e+04*sqrt(.Machine$double.eps)).

small a small number used to bracket a minimum (it is hopeless to ask for a bracketing
interval of width less than sqrt(epsilon) times its central value, a fractional width
of only about 10-04 (single precision) or 3x10-8 (double precision)). Defaults
to small = 1.490116e-05 (1.0e+03*sqrt(.Machine$double.eps)).

lbc.dir, dfc.dir, cfac.dir, initc.dir
lower bound, chi-square degrees of freedom, stretch factor, and initial non-
random values for direction set search for Powell’s algorithm for numeric vari-
ables. See Details

lbd.dir, hbd.dir, dfac.dir, initd.dir
lower bound, upper bound, stretch factor, and initial non-random values for di-
rection set search for Powell’s algorithm for categorical variables. See Details

lbc.init, hbc.init, cfac.init
lower bound, upper bound, and non-random initial values for scale factors for
numeric variables for Powell’s algorithm. See Details

lbd.init, hbd.init, dfac.init
lower bound, upper bound, and non-random initial values for scale factors for
categorical variables for Powell’s algorithm. See Details

scale.init.categorical.sample

a logical value that when set to TRUE scales lbd.dir, hbd.dir, dfac.dir, and
initd.dir by n−2/(2P+l), n the number of observations, P the order of the
kernel, and l the number of numeric variables. See Details

transform.bounds

a logical value that when set to TRUE applies an internal transformation that maps
the unconstrained search to the feasible bandwidth domain. Defaults to FALSE.

npudistbw 239

invalid.penalty

a character string specifying the penalty used when the optimizer encounters
invalid bandwidths. "baseline" returns a finite penalty based on a baseline
objective; "dbmax" returns DBL_MAX. Defaults to "baseline".

penalty.multiplier

a numeric multiplier applied to the baseline penalty when invalid.penalty="baseline".
Defaults to 10.

memfac The algorithm to compute the least-squares objective function uses a block-
based algorithm to eliminate or minimize redundant kernel evaluations. Due
to memory, hardware and software constraints, a maximum block size must be
imposed by the algorithm. This block size is roughly equal to memfac*10^5
elements. Empirical tests on modern hardware find that a memfac of 500 per-
forms well. If you experience out of memory errors, or strange behaviour for
large data sets (>100k elements) setting memfac to a lower value may fix the
problem.

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

Usage 1: compute a bandwidth object using the formula interface:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)
mpi.bcast.cmd(bw <- npudistbw(~y),caller.execute=TRUE)
npRmpi.stop()

Usage 2: compute a bandwidth object using the data frame interface
and change the default kernel and order:

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(Fhat <- npudistbw(tdat = y, ckertype="epanechnikov", ckerorder=4),
caller.execute=TRUE)

npRmpi.stop()

npudistbw implements a variety of methods for choosing bandwidths for multivariate (p-variate)

240 npudistbw

distributions defined over a set of possibly continuous and/or discrete (ordered) data. The approach
is based on Li and Racine (2003) who employ ‘generalized product kernels’ that admit a mix of
continuous and discrete data types.

The cross-validation methods employ multivariate numerical search algorithms (direction set (Pow-
ell’s) methods in multidimensions).

Bandwidths can (and will) differ for each variable which is, of course, desirable.

Three classes of kernel estimators for the continuous data types are available: fixed, adaptive
nearest-neighbor, and generalized nearest-neighbor. Adaptive nearest-neighbor bandwidths change
with each sample realization in the set, xi, when estimating the cumulative distribution at the point
x. Generalized nearest-neighbor bandwidths change with the point at which the cumulative distri-
bution is estimated, x. Fixed bandwidths are constant over the support of x.

npudistbw may be invoked either with a formula-like symbolic description of variables on which
bandwidth selection is to be performed or through a simpler interface whereby data is passed di-
rectly to the function via the dat parameter. Use of these two interfaces is mutually exclusive.

Data contained in the data frame dat may be a mix of continuous (default) and ordered discrete (to
be specified in the data frame dat using ordered). Data can be entered in an arbitrary order and
data types will be detected automatically by the routine (see npRmpi for details).

Data for which bandwidths are to be estimated may be specified symbolically. A typical description
has the form ~ data, where data is a series of variables specified by name, separated by the sepa-
ration character ’+’. For example, ~ x + y specifies that the bandwidths for the joint distribution of
variables x and y are to be estimated. See below for further examples.

A variety of kernels may be specified by the user. Kernels implemented for continuous data types
include the second, fourth, sixth, and eighth-order Gaussian and Epanechnikov kernels, and the
uniform kernel. Ordered data types use a variation of the Wang and van Ryzin (1981) kernel.

The optimizer invoked for search is Powell’s conjugate direction method which requires the setting
of (non-random) initial values and search directions for bandwidths, and when restarting, random
values for successive invocations. Bandwidths for numeric variables are scaled by robust measures
of spread, the sample size, and the number of numeric variables where appropriate. Two sets of
parameters for bandwidths for numeric can be modified, those for initial values for the parameters
themselves, and those for the directions taken (Powell’s algorithm does not involve explicit compu-
tation of the function’s gradient). The default values are set by considering search performance for
a variety of difficult test cases and simulated cases. We highly recommend restarting search a large
number of times to avoid the presence of local minima (achieved by modifying nmulti). Further
refinement for difficult cases can be achieved by modifying these sets of parameters. However,
these parameters are intended more for the authors of the package to enable ‘tuning’ for various
methods rather than for the user them self.

Value

npudistbw returns a bandwidth object with the following components:

bw bandwidth(s), scale factor(s) or nearest neighbours for the data, dat

fval objective function value at minimum

if bwtype is set to fixed, an object containing bandwidths, of class bandwidth (or scale factors if
bwscaling = TRUE) is returned. If it is set to generalized_nn or adaptive_nn, then instead the

npudistbw 241

kth nearest neighbors are returned for the continuous variables while the discrete kernel bandwidths
are returned for the discrete variables. Bandwidths are stored under the component name bw, with
each element i corresponding to column i of input data dat.

The functions predict, summary and plot support objects of type bandwidth.

Usage Issues

If you are using data of mixed types, then it is advisable to use the data.frame function to construct
your input data and not cbind, since cbind will typically not work as intended on mixed data types
and will coerce the data to the same type.

Caution: multivariate data-driven bandwidth selection methods are, by their nature, computationally
intensive. Virtually all methods require dropping the ith observation from the data set, computing
an object, repeating this for all observations in the sample, then averaging each of these leave-one-
out estimates for a given value of the bandwidth vector, and only then repeating this a large number
of times in order to conduct multivariate numerical minimization/maximization. Furthermore, due
to the potential for local minima/maxima, restarting this procedure a large number of times may
often be necessary. This can be frustrating for users possessing large datasets. For exploratory
purposes, you may wish to override the default search tolerances, say, setting ftol=.01 and tol=.01
and conduct multistarting (the default is to restart min(5, ncol(dat)) times) as is done for a number
of examples. Once the procedure terminates, you can restart search with default tolerances using
those bandwidths obtained from the less rigorous search (i.e., set bws=bw on subsequent calls to this
routine where bw is the initial bandwidth object). A version of this package using the Rmpi wrapper
is under development that allows one to deploy this software in a clustered computing environment
to facilitate computation involving large datasets.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method,”
Biometrika, 63, 413-420.

Bowman, A. and P. Hall and T. Prvan (1998), “Bandwidth selection for the smoothing of distribution
functions,” Biometrika, 85, 799-808.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data,” Journal of Multivariate Analysis, 86, 266-292.

