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AIC.gkwreg Akaike Information Criterion for GKw Regression Models

Description

Calculates the Akaike Information Criterion (AIC) for fitted Generalized Kumaraswamy regression
models.

Usage

## S3 method for class 'gkwreg'
AIC(object, ..., k = 2)

Arguments

object An object of class "gkwreg", typically obtained from gkwreg.

... Optionally more fitted model objects.

k Numeric, the penalty per parameter. Default is k = 2 for classical AIC. Setting k
= log(n) gives BIC-equivalent penalty.

Details

The AIC is computed as:
AIC = −2ℓ(θ̂) + k · p

where ℓ(θ̂) is the maximized log-likelihood and p is the number of estimated parameters.

When multiple objects are provided, a data frame comparing all models is returned. Lower AIC
values indicate better models, balancing goodness-of-fit against model complexity.

For small sample sizes, consider the corrected AIC (AICc):

AICc = AIC +
2p(p+ 1)

n− p− 1

where n is the sample size. This correction is not automatically applied but can be calculated
manually.

Value

If only one object is provided, returns a numeric value with the AIC. If multiple objects are provided,
returns a data frame with columns df and AIC, with rows named according to the object names in
the call.

Author(s)

Lopes, J. E.
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References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Auto-
matic Control, 19(6), 716–723. doi:10.1109/TAC.1974.1100705

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in
model selection. Sociological Methods & Research, 33(2), 261–304. doi:10.1177/0049124104268644

See Also

gkwreg, logLik.gkwreg, BIC.gkwreg

Examples

# Load example data
data(GasolineYield)

# Fit competing models
fit1 <- gkwreg(yield ~ batch, data = GasolineYield, family = "kw")
fit2 <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
fit3 <- gkwreg(yield ~ temp, data = GasolineYield, family = "kw")

# Calculate AIC for single model
AIC(fit1)

# Compare multiple models (with proper names)
AIC(fit1, fit2, fit3)

# Use different penalty
AIC(fit1, k = 4)

anova.gkwreg Analysis of Deviance for GKw Regression Models

Description

Computes an analysis of deviance table for one or more fitted Generalized Kumaraswamy (GKw)
regression model objects. When multiple models are provided, likelihood ratio tests are performed
to compare nested models.

Usage

## S3 method for class 'gkwreg'
anova(object, ..., test = c("Chisq", "none"))

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1177/0049124104268644
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Arguments

object An object of class "gkwreg", typically obtained from gkwreg.

... Additional objects of class "gkwreg" for model comparison. Models must be
nested and fitted to the same dataset.

test A character string specifying the test statistic to use. Currently only "Chisq"
(default) is supported, which performs likelihood ratio tests. Can also be "none"
for no tests.

Details

When a single model is provided, the function returns a table showing the residual degrees of
freedom and deviance.

When multiple models are provided, the function compares them using likelihood ratio tests (LRT).
Models are automatically ordered by their complexity (degrees of freedom). The LRT statistic is
computed as:

LRT = 2(ℓ1 − ℓ0)

where ℓ1 is the log-likelihood of the more complex model and ℓ0 is the log-likelihood of the simpler
(nested) model. Under the null hypothesis that the simpler model is adequate, the LRT statistic
follows a chi-squared distribution with degrees of freedom equal to the difference in the number of
parameters between the models.

Important: This method assumes that the models being compared are nested (i.e., one model is
a special case of the other) and fitted to the same data. Comparing non-nested models or models
fitted to different datasets will produce unreliable results. Use AIC or BIC for comparing non-nested
models.

The deviance is defined as −2× log-likelihood. For models fitted by maximum likelihood, smaller
(more negative) deviances indicate better fit. Note that deviance can be negative when the log-
likelihood is positive, which occurs when density values exceed 1 (common in continuous distribu-
tions on bounded intervals). What matters for inference is the change in deviance between models,
which should be positive when the more complex model fits better.

Value

An object of class c("anova.gkwreg", "anova", "data.frame"), with the following columns:

Resid. Df Residual degrees of freedom

Resid. Dev Residual deviance (-2 × log-likelihood)

Df Change in degrees of freedom (for model comparisons)

Deviance Change in deviance (for model comparisons)

Pr(>Chi) P-value from the chi-squared test (if test = "Chisq")

Author(s)

Lopes, J. E.
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References

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite
hypotheses. The Annals of Mathematical Statistics, 9(1), 60–62. doi:10.1214/aoms/1177732360

Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Ox-
ford University Press.

See Also

gkwreg, logLik.gkwreg, AIC.gkwreg, BIC.gkwreg, lrtest

Examples

# Load example data
data(GasolineYield)

# Fit a series of nested models
fit1 <- gkwreg(yield ~ 1, data = GasolineYield, family = "kw")
fit2 <- gkwreg(yield ~ temp, data = GasolineYield, family = "kw")
fit3 <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")

# ANOVA table for single model
anova(fit3)

# Compare nested models using likelihood ratio tests
anova(fit1, fit2, fit3)
#> Model 1 vs 2: Adding temperature is highly significant (p < 0.001)
#> Model 2 vs 3: Adding batch is highly significant (p < 0.001)

# Compare two models
anova(fit2, fit3, test = "Chisq")

# Suppress test statistics
anova(fit1, fit2, fit3, test = "none")

BIC.gkwreg Bayesian Information Criterion for GKw Regression Models

Description

Calculates the Bayesian Information Criterion (BIC), also known as the Schwarz Information Cri-
terion (SIC), for fitted Generalized Kumaraswamy regression models.

Usage

## S3 method for class 'gkwreg'
BIC(object, ...)

https://doi.org/10.1214/aoms/1177732360
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Arguments

object An object of class "gkwreg", typically obtained from gkwreg.

... Optionally more fitted model objects.

Details

The BIC is computed as:
BIC = −2ℓ(θ̂) + p · log(n)

where ℓ(θ̂) is the maximized log-likelihood, p is the number of estimated parameters, and n is the
sample size.

When multiple objects are provided, a data frame comparing all models is returned. Lower BIC
values indicate better models. BIC penalizes model complexity more heavily than AIC, particularly
for large samples, and tends to favor more parsimonious models.

The BIC can be derived from a Bayesian perspective as an approximation to the logarithm of the
Bayes factor, under certain regularity conditions and assuming uniform priors.

Value

If only one object is provided, returns a numeric value with the BIC. If multiple objects are provided,
returns a data frame with columns df and BIC, with rows named according to the object names in
the call.

Author(s)

Lopes, J. E.

References

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
doi:10.1214/aos/1176344136

See Also

gkwreg, logLik.gkwreg, AIC.gkwreg

Examples

# Load example data
data(GasolineYield)

# Fit competing models
fit1 <- gkwreg(yield ~ batch, data = GasolineYield, family = "kw")
fit2 <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
fit3 <- gkwreg(yield ~ temp, data = GasolineYield, family = "kw")

# Calculate BIC for single model
BIC(fit1)

# Compare multiple models (with proper names)

https://doi.org/10.1214/aos/1176344136
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BIC(fit1, fit2, fit3)

CarTask Partition-Primed Probability Judgement Task for Car Dealership

Description

Data from a cognitive experiment examining how partition priming affects probability judgments
in a car dealership context. Participants judged probabilities under different framing conditions.

Usage

CarTask

Format

A data frame with 155 observations on 3 variables:

probability numeric. Estimated probability (response variable).

task factor with levels Car and Salesperson indicating the condition/question type.

NFCCscale numeric. Combined score from the Need for Closure (NFC) and Need for Certainty
(NCC) scales, which are strongly correlated.

Details

All participants in the study were undergraduate students at The Australian National University,
some of whom obtained course credit in first-year Psychology for their participation.

Task questions:

• Car condition: "What is the probability that a customer trades in a coupe?"

• Salesperson condition: "What is the probability that a customer buys a car from Carlos?"
(out of four possible salespersons)

The key manipulation is the implicit partition: In the Car condition, there are multiple car types (bi-
nary: coupe vs. not coupe), while in the Salesperson condition, there are four specific salespersons.
Classical findings suggest that different partition structures lead to different probability estimates
even when the actual probabilities are equivalent.

The NFCC scale (Need for Closure and Certainty) measures individual differences in tolerance for
ambiguity. Higher scores indicate greater need for definitive answers and discomfort with uncer-
tainty.

Source

Taken from Smithson et al. (2011) supplements.
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References

Smithson, M., Merkle, E.C., and Verkuilen, J. (2011). Beta Regression Finite Mixture Models
of Polarization and Priming. Journal of Educational and Behavioral Statistics, 36(6), 804–831.
doi:10.3102/1076998610396893

Smithson, M., and Segale, C. (2009). Partition Priming in Judgments of Imprecise Probabilities.
Journal of Statistical Theory and Practice, 3(1), 169–181.

