Package 'kayadata'

July 12, 2024

```
Type Package
Title Kaya Identity Data for Nations and Regions
Version 1.4.0
Date 2024-07-07
Description Provides data for Kaya identity variables (population, gross
      domestic product, primary energy consumption, and energy-related
      CO2 emissions) for the world and for individual nations, and
      utility functions for looking up data, plotting trends of
      Kaya variables, and plotting the fuel mix for a given country
      or region. The Kaya identity (Yoichi Kaya and Keiichi Yokobori,
      ``Environment, Energy, and Economy: Strategies for Sustainability"
      (United Nations University Press, 1998) and
      <a href="https://en.wikipedia.org/wiki/Kaya_identity">https://en.wikipedia.org/wiki/Kaya_identity</a>) expresses a nation's
      or region's greenhouse gas emissions in terms of its population,
      per-capita Gross Domestic Product, the energy intensity of its
      economy, and the carbon-intensity of its energy supply.
URL https://jonathan-g.github.io/kayadata/,
      https://github.com/jonathan-g/kayadata,
      https://doi.org/10.5281/zenodo.8144476
BugReports https://github.com/jonathan-g/kayadata/issues
License MIT + file LICENSE
Depends R (>= 3.5), ggplot2 (>= 3.5.1)
Imports magrittr (>= 2.0.3), forcats (>= 1.0.0), dplyr (>= 1.1.4),
      tidyr (>= 1.3.1), stringr (>= 1.5.1), scales (>= 1.3.0), purrr
      (>=1.0.2)
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.3.2
Suggests broom (>= 0.5), knitr (>= 1.22), rmarkdown (>= 1.12),
      testthat (>= 2.0), vdiffr (>= 0.3.1)
```

2 kayadata-package

VignetteBuilder knitr

NeedsCompilation no

Author Jonathan Gilligan [cre, aut] (https://orcid.org/0000-0003-1375-6686)

Maintainer Jonathan Gilligan < jonathan.gilligan@vanderbilt.edu>

Repository CRAN

Date/Publication 2024-07-12 16:20:02 UTC

Contents

	kayadata-package			2
	emissions_factors			3
				4
				5
	_		,	
	•			
	• •			
	-			
	•			
	-			
	-			
	_			
	_			
Index			19	9
				_
kayad	data-package k	yadata package		

Description

kayadata is a package for working with Kaya identity data for many countries and regions.

The Kaya identity, named for the economist Yoichi Kaya, who introduced it (Kaya, 1998); It decomposes the energy-related carbon dioxide emissions from a nation, region, or the world into the product of four components:

$$F = P \times g \times e \times f$$
,

where F is the total emissions, P is the population, g is the per-capita GDP, e is the energy intensity of the economy, and f is the emissions-intensity of the energy supply. (Nakicenovic and Swart, 2000, Ch. 3, p. 105; Raupach et al, 2007)

The data in this packages covers 1960-2019 for population and GDP, and 1965-2019 for energy and fossil-fuel CO2 emissions.

emissions_factors 3

The package uses data on population and GDP from the World Bank, using market exchange rates (MER) for GDP because those data go back to 1960. From 1990 onward, Purchasing-Power-Parity (PPP) GDP figures are available as G_ppp but using these would require re-calculating G, g, e, and ef in the kaya_data data frame.

The package uses data on energy consumption and fossil-fuel CO2 emissions from the Energy Institute's 2024 Statistical Review of World Energy

License

The kayadata package is open source licensed under the MIT License.

Bug reports

• kayadata issue tracker (https://github.com/jonathan-g/kayadata/issues)

Author(s)

Maintainer: Jonathan Gilligan < jonathan.gilligan@vanderbilt.edu> (ORCID)

References

Kaya, Yoichi and Keiichi Yokobori, *Environment, Energy, and Economy: Strategies for Sustainability* (United Nations University Press, 1998).

Nakicenovic, Nebojsa, and Rob Swart (Eds.), *Special Report on Emissions Scenarios* (Cambridge University Press, 2000). https://www.ipcc.ch/report/emissions-scenarios/

Raupach, Michael R., *et al.*, "Global and regional drivers of accelerating CO2 emissions," PNAS **104**, 10288–10293 (2007) doi:10.1073/pnas.0700609104.

See Also

Useful links:

- https://jonathan-g.github.io/kayadata/
- https://github.com/jonathan-g/kayadata
- · doi:10.5281/zenodo.8144476
- Report bugs at https://github.com/jonathan-g/kayadata/issues

emissions_factors

Get emission factors for different energy sources

Description

Get emission factors for different energy sources

Usage

```
emissions_factors(collapse_renewables = TRUE)
```

4 fuel_mix

Arguments

```
collapse_renewables
```

Combine hydroelectricity and other renewables into a single category.