Li, C. and H. Li and J.S. Racine (2017), “Cross-Validated Mixed Datatype Bandwidth Selection for
Nonparametric Cumulative Distribution/Survivor Functions,” Econometric Reviews, 36, 970-987.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data,” Journal of Nonparametric Statistics, 18, 69-100.

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Scott, D.W. (1992), Multivariate Cumulative Distribution Estimation: Theory, Practice and Visu-
alization, New York: Wiley.

242 npudistbw

Silverman, B.W. (1986), Density Estimation, London: Chapman and Hall.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions,”
Biometrika, 68, 301-309.

See Also

bw.nrd, bw.SJ, hist, npudist, npudist

Examples

Not run:
Not run in checks: data-driven CDF bandwidth selection on this dataset is
computationally intensive and can hang/timeout in some MPI setups.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

data("Italy")

mpi.bcast.Robj2slave(Italy)

mpi.bcast.cmd(bw <- npudistbw(formula=~ordered(year)+gdp,
data=Italy),

caller.execute=TRUE)

summary(bw)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

npuniden.boundary 243

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npuniden.boundary Kernel Bounded Univariate Density Estimation Via Boundary Kernel
Functions

Description

npuniden.boundary computes kernel univariate unconditional density estimates given a vector of
continuously distributed training data and, optionally, a bandwidth (otherwise least squares cross-
validation is used for its selection). Lower and upper bounds [a,b] can be supplied (default is the
empirical support [min(X),max(X)]) and if a is set to -Inf there is only one bound on the right,
while if b is set to Inf there is only one bound on the left. If a is set to -Inf and b to Inf and
the Gaussian type 1 kernel function is used, this will deliver the standard unadjusted kernel density
estimate.

Usage

npuniden.boundary(X = NULL,
Y = NULL,
h = NULL,
a = min(X),
b = max(X),
bwmethod = c("cv.ls","cv.ml"),
cv = c("grid-hybrid","numeric"),
grid = NULL,
kertype = c("gaussian1","gaussian2",

"beta1","beta2",
"fb","fbl","fbu",
"rigaussian","gamma"),

nmulti = 5,
proper = FALSE)

Arguments

X a required numeric vector of training data lying in [a, b]

Y an optional numeric vector of evaluation data lying in [a, b]

h an optional bandwidth (>0)

a an optional lower bound (defaults to lower bound of empirical support min(X))

b an optional upper bound (defaults to upper bound of empirical support max(X))

244 npuniden.boundary

bwmethod whether to conduct bandwidth search via least squares cross-validation ("cv.ls")
or likelihood cross-validation ("cv.ml")

cv an optional argument for search (default is likely more reliable in the presence
of local maxima)

grid an optional grid used for the initial grid search when cv="grid-hybrid"

kertype an optional kernel specification (defaults to "gaussian1")

nmulti number of multi-starts used when cv="numeric" (defaults to 5)

proper an optional logical value indicating whether to enforce proper density and dis-
tribution function estimates over the range [a, b]

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

model <- npuniden.boundary(X,a=-2,b=3)

npuniden.boundary implements a variety of methods for estimating a univariate density function
defined over a continuous random variable in the presence of bounds via the use of so-called bound-
ary or edge kernel functions.

The kernel functions "beta1" and "beta2" are Chen’s (1999) type 1 and 2 kernel functions with bi-
ases of O(h), the "gamma" kernel function is from Chen (2000) with a bias of O(h), "rigaussian"
is the reciprocal inverse Gaussian kernel function (Scaillet (2004), Igarashi & Kakizawa (2014))
with bias of O(h), and "gaussian1" and "gaussian2" are truncated Gaussian kernel functions
with biases of O(h) and O(h2), respectively. The kernel functions "fb", "fbl" and "fbu" are
floating boundary polynomial biweight kernels with biases of O(h2) (Scott (1992), Page 146).
Without exception, these kernel functions are asymmetric in general with shape that changes de-
pending on where the density is being estimated (i.e., how close the estimation point x in f̂(x) is to
a boundary). This function is written purely in R, so to see the exact form for each of these kernel
functions, simply enter the name of this function in R (i.e., enter npuniden.boundary after loading
this package) and scroll up for their definitions.

The kernel functions "gamma", "rigaussian", and "fbl" have support [a,∞]. The kernel function
"fbu" has support [−∞, b]. The rest have support on [a, b]. Note that the two sided support default
values are a=min(X) and b=max(X).

Note that data-driven bandwidth selection is more nuanced in bounded settings, therefore it would
be prudent to manually select a bandwidth that is, say, 1/25th of the range of the data and manually
inspect the estimate (say h=0.05 when X ∈ [0, 1]). Also, it may be wise to compare the density
estimate with that from a histogram with the option breaks=25. Note also that the kernel functions
"gaussian2", "fb", "fbl" and "fbu" can assume negative values leading to potentially negative
density estimates, and must be trimmed when conducting likelihood cross-validation which can
lead to oversmoothing. Least squares cross-validation is unaffected and appears to be more reliable
in such instances hence is the default here.

Scott (1992, Page 149) writes “While boundary kernels can be very useful, there are potentially se-
rious problems with real data. There are an infinite number of boundary kernels reflecting the spec-
trum of possible design constraints, and these kernels are not interchangeable. Severe artifacts can

npuniden.boundary 245

be introduced by any one of them in inappropriate situations. Very careful examination is required
to avoid being victimized by the particular boundary kernel chosen. Artifacts can unfortunately be
introduced by the choice of the support interval for the boundary kernel.”

Note that since some kernel functions can assume negative values, this can lead to improper density
estimates. The estimated distribution function is obtained via numerical integration of the estimated
density function and may itself not be proper even when evaluated on the full range of the data [a, b].
Setting the option proper=TRUE will render the density and distribution estimates proper over the
full range of the data, though this may not in general be a mean square error optimal strategy.

Finally, note that this function is pretty bare-bones relative to other functions in this package. For
one, at this time there is no automatic print support so kindly see the examples for illustrations of
its use, among other differences.

Value

npuniden.boundary returns the following components:

f estimated density at the points X

F estimated distribution at the points X (numeric integral of f)

sd.f asymptotic standard error of the estimated density at the points X

sd.F asymptotic standard error of the estimated distribution at the points X

h bandwidth used

nmulti number of multi-starts used

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Bouezmarni, T. and Rolin, J.-M. (2003). “Consistency of the beta kernel density function estimator,”
The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 31(1):89-98.

Chen, S. X. (1999). “Beta kernel estimators for density functions,” Computational Statistics & Data
Analysis, 31(2):131-145.

Chen, S. X. (2000). “Probability density function estimation using gamma kernels,” Annals of the
Institute of Statistical Mathematics, 52(3):471-480.

Diggle, P. (1985). “A kernel method for smoothing point process data,” Journal of the Royal Statis-
tical Society. Series C (Applied Statistics), 34(2):138-147.

Igarashi, G. and Y. Kakizawa (2014). “Re-formulation of inverse Gaussian, reciprocal inverse Gaus-
sian, and Birnbaum-Saunders kernel estimators,” Statistics & Probability Letters, 84:235-246.

Igarashi, G. and Y. Kakizawa (2015). “Bias corrections for some asymmetric kernel estimators,”
Journal of Statistical Planning and Inference, 159:37-63.

Igarashi, G. (2016). “Bias reductions for beta kernel estimation,” Journal of Nonparametric Statis-
tics, 28(1):1-30.