Examples

require(gkwreg)
require(gkwdist)

data(CarTask)

# Example 1: Task effects on probability judgments
# Do people judge probabilities differently for car vs. salesperson?
fit_kw <- gkwreg(

probability ~ task,
data = CarTask,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha: Task type affects mean probability estimate
# Salesperson condition (1/4 = 0.25) vs. car type (unclear baseline)

# Example 2: Individual differences model
# Need for Closure/Certainty may moderate probability judgments
fit_kw_nfcc <- gkwreg(

probability ~ task * NFCCscale |
task,

data = CarTask,
family = "kw"

)
summary(fit_kw_nfcc)

# Interpretation:
# - Interaction: NFCC may have different effects depending on task
# People high in need for certainty may respond differently to
# explicit partitions (4 salespersons) vs. implicit partitions (car types)
# - Beta: Precision varies by task type

# Example 3: Exponentiated Kumaraswamy for extreme estimates
# Some participants may give very extreme probability estimates
fit_ekw <- gkwreg(

probability ~ task * NFCCscale | # alpha
task | # beta
task, # lambda: extremity differs by task

data = CarTask,
family = "ekw"

https://doi.org/10.3102/1076998610396893
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)
summary(fit_ekw)

# Interpretation:
# - Lambda varies by task: Salesperson condition (explicit partition)
# may produce more extreme estimates (closer to 0 or 1)

# Visualization: Probability by task and NFCC
plot(probability ~ NFCCscale,

data = CarTask,
col = c("blue", "red")[task], pch = 19,
xlab = "Need for Closure/Certainty", ylab = "Probability Estimate",
main = "Car Task: Individual Differences in Probability Judgment"

)
legend("topright",

legend = levels(CarTask$task),
col = c("blue", "red"), pch = 19

)

# Distribution comparison
boxplot(probability ~ task,

data = CarTask,
xlab = "Task Condition", ylab = "Probability Estimate",
main = "Partition Priming Effects",
col = c("lightblue", "lightcoral")

)
abline(h = 0.25, lty = 2, col = "gray")
text(1.5, 0.27, "Uniform (1/4)", col = "gray")

coef.gkwreg Extract Coefficients from a Fitted GKw Regression Model

Description

Extracts the estimated regression coefficients from a fitted Generalized Kumaraswamy (GKw) re-
gression model object of class "gkwreg". This is an S3 method for the generic coef function.

Usage

## S3 method for class 'gkwreg'
coef(object, ...)

Arguments

object An object of class "gkwreg", typically the result of a call to gkwreg.

... Additional arguments, currently ignored by this method.
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Details

This function provides the standard way to access the estimated regression coefficients from a model
fitted with gkwreg. It simply extracts the coefficients component from the fitted model object.
The function coefficients is an alias for this function.

Value

A named numeric vector containing the estimated regression coefficients for all modeled parame-
ters. The names indicate the parameter (e.g., alpha, beta) and the corresponding predictor variable
(e.g., (Intercept), x1).

Author(s)

Lopes, J. E.

See Also

gkwreg, summary.gkwreg, coef, confint

confint.gkwreg Confidence Intervals for Generalized Kumaraswamy Regression Pa-
rameters

Description

Computes confidence intervals for model parameters in fitted gkwreg objects using Wald (normal
approximation) method based on asymptotic theory.

Usage

## S3 method for class 'gkwreg'
confint(object, parm, level = 0.95, ...)

Arguments

object An object of class "gkwreg" from gkwreg.

parm A specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level The confidence level required. Default is 0.95.

... Additional arguments (currently unused).
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Details

The confidence intervals are computed using the Wald method based on asymptotic normality of
maximum likelihood estimators:

CI = θ̂ ± zα/2 × SE(θ̂)

where zα/2 is the appropriate normal quantile and SE(θ̂) is the standard error from the Hessian
matrix.

The model must have been fitted with hessian = TRUE (the default) in gkw_control. If standard
errors are not available, an error is raised.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labeled as (1-level)/2 and 1 - (1-level)/2 in percent (by default 2.5 percent and 97.5
percent).

Author(s)

Lopes, J. E.

See Also

gkwreg, summary.gkwreg, confint

Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")

# 95 percent confidence intervals
confint(fit)

# 90 percent confidence intervals
confint(fit, level = 0.90)

# Specific parameters
confint(fit, parm = "alpha:(Intercept)")
confint(fit, parm = 1:3)
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family.gkwreg Extract Family from GKw Regression Model

Description

Extracts the family specification from a fitted Generalized Kumaraswamy regression model object.

Usage

## S3 method for class 'gkwreg'
family(object, ...)

Arguments

object An object of class "gkwreg".

... Currently not used.

Value

A character string indicating the family used in the model.

Author(s)

Lopes, J. E.

See Also

gkwreg

Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
family(fit)
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fitted.gkwreg Extract Fitted Values from a Generalized Kumaraswamy Regression
Model

Description

Extracts the fitted mean values (predicted expected values of the response) from a fitted Generalized
Kumaraswamy (GKw) regression model object of class "gkwreg". This is an S3 method for the
generic fitted.values function.

Usage

fitted.gkwreg(object, family = NULL, ...)

Arguments

object An object of class "gkwreg", typically the result of a call to gkwreg.

family Character string specifying the distribution family under which the fitted mean
values should be calculated. If NULL (default), the family stored within the fitted
object is used. Specifying a different family (e.g., "beta") will trigger recalcu-
lation of the fitted means based on that family’s mean structure, using the origi-
nal model’s estimated coefficients mapped to the relevant parameters. Available
options match those in gkwreg: "gkw", "bkw", "kkw", "ekw", "mc", "kw",
"beta".

... Additional arguments, currently ignored by this method.

Details

This function retrieves or calculates the fitted values, which represent the estimated conditional
mean of the response variable given the covariates (E(Y |X)).

The function attempts to retrieve fitted values efficiently using the following priority:

1. Directly from the fitted.values component stored in the object, if available and complete.
It includes logic to handle potentially incomplete stored values via interpolation (approx) for
very large datasets where only a sample might be stored.

2. By recalculating the mean using stored parameter vectors for each observation (object$parameter_vectors)
and an internal function (calculateMeans), if available.

3. From the fitted component within the TMB report (object$tmb_object$report()), if
available, potentially using interpolation as above.

4. As a fallback, by calling predict(object, type = "response", family = family).

Specifying a family different from the one used to fit the model will always force recalculation
using the predict method (step 4).
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Value

A numeric vector containing the fitted mean values. These values are typically bounded between 0
and 1, corresponding to the scale of the original response variable. The length of the vector corre-
sponds to the number of observations used in the model fit (considering subset and na.action).

Author(s)

Lopes, J. E.

See Also

gkwreg, predict.gkwreg, residuals.gkwreg, fitted.values

Examples

require(gkwreg)
require(gkwdist)

# Example 1: Basic usage with FoodExpenditure data
data(FoodExpenditure)
FoodExpenditure$prop <- FoodExpenditure$food / FoodExpenditure$income

fit_kw <- gkwreg(prop ~ income + persons | income,
data = FoodExpenditure,
family = "kw"

)

# Extract fitted values
fitted_vals <- fitted(fit_kw)

# Visualize fit quality
plot(FoodExpenditure$prop, fitted_vals,

xlab = "Observed Proportion",
ylab = "Fitted Values",
main = "Observed vs Fitted: Food Expenditure",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
abline(0, 1, col = "red", lwd = 2)

# Calculate R-squared analogue
cor(FoodExpenditure$prop, fitted_vals)^2

# Example 2: Comparing fitted values across families
data(GasolineYield)

fit_ekw <- gkwreg(yield ~ batch + temp | temp | batch,
data = GasolineYield,
family = "ekw"

)

# Fitted values under different family assumptions
fitted_ekw <- fitted(fit_ekw)
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fitted_kw <- fitted(fit_ekw, family = "kw")
fitted_beta <- fitted(fit_ekw, family = "beta")

# Compare differences
comparison <- data.frame(

EKW = fitted_ekw,
KW = fitted_kw,
Beta = fitted_beta,
Diff_EKW_KW = fitted_ekw - fitted_kw,
Diff_EKW_Beta = fitted_ekw - fitted_beta

)
head(comparison)

# Visualize differences
par(mfrow = c(1, 2))
plot(fitted_ekw, fitted_kw,

xlab = "EKW Fitted", ylab = "KW Fitted",
main = "EKW vs KW Family Assumptions",
pch = 19, col = "darkblue"

)
abline(0, 1, col = "red", lty = 2)

plot(fitted_ekw, fitted_beta,
xlab = "EKW Fitted", ylab = "Beta Fitted",
main = "EKW vs Beta Family Assumptions",
pch = 19, col = "darkgreen"

)
abline(0, 1, col = "red", lty = 2)
par(mfrow = c(1, 1))

# Example 3: Diagnostic plot with confidence bands
data(ReadingSkills)

fit_mc <- gkwreg(
accuracy ~ dyslexia * iq | dyslexia + iq | dyslexia,
data = ReadingSkills,
family = "mc"

)

fitted_vals <- fitted(fit_mc)

# Residual plot
residuals_resp <- ReadingSkills$accuracy - fitted_vals

plot(fitted_vals, residuals_resp,
xlab = "Fitted Values",
ylab = "Raw Residuals",
main = "Residual Plot: Reading Accuracy",
pch = 19, col = ReadingSkills$dyslexia,
ylim = range(residuals_resp) * 1.2

)
abline(h = 0, col = "red", lwd = 2, lty = 2)
lowess_fit <- lowess(fitted_vals, residuals_resp)
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lines(lowess_fit, col = "blue", lwd = 2)
legend("topright",

legend = c("Control", "Dyslexic", "Zero Line", "Lowess"),
col = c("black", "red", "red", "blue"),
pch = c(19, 19, NA, NA),
lty = c(NA, NA, 2, 1),
lwd = c(NA, NA, 2, 2)

)

# Example 4: Large dataset efficiency check
set.seed(2024)
n <- 5000
x1 <- rnorm(n)
x2 <- runif(n, -2, 2)
alpha <- exp(0.3 + 0.5 * x1)
beta <- exp(1.2 - 0.4 * x2)
y <- rkw(n, alpha, beta)
large_data <- data.frame(y = y, x1 = x1, x2 = x2)

fit_large <- gkwreg(y ~ x1 | x2,
data = large_data,
family = "kw"

)

# Time the extraction
system.time({

fitted_large <- fitted(fit_large)
})

# Verify extraction
length(fitted_large)
summary(fitted_large)

FoodExpenditure Proportion of Household Income Spent on Food

Description

Cross-section data on annual food expenditure and annual income for a random sample of house-
holds in a large U.S. city. The dataset models the proportion of income spent on food as a function
of total income and household size.

Usage

FoodExpenditure
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Format

A data frame with 38 observations on 3 variables:

food numeric. Annual food expenditure in U.S. dollars.

income numeric. Annual household income in U.S. dollars.

persons numeric. Number of persons in the household.