Value

a tibble of values for emissions factors, in million metric tons of carbon dioxide per quad of energy.

See Also

regions

Examples

```
e_fac <- emissions_factors()
e_fac</pre>
```

fuel_mix

Mix of fuels contributing to primary energy supply for many countries and regions

Description

A dataset containing the fuel mix of how many quads and what fraction of total primary energy supply comes from coal, gas, oil, nuclear, and renewable sources.

Usage

```
fuel_mix
```

Format

A tibble containing 948 rows and 7 variables

```
region Country or region name
```

region_code Three-letter country or region code

geography Geographic category: "nation", "region", or "world"

year The year

fuel The fuel: "Coal", "Natural Gas", "Oil", "Nuclear", "Hydro", and "Renewables"

quads The number of quads of that fuel consumed in the given country or region and year

frac The fraction of that country or region's total primary energy consumption from the fuel

Note

The data for 2022, from the 2023 release of the Energy Institute's Statistical Review, has inconsistencies in the fuel mix for Hong Kong and Sri Lanka: The percentages add up to 98.7% and 102.9%, respectively. The sums of energy in quads are off by -0.095 and +0.095 quads, respectively, from the total energy figure.

generation_capacity 5

Source

https://www.energyinst.org/statistical-review/resources-and-data-downloads

See Also

```
regions, get_fuel_mix()
```

generation_capacity

Get power output from generation sources

Description

Nameplate capacity and capacity factors for different electrical generation technologies. The average power supplied over a year is the nameplate capacity times the capacity factor.

Usage

```
generation_capacity()
```

Details

Data for fossil fuels comes from EIA

Value

a tibble of values for generation sources

fuel Energy source: Coal, Nuclear, Gas, Solar Thermal, Solar Photovoltaic, Onshore Wind, or Offshore Wind

description Text description of the power source

nameplate_capacity Maximum sustained power output, in megawatts

capacity_factor Capacity factor: the fraction of the nameplate capacity that the plant can provide, averaged over a typical year

References

```
Environmental Protection Agency (2018) "Electric Power Monthly," (October, 2018) https://www.eia.gov/electricity/monthly/archive/october2018.pdf, Table 6.7.A.
```

Pielke, Jr., Roger A., The Climate Fix (Basic Books, 2010).

Examples

```
gc <- generation_capacity()
gc</pre>
```

get_fuel_mix

get_fuel_mix

Get fuel mix for one or more countries or regions

Description

Get fuel mix for one or more countries or regions

Usage

```
get_fuel_mix(
  region_name,
  collapse_renewables = TRUE,
  quiet = FALSE,
  region_code = NULL
)
```

Arguments

region_name A character vector with the names of one or more countries or regions to look

up

collapse_renewables

Combine hydroelectricity and other renewables into a single category.

quiet

Suppress warnings if there is no data for that country or region.

region_code

Optional three-letter country or region codes to look up instead of the region_name

Value

A tibble of fuel mix for the countries or regions specified. That is, the number of quads of each fuel and the fraction of total primary energy coming from that fuel for each country or region:

region The name of the country or region

year The year reported

fuel The name of the fuel

quads The number of quads per year the country or region consumes

frac The fraction of the country's energy that comes from that fuel

Note

In the latest data from the Energy Institute, there are small discrepancies between the sums of energy for each fuel and the totals, in both quads and frac, for Hong Kong and Sri Lanka, as described in the documentation for fuel_mix.

See Also

```
regions, fuel_mix
```

get_kaya_data 7

Examples

```
get_fuel_mix("United States")
get_fuel_mix("World", collapse_renewables = FALSE)
get_fuel_mix(region_code = "LCN")
```

get_kaya_data

Get Kaya data for one or more countries or regions

Description

Get Kaya data for one or more countries or regions

Usage

```
get_kaya_data(
  region_name,
  gdp = c("MER", "PPP"),
  quiet = FALSE,
  region_code = NULL
)
```

Arguments

region_name The name of one or more countries or regions to look up

gdp Use market exchange rates (MER) or purchasing power parity (PPP). Default is

MER.

quiet Suppress warnings if there is no such country or region.

region_code Optional three-letter country or region codes to look up instead of the region_name

Details

Units for *G*, *g*, *e*, and *ef* depend on whether the data is requested in MER or PPP dollars: For MER, dollars are constant 2015 U.S. dollars. For PPP, dollars are constant 2017 international dollars.

 $_{\rm P}$ and MER values for GDP and related quantities are available from 1960 onward.