Racine, J. S. and Q. Li and Q. Wang, “Boundary-adaptive kernel density estimation: the case of
(near) uniform density”, Journal of Nonparametric Statistics, 2024, 36 (1), 146-164, https://doi.org/10.1080/10485252.2023.2250011.

246 npuniden.boundary

Scaillet, O. (2004). “Density estimation using inverse and reciprocal inverse Gaussian kernels,”
Journal of Nonparametric Statistics, 16(1-2):217-226.

Scott, D. W. (1992). “Multivariate density estimation: Theory, practice, and visualization,” New
York: Wiley.

Zhang, S. and R. J. Karunamuni (2010). “Boundary performance of the beta kernel estimators,”
Journal of Nonparametric Statistics, 22(1):81-104.

See Also

The Ake, bde, and Conake packages and the function npuniden.reflect.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
Example 1: f(0)=0, f(1)=1, plot boundary corrected density,
unadjusted density, and DGP
set.seed(42)
n <- 100
X <- sort(rbeta(n,5,1))
dgp <- dbeta(X,5,1)
model.g1 <- npuniden.boundary(X,kertype="gaussian1")
model.g2 <- npuniden.boundary(X,kertype="gaussian2")
model.b1 <- npuniden.boundary(X,kertype="beta1")
model.b2 <- npuniden.boundary(X,kertype="beta2")
model.fb <- npuniden.boundary(X,kertype="fb")
model.unadjusted <- npuniden.boundary(X,a=-Inf,b=Inf)
ylim <- c(0,max(c(dgp,model.g1$f,model.g2$f,model.b1$f,model.b2$f,model.fb$f)))
plot(X,dgp,ylab="Density",ylim=ylim,type="l")
lines(X,model.g1$f,lty=2,col=2)
lines(X,model.g2$f,lty=3,col=3)
lines(X,model.b1$f,lty=4,col=4)
lines(X,model.b2$f,lty=5,col=5)
lines(X,model.fb$f,lty=6,col=6)
lines(X,model.unadjusted$f,lty=7,col=7)
rug(X)
legend("topleft",c("DGP",

"Boundary Kernel (gaussian1)",
"Boundary Kernel (gaussian2)",
"Boundary Kernel (beta1)",
"Boundary Kernel (beta2)",
"Boundary Kernel (floating boundary)",
"Unadjusted"),col=1:7,lty=1:7,bty="n")

Example 2: f(0)=0, f(1)=0, plot density, distribution, DGP, and
asymptotic point-wise confidence intervals
set.seed(42)
X <- sort(rbeta(100,5,3))
model <- npuniden.boundary(X)
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
ylim=range(c(model$f,model$f+1.96*model$sd.f,model$f-1.96*model$sd.f,dbeta(X,5,3)))

npuniden.reflect 247

plot(X,model$f,ylim=ylim,ylab="Density",type="l",)
lines(X,model$f+1.96*model$sd.f,lty=2)
lines(X,model$f-1.96*model$sd.f,lty=2)
lines(X,dbeta(X,5,3),col=2)
rug(X)
legend("topleft",c("Density","DGP"),lty=c(1,1),col=1:2,bty="n")

plot(X,model$F,ylab="Distribution",type="l")
lines(X,model$F+1.96*model$sd.F,lty=2)
lines(X,model$F-1.96*model$sd.F,lty=2)
lines(X,pbeta(X,5,3),col=2)
rug(X)
legend("topleft",c("Distribution","DGP"),lty=c(1,1),col=1:2,bty="n")

Example 3: Age for working age males in the cps71 data set bounded
below by 21 and above by 65
data(cps71)
attach(cps71)
model <- npuniden.boundary(age,a=21,b=65)
par(mfrow=c(1,1))
hist(age,prob=TRUE,main="")
lines(age,model$f)
lines(density(age,bw=model$h),col=2)
legend("topright",c("Boundary Kernel","Unadjusted"),lty=c(1,1),col=1:2,bty="n")
detach(cps71)
par(oldpar)

End(Not run)

npuniden.reflect Kernel Bounded Univariate Density Estimation Via Data-Reflection

Description

npuniden.reflect computes kernel univariate unconditional density estimates given a vector of
continuously distributed training data and, optionally, a bandwidth (otherwise likelihood cross-
validation is used for its selection). Lower and upper bounds [a,b] can be supplied (default is [0,1])
and if a is set to -Inf there is only one bound on the right, while if b is set to Inf there is only one
bound on the left.

Usage

npuniden.reflect(X = NULL,
Y = NULL,
h = NULL,
a = 0,
b = 1,
...)

248 npuniden.reflect

Arguments

X a required numeric vector of training data lying in [a, b]

Y an optional numeric vector of evaluation data lying in [a, b]

h an optional bandwidth (>0)

a an optional lower bound (defaults to 0)

b an optional upper bound (defaults to 1)

... optional arguments passed to npudensbw and npudens

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

model <- npuniden.reflect(X,a=-2,b=3)

npuniden.reflect implements the data-reflection method for estimating a univariate density func-
tion defined over a continuous random variable in the presence of bounds.

Note that data-reflection imposes a zero derivative at the boundary, i.e., f ′(a) = f ′(b) = 0.

Value

npuniden.reflect returns the following components:

f estimated density at the points X

F estimated distribution at the points X (numeric integral of f)

sd.f asymptotic standard error of the estimated density at the points X

sd.F asymptotic standard error of the estimated distribution at the points X

h bandwidth used

nmulti number of multi-starts used

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Boneva, L. I., Kendall, D., and Stefanov, I. (1971). “Spline transformations: Three new diagnostic
aids for the statistical data- analyst,” Journal of the Royal Statistical Society. Series B (Method-
ological), 33(1):1-71.

Cline, D. B. H. and Hart, J. D. (1991). “Kernel estimation of densities with discontinuities or
discontinuous derivatives,” Statistics, 22(1):69-84.

Hall, P. and Wehrly, T. E. (1991). “A geometrical method for removing edge effects from kernel-
type nonparametric regression estimators,” Journal of the American Statistical Association, 86(415):665-
672.

npuniden.reflect 249

See Also

The Ake, bde, and Conake packages and the function npuniden.boundary.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

Example 1: f(0)=0, f(1)=1, plot boundary corrected density,
unadjusted density, and DGP

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

n <- 100
X <- sort(rbeta(n,5,1))
dgp <- dbeta(X,5,1)

mpi.bcast.Robj2slave(X)

mpi.bcast.cmd(model <- npuniden.reflect(X),
caller.execute=TRUE)

mpi.bcast.cmd(model.unadjusted <- npuniden.boundary(X,a=-Inf,b=Inf),
caller.execute=TRUE)

ylim <- c(0,max(c(dgp,model$f,model.unadjusted$f)))
plot(X,model$f,ylab="Density",ylim=ylim,type="l")
lines(X,model.unadjusted$f,lty=2,col=2)
lines(X,dgp,lty=3,col=3)
rug(X)
legend("topleft",c("Data-Reflection","Unadjusted","DGP"),col=1:3,lty=1:3,bty="n")

Example 2: f(0)=0, f(1)=0, plot density, distribution, DGP, and
asymptotic point-wise confidence intervals