Details

This classic econometric dataset was taken from Griffiths et al. (1993, Table 15.4) who cite Leser
(1963) as the original source. The data are used to model Engel curves, which describe how house-
hold expenditure on a particular good or service varies with household income.

The response variable of interest is typically food/income, the proportion of income spent on food,
which follows beta distribution properties as it is bounded between 0 and 1.

Source

Taken from Griffiths et al. (1993, Table 15.4).

References

Cribari-Neto, F., and Zeileis, A. (2010). Beta Regression in R. Journal of Statistical Software,
34(2), 1–24. doi:10.18637/jss.v034.i02

Ferrari, S.L.P., and Cribari-Neto, F. (2004). Beta Regression for Modeling Rates and Proportions.
Journal of Applied Statistics, 31(7), 799–815.

Griffiths, W.E., Hill, R.C., and Judge, G.G. (1993). Learning and Practicing Econometrics. New
York: John Wiley and Sons.

Leser, C.E.V. (1963). Forms of Engel Functions. Econometrica, 31(4), 694–703.

Examples

require(gkwreg)
require(gkwdist)

data(FoodExpenditure)
FoodExpenditure$prop <- FoodExpenditure$food / FoodExpenditure$income

# Example 1: Basic Kumaraswamy regression
# Proportion spent on food decreases with income (Engel's law)
# Larger households spend more on food
fit_kw <- gkwreg(prop ~ income + persons,

data = FoodExpenditure,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha: Negative income effect (Engel's law)
# Positive household size effect

https://doi.org/10.18637/jss.v034.i02
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# - Beta: Constant precision (homoscedastic model)

# Example 2: Heteroscedastic model
# Variability in food proportion may differ by income and household size
fit_kw_hetero <- gkwreg(

prop ~ income + persons |
income + persons,

data = FoodExpenditure,
family = "kw"

)
summary(fit_kw_hetero)

# Interpretation:
# - Beta: Precision varies with both income and household size
# Wealthier or larger households may show different spending variability

# Test for heteroscedasticity
anova(fit_kw, fit_kw_hetero)

# Example 3: Exponentiated Kumaraswamy for extreme spending patterns
# Some households may have unusual food spending (very frugal or lavish)
fit_ekw <- gkwreg(

prop ~ income + persons | # alpha
persons | # beta: household size affects precision
income, # lambda: income affects extremity

data = FoodExpenditure,
family = "ekw"

)
summary(fit_ekw)

# Interpretation:
# - Lambda: Income level affects tail behavior
# Rich households may show more extreme (unusual) spending patterns

# Visualization: Engel curve
plot(prop ~ income,

data = FoodExpenditure,
xlab = "Annual Income ($)", ylab = "Proportion Spent on Food",
main = "Engel Curve for Food Expenditure"

)
# Add fitted values
FoodExpenditure$fitted_kw <- fitted(fit_kw)
points(FoodExpenditure$income, FoodExpenditure$fitted_kw,

col = "blue", pch = 19, cex = 0.8
)
legend("topright",

legend = c("Observed", "Fitted"),
col = c("black", "blue"), pch = c(1, 19)

)
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formula.gkwreg Extract Formula from GKw Regression Model

Description

Extracts the model formula from a fitted Generalized Kumaraswamy regression model object. Prop-
erly handles formulas with up to 5 parts.

Usage

## S3 method for class 'gkwreg'
formula(x, ...)

Arguments

x An object of class "gkwreg".

... Currently not used.

Value

The formula used to fit the model. For multi-part formulas, returns an object of class "Formula".

Author(s)

Lopes, J. E.

See Also

gkwreg, update.gkwreg

Examples

data(GasolineYield)

# Simple formula
fit1 <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
formula(fit1)

# Two-part formula
fit2 <- gkwreg(yield ~ temp | batch, data = GasolineYield, family = "kw")
formula(fit2)

# Five-part formula
fit3 <- gkwreg(yield ~ temp | batch | temp | 1 | 1,

data = GasolineYield, family = "gkw"
)
formula(fit3)
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GasolineYield Gasoline Yield from Crude Oil

Description

Operational data on the proportion of crude oil converted to gasoline after distillation and fraction-
ation processes.

Usage

GasolineYield

Format

A data frame with 32 observations on 6 variables:

yield numeric. Proportion of crude oil converted to gasoline after distillation and fractionation
(response variable).

gravity numeric. Crude oil gravity in degrees API (American Petroleum Institute scale).

pressure numeric. Vapor pressure of crude oil in pounds per square inch (psi).

temp10 numeric. Temperature in degrees Fahrenheit at which 10\ crude oil has vaporized.

temp numeric. Temperature in degrees Fahrenheit at which all gasoline has vaporized (end point).

batch factor. Batch indicator distinguishing the 10 different crude oils used in the experiment.

Details

This dataset was collected by Prater (1956) to study gasoline yield from crude oil. The dependent
variable is the proportion of crude oil after distillation and fractionation. Atkinson (1985) analyzed
this dataset using linear regression and noted that there is "indication that the error distribution is
not quite symmetrical, giving rise to some unduly large and small residuals".

The dataset contains 32 observations. It has been noted (Daniel and Wood, 1971, Chapter 8) that
there are only ten sets of values of the first three explanatory variables which correspond to ten
different crudes subjected to experimentally controlled distillation conditions. These conditions are
captured in variable batch and the data were ordered according to the ascending order of temp10.

Source

Taken from Prater (1956).

References

Atkinson, A.C. (1985). Plots, Transformations and Regression: An Introduction to Graphical Meth-
ods of Diagnostic Regression Analysis. New York: Oxford University Press.

Cribari-Neto, F., and Zeileis, A. (2010). Beta Regression in R. Journal of Statistical Software,
34(2), 1–24. doi:10.18637/jss.v034.i02

https://doi.org/10.18637/jss.v034.i02
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Daniel, C., and Wood, F.S. (1971). Fitting Equations to Data. New York: John Wiley and Sons.

Ferrari, S.L.P., and Cribari-Neto, F. (2004). Beta Regression for Modeling Rates and Proportions.
Journal of Applied Statistics, 31(7), 799–815.

Prater, N.H. (1956). Estimate Gasoline Yields from Crudes. Petroleum Refiner, 35(5), 236–238.

Examples

require(gkwreg)
require(gkwdist)

data(GasolineYield)

# Example 1: Kumaraswamy regression with batch effects
# Model mean yield as function of batch and temperature
# Allow precision to vary with temperature (heteroscedasticity)
fit_kw <- gkwreg(yield ~ batch + temp | temp,

data = GasolineYield,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha (mean): Different batches have different baseline yields
# Temperature affects yield transformation
# - Beta (precision): Higher temperatures may produce more variable yields

# Example 2: Full model with all physical-chemical properties
fit_kw_full <- gkwreg(

yield ~ gravity + pressure + temp10 + temp |
temp10 + temp,

data = GasolineYield,
family = "kw"

)
summary(fit_kw_full)

# Interpretation:
# - Mean model captures effects of crude oil properties
# - Precision varies with vaporization temperatures

# Example 3: Exponentiated Kumaraswamy for extreme yields
# Some batches may produce unusually high/low yields
fit_ekw <- gkwreg(

yield ~ batch + temp | # alpha: batch effects
temp | # beta: temperature precision
batch, # lambda: batch-specific tail behavior

data = GasolineYield,
family = "ekw"

)
summary(fit_ekw)

# Interpretation:
# - Lambda varies by batch: Some crude oils have more extreme
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# yield distributions (heavy tails for very high/low yields)

# Model comparison: Does tail flexibility improve fit?
anova(fit_kw, fit_ekw)

# Diagnostic plots
par(mfrow = c(2, 2))
plot(fit_kw, which = c(1, 2, 4, 5))
par(mfrow = c(1, 1))

getCall.gkwreg Get Call from GKw Regression Model

Description

Extracts the call that was used to fit a Generalized Kumaraswamy regression model.

Usage

## S3 method for class 'gkwreg'
getCall(x, ...)

Arguments

x An object of class "gkwreg".

... Currently not used.

Value

The matched call.

Author(s)

Lopes, J. E.

See Also

gkwreg, update.gkwreg

Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
getCall(fit)
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gkwreg Fit Generalized Kumaraswamy Regression Models

Description

Fits regression models using the Generalized Kumaraswamy (GKw) family of distributions for
modeling response variables strictly bounded in the interval (0, 1). The function provides a uni-
fied interface for fitting seven nested submodels of the GKw family, allowing flexible modeling
of proportions, rates, and other bounded continuous outcomes through regression on distributional
parameters.

Maximum Likelihood Estimation is performed via automatic differentiation using the TMB (Tem-
plate Model Builder) package, ensuring computational efficiency and numerical accuracy. The
interface follows standard R regression modeling conventions similar to lm, glm, and betareg,
making it immediately familiar to R users.

Usage

gkwreg(
formula,
data,
family = c("gkw", "bkw", "kkw", "ekw", "mc", "kw", "beta"),
link = NULL,
link_scale = NULL,
subset = NULL,
weights = NULL,
offset = NULL,
na.action = getOption("na.action"),
contrasts = NULL,
control = gkw_control(),
model = TRUE,
x = FALSE,
y = TRUE,
...

)

Arguments

formula An object of class Formula (or one that can be coerced to that class). The
formula uses extended syntax to specify potentially different linear predictors
for each distribution parameter:
y ~ model_alpha | model_beta | model_gamma | model_delta | model_lambda

where:

• y is the response variable (must be in the open interval (0, 1))
• model_alpha specifies predictors for the α parameter
• model_beta specifies predictors for the β parameter
• model_gamma specifies predictors for the γ parameter
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• model_delta specifies predictors for the δ parameter
• model_lambda specifies predictors for the λ parameter

If a part is omitted or specified as ~ 1, an intercept-only model is used for that
parameter. Parts corresponding to fixed parameters (determined by family) are
automatically ignored. See Details and Examples for proper usage.

data A data frame containing the variables specified in formula. Standard R subset-
ting and missing value handling apply.

family A character string specifying the distribution family from the Generalized Ku-
maraswamy hierarchy. Must be one of:

"gkw" Generalized Kumaraswamy (default). Five parameters: α, β, γ, δ, λ. Most
flexible, suitable when data show complex behavior not captured by simpler
families.