PPP values for GDP and related quantities are only available from 1990 onward.

Energy-related values ($_{\rm E}$, $_{\rm F}$, and derived quantities) are available from 1965 onward.

Note that emissions $(_F_-, _f_-, and _ef_-)$ are reported as millions of metric tons of carbon dioxide, not carbon.

Value

a tibble of Kaya identity data for the countries or regions specified:

region The name of the country or region

year The year

- P Population, in billions
- **G** Gross domestic product, in trillions of constant 2015 U.S. dollars.
- E Total primary energy consumption, in quads
- F CO2 emissions from fossil fuel consumption, in millions of metric tons
- g Per-capita GDP, in thousands of dollars per person.
- e Energy intensity of the economy, in quads per trillion dollars.
- **f** Emissions intensity of the energy supply, in million metric tons per quad.
- ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also

regions

Examples

```
get_kaya_data("Brazil")
get_kaya_data("United Kingdom", "PPP")
get_kaya_data(region_name = "United States")
get_kaya_data(region_code = "MYS")
```

get_top_down_trends

Get top-down trends for Kaya variables for one or more countries or regions, using projections from U.S. Energy Information Administration's International Energy Outlook report.

Description

Get top-down trends for Kaya variables for one or more countries or regions, using projections from U.S. Energy Information Administration's International Energy Outlook report.

Usage

```
get_top_down_trends(region_name, quiet = FALSE, region_code = NULL)
```

Arguments

region_name The name of one or more countries or regions to look up

quiet Suppress warnings if there is no data for the specified countries or regions.

region_code Optional three-letter country or region codes to look up instead of the region_name

get_top_down_values 9

Value

a tibble of trends for P, G, E, F, g, e, f, and ef for each country or region in percent per year.

See Also

regions

Examples

```
get_top_down_trends("Spain")
get_top_down_trends(region_code = "RUS")
```

get_top_down_values

Get top-down projections of Kaya variables for one or more countries or regions

Description

Get top-down projections of Kaya variables for one or more countries or regions

Usage

```
get_top_down_values(region_name, quiet = FALSE, region_code = NULL)
```

Arguments

region_name The name of a country or region to look up

quiet Suppress warnings if there is no data for that country or region.

region_code Optional three-letter country or region code to look up instead of the region_name

Value

a tibble of values for P, G, E, F, g, e, f, and ef for each country or region:

region The name of the country or region

- P Population, in billions
- G Gross domestic product, in trillions of constant 2015 U.S. dollars.
- E Total primary energy consumption, in quads
- F CO2 emissions from fossil fuel consumption, in millions of metric tons
- g Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.
- e Energy intensity of the economy, in quads per trillion dollars.
- f Emissions intensity of the energy supply, in million metric tons per quad.
- ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

10 kaya_data

See Also

regions

Examples

```
get_top_down_values("New Zealand")
get_top_down_values("OECD")
get_top_down_values(region_code = "PAK")
```

kaya_data

Kaya identity data for many countries and regions

Description

A dataset containing Kaya identity parameters P, G, E, F, g, e, f, and ef for many countries

Usage

kaya_data

Format

A tibble containing 5292 rows and 14 variables:

region Country or region name

region_code Three-letter country or region code

geography Geographic category: "nation", "region", or "world"

year The year

- P Population, in billions
- **G** Gross domestic product, in trillions of constant 2015 U.S. dollars.
- E Total primary energy consumption, in quads
- F CO2 emissions from fossil fuel consumption, in millions of tons
- g Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.
- e Energy intensity of the economy, in quads per trillion dollars.
- f Emissions intensity of the energy supply, in million metric tons per quad.
- ef Emissions intensity of the economy, in metric tons per million dollars of GDP.
- **G_ppp** Gross domestic product adjusted for purchasing power parity, in trillions of constant 2017 international dollars
- G_mer Gross domestic product at market-exchange-rate, in trillions of constant 2015 U.S. dollars

Source

https://data.worldbank.org/indicator/SP.POP.TOTL, https://data.worldbank.org/indicator/NY.GDP.MKTP.KD, and https://www.energyinst.org/statistical-review/resources-and-data-downloads

kaya_region_list

See Also

```
regions, get_kaya_data()
```

kaya_region_list

Get a list of countries in the Kaya data

Description

Get a list of countries in the Kaya data

Usage

```
kaya_region_list()
```

Value

a vector of country and region names

See Also

regions

 $megawatts_per_quad$

The number of megawatts it takes to replace a quad.

Description

The number of megawatts of average power output over a year to produce one quad of energy

Usage

```
megawatts_per_quad()
```

Value

The number of megawatts equivalent to one quad per year.