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

250 npuniden.reflect

X <- sort(rbeta(100,5,3))

mpi.bcast.Robj2slave(X)

mpi.bcast.cmd(model <- npuniden.reflect(X),
caller.execute=TRUE)

oldpar <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
ylim=range(c(model$f,model$f+1.96*model$sd.f,model$f-1.96*model$sd.f,dbeta(X,5,3)))
plot(X,model$f,ylim=ylim,ylab="Density",type="l",)
lines(X,model$f+1.96*model$sd.f,lty=2)
lines(X,model$f-1.96*model$sd.f,lty=2)
lines(X,dbeta(X,5,3),col=2)
rug(X)
legend("topleft",c("Density","DGP"),lty=c(1,1),col=1:2,bty="n")

plot(X,model$F,ylab="Distribution",type="l")
lines(X,model$F+1.96*model$sd.F,lty=2)
lines(X,model$F-1.96*model$sd.F,lty=2)
lines(X,pbeta(X,5,3),col=2)
rug(X)
legend("topleft",c("Distribution","DGP"),lty=c(1,1),col=1:2,bty="n")

Example 3: Age for working age males in the cps71 data set bounded
below by 21 and above by 65

mpi.bcast.cmd(data(cps71),
caller.execute=TRUE)

mpi.bcast.cmd(model <- npuniden.reflect(cps71$age,a=21,b=65),
caller.execute=TRUE)

par(mfrow=c(1,1))
hist(cps71$age,prob=TRUE,main="",ylim=c(0,max(model$f)))
lines(cps71$age,model$f)
lines(density(cps71$age,bw=model$h),col=2)
legend("topright",c("Data-Reflection","Unadjusted"),lty=c(1,1),col=1:2,bty="n")

par(oldpar)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before

npuniden.sc 251

loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

npuniden.sc Kernel Shape Constrained Bounded Univariate Density Estimation

Description

npuniden.sc computes shape constrained kernel univariate unconditional density estimates given
a vector of continuously distributed training data and a bandwidth. Lower and upper bounds [a,b]
can be supplied (default is [0,1]) and if a is set to -Inf there is only one bound on the right, while
if b is set to Inf there is only one bound on the left.

Usage

npuniden.sc(X = NULL,
Y = NULL,
h = NULL,
a = 0,
b = 1,
lb = NULL,
ub = NULL,
extend.range = 0,
num.grid = 0,
function.distance = TRUE,
integral.equal = FALSE,
constraint = c("density",

"mono.incr",
"mono.decr",
"concave",
"convex",
"log-concave",
"log-convex"))

Arguments

X a required numeric vector of training data lying in [a, b]

Y an optional numeric vector of evaluation data lying in [a, b]

252 npuniden.sc

h a bandwidth (> 0)

a an optional lower bound on the support of X or Y (defaults to 0)

b an optional upper bound on the support of X or Y (defaults to 1)

lb a scalar lower bound (≥ 0) to be used in conjunction with constraint="density"

ub a scalar upper bound (≥ 0 and ≥ lb) to be used in conjunction with constraint="density"

extend.range number specifying the fraction by which the range of the training data should be
extended for the additional grid points (passed to the function extendrange)

num.grid number of additional grid points (in addition to X and Y) placed on an equi-
spaced grid spanning extendrange(c(X,Y),f=extend.range) (if num.grid=0
no additional grid points will be used regardless of the value of extend.range)

function.distance

a logical value that, if TRUE, minimizes the squared deviation between the con-
strained and unconstrained estimates, otherwise, minimizes the squared devia-
tion between the constrained and unconstrained weights

integral.equal a logical value, that, if TRUE, adjusts the constrained estimate to have the same
probability mass over the range X, Y, and the additional grid points

constraint a character string indicating whether the estimate is to be constrained to be
monotonically increasing (constraint="mono.incr"), decreasing (constraint="mono.decr"),
convex (constraint="convex"), concave (constraint="concave"), log-convex
(constraint="log-convex"), or log-concave (constraint="log-concave")

Details

Typical usages are (see below for a complete list of options and also the examples at the end of this
help file)

model <- npuniden.sc(X,a=-2,b=3)

npuniden.sc implements a methods for estimating a univariate density function defined over a
continuous random variable in the presence of bounds subject to a variety of shape constraints. The
bounded estimates use the truncated Gaussian kernel function.

Note that for the log-constrained estimates, the derivative estimate returned is that for the log-
constrained estimate not the non-log value of the estimate returned by the function. See Example 5
below hat manually plots the log-density and returned derivative (no transformation is needed when
plotting the density estimate itself).

If the quadratic program solver fails to find a solution, the unconstrained estimate is returned with
an immediate warning. Possible causes to be investigated are undersmoothing, sparsity, and the
presence of non-sample grid points. To investigate the possibility of undersmoothing try using
a larger bandwidth, to investigate sparsity try decreasing extend.range, and to investigate non-
sample grid points try setting num.grid to 0.

Mean square error performance seems to improve generally when using additional grid points in
the empirical support of X and Y (i.e., in the observed range of the data sample) but appears to
deteriorate when imposing constraints beyond the empirical support (i.e., when extend.range is
positive). Increasing the number of additional points beyond a hundred or so appears to have a
limited impact.

npuniden.sc 253

The option function.distance=TRUE appears to perform better for imposing convexity, concavity,
log-convexity and log-concavity, while function.distance=FALSE appears to perform better for
imposing monotonicity, whether increasing or decreasing (based on simulations for the Beta(s1,s2)
distribution with sample size n = 100).

Value

A list with the following elements:

f unconstrained density estimate

f.sc shape constrained density estimate

se.f asymptotic standard error of the unconstrained density estimate

se.f.sc asymptotic standard error of the shape constrained density estimate

f.deriv unconstrained derivative estimate (of order 1 or 2 or log thereof)

f.sc.deriv shape constrained derivative estimate (of order 1 or 2 or log thereof)

F unconstrained distribution estimate

F.sc shape constrained distribution estimate

integral.f the integral of the unconstrained estimate over X, Y, and the additional grid points

integral.f.sc the integral of the constrained estimate over X, Y, and the additional grid points

solve.QP logical, if TRUE solve.QP succeeded, otherwise failed

attempts number of attempts when solve.QP fails (max = 9)

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Du, P. and C. Parmeter and J. Racine (2024), “Shape Constrained Kernel PDF and PMF Estimation”,
Statistica Sinica, 34 (1), 257-289, doi:10.5705/ss.202021.0112

See Also

The logcondens, LogConDEAD, and scdensity packages, and the function npuniden.boundary.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
n <- 100
set.seed(42)

Example 1: N(0,1), constrain the density to lie within lb=.1 and ub=.2

X <- sort(rnorm(n))
h <- npuniden.boundary(X,a=-Inf,b=Inf)$h
foo <- npuniden.sc(X,h=h,constraint="density",a=-Inf,b=Inf,lb=.1,ub=.2)

https://doi.org/10.5705/ss.202021.0112

254 npuniden.sc

ylim <- range(c(foo$f.sc,foo$f))
plot(X,foo$f.sc,type="l",ylim=ylim,xlab="X",ylab="Density")
lines(X,foo$f,col=2,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

Example 2: Beta(5,1), DGP is monotone increasing, impose valid
restriction

X <- sort(rbeta(n,5,1))
h <- npuniden.boundary(X)$h

foo <- npuniden.sc(X=X,h=h,constraint=c("mono.incr"))

oldpar <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
ylim <- range(c(foo$f.sc,foo$f))
plot(X,foo$f.sc,type="l",ylim=ylim,xlab="X",ylab="Density")
lines(X,foo$f,col=2,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

ylim <- range(c(foo$f.sc.deriv,foo$f.deriv))
plot(X,foo$f.sc.deriv,type="l",ylim=ylim,xlab="X",ylab="First Derivative")
lines(X,foo$f.deriv,col=2,lty=2)
abline(h=0,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

Example 3: Beta(1,5), DGP is monotone decreasing, impose valid
restriction

X <- sort(rbeta(n,1,5))
h <- npuniden.boundary(X)$h

foo <- npuniden.sc(X=X,h=h,constraint=c("mono.decr"))

par(mfrow=c(1,2))
ylim <- range(c(foo$f.sc,foo$f))
plot(X,foo$f.sc,type="l",ylim=ylim,xlab="X",ylab="Density")
lines(X,foo$f,col=2,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

ylim <- range(c(foo$f.sc.deriv,foo$f.deriv))
plot(X,foo$f.sc.deriv,type="l",ylim=ylim,xlab="X",ylab="First Derivative")
lines(X,foo$f.deriv,col=2,lty=2)
abline(h=0,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

Example 4: N(0,1), DGP is log-concave, impose invalid concavity
restriction

npuniden.sc 255

X <- sort(rnorm(n))
h <- npuniden.boundary(X,a=-Inf,b=Inf)$h

foo <- npuniden.sc(X=X,h=h,a=-Inf,b=Inf,constraint=c("concave"))

par(mfrow=c(1,2))
ylim <- range(c(foo$f.sc,foo$f))
plot(X,foo$f.sc,type="l",ylim=ylim,xlab="X",ylab="Density")
lines(X,foo$f,col=2,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")
ylim <- range(c(foo$f.sc.deriv,foo$f.deriv))

plot(X,foo$f.sc.deriv,type="l",ylim=ylim,xlab="X",ylab="Second Derivative")
lines(X,foo$f.deriv,col=2,lty=2)
abline(h=0,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

Example 45: Beta(3/4,3/4), DGP is convex, impose valid restriction

X <- sort(rbeta(n,3/4,3/4))
h <- npuniden.boundary(X)$h

foo <- npuniden.sc(X=X,h=h,constraint=c("convex"))

par(mfrow=c(1,2))
ylim <- range(c(foo$f.sc,foo$f))
plot(X,foo$f.sc,type="l",ylim=ylim,xlab="X",ylab="Density")
lines(X,foo$f,col=2,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

ylim <- range(c(foo$f.sc.deriv,foo$f.deriv))
plot(X,foo$f.sc.deriv,type="l",ylim=ylim,xlab="X",ylab="Second Derivative")
lines(X,foo$f.deriv,col=2,lty=2)
abline(h=0,lty=2)
rug(X)
legend("topleft",c("Constrained","Unconstrained"),lty=1:2,col=1:2,bty="n")

Example 6: N(0,1), DGP is log-concave, impose log-concavity
restriction

X <- sort(rnorm(n))
h <- npuniden.boundary(X,a=-Inf,b=Inf)$h

foo <- npuniden.sc(X=X,h=h,a=-Inf,b=Inf,constraint=c("log-concave"))

par(mfrow=c(1,2))

ylim <- range(c(log(foo$f.sc),log(foo$f)))
plot(X,log(foo$f.sc),type="l",ylim=ylim,xlab="X",ylab="Log-Density")

256 npunitest

lines(X,log(foo$f),col=2,lty=2)
rug(X)
legend("topleft",c("Constrained-log","Unconstrained-log"),lty=1:2,col=1:2,bty="n")

ylim <- range(c(foo$f.sc.deriv,foo$f.deriv))
plot(X,foo$f.sc.deriv,type="l",ylim=ylim,xlab="X",ylab="Second Derivative of Log-Density")
lines(X,foo$f.deriv,col=2,lty=2)
abline(h=0,lty=2)
rug(X)
legend("topleft",c("Constrained-log","Unconstrained-log"),lty=1:2,col=1:2,bty="n")
par(oldpar)

End(Not run)

npunitest Kernel Consistent Univariate Density Equality Test with Mixed Data
Types

Description

npunitest implements the consistent metric entropy test of Maasoumi and Racine (2002) for two
arbitrary, stationary univariate nonparametric densities on common support.

Usage

npunitest(data.x = NULL,
data.y = NULL,
method = c("integration","summation"),
bootstrap = TRUE,
boot.num = 399,
bw.x = NULL,
bw.y = NULL,
random.seed = 42,
...)

Arguments

data.x, data.y common support univariate vectors containing the variables.

method a character string used to specify whether to compute the integral version or the
summation version of the statistic. Can be set as integration or summation.
Defaults to integration. See ‘Details’ below for important information re-
garding the use of summation when data.x and data.y lack common support
and/or are sparse.

bootstrap a logical value which specifies whether to conduct the bootstrap test or not. If
set to FALSE, only the statistic will be computed. Defaults to TRUE.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

npunitest 257

bw.x, bw.y numeric (scalar) bandwidths. Defaults to plug-in (see details below).

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

... additional arguments supplied to specify the bandwidth type, kernel types, and
so on. This is used since we specify bw as a numeric scalar and not a bandwidth
object, and is of interest if you do not desire the default behaviours. To change
the defaults, you may specify any of bwscaling, bwtype, ckertype, ckerorder,
ukertype, okertype.

Details

npunitest computes the nonparametric metric entropy (normalized Hellinger of Granger, Maa-
soumi and Racine (2004)) for testing equality of two univariate density/probability functions, D[f(x), f(y)].
See Maasoumi and Racine (2002) for details. Default bandwidths are of the plug-in variety (bw.SJ
for continuous variables and direct plug-in for discrete variables). The bootstrap is conducted
via simple resampling with replacement from the pooled data.x and data.y (data.x only for
summation).

The summation version of this statistic can be numerically unstable when data.x and data.y lack
common support or when the overlap is sparse (the summation version involves division of densities
while the integration version involves differences, and the statistic in such cases can be reported as
exactly 0.5 or 0). Warning messages are produced when this occurs (‘integration recommended’)
and should be heeded.

Numerical integration can occasionally fail when the data.x and data.y distributions lack common
support and/or lie an extremely large distance from one another (the statistic in such cases will be
reported as exactly 0.5 or 0). However, in these extreme cases, simple tests will reveal the obvious
differences in the distributions and entropy-based tests for equality will be clearly unnecessary.

Value

npunitest returns an object of type unitest with the following components

Srho the statistic Srho

Srho.bootstrap contains the bootstrap replications of Srho

P the P-value of the statistic

boot.num number of bootstrap replications

bw.x, bw.y scalar bandwidths for data.x, data.y

summary supports object of type unitest.

Usage Issues

See the example below for proper usage.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

258 npunitest

References

Granger, C.W. and E. Maasoumi and J.S. Racine (2004), “A dependence metric for possibly non-
linear processes”, Journal of Time Series Analysis, 25, 649-669.

Maasoumi, E. and J.S. Racine (2002), “Entropy and predictability of stock market returns,” Journal
of Econometrics, 107, 2, pp 291-312.

See Also

npdeneqtest,npdeptest,npsdeptest,npsymtest

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

mpi.bcast.cmd(set.seed(42),
caller.execute=TRUE)

n <- 250

x <- rnorm(n)
y <- rnorm(n)

mpi.bcast.Robj2slave(x)
mpi.bcast.Robj2slave(y)

mpi.bcast.cmd(output <- npunitest(x,y,
method="summation",
bootstrap=TRUE,
boot.num=29),

caller.execute=TRUE)

summary(output)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and

oecdpanel 259

tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by
setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

oecdpanel Cross Country Growth Panel

Description

Cross country GDP growth panel covering the period 1960-1995 used by Liu and Stengos (2000)
and Maasoumi, Racine, and Stengos (2007). There are 616 observations in total. data("oecdpanel")
makes available the dataset "oecdpanel" plus an additional object "bw".

Usage

data("oecdpanel")

Format

A data frame with 7 columns, and 616 rows. This panel covers 7 5-year periods: 1960-1964, 1965-
1969, 1970-1974, 1975-1979, 1980-1984, 1985-1989 and 1990-1994.

A separate local-linear rbandwidth object (bw) has been computed for the user’s convenience which
can be used to visualize this dataset using plot(bw).

growth the first column, of type numeric: growth rate of real GDP per capita for each 5-year
period

oecd the second column, of type factor: equal to 1 for OECD members, 0 otherwise

year the third column, of type integer

initgdp the fourth column, of type numeric: per capita real GDP at the beginning of each 5-year
period

popgro the fifth column, of type numeric: average annual population growth rate for each 5-year
period

260 se

inv the sixth column, of type numeric: average investment/GDP ratio for each 5-year period

humancap the seventh column, of type numeric: average secondary school enrolment rate for
each 5-year period

Source

Thanasis Stengos

References

Liu, Z. and T. Stengos (1999), “Non-linearities in cross country growth regressions: a semipara-
metric approach,” Journal of Applied Econometrics, 14, 527-538.

Maasoumi, E. and J.S. Racine and T. Stengos (2007), “Growth and convergence: a profile of distri-
bution dynamics and mobility,” Journal of Econometrics, 136, 483-508

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
data("oecdpanel")
attach(oecdpanel)
summary(oecdpanel)
detach(oecdpanel)

End(Not run)

se Extract Standard Errors

Description

se is a generic function which extracts standard errors from objects.

Usage

se(x)

Arguments

x an object for which the extraction of standard errors is meaningful.

Details

This function provides a generic interface for extraction of standard errors from objects.

Value

Standard errors extracted from the model object x.

se 261

Note

This method currently only supports objects from the npRmpi library.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

See Also

fitted, residuals, coef, and gradients, for related methods; npRmpi for supported objects.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
The following example is adapted for interactive parallel execution
in R. Here we spawn 1 slave so that there will be two compute nodes
(master and slave). Kindly see the batch examples in the demos
directory (npRmpi/demos) and study them carefully. Also kindly see
the more extensive examples in the np package itself. See the npRmpi
vignette for further details on running parallel np programs via
vignette("npRmpi",package="npRmpi").

Start npRmpi for interactive execution. If slaves are already running and
`options(npRmpi.reuse.slaves=TRUE)` (default on some systems), this will
reuse the existing pool instead of respawning. To change the number of
slaves, call `npRmpi.stop(force=TRUE)` then restart.
npRmpi.start(nslaves=1)

set.seed(42)

x <- rnorm(10)
mpi.bcast.Robj2slave(x)

mpi.bcast.cmd(bw <- npudensbw(~x),
caller.execute=TRUE)

mpi.bcast.cmd(fhat <- npudens(bw),
caller.execute=TRUE)

se(fhat)

For the interactive run only we close the slaves perhaps to proceed
with other examples and so forth. This is redundant in batch mode.

Note: on some systems (notably macOS+MPICH), repeatedly spawning and
tearing down slaves in the same R session can lead to hangs/crashes.
npRmpi may therefore keep slave daemons alive by default and
`npRmpi.stop()` performs a "soft close". Use `force=TRUE` to
actually shut down the slaves.
##
You can disable reuse via `options(npRmpi.reuse.slaves=FALSE)` or by

262 uocquantile

setting the environment variable `NP_RMPI_NO_REUSE_SLAVES=1` before
loading the package.

npRmpi.stop() ## soft close (may keep slaves alive)
npRmpi.stop(force=TRUE) ## hard close

Note that in order to exit npRmpi properly avoid quit(), and instead
use mpi.quit() as follows.

mpi.bcast.cmd(mpi.quit(),
caller.execute=TRUE)

End(Not run)

uocquantile Compute Quantiles

Description

uocquantile is a function which computes quantiles of an unordered, ordered or continuous vari-
able x.

Usage

uocquantile(x, prob)

Arguments

x an ordered, unordered or continuous variable.

prob quantile to compute.

Details

uocquantile is a function which computes quantiles of an unordered, ordered or continuous vari-
able x. If x is unordered, the mode is returned. If x is ordered, the level for which the cumulative
distribution is >= prob is returned. If x is continuous, quantile is invoked and the result returned.

Value

A quantile computed from x.

Author(s)

Tristen Hayfield <tristen.hayfield@gmail.com>, Jeffrey S. Racine <racinej@mcmaster.ca>

See Also

quantile

wage1 263

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
x <- rbinom(n = 100, size = 10, prob = 0.5)
uocquantile(x, 0.5)

End(Not run)

wage1 Cross-Sectional Data on Wages

Description

Cross-section wage data consisting of a random sample taken from the U.S. Current Population
Survey for the year 1976. There are 526 observations in total. data("wage1") makes available the
dataset "wage" plus additional objects "bw.all" and "bw.subset".

Usage

data("wage1")

Format

A data frame with 24 columns, and 526 rows.

Two local-linear rbandwidth objects (bw.all and bw.subset) have been computed for the user’s
convenience which can be used to visualize this dataset using plot(bw.all)

wage column 1, of type numeric, average hourly earnings

educ column 2, of type numeric, years of education

exper column 3, of type numeric, years potential experience

tenure column 4, of type numeric, years with current employer

nonwhite column 5, of type factor, =“Nonwhite” if nonwhite, “White” otherwise

female column 6, of type factor, =“Female” if female, “Male” otherwise

married column 7, of type factor, =“Married” if Married, “Nonmarried” otherwise

numdep column 8, of type numeric, number of dependants

smsa column 9, of type numeric, =1 if live in SMSA

northcen column 10, of type numeric, =1 if live in north central U.S

south column 11, of type numeric, =1 if live in southern region

west column 12, of type numeric, =1 if live in western region

construc column 13, of type numeric, =1 if work in construction industry

ndurman column 14, of type numeric, =1 if in non-durable manufacturing industry

trcommpu column 15, of type numeric, =1 if in transportation, communications, public utility

264 wage1

trade column 16, of type numeric, =1 if in wholesale or retail

services column 17, of type numeric, =1 if in services industry

profserv column 18, of type numeric, =1 if in professional services industry

profocc column 19, of type numeric, =1 if in professional occupation

clerocc column 20, of type numeric, =1 if in clerical occupation

servocc column 21, of type numeric, =1 if in service occupation

lwage column 22, of type numeric, log(wage)

expersq column 23, of type numeric, exper2

tenursq column 24, of type numeric, tenure2

Source

Jeffrey M. Wooldridge

References

Wooldridge, J.M. (2000), Introductory Econometrics: A Modern Approach, South-Western College
Publishing.

Examples

Not run:
Not run in checks: excluded to keep MPI examples stable and check times short.
data("wage1")
attach(wage1)
summary(wage1)
detach(wage1)

End(Not run)

Index

∗ datasets
cps71, 5
Engel95, 7
Italy, 12
oecdpanel, 259
wage1, 263

∗ distribution
mpi.setup.rngstream, 59

∗ hplot
np.pairs, 65

∗ instrument
npregiv, 172
npregivderiv, 181

∗ interface
mpi.abort, 15
mpi.barrier, 19
mpi.bcast, 20
mpi.cart.coords, 23
mpi.cart.create, 24
mpi.cart.get, 25
mpi.cart.rank, 26
mpi.cart.shift, 27
mpi.cartdim.get, 28
mpi.comm.disconnect, 29
mpi.comm.free, 30
mpi.comm.get.parent, 31
mpi.comm.set.errhandler, 32
mpi.comm.size, 32
mpi.comm.spawn, 33
mpi.dims.create, 34
mpi.finalize, 36
mpi.gather, 37
mpi.gather.Robj, 38
mpi.get.count, 40
mpi.get.processor.name, 41
mpi.info.create, 44
mpi.intercomm.merge, 45
mpi.probe, 47
mpi.realloc, 48

mpi.reduce, 49
mpi.scatter, 52
mpi.send, 54
mpi.sendrecv, 57
mpi.setup.rngstream, 59
mpi.universe.size, 62
mpi.wait, 63

∗ nonparametric
b.star, 4
gradients, 10
npcdens, 67
npcdensbw, 71
npcdist, 79
npcdistbw, 83
npcmstest, 91
npconmode, 95
npcopula, 98
npdeneqtest, 104
npdeptest, 107
npindex, 110
npindexbw, 115
npksum, 120
npplot, 125
npplreg, 137
npplregbw, 141
npqcmstest, 147
npqreg, 151
npquantile, 155
npreg, 159
npregbw, 164
npRmpi.start, 190
npscoef, 191
npscoefbw, 196
npsdeptest, 203
npseed, 206
npsigtest, 208
npsymtest, 212
npudens, 217
npudensbw, 222

265

266 INDEX

npudist, 230
npudistbw, 234
npuniden.boundary, 243
npuniden.reflect, 247
npuniden.sc, 251
npunitest, 256
se, 260
uocquantile, 262

∗ package
npRmpi, 186

∗ smooth
npuniden.boundary, 243
npuniden.reflect, 247
npuniden.sc, 251

∗ univar
b.star, 4
npdeptest, 107
npsdeptest, 203
npsymtest, 212
npunitest, 256
uocquantile, 262

∗ utilities
lamhosts, 14
mpi.any.source, 15
mpi.apply, 16
mpi.applyLB, 17
mpi.bcast.cmd, 21
mpi.bcast.Robj, 22
mpi.exit, 35
mpi.get.sourcetag, 41
mpi.iapplyLB, 42
mpi.parSim, 46
mpi.remote.exec, 51
mpi.scatter.Robj, 53
mpi.send.Robj, 56
mpi.spawn.Rslaves, 60

as.data.frame, 68, 73, 80, 85, 92, 96, 111,
116, 121, 132, 138, 143, 147, 152,
159, 166, 192, 197, 209, 218, 224,
231, 236

b.star, 4, 213
boxplot.stats, 157
bw (oecdpanel), 259
bw.all (wage1), 263
bw.nrd, 78, 90, 194, 229, 242
bw.SJ, 78, 90, 194, 213, 229, 242, 257
bw.subset (wage1), 263

cbind, 69, 77, 81, 89, 93, 96, 105, 113, 118,
124, 135, 139, 145, 149, 153, 162,
170, 187, 194, 201, 211, 220, 228,
232, 241

coef, 11, 112, 118, 139, 193, 261
colMeans, 124
cps71, 5

data.frame, 69, 77, 81, 89, 93, 96, 100, 105,
113, 118, 124, 135, 139, 145, 149,
153, 162, 170, 187, 194, 201, 211,
220, 228, 232, 241

density, 221, 233

ecdf, 157
Engel95, 7
expand.grid, 99, 100
extendrange, 99, 156

factor, 68, 76, 80, 88, 123, 139, 144, 161,
169, 187, 214, 220, 227

fitted, 11, 68, 81, 96, 112, 139, 153, 162,
193, 220, 232, 261

fivenum, 157

glm, 92
gradients, 10, 11, 68, 81, 112, 153, 162, 261

hist, 78, 90, 194, 229, 242

Italy, 12

lamhosts, 14
lm, 92, 93, 187
loess, 163

mode, 96
mpi.abort, 15
mpi.allgather (mpi.gather), 37
mpi.allgather.Robj (mpi.gather.Robj), 38
mpi.allgatherv, 39
mpi.allgatherv (mpi.gather), 37
mpi.allreduce (mpi.reduce), 49
mpi.any.source, 15, 42, 55
mpi.any.tag, 42, 55
mpi.any.tag (mpi.any.source), 15
mpi.apply, 16, 18
mpi.applyLB, 17
mpi.barrier, 19
mpi.bcast, 20, 21, 23

INDEX 267

mpi.bcast.cmd, 20, 21, 47, 51
mpi.bcast.data2slave (mpi.bcast.Robj),

22
mpi.bcast.Rfun2slave (mpi.bcast.Robj),

22
mpi.bcast.Robj, 20, 22
mpi.bcast.Robj2slave, 20, 47
mpi.bcast.Robj2slave (mpi.bcast.Robj),

22
mpi.cancel (mpi.wait), 63
mpi.cart.coords, 23, 27
mpi.cart.create, 24, 26, 28, 35
mpi.cart.get, 25, 29
mpi.cart.rank, 24, 26
mpi.cart.shift, 27
mpi.cartdim.get, 26, 28
mpi.close.Rslaves (mpi.spawn.Rslaves),

60
mpi.comm.c2f (mpi.comm.size), 32
mpi.comm.disconnect, 29, 30, 31
mpi.comm.dup (mpi.comm.size), 32
mpi.comm.free, 29, 30, 30
mpi.comm.get.parent, 31, 33, 34, 45
mpi.comm.maxsize (mpi.realloc), 48
mpi.comm.rank (mpi.comm.size), 32
mpi.comm.remote.size

(mpi.comm.get.parent), 31
mpi.comm.set.errhandler, 32
mpi.comm.size, 30, 32
mpi.comm.spawn, 33, 61
mpi.comm.test.inter, 45
mpi.comm.test.inter

(mpi.comm.get.parent), 31
mpi.dims.create, 34
mpi.exit, 35, 36, 37
mpi.finalize, 15, 29, 36, 36
mpi.gather, 37, 39, 50, 52, 53
mpi.gather.Robj, 38, 54
mpi.gatherv, 52, 53
mpi.gatherv (mpi.gather), 37
mpi.get.count, 40, 42, 48, 55, 56, 64
mpi.get.processor.name, 41
mpi.get.sourcetag, 40, 41, 42, 48, 55, 56,

58, 64
mpi.hostinfo, 61
mpi.hostinfo (lamhosts), 14
mpi.iapply, 43
mpi.iapply (mpi.apply), 16

mpi.iapplyLB, 42
mpi.info.create, 44
mpi.info.free (mpi.info.create), 44
mpi.info.get (mpi.info.create), 44
mpi.info.set (mpi.info.create), 44
mpi.intercomm.merge, 29–31, 33, 34, 45
mpi.iparApply (mpi.iapplyLB), 42
mpi.iparCapply (mpi.iapplyLB), 42
mpi.iparLapply (mpi.iapplyLB), 42
mpi.iparMM (mpi.iapplyLB), 42
mpi.iparRapply (mpi.iapplyLB), 42
mpi.iparReplicate (mpi.iapplyLB), 42
mpi.iparSapply (mpi.iapplyLB), 42
mpi.iprobe, 55
mpi.iprobe (mpi.probe), 47
mpi.irecv, 64
mpi.irecv (mpi.send), 54
mpi.is.master (lamhosts), 14
mpi.isend, 64
mpi.isend (mpi.send), 54
mpi.isend.Robj (mpi.send.Robj), 56
mpi.parApply (mpi.applyLB), 17
mpi.parCapply (mpi.applyLB), 17
mpi.parLapply (mpi.applyLB), 17
mpi.parMM (mpi.applyLB), 17
mpi.parRapply (mpi.applyLB), 17
mpi.parReplicate (mpi.applyLB), 17
mpi.parSapply (mpi.applyLB), 17
mpi.parSim, 46
mpi.probe, 16, 40, 42, 47, 55, 56, 58
mpi.proc.null, 28
mpi.proc.null (mpi.any.source), 15
mpi.quit (mpi.exit), 35
mpi.realloc, 48
mpi.realloc.comm (mpi.realloc), 48
mpi.realloc.request (mpi.realloc), 48
mpi.realloc.status (mpi.realloc), 48
mpi.recv, 16, 40, 42, 48, 57
mpi.recv (mpi.send), 54
mpi.recv.Robj, 23, 55, 56, 58
mpi.recv.Robj (mpi.send.Robj), 56
mpi.reduce, 49
mpi.remote.exec, 21, 22, 51
mpi.request.maxsize (mpi.realloc), 48
mpi.scatter, 38, 52, 54
mpi.scatter.Robj, 53
mpi.scatter.Robj2slave

(mpi.scatter.Robj), 53

268 INDEX

mpi.scatterv, 38
mpi.scatterv (mpi.scatter), 52
mpi.send, 16, 40, 42, 48, 54, 57
mpi.send.Robj, 23, 55, 56, 56, 58
mpi.sendrecv, 57
mpi.setup.rngstream, 47, 59
mpi.spawn.Rslaves, 14, 44, 45, 51, 60
mpi.status.maxsize (mpi.realloc), 48
mpi.test, 55
mpi.test (mpi.wait), 63
mpi.testall (mpi.wait), 63
mpi.testany (mpi.wait), 63
mpi.testsome (mpi.wait), 63
mpi.universe.size, 62
mpi.wait, 55–57, 63
mpi.waitall (mpi.wait), 63
mpi.waitany (mpi.wait), 63
mpi.waitsome (mpi.wait), 63

na.action, 73, 85, 116, 121, 143, 166, 198,
224, 236

na.fail, 73, 85, 116, 121, 143, 166, 198, 224,
236

na.omit, 73, 85, 116, 121, 143, 166, 198, 224,
236

nlm, 122
np.mpi.initialize, 64
np.pairs, 65
npcdens, 67
npcdensbw, 67, 68, 71, 95, 96, 132, 206
npcdist, 79
npcdistbw, 79, 80, 83, 151, 152
npcmstest, 91, 206
npconmode, 95
npcopula, 98, 100
npdeneqtest, 104, 109, 205, 214, 258
npdeptest, 106, 107, 205, 214, 258
npindex, 110
npindexbw, 111, 114, 132
npksum, 117, 120, 175, 182, 188
npplot, 125, 188
npplreg, 137
npplregbw, 132, 138, 141, 206
npqcmstest, 147, 206
npqreg, 150, 206
npquantile, 155, 156
npreg, 11, 65, 140, 145, 158, 171, 178, 182,

184, 187, 201

npregbw, 93, 122, 132, 138, 140, 143, 145,
148, 159, 164, 201, 206, 209

npregiv, 172, 184
npregivderiv, 178, 181
npRmpi, 10, 11, 68, 73, 76, 80, 85, 88, 111,

116, 123, 138, 139, 143, 144, 159,
161, 166, 169, 186, 192, 198, 200,
206, 207, 213, 220, 224, 227, 232,
236, 240, 261

npRmpi-package (npRmpi), 186
npRmpi.session.info (npRmpi.start), 190
npRmpi.start, 190
npRmpi.stop (npRmpi.start), 190
npscoef, 191
npscoefbw, 132, 192, 194, 196
npsdeptest, 106, 109, 203, 214, 258
npseed, 206
npsigtest, 206, 208
npsymtest, 106, 109, 205, 212, 258
nptgauss, 188, 216
npudens, 65, 69, 78, 82, 90, 100, 194, 217, 229
npudensbw, 100, 132, 194, 206, 218, 221, 222
npudist, 78, 90, 100, 156, 194, 229, 230, 232,

242
npudistbw, 156, 157, 230, 231, 233, 234
npuniden.boundary, 243, 249, 253
npuniden.reflect, 246, 247
npuniden.sc, 251
npunitest, 106, 109, 205, 214, 256
numeric, 100, 107, 123, 155, 187, 203, 214

oecdpanel, 259
optim, 116, 117, 174, 175, 199
ordered, 68, 76, 80, 88, 100, 123, 139, 144,

161, 169, 187, 220, 227, 232, 240

plot, 69, 77, 81, 89, 112, 118, 126, 134, 153,
162, 170, 177, 183, 187, 188, 193,
200, 220, 228, 232, 241, 259, 263

plot.default, 133
predict, 69, 77, 81, 89, 112, 118, 139, 153,

162, 170, 193, 200, 220, 228, 232,
241

print, 177, 183

qkde, 157
qlogspline, 157
quantile, 153, 156, 157, 262

replicate, 47

INDEX 269

residuals, 11, 112, 139, 162, 193, 261
rq, 148

se, 11, 68, 81, 112, 153, 162, 193, 220, 232,
260

serialize, 57
set.seed, 207
slave.hostinfo (lamhosts), 14
sub, 133
summary, 69, 77, 81, 89, 93, 96, 105, 108, 112,

118, 149, 153, 162, 170, 177, 183,
193, 200, 204, 210, 214, 220, 228,
232, 241, 257

tailslave.log (mpi.spawn.Rslaves), 60
title, 132
ts, 203

unserialize, 57
uocquantile, 262

vcov, 112, 113, 139

wage1, 263

	b.star
	cps71
	Engel95
	gradients
	Italy
	lamhosts
	mpi.abort
	mpi.any.source
	mpi.apply
	mpi.applyLB
	mpi.barrier
	mpi.bcast
	mpi.bcast.cmd
	mpi.bcast.Robj
	mpi.cart.coords
	mpi.cart.create
	mpi.cart.get
	mpi.cart.rank
	mpi.cart.shift
	mpi.cartdim.get
	mpi.comm.disconnect
	mpi.comm.free
	mpi.comm.get.parent
	mpi.comm.set.errhandler
	mpi.comm.size
	mpi.comm.spawn
	mpi.dims.create
	mpi.exit
	mpi.finalize
	mpi.gather
	mpi.gather.Robj
	mpi.get.count
	mpi.get.processor.name
	mpi.get.sourcetag
	mpi.iapplyLB
	mpi.info.create
	mpi.intercomm.merge
	mpi.parSim
	mpi.probe
	mpi.realloc
	mpi.reduce
	mpi.remote.exec
	mpi.scatter
	mpi.scatter.Robj
	mpi.send
	mpi.send.Robj
	mpi.sendrecv
	mpi.setup.rngstream
	mpi.spawn.Rslaves
	mpi.universe.size
	mpi.wait
	np.mpi.initialize
	np.pairs
	npcdens
	npcdensbw
	npcdist
	npcdistbw
	npcmstest
	npconmode
	npcopula
	npdeneqtest
	npdeptest
	npindex
	npindexbw
	npksum
	npplot
	npplreg
	npplregbw
	npqcmstest
	npqreg
	npquantile
	npreg
	npregbw
	npregiv
	npregivderiv
	npRmpi
	npRmpi.start
	npscoef
	npscoefbw
	npsdeptest
	npseed
	npsigtest
	npsymtest
	nptgauss
	npudens
	npudensbw
	npudist
	npudistbw
	npuniden.boundary
	npuniden.reflect
	npuniden.sc
	npunitest
	oecdpanel
	se
	uocquantile
	wage1
	Index