"bkw" Beta-Kumaraswamy. Four parameters: α, β, γ, δ (fixes λ = 1). Com-
bines Beta and Kumaraswamy flexibility.

"kkw" Kumaraswamy-Kumaraswamy. Four parameters: α, β, δ, λ (fixes γ =
1). Alternative four-parameter generalization.

"ekw" Exponentiated Kumaraswamy. Three parameters: α, β, λ (fixes γ =
1, δ = 0). Adds flexibility to standard Kumaraswamy.

"mc" McDonald (Beta Power). Three parameters: γ, δ, λ (fixes α = 1, β = 1).
Generalization of Beta distribution.

"kw" Kumaraswamy. Two parameters: α, β (fixes γ = 1, δ = 0, λ = 1).
Computationally efficient alternative to Beta with closed-form CDF.

"beta" Beta distribution. Two parameters: γ, δ (fixes α = 1, β = 1, λ =
1). Standard choice for proportions and rates, corresponds to shape1 = γ,
shape2 = δ.

See Details for guidance on family selection.

link Link function(s) for the distributional parameters. Can be specified as:

• Single character string: Same link for all relevant parameters. Example:
link = "log" applies log link to all parameters.

• Named list: Parameter-specific links for fine control. Example: link =
list(alpha = "log", beta = "log", delta = "logit")

Default links (used if link = NULL):

• "log" for α, β, γ, λ (positive parameters)
• "logit" for δ (parameter in (0, 1))

Available link functions:
"log" Logarithmic link. Maps (0,∞) → (−∞,∞). Ensures positivity. Most

common for shape parameters.
"logit" Logistic link. Maps (0, 1) → (−∞,∞). Standard for probability-

type parameters like δ.
"probit" Probit link using normal CDF. Maps (0, 1) → (−∞,∞). Alternative

to logit, symmetric tails.
"cloglog" Complementary log-log. Maps (0, 1) → (−∞,∞). Asymmetric,

useful for skewed probabilities.
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"cauchy" Cauchy link using Cauchy CDF. Maps (0, 1) → (−∞,∞). Heavy-
tailed alternative to probit.

"identity" Identity link (no transformation). Use with caution; does not guar-
antee parameter constraints.

"sqrt" Square root link. Maps x →
√
x. Variance-stabilizing for some con-

texts.
"inverse" Inverse link. Maps x → 1/x. Useful for rate-type parameters.
"inverse-square" Inverse squared link. Maps x → 1/x2.

link_scale Numeric scale factor(s) controlling the transformation intensity of link func-
tions. Can be:

• Single numeric: Same scale for all parameters.
• Named list: Parameter-specific scales for fine-tuning. Example: link_scale
= list(alpha = 10, beta = 10, delta = 1)

Default scales (used if link_scale = NULL):

• 10 for α, β, γ, λ
• 1 for δ

Larger values produce more gradual transformations; smaller values produce
more extreme transformations. For probability-type links (logit, probit), smaller
scales (e.g., 0.5-2) create steeper response curves, while larger scales (e.g., 5-20)
create gentler curves. Adjust if convergence issues arise or if you need different
response sensitivities.

subset Optional vector specifying a subset of observations to be used in fitting. Can
be a logical vector, integer indices, or expression evaluating to one of these.
Standard R subsetting rules apply.

weights Optional numeric vector of prior weights (e.g., frequency weights) for observa-
tions. Should be non-negative. Currently experimental; use with caution and
validate results.

offset Optional numeric vector or matrix specifying an a priori known component to be
included in the linear predictor(s). If a vector, it is applied to the first parameter’s
predictor. If a matrix, columns correspond to parameters in order (α, β, γ, δ, λ).
Offsets are added to the linear predictor before applying the link function.

na.action A function specifying how to handle missing values (NAs). Options include:

na.fail Stop with error if NAs present (default via getOption("na.action"))
na.omit Remove observations with NAs
na.exclude Like na.omit but preserves original length in residuals/fitted val-

ues

See na.action for details.

contrasts Optional list specifying contrasts for factor variables in the model. Format:
named list where names are factor variable names and values are contrast speci-
fications. See contrasts and the contrasts.arg argument of model.matrix.

control A list of control parameters from gkw_control specifying technical details of
the fitting process. This includes:

• Optimization algorithm (method)
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• Starting values (start)
• Fixed parameters (fixed)
• Convergence tolerances (maxit, reltol, abstol)
• Hessian computation (hessian)
• Verbosity (silent, trace)

Default is gkw_control() which uses sensible defaults for most problems. See
gkw_control for complete documentation of all options. Most users never
need to modify control parameters.

model Logical. If TRUE (default), the model frame (data frame containing all variables
used in fitting) is returned as component model of the result. Useful for predic-
tion and diagnostics. Set to FALSE to reduce object size.

x Logical. If TRUE, the list of model matrices (one for each modeled parameter) is
returned as component x. Default FALSE. Set to TRUE if you need direct access
to design matrices for custom calculations.

y Logical. If TRUE (default), the response vector (after processing by na.action
and subset) is returned as component y. Useful for residual calculations and
diagnostics.

... Additional arguments. Currently used only for backward compatibility with
deprecated arguments from earlier versions. Using deprecated arguments trig-
gers informative warnings with migration guidance. Examples of deprecated ar-
guments: plot, conf.level, method, start, fixed, hessian, silent, optimizer.control.
These should now be passed via the control argument.

Details

Distribution Family Selection:
The Generalized Kumaraswamy family provides a flexible hierarchy for modeling bounded re-
sponses. Selection should be guided by:
1. Start Simple: Begin with two-parameter families ("kw" or "beta") unless you have strong
reasons to use more complex models.
2. Model Comparison: Use information criteria (AIC, BIC) and likelihood ratio tests to compare
nested models:

# Fit sequence of nested models
fit_kw <- gkwreg(y ~ x, data, family = "kw")
fit_ekw <- gkwreg(y ~ x, data, family = "ekw")
fit_gkw <- gkwreg(y ~ x, data, family = "gkw")

# Compare via AIC
AIC(fit_kw, fit_ekw, fit_gkw)

# Formal test (nested models only)
anova(fit_kw, fit_ekw, fit_gkw)

3. Family Characteristics:

• Beta: Traditional choice, well-understood, good for symmetric or moderately skewed data
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• Kumaraswamy (kw): Computationally efficient alternative to Beta, closed-form CDF, sim-
ilar flexibility

• Exponentiated Kumaraswamy (ekw): Adds flexibility for extreme values and heavy tails
• Beta-Kumaraswamy (bkw), Kumaraswamy-Kumaraswamy (kkw): Four-parameter al-

ternatives when three parameters insufficient
• McDonald (mc): Beta generalization via power parameter, useful for J-shaped distributions
• Kumaraswamy-Kumaraswamy (kkw): Most flexible, use only when simpler families in-

adequate. It extends kw
• Generalized Kumaraswamy (gkw): Most flexible, use only when simpler families inade-

quate

4. Avoid Overfitting: More different parameters better model. Use cross-validation or hold-out
validation to assess predictive performance.

Formula Specification:
The extended formula syntax allows different predictors for each parameter:
Basic Examples:

# Same predictors for both parameters (two-parameter family)
y ~ x1 + x2
# Equivalent to: y ~ x1 + x2 | x1 + x2

# Different predictors per parameter
y ~ x1 + x2 | x3 + x4
# alpha depends on x1, x2
# beta depends on x3, x4

# Intercept-only for some parameters
y ~ x1 | 1
# alpha depends on x1
# beta has only intercept

# Complex specification (five-parameter family)
y ~ x1 | x2 | x3 | x4 | x5
# alpha ~ x1, beta ~ x2, gamma ~ x3, delta ~ x4, lambda ~ x5

Important Notes:
• Formula parts correspond to parameters in order: α, β, γ, δ, λ
• Unused parts (due to family constraints) are automatically ignored
• Use . to include all predictors: y ~ . | .

• Standard R formula features work: interactions (x1:x2), polynomials (poly(x, 2)), trans-
formations (log(x)), etc.

Link Functions and Scales:
Link functions map the range of distributional parameters to the real line, ensuring parameter
constraints are satisfied during optimization.
Choosing Links:

• Defaults are usually best: The automatic choices (log for shape parameters, logit for delta)
work well in most cases
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• Alternative links: Consider if you have theoretical reasons (e.g., probit for latent variable
interpretation) or convergence issues

• Identity link: Avoid unless you have constraints elsewhere; can lead to invalid parameter
values during optimization

Link Scales: The link_scale parameter controls transformation intensity. Think of it as a "sen-
sitivity" parameter:

• Larger values (e.g., 20): Gentler response to predictor changes
• Smaller values (e.g., 2): Steeper response to predictor changes
• Default (10): Balanced, works well for most cases

Adjust only if:

• Convergence difficulties arise
• You need very steep or very gentle response curves
• Predictors have unusual scales (very large or very small)

Optimization and Convergence:
The default optimizer (method = "nlminb") works well for most problems. If convergence issues
occur:
1. Check Data:

• Ensure response is strictly in (0, 1)
• Check for extreme outliers or influential points
• Verify predictors aren’t perfectly collinear
• Consider rescaling predictors to similar ranges

2. Try Alternative Optimizers:

# BFGS often more robust for difficult problems
fit <- gkwreg(y ~ x, data,

control = gkw_control(method = "BFGS"))

# Nelder-Mead for non-smooth objectives
fit <- gkwreg(y ~ x, data,

control = gkw_control(method = "Nelder-Mead"))

3. Adjust Tolerances:

# Increase iterations and loosen tolerance
fit <- gkwreg(y ~ x, data,

control = gkw_control(maxit = 1000, reltol = 1e-6))

4. Provide Starting Values:

# Fit simpler model first, use as starting values
fit_simple <- gkwreg(y ~ 1, data, family = "kw")
start_vals <- list(
alpha = c(coef(fit_simple)[1], rep(0, ncol(X_alpha) - 1)),
beta = c(coef(fit_simple)[2], rep(0, ncol(X_beta) - 1))

)
fit_complex <- gkwreg(y ~ x1 + x2 | x3 + x4, data, family = "kw",

control = gkw_control(start = start_vals))
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5. Simplify Model:
• Use simpler family (e.g., "kw" instead of "gkw")
• Reduce number of predictors
• Use intercept-only for some parameters

Standard Errors and Inference:
By default, standard errors are computed via the Hessian matrix at the MLE. This provides valid
asymptotic standard errors under standard regularity conditions.
When Standard Errors May Be Unreliable:

• Small sample sizes (n < 30-50 per parameter)
• Parameters near boundaries
• Highly collinear predictors
• Mis-specified models

Alternatives:
• Bootstrap confidence intervals (more robust, computationally expensive)
• Profile likelihood intervals via confint(..., type = "profile") (not yet implemented)
• Cross-validation for predictive performance assessment

To skip Hessian computation (faster, no SEs):

fit <- gkwreg(y ~ x, data,
control = gkw_control(hessian = FALSE))

Model Diagnostics:
Always check model adequacy using diagnostic plots:

fit <- gkwreg(y ~ x, data, family = "kw")
plot(fit) # Six diagnostic plots

Key diagnostics:

• Residual plots: Check for patterns, heteroscedasticity
• Half-normal plot: Assess distributional adequacy
• Cook’s distance: Identify influential observations
• Predicted vs observed: Overall fit quality

See plot.gkwreg for detailed interpretation guidance.

Computational Considerations:
Performance Tips:

• GKw family: Most computationally expensive (~2-5x slower than kw/beta)
• Beta/Kw families: Fastest, use when adequate
• Large datasets (n > 10,000): Consider sampling for exploratory analysis
• TMB uses automatic differentiation: Fast gradient/Hessian computation
• Disable Hessian (hessian = FALSE) for faster fitting without SEs

Memory Usage:
• Set model = FALSE, x = FALSE, y = FALSE to reduce object size (but limits some post-fitting

capabilities)
• Hessian matrix scales as O(p²) where p = number of parameters
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Value

An object of class "gkwreg", which is a list containing the following components. Standard S3
methods are available for this class (see Methods section).

Model Specification:

call The matched function call

formula The Formula object used

family Character string: distribution family used

link Named list: link functions for each parameter

link_scale Named list: link scale values for each parameter

param_names Character vector: names of parameters for this family

fixed_params Named list: parameters fixed by family definition

control The gkw_control object used for fitting

Parameter Estimates:

coefficients Named numeric vector: estimated regression coefficients (on link scale). Names
follow the pattern "parameter:predictor", e.g., "alpha:(Intercept)", "alpha:x1", "beta:(Intercept)",
"beta:x2".

fitted_parameters Named list: mean values for each distribution parameter (α, β, γ, δ, λ) aver-
aged across all observations

parameter_vectors Named list: observation-specific parameter values. Contains vectors alphaVec,
betaVec, gammaVec, deltaVec, lambdaVec, each of length nobs

Fitted Values and Residuals:

fitted.values Numeric vector: fitted mean values E[Y |X] for each observation

residuals Numeric vector: response residuals (observed - fitted) for each observation

Inference:

vcov Variance-covariance matrix of coefficient estimates. Only present if control$hessian =
TRUE. NULL otherwise.

se Numeric vector: standard errors of coefficients. Only present if control$hessian = TRUE. NULL
otherwise.

Model Fit Statistics:

loglik Numeric: maximized log-likelihood value

aic Numeric: Akaike Information Criterion (AIC = -2loglik + 2npar)

bic Numeric: Bayesian Information Criterion (BIC = -2*loglik + log(nobs)*npar)

deviance Numeric: deviance (-2 * loglik)

df.residual Integer: residual degrees of freedom (nobs - npar)

nobs Integer: number of observations used in fit

npar Integer: total number of estimated parameters
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Diagnostic Statistics:

rmse Numeric: Root Mean Squared Error of response residuals
efron_r2 Numeric: Efron’s pseudo R-squared (1 - SSE/SST, where SSE = sum of squared errors,

SST = total sum of squares)
mean_absolute_error Numeric: Mean Absolute Error of response residuals

Optimization Details:

convergence Logical: TRUE if optimizer converged successfully, FALSE otherwise
message Character: convergence message from optimizer
iterations Integer: number of iterations used by optimizer
method Character: optimization method used (e.g., "nlminb", "BFGS")

Optional Components (returned if requested via model, x, y):

model Data frame: the model frame (if model = TRUE)
x Named list: model matrices for each parameter (if x = TRUE)
y Numeric vector: the response variable (if y = TRUE)

Internal:

tmb_object The raw object returned by MakeADFun. Contains the TMB automatic differentiation
function and environment. Primarily for internal use and advanced debugging.

Methods

The following S3 methods are available for objects of class "gkwreg":

Basic Methods:

• print.gkwreg: Print basic model information
• summary.gkwreg: Detailed model summary with coefficient tables, tests, and fit statistics
• coef.gkwreg: Extract coefficients
• vcov.gkwreg: Extract variance-covariance matrix
• logLik: Extract log-likelihood
• AIC, BIC: Information criteria

Prediction and Fitted Values:

• fitted.gkwreg: Extract fitted values
• residuals.gkwreg: Extract residuals (multiple types available)
• predict.gkwreg: Predict on new data

Inference:

• confint.gkwreg: Confidence intervals for parameters
• anova.gkwreg: Compare nested models via likelihood ratio tests

Diagnostics:

• plot.gkwreg: Comprehensive diagnostic plots (6 types)
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Template Model Builder (TMB):
Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic Differ-
entiation and Laplace Approximation. Journal of Statistical Software, 70(5), 1-21. doi:10.18637/
jss.v070.i05

Related Software:
Zeileis, A., & Croissant, Y. (2010). Extended Model Formulas in R: Multiple Parts and Multiple
Responses. Journal of Statistical Software, 34(1), 1-13. doi:10.18637/jss.v034.i01

See Also

Control and Inference: gkw_control for fitting control parameters, confint.gkwreg for confi-
dence intervals, anova.gkwreg for model comparison

Methods: summary.gkwreg, plot.gkwreg, coef.gkwreg, vcov.gkwreg, fitted.gkwreg, residuals.gkwreg,
predict.gkwreg

Distributions: dgkw, pgkw, qgkw, rgkw for the GKw distribution family functions

Related Packages: betareg for traditional beta regression, Formula for extended formula inter-
face, MakeADFun for TMB functionality

Examples

# SECTION 1: Basic Usage - Getting Started
# Load packages and data
library(gkwreg)
library(gkwdist)
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data(GasolineYield)

# Example 1.1: Simplest possible model (intercept-only, all defaults)
fit_basic <- gkwreg(yield ~ 1, data = GasolineYield, family = "kw")
summary(fit_basic)

# Example 1.2: Model with predictors (uses all defaults)
# Default: family = "gkw", method = "nlminb", hessian = TRUE
fit_default <- gkwreg(yield ~ batch + temp, data = GasolineYield)
summary(fit_default)

# Example 1.3: Kumaraswamy model (two-parameter family)
# Default link functions: log for both alpha and beta
fit_kw <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
summary(fit_kw)

par(mfrow = c(3, 2))
plot(fit_kw, ask = FALSE)

# Example 1.4: Beta model for comparison
# Default links: log for gamma and delta
fit_beta <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "beta")

# Compare models using AIC/BIC
AIC(fit_kw, fit_beta)
BIC(fit_kw, fit_beta)

# SECTION 2: Using gkw_control() for Customization

# Example 2.1: Change optimization method to BFGS
fit_bfgs <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
family = "kw",
control = gkw_control(method = "BFGS")

)
summary(fit_bfgs)

# Example 2.2: Increase iterations and enable verbose output
fit_verbose <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
family = "kw",
control = gkw_control(
method = "nlminb",
maxit = 1000,
silent = FALSE, # Show optimization progress
trace = 1 # Print iteration details

)
)

# Example 2.3: Fast fitting without standard errors
# Useful for model exploration or large datasets
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fit_fast <- gkwreg(
yield ~ batch + temp,
data = GasolineYield,
family = "kw",
control = gkw_control(hessian = FALSE)

)
# Note: Cannot compute confint() without hessian
coef(fit_fast) # Point estimates still available

# Example 2.4: Custom convergence tolerances
fit_tight <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
family = "kw",
control = gkw_control(
reltol = 1e-10, # Tighter convergence
maxit = 2000 # More iterations allowed

)
)

# SECTION 3: Advanced Formula Specifications

# Example 3.1: Different predictors for different parameters
# alpha depends on batch, beta depends on temp
fit_diff <- gkwreg(

yield ~ batch | temp,
data = GasolineYield,
family = "kw"

)
summary(fit_diff)

# Example 3.2: Intercept-only for one parameter
# alpha varies with predictors, beta is constant
fit_partial <- gkwreg(

yield ~ batch + temp | 1,
data = GasolineYield,
family = "kw"

)

# Example 3.3: Complex model with interactions
fit_interact <- gkwreg(

yield ~ batch * temp | temp + I(temp^2),
data = GasolineYield,
family = "kw"

)

# SECTION 4: Working with Different Families

# Example 4.1: Fit multiple families and compare
families <- c("beta", "kw", "ekw", "bkw", "gkw")
fits <- lapply(families, function(fam) {

gkwreg(yield ~ batch + temp, data = GasolineYield, family = fam)
})
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names(fits) <- families

# Compare via information criteria
comparison <- data.frame(

Family = families,
LogLik = sapply(fits, logLik),
AIC = sapply(fits, AIC),
BIC = sapply(fits, BIC),
npar = sapply(fits, function(x) x$npar)