Examples

```
mwe <- megawatts_per_quad()
mwe</pre>
```

12 plot_fuel_mix

plot_fuel_mix

Plot fuel mix

Description

Plot fuel mix

Usage

```
plot_fuel_mix(
   fuel_mix,
   collapse_renewables = TRUE,
   title = NULL,
   colors = NULL,
   font_size = 20
)
```

Arguments

fuel_mix

A tibble with the mixture of fuels for one or more countries or regions:

region The name of the country or region

fuel The name of the fuel

 $\boldsymbol{quads}\,$ The number of quads per year the country or region consumes

frac The fraction of the country's energy that comes from that fuel

collapse_renewables

Combine hydroelectricity and other renewables into a single category.

title

Include a title on the plot. If title is NULL (default) or TRUE, a default title is created from the names of the regions in fuel_mix. If title is a character string, that string is used. If title is FALSE, the plot is produced with no title.

colors

A named vector with the colors to use for Coal, Oil, Natural Gas, Nuclear,

Hydro, and Renewables.

font_size The base font size.

Value

A plot object.

Examples

plot_kaya 13

```
plot_fuel_mix("United States")
plot_fuel_mix("USA")
```

plot_kaya

Plot Kaya-identity variable

Description

Plot Kaya-identity variable

Usage

```
plot_kaya(
  data,
  variable,
  start_year = NA,
  stop\_year = NA,
  y_{ab} = NULL,
  log_scale = FALSE,
  trend_line = FALSE,
  points = TRUE,
  font_size = 20,
  colors = NULL,
  pre_color = NULL,
  post_color = NULL,
  in_range_color = NULL,
  trend_color = NULL,
  line_sizes = NULL,
  pre_line_size = NULL,
  post_line_size = NULL,
  in_range_line_size = NULL,
  trend_line_size = NULL,
  point_sizes = NULL,
  pre_point_size = NULL,
  post_point_size = NULL,
  in_range_point_size = NULL
)
```

Arguments

data A tibble with Kaya-identity data or the name of a region or a region code.

The name of the variable to plot (cherneter)

variable The name of the variable to plot (character)

start_year The year to start highlighting the data (should correspond to the beginning of

the trend calculation). Set to NULL to turn off highlighting.

stop_year The year to stop highlighting the data (should correspond to the beginning of the

trend calculation). Set to NULL to turn off highlighting.

14 plot_kaya

y_lab Optional label for the y-axis

log_scale Use log scale for y axis

trend_line Include a trend line

points Plot points in addition to the line.

font_size Base size of the font for axis labels and titles.

colors Named vector of colors to use for the plot. Elements should include PRE, POST,

IN-RANGE, and TREND, which respectively give the colors for the portion of the plot before start_year, after stop_year, between start_year and stop_year,

and the trend line.

pre_color Override default color for the portion of the chart before start_year.

post_color Override default color for the portion of the chart after stop_year.

in_range_color Override default color for the portion of the chart between start_year and

stop_year.

trend_color Override default color for the trend line.

line_sizes Named vector of sizes to use for the lines in the plot. Elements should in-

clude PRE, POST, IN-RANGE, and TREND, which respectively give the sizes for lines in the portion of the plot before $start_year$, after $stop_year$, between

start_year and stop_year, and the trend line.

pre_line_size Override default line size for the portion of the chart before start_year.

post_line_size Override default line size for the portion of the chart after stop_year.

in_range_line_size

Override default line size for the portion of the chart between start_year and

stop_year.

trend_line_size

Override default size for the trend line.

point_sizes Named vector of sizes to use for the points in the plot. Elements should include

PRE, POST, and IN-RANGE, which respectively give the sizes for points in the portion of the plot before start_year, after stop_year, and between start_year

and stop_year.

pre_point_size Override default point size for the portion of the chart before start_year.

post_point_size

Override default point size for the portion of the chart after stop_year.

in_range_point_size

Override default point size for the portion of the chart between start_year and

stop_year.