)
print(comparison)

# Example 4.2: Formal nested model testing
fit_kw <- gkwreg(yield ~ batch + temp, GasolineYield, family = "kw")
fit_ekw <- gkwreg(yield ~ batch + temp, GasolineYield, family = "ekw")
fit_gkw <- gkwreg(yield ~ batch + temp, GasolineYield, family = "gkw")
anova(fit_kw, fit_ekw, fit_gkw)

# SECTION 5: Link Functions and Scales

# Example 5.1: Custom link functions
fit_links <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
family = "kw",
link = list(alpha = "sqrt", beta = "log")

)

# Example 5.2: Custom link scales
# Smaller scale = steeper response curve
fit_scale <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
family = "kw",
link_scale = list(alpha = 5, beta = 15)

)

# Example 5.3: Uniform link for all parameters
fit_uniform <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
family = "kw",
link = "log" # Single string applied to all

)

# SECTION 6: Prediction and Inference

# Fit model for prediction examples
fit <- gkwreg(yield ~ batch + temp, GasolineYield, family = "kw")

# Example 6.1: Confidence intervals at different levels
confint(fit, level = 0.95) # 95% CI
confint(fit, level = 0.90) # 90% CI
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confint(fit, level = 0.99) # 99% CI

# SECTION 7: Diagnostic Plots and Model Checking

fit <- gkwreg(yield ~ batch + temp, GasolineYield, family = "kw")

# Example 7.1: All diagnostic plots (default)
par(mfrow = c(3, 2))
plot(fit, ask = FALSE)

# Example 7.2: Select specific plots
par(mfrow = c(3, 1))
plot(fit, which = c(2, 4, 5)) # Cook's distance, Residuals, Half-normal

# Example 7.3: Using ggplot2 for modern graphics
plot(fit, use_ggplot = TRUE, arrange_plots = TRUE)

# Example 7.4: Customized half-normal plot
par(mfrow = c(1, 1))
plot(fit,

which = 5,
type = "quantile",
nsim = 200, # More simulations for smoother envelope
level = 0.95

) # 95% confidence envelope

# Example 7.5: Extract diagnostic data programmatically
diagnostics <- plot(fit, save_diagnostics = TRUE)
head(diagnostics$data) # Residuals, Cook's distance, etc.

# SECTION 8: Real Data Example - Food Expenditure

# Load and prepare data
data(FoodExpenditure, package = "betareg")
food_data <- FoodExpenditure
food_data$prop <- food_data$food / food_data$income

# Example 8.1: Basic model
fit_food <- gkwreg(

prop ~ persons | income,
data = food_data,
family = "kw"

)
summary(fit_food)

# Example 8.2: Compare with Beta regression
fit_food_beta <- gkwreg(

prop ~ persons | income,
data = food_data,
family = "beta"

)

# Which fits better?
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AIC(fit_food, fit_food_beta)

# Example 8.3: Model diagnostics
par(mfrow = c(3, 1))
plot(fit_food, which = c(2, 5, 6))

# Example 8.4: Interpretation via effects
# How does proportion spent on food change with income?
income_seq <- seq(min(food_data$income), max(food_data$income), length = 50)
pred_data <- data.frame(

persons = median(food_data$persons),
income = income_seq

)
pred_food <- predict(fit_food, newdata = pred_data, type = "response")

par(mfrow = c(1, 1))
plot(food_data$income, food_data$prop,

xlab = "Income", ylab = "Proportion Spent on Food",
main = "Food Expenditure Pattern"

)
lines(income_seq, pred_food, col = "red", lwd = 2)

# SECTION 9: Simulation Studies

# Example 9.1: Simple Kumaraswamy simulation
set.seed(123)
n <- 500
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)

# True model: log(alpha) = 0.8 + 0.3*x1, log(beta) = 1.2 - 0.2*x2
eta_alpha <- 0.8 + 0.3 * x1
eta_beta <- 1.2 - 0.2 * x2
alpha_true <- exp(eta_alpha)
beta_true <- exp(eta_beta)

# Generate response
y <- rkw(n, alpha = alpha_true, beta = beta_true)
sim_data <- data.frame(y = y, x1 = x1, x2 = x2)

# Fit and check parameter recovery
fit_sim <- gkwreg(y ~ x1 | x2, data = sim_data, family = "kw")

# Compare estimated vs true coefficients
cbind(

True = c(0.8, 0.3, 1.2, -0.2),
Estimated = coef(fit_sim),
SE = fit_sim$se

)

# Example 9.2: Complex simulation with all five parameters
set.seed(2203)
n <- 2000
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x <- runif(n, -1, 1)

# True parameters
alpha <- exp(0.5 + 0.3 * x)
beta <- exp(1.0 - 0.2 * x)
gamma <- exp(0.7 + 0.4 * x)
delta <- plogis(0.0 + 0.5 * x) # logit scale
lambda <- exp(-0.3 + 0.2 * x)

# Generate from GKw
y <- rgkw(n,

alpha = alpha, beta = beta, gamma = gamma,
delta = delta, lambda = lambda

)
sim_data2 <- data.frame(y = y, x = x)

# Fit GKw model
fit_gkw <- gkwreg(

y ~ x | x | x | x | x,
data = sim_data2,
family = "gkw",
control = gkw_control(method = "L-BFGS-B", maxit = 2000)

)
summary(fit_gkw)

# SECTION 10: Handling Convergence Issues

# Example 10.1: Try different optimizers
methods <- c("nlminb", "BFGS", "Nelder-Mead", "CG")
fits_methods <- lapply(methods, function(m) {

tryCatch(
gkwreg(yield ~ batch + temp, GasolineYield,

family = "kw",
control = gkw_control(method = m, silent = TRUE)

),
error = function(e) NULL

)
})
names(fits_methods) <- methods

# Check which converged
converged <- sapply(fits_methods, function(f) {

if (is.null(f)) {
return(FALSE)

}
f$convergence

})
print(converged)

# Example 10.2: Verbose mode for debugging
fit_debug <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
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family = "kw",
control = gkw_control(

method = "BFGS",
silent = TRUE,
trace = 0, # 2, Maximum verbosity
maxit = 1000

)
)

# SECTION 11: Memory and Performance Optimization

# Example 11.1: Minimal object for large datasets
fit_minimal <- gkwreg(

yield ~ batch + temp,
data = GasolineYield,
family = "kw",
model = FALSE, # Don't store model frame
x = FALSE, # Don't store design matrices
y = FALSE, # Don't store response
control = gkw_control(hessian = FALSE) # Skip Hessian

)

# Much smaller object
object.size(fit_minimal)

# Trade-off: Limited post-fitting capabilities
# Can still use: coef(), logLik(), AIC(), BIC()
# Cannot use: predict(), some diagnostics

# Example 11.2: Fast exploratory analysis
# Fit many models quickly without standard errors
formulas <- list(

yield ~ batch,
yield ~ temp,
yield ~ batch + temp,
yield ~ batch * temp

)

fast_fits <- lapply(formulas, function(f) {
gkwreg(f, GasolineYield,
family = "kw",
control = gkw_control(hessian = FALSE),
model = FALSE, x = FALSE, y = FALSE

)
})

# Compare models via AIC
sapply(fast_fits, AIC)

# Refit best model with full inference
best_formula <- formulas[[which.min(sapply(fast_fits, AIC))]]
fit_final <- gkwreg(best_formula, GasolineYield, family = "kw")
summary(fit_final)
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# SECTION 12: Model Selection and Comparison

# Example 12.1: Nested model testing
fit1 <- gkwreg(yield ~ 1, GasolineYield, family = "kw")
fit2 <- gkwreg(yield ~ batch, GasolineYield, family = "kw")
fit3 <- gkwreg(yield ~ batch + temp, GasolineYield, family = "kw")

# Likelihood ratio tests
anova(fit1, fit2, fit3)

# Example 12.2: Information criteria table
models <- list(

"Intercept only" = fit1,
"Batch effect" = fit2,
"Batch + Temp" = fit3

)

ic_table <- data.frame(
Model = names(models),
df = sapply(models, function(m) m$npar),
LogLik = sapply(models, logLik),
AIC = sapply(models, AIC),
BIC = sapply(models, BIC),
Delta_AIC = sapply(models, AIC) - min(sapply(models, AIC))

)
print(ic_table)

# Example 12.3: Cross-validation for predictive performance
# 5-fold cross-validation
set.seed(2203)
n <- nrow(GasolineYield)
folds <- sample(rep(1:5, length.out = n))

cv_rmse <- sapply(1:5, function(fold) {
train <- GasolineYield[folds != fold, ]
test <- GasolineYield[folds == fold, ]

fit_train <- gkwreg(yield ~ batch + temp, train,
family = "kw"

)
pred_test <- predict(fit_train, newdata = test, type = "response")

sqrt(mean((test$yield - pred_test)^2))
})

cat("Cross-validated RMSE:", mean(cv_rmse), "\n")

gkw_control Control Parameters for Generalized Kumaraswamy Regression
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Description

Auxiliary function for controlling gkwreg() fitting process. This function consolidates all tech-
nical/advanced fitting options in one place, keeping the main gkwreg() interface clean and user-
friendly. Follows the same design pattern as glm.control, betareg.control, and similar control
functions in R.

Usage

gkw_control(
method = c("nlminb", "BFGS", "Nelder-Mead", "CG", "SANN", "L-BFGS-B"),
start = NULL,
fixed = NULL,
hessian = TRUE,
maxit = 500,
reltol = sqrt(.Machine$double.eps),
abstol = 0,
trace = 0,
silent = TRUE,
eval.max = 500,
iter.max = 300,
step.min = 1e-08,
step.max = 1,
x.tol = 1.5e-08,
rel.tol = sqrt(.Machine$double.eps),
alpha = 1,
beta = 0.5,
gamma = 2,
warn.1d.NelderMead = TRUE,
type = 1,
temp = 10,
tmax = 10,
lmm = 5,
factr = 1e+07,
pgtol = 0,
REPORT = NULL,
fnscale = 1,
parscale = NULL,
ndeps = NULL,
...

)

## S3 method for class 'gkw_control'
print(x, ...)

Arguments

method Character string specifying the optimization algorithm. Options: "nlminb" (de-
fault), "BFGS", "Nelder-Mead", "CG", "SANN", "L-BFGS-B". If "nlminb", uses
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nlminb; otherwise uses optim with the specified method.

start Optional named list of starting values for regression coefficients. Names should
match parameter names (alpha, beta, gamma, delta, lambda). If NULL (default),
starting values are determined automatically.

fixed Optional named list of parameters to hold fixed at specific values during estima-
tion. Currently experimental. Default NULL.

hessian Logical. If TRUE (default), compute the Hessian matrix via sdreport to obtain
standard errors and variance-covariance matrix. Set to FALSE for faster fitting
when standard errors are not needed.

maxit Integer. Maximum number of iterations for the optimizer. Default 500 for
derivative-based methods, 10000 for SANN. Increase for difficult optimization
problems.

reltol Numeric. Relative convergence tolerance for the optimizer. Default sqrt(.Machine$double.eps)
approx. 1.5e-8. Smaller values require tighter convergence but may increase
computation time. Used by Nelder-Mead, BFGS, and CG methods.

abstol Numeric. Absolute convergence tolerance. Default 0. Used by some optimiza-
tion methods as an additional stopping criterion.

trace Integer. Controls verbosity of the optimizer.

• 0: Silent (default)
• 1: Print iteration progress
• 2+: Print detailed diagnostic information (up to 6 for L-BFGS-B)

Ignored if silent = TRUE.

silent Logical. If TRUE (default), suppress all progress messages from TMB compila-
tion and optimization. Set to FALSE for debugging or to monitor long-running
fits.

eval.max Integer. Maximum number of function evaluations (nlminb only). Default 500.
Increase for difficult optimization problems.

iter.max Integer. Maximum number of iterations (nlminb only). Default 300. Usually
less than eval.max.

step.min Numeric. Minimum step length (nlminb only). Default 1e-8. Controls how
small steps can become before stopping.

step.max Numeric. Maximum step length (nlminb only). Default 1. Useful for preventing
overshooting in difficult optimization problems.

x.tol Numeric. Tolerance for parameter convergence (nlminb only). Default 1.5e-8.
Optimizer stops if parameter changes are smaller than this.

rel.tol Numeric. Relative tolerance for function value (nlminb only). Default sqrt(.Machine$double.eps).
Alternative specification of relative tolerance.

alpha Numeric. Reflection factor for Nelder-Mead method. Default 1.0. Only used
when method = "Nelder-Mead".

beta Numeric. Contraction factor for Nelder-Mead method. Default 0.5. Only used
when method = "Nelder-Mead".

gamma Numeric. Expansion factor for Nelder-Mead method. Default 2.0. Only used
when method = "Nelder-Mead".
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warn.1d.NelderMead

Logical. Whether to warn when Nelder-Mead is used for one-dimensional opti-
mization. Default TRUE.

type Integer. Update formula for CG method. Options:

• 1: Fletcher-Reeves update
• 2: Polak-Ribiere update
• 3: Beale-Sorenson update

Default 1. Only used when method = "CG".

temp Numeric. Starting temperature for SANN method. Default 10. Only used when
method = "SANN".

tmax Integer. Number of function evaluations at each temperature for SANN method.
Default 10. Only used when method = "SANN".

lmm Integer. Number of BFGS updates retained in L-BFGS-B method. Default 5.
Only used when method = "L-BFGS-B".

factr Numeric. Convergence tolerance factor for L-BFGS-B method. Convergence
occurs when the reduction in the objective is within this factor of the machine
tolerance. Default 1e7 (tolerance ~1e-8). Only used when method = "L-BFGS-B".

pgtol Numeric. Tolerance on the projected gradient for L-BFGS-B method. Default 0
(check suppressed). Only used when method = "L-BFGS-B".

REPORT Integer. Frequency of progress reports for BFGS, L-BFGS-B and SANN meth-
ods when trace > 0. Default 10 for BFGS/L-BFGS-B, 100 for SANN.

fnscale Numeric. Overall scaling to be applied to the function value and gradient during
optimization. Default 1. If negative, turns the problem into a maximization
problem.

parscale Numeric vector. Scaling values for parameters. Optimization is performed on
par/parscale. Default rep(1, n_params).

ndeps Numeric vector. Step sizes for finite-difference approximation to the gradient.
Default 1e-3.

... Additional arguments passed to the optimizer. Allows fine-grained control with-
out formally adding parameters. Advanced users only.

x An object of class "gkw_control".

Details

This function provides a centralized way to set all technical parameters for model fitting. It serves
several purposes:

• Clean interface: gkwreg() has fewer arguments

• Organized documentation: All technical options documented here

• Input validation: Parameters validated before fitting

• Extensibility: New options can be added without changing gkwreg()

• Backward compatibility: Old code continues working
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Method-specific parameters:

Each optimization method accepts different control parameters:

• Nelder-Mead: alpha, beta, gamma, maxit, reltol, abstol, trace, REPORT, warn.1d.NelderMead

• BFGS: maxit, reltol, abstol, trace, REPORT

• CG: type, maxit, reltol, abstol, trace

• SANN: temp, tmax, maxit, trace, REPORT

• L-BFGS-B: lmm, factr, pgtol, trace, REPORT

When to use gkw_control():

Most users never need to adjust these settings. Use gkw_control() when:

• Optimization fails to converge (increase maxit, adjust tolerances)

• Debugging fit problems (set silent = FALSE, trace = 1)

• Comparing optimizers (try method = "BFGS" vs "nlminb")

• Fine-tuning performance (disable hessian if SEs not needed)

• Using custom starting values (start = list(...))

Recommended practices:

• Start with defaults, only adjust if needed

• Increase maxit before adjusting tolerances

• Use trace = 1 to diagnose convergence issues

• Disable hessian for speed if only point estimates needed

• Try different methods if one fails (BFGS often more robust)

• For L-BFGS-B with bounds, adjust factr and pgtol if needed

Value

An object of class "gkw_control", which is a list containing all control parameters with validated
and default-filled values. This object is passed to gkwreg() via the control argument.

Author(s)

Lopes, J. E.

References

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization (2nd ed.). Springer.

Belisle, C. J. P. (1992). Convergence theorems for a class of simulated annealing algorithms on
R^d. Journal of Applied Probability, 29, 885-895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing, 16, 1190-1208.
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See Also

gkwreg for the main fitting function, nlminb, optim for optimizer details, betareg.control for
similar design pattern.

Examples

# Default control (used automatically if not specified)
ctrl <- gkw_control()
print(ctrl)

# Increase iterations for difficult problem
ctrl_robust <- gkw_control(maxit = 1000, trace = 1)

# Try alternative optimizer
ctrl_bfgs <- gkw_control(method = "BFGS")

# Fast fitting without standard errors
ctrl_fast <- gkw_control(hessian = FALSE)

# Verbose debugging
ctrl_debug <- gkw_control(silent = FALSE, trace = 2)

# Custom starting values
ctrl_start <- gkw_control(

start = list(
alpha = c(0.5, 0.2),
beta = c(1.0, -0.3)

)
)

# Configure Nelder-Mead with custom reflection/contraction
ctrl_nm <- gkw_control(

method = "Nelder-Mead",
alpha = 1.5,
beta = 0.75

)

# Configure L-BFGS-B for bounded optimization
ctrl_lbfgsb <- gkw_control(

method = "L-BFGS-B",
factr = 1e6,
lmm = 10

)

# Configure SANN for rough surfaces
ctrl_sann <- gkw_control(

method = "SANN",
temp = 20,
tmax = 20,
maxit = 20000

)
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ImpreciseTask Imprecise Probabilities for Sunday Weather and Boeing Stock Task

Description

Data from a cognitive psychology experiment where participants estimated upper and lower proba-
bilities for events to occur and not to occur. The study examines judgment under uncertainty with
imprecise probability assessments.

Usage

ImpreciseTask

Format

A data frame with 242 observations on 3 variables:

task factor with levels Boeing stock and Sunday weather. Indicates which task the participant
performed.

location numeric. Average of the lower estimate for the event not to occur and the upper estimate
for the event to occur (proportion).

difference numeric. Difference between upper and lower probability estimates, measuring impre-
cision or uncertainty.

Details

All participants in the study were either first- or second-year undergraduate students in psychology
at Australian universities, none of whom had a strong background in probability theory or were
familiar with imprecise probability theories.

For the Sunday weather task, participants were asked to estimate the probability that the temperature
at Canberra airport on Sunday would be higher than a specified value.

For the Boeing stock task, participants were asked to estimate the probability that Boeing’s stock
would rise more than those in a list of 30 companies.

For each task, participants were asked to provide lower and upper estimates for the event to occur
and not to occur.

Source

Taken from Smithson et al. (2011) supplements.



48 ImpreciseTask

References
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Examples

require(gkwreg)
require(gkwdist)

data(ImpreciseTask)

# Example 1: Basic model with task effects
# Probability location varies by task type and uncertainty level
fit_kw <- gkwreg(location ~ task * difference,

data = ImpreciseTask,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha: Task type and uncertainty (difference) interact to affect
# probability estimates
# - Different tasks may have different baseline probability assessments

# Example 2: Heteroscedastic model
# Precision of estimates may vary by task and uncertainty
fit_kw_hetero <- gkwreg(

location ~ task * difference |
task + difference,

data = ImpreciseTask,
family = "kw"

)
summary(fit_kw_hetero)

# Interpretation:
# - Beta: Variability in estimates differs between tasks
# Higher uncertainty (difference) may lead to less precise estimates

# Example 3: McDonald distribution for extreme uncertainty
# Some participants may show very extreme probability assessments
fit_mc <- gkwreg(

location ~ task * difference | # gamma: full interaction
task * difference | # delta: full interaction
task, # lambda: task affects extremity

data = ImpreciseTask,
family = "mc",
control = gkw_control(

method = "BFGS",

https://doi.org/10.3102/1076998610396893
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maxit = 1500
)

)
summary(fit_mc)

# Interpretation:
# - Lambda varies by task: Weather vs. stock may produce
# different patterns of extreme probability assessments

logLik.gkwreg Extract Log-Likelihood from Generalized Kumaraswamy Regression
Models

Description

Extracts the log-likelihood value from a fitted Generalized Kumaraswamy (GKw) regression model
object.

Usage

## S3 method for class 'gkwreg'
logLik(object, ...)

Arguments

object An object of class "gkwreg", typically obtained from gkwreg.

... Currently not used.

Details

The log-likelihood is extracted from the fitted model object and returned as an object of class
"logLik" with appropriate attributes for the number of parameters (df) and observations (nobs).
These attributes are required for information criteria calculations.

For a GKw regression model with parameter vector θ, the log-likelihood is defined as:

ℓ(θ | y) =
n∑

i=1

log f(yi;αi, βi, γi, δi, λi)

where f(·) is the probability density function of the specified GKw family distribution, and the
parameters may depend on covariates through link functions.

Value

An object of class "logLik" containing the log-likelihood value with the following attributes:

df Number of estimated parameters

nobs Number of observations
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Author(s)

Lopes, J. E.

See Also

gkwreg, AIC.gkwreg, BIC.gkwreg

Examples

# Load example data
data(GasolineYield)

# Fit a Kumaraswamy regression model
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")

# Extract log-likelihood
ll <- logLik(fit)
print(ll)

# Access attributes
cat("Log-likelihood:", as.numeric(ll), "\n")
cat("Parameters:", attr(ll, "df"), "\n")
cat("Observations:", attr(ll, "nobs"), "\n")

LossAversion (No) Myopic Loss Aversion in Adolescents

Description

Data from a behavioral economics experiment assessing the extent of myopic loss aversion among
adolescents aged 11 to 19 years. The experiment tests whether short-term investment horizons lead
to more conservative investment behavior.

Usage

LossAversion

Format

A data frame with 570 observations on 7 variables:

invest numeric. Average proportion of tokens invested across all 9 rounds of the experiment (re-
sponse variable).

gender factor. Gender of the player (or team of players).

male factor. Was (at least one of) the player(s) male (in the team)?

age numeric. Age of the player (or average age in case of team).
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grade factor. School grade of the player(s).

arrangement factor. Investment horizon treatment with levels short (1 round), medium (3 rounds),
and long (9 rounds).

treatment factor. Type of treatment: long vs. short.

Details

The data were collected by Matthias Sutter and Daniela Glätzle-Rützler (Universität Innsbruck) in
an experiment with high-school students in Tyrol, Austria (Schwaz and Innsbruck). The experi-
ment tests the theory of myopic loss aversion, which proposes that investors with shorter evaluation
periods are more loss-averse and thus invest less in risky assets.

Classical theory predicts that players with short investment horizons (myopic view) should invest
less due to loss aversion. However, Sutter et al. (2015) found no evidence of myopic loss aversion
in adolescents, contrary to findings in adult populations.

The investment game structure: In each round, players could invest tokens in a risky asset with 50%
chance of doubling or losing the investment. The treatment varied the feedback frequency (short =
every round, medium = every 3 rounds, long = only at the end).

Source

Data collected by Matthias Sutter and Daniela Glätzle-Rützler, Universität Innsbruck.

References

Sutter, M., Kocher, M.G., Glätzle-Rützler, D., and Trautmann, S.T. (2015). No Myopic Loss Aver-
sion in Adolescents? – An Experimental Note. Journal of Economic Behavior & Organization,
111, 169–176. doi:10.1016/j.jebo.2014.12.021

Kosmidis, I., and Zeileis, A. (2024). Extended-Support Beta Regression for (0, 1) Responses.
arXiv:2409.07233. doi:10.48550/arXiv.2409.07233

Examples

require(gkwreg)
require(gkwdist)

data(LossAversion)
# Control bounds

LossAversion$invest <- with(
LossAversion,
ifelse(invest <= 0, 0.000001,

ifelse(invest >= 1, 0.999999, invest)
)

)
# Example 1: Test for myopic loss aversion
# Do short-term players invest less? (They shouldn't, per Sutter et al.)
fit_kw <- gkwreg(

invest ~ arrangement + age + male + grade |
arrangement + male,

https://doi.org/10.1016/j.jebo.2014.12.021
https://doi.org/10.48550/arXiv.2409.07233
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data = LossAversion,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha: Effect of investment horizon (arrangement) on mean investment
# Age and gender effects on risk-taking
# - Beta: Precision varies by horizon and gender
# (some groups more consistent than others)

# Example 2: Interaction effects
# Does the horizon effect differ by age/grade?
fit_kw_interact <- gkwreg(

invest ~ grade * (arrangement + age) + male |
arrangement + male + grade,

data = LossAversion,
family = "kw"

)
summary(fit_kw_interact)

# Interpretation:
# - Grade × arrangement interaction tests if myopic loss aversion
# emerges differently at different developmental stages

# Example 3: Extended-support for boundary observations
# Some students invest 0% or 100% of tokens
# Original 'invest' variable may include exact 0 and 1 values
fit_xbx <- gkwreg(

invest ~ grade * (arrangement + age) + male |
arrangement + male + grade,

data = LossAversion,
family = "kw" # Note: for true [0,1] support, use extended-support models

)
summary(fit_xbx)

# Interpretation:
# - Model accommodates extreme risk-taking (all-in or all-out strategies)

# Compare models
anova(fit_kw, fit_kw_interact)

# Visualization: Investment by horizon
boxplot(invest ~ arrangement,

data = LossAversion,
xlab = "Investment Horizon", ylab = "Proportion Invested",
main = "No Myopic Loss Aversion in Adolescents",
col = c("lightblue", "lightgreen", "lightyellow")

)
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lrtest Likelihood Ratio Test for Nested GKw Models

Description

Performs a likelihood ratio test to compare two nested Generalized Kumaraswamy regression mod-
els.

Usage

lrtest(object, object2)

Arguments

object A fitted model object of class "gkwreg" (the restricted model).

object2 A fitted model object of class "gkwreg" (the full model).

Details

This function performs a likelihood ratio test (LRT) to compare two nested models. The test statistic
is:

LRT = 2(ℓfull − ℓrestricted)

which follows a chi-squared distribution with degrees of freedom equal to the difference in the
number of parameters.

The models must be nested (one is a special case of the other) and fitted to the same data for the test
to be valid.

Value

A list with class "htest" containing:

statistic The LRT test statistic

parameter Degrees of freedom for the test

p.value P-value from the chi-squared distribution

method Description of the test

data.name Names of the compared models

Author(s)

Lopes, J. E.

See Also

anova.gkwreg
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Examples

data(GasolineYield)

# Fit nested models
fit_restricted <- gkwreg(yield ~ temp, data = GasolineYield, family = "kw")
fit_full <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")

# Likelihood ratio test
lrtest(fit_restricted, fit_full)

MockJurors Confidence of Mock Jurors in Their Verdicts

Description

Data from a study examining factors that influence mock juror confidence in verdicts for criminal
trials. The experiment manipulates verdict options (two-option vs. three-option) and presence of
conflicting testimonial evidence.

Usage

MockJurors

Format

A data frame with 104 observations on 3 variables:

confidence numeric. Juror confidence in their verdict, scaled to the open unit interval (0, 1). Orig-
inal scale was 0-100.

verdict factor indicating whether a two-option verdict (guilty vs. acquittal) or three-option verdict
(with Scottish ’not proven’ alternative) was requested. Sum contrast coding is employed.

conflict factor. Is there conflicting testimonial evidence? Values are no or yes. Sum contrast
coding is employed.

Details

The data were collected by Deady (2004) among first-year psychology students at Australian Na-
tional University. The experiment examined how the availability of a third verdict option (’not
proven’) and conflicting evidence affect juror confidence.

Smithson and Verkuilen (2006) employed the data, scaling the original confidence (on a scale 0-
100) to the open unit interval using the transformation: ((original_confidence/100) * 103 -
0.5) / 104.

Important note: The original coding of conflict in the data provided from Smithson’s homepage
is -1/1 which Smithson and Verkuilen (2006) describe to mean no/yes. However, all their results
(sample statistics, histograms, etc.) suggest that it actually means yes/no, which was employed in
the corrected MockJurors dataset.



MockJurors 55

Source

Data collected by Deady (2004), analyzed by Smithson and Verkuilen (2006).

References

Deady, S. (2004). The Psychological Third Verdict: ’Not Proven’ or ’Not Willing to Make a Deci-
sion’? Unpublished honors thesis, The Australian National University, Canberra.

Smithson, M., and Verkuilen, J. (2006). A Better Lemon Squeezer? Maximum-Likelihood Regres-
sion with Beta-Distributed Dependent Variables. Psychological Methods, 11(1), 54–71.

Examples

require(gkwreg)
require(gkwdist)

data(MockJurors)

# Example 1: Main effects model with heteroscedasticity
# Confidence depends on verdict options and conflicting evidence
# Variability may also depend on these factors
fit_kw <- gkwreg(

confidence ~ verdict + conflict |
verdict * conflict,

data = MockJurors,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha (mean): Additive effects of verdict type and conflict
# Three-option verdicts may reduce confidence
# Conflicting evidence reduces confidence
# - Beta (precision): Interaction suggests confidence variability
# depends on combination of verdict options and evidence type

# Example 2: Full interaction in mean model
fit_kw_interact <- gkwreg(

confidence ~ verdict * conflict |
verdict * conflict,

data = MockJurors,
family = "kw"

)
summary