Value

A plot object.

project_top_down 15

Examples

```
china <- get_kaya_data("China")</pre>
plot_kaya(china, "F", 2001, 2011)
## Not run:
uk <- get_kaya_data("United Kingdom")</pre>
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE)
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE,
          start_year = 1970, stop_year = 2000,
          colors = c(PRE="limegreen", POST="darkgreen",
                      "IN-RANGE" = "cadetblue", TREND="orange"),
          line_sizes = c(PRE=0.5, POST=0.5, "IN-RANGE"=1, TREND=1.5),
          point_sizes = c(PRE=2, POST=2, "IN-RANGE"=3))
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE,
          start_year = 1970, stop_year = 2000,
          pre_color = "limegreen", post_color = "limegreen",
          trend_color = "magenta",
          pre_line_size = 0.5, post_line_size = 0.5,
          trend_line_size = 1.5,
          pre_point_size = 2, post_point_size = 2, in_range_point_size = 3)
plot_kaya("United Kingdom")
plot_kaya("GBR")
## End(Not run)
world <- get_kaya_data("World")</pre>
plot_kaya(world, "g", 1982, log_scale = TRUE, trend_line = TRUE)
```

project_top_down

Get top-down projections of Kaya variables for one or more countries or regions for a given year

Description

Get top-down projections of Kaya variables for one or more countries or regions for a given year

Usage

```
project_top_down(region_name, year, quiet = FALSE, region_code = NULL)
```

Arguments

region_name The name of a country or region to look up

year The year to project to

quiet Suppress warnings if there is no data for that country or region.

region_code Optional three-letter country or region code to look up instead of the region_name

16 regions

Value

a tibble of values for P, G, E, F, g, e, f, and ef for each country or region:

region The name of the country or region

year The year

- P Population, in billions
- G Gross domestic product, in trillions of constant 2015 U.S. dollars.
- E Total primary energy consumption, in quads
- F CO2 emissions from fossil fuel consumption, in millions of metric tons
- g Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.
- e Energy intensity of the economy, in quads per trillion dollars.
- f Emissions intensity of the energy supply, in million metric tons per quad.
- ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also

regions

Examples

```
project_top_down("China", 2037)
project_top_down(region_code = "CHE", year = 2043)
```

regions

Aggregate regional data

Description

Problems with aggregate regional data

Details

The World Bank is missing GDP data for a number of nations, such as Syria and Taiwan. Because of this and the incommensurability between the regions used for aggregate statistics in the World Bank and Energy Institute data, aggregate regional data (e.g., for the Middle East and Africa) should be treated with caution. This problem does not hold for individual nations, where missing data appears as NA values.

td_trends 17

td_trends	Top-down projections of trends in Kaya variables for many countries and regions

Description

A dataset containing top-down projections of trends in P, G, and E, from the EIA's International Energy Outlook 2017.

Usage

```
td_trends
```

Format

A tibble containing 226 rows and 11 variables

region Country or region name

region_code Three-letter country or region code

geography Geographic category: "nation", "region", or "world"

- P Trend in population, in fraction per year
- G Trend in gross domestic product, in fraction per year
- E Trend in total primary energy consumption, in fraction per year
- F Trend in CO2 emissions, in fraction per year
- g Trend in per-capita GDP, in fraction per year
- e Trend in energy intensity of the economy, in fraction per year
- f Trend in emissions intensity of the energy supply, in fraction per year
- ef Trend in emissions intensity of the economy, in fraction per year

Source

```
https://www.eia.gov/outlooks/archive/ieo17/
```

See Also

```
regions, get_top_down_trends()
```

td_values

td_values	Top-down projections of future Kaya variables for many countries and regions

Description

A dataset containing top-down projections of P, G, and E, from the EIA's International Energy Outlook 2017.

Usage

td_values

Format

A tibble containing 640 rows and 12 variables

```
region Country or region name
```

region_code Three-letter country or region code

geography Geographic category: "nation", "region", or "world"

year The year

- P Population, in billions
- G Gross domestic product, in trillions of constant 2015 U.S. dollars
- E Total primary energy consumption, in quads
- F Total CO2 emissions, in millions of metric tons
- g Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.
- e Energy intensity of the economy, in quads per trillion dollars.
- f Emissions intensity of the energy supply, in million metric tons per quad.
- ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

Source

```
https://www.eia.gov/outlooks/archive/ieo17/
```

See Also

```
regions, get_top_down_values()
```

Index

```
* datasets
    fuel_mix, 4
    kaya_data, 10
    td_trends, 17
    td_values, 18
emissions_factors, 3
fuel_mix, 4, 6
generation_capacity, 5
get_fuel_mix, 6
get_fuel_mix(), 5
get_kaya_data, 7
get_kaya_data(), 11
get_top_down_trends, 8
get_top_down_trends(), 17
get_top_down_values, 9
get_top_down_values(), 18
kaya\_data, \textcolor{red}{10}
kaya_region_list, 11
kayadata (kayadata-package), 2
kayadata-package, 2
megawatts_per_quad, 11
plot_fuel_mix, 12
plot_kaya, 13
project_top_down, 15
regions, 4-6, 8-11, 16, 16, 17, 18
td_trends, 17
td_values, 18
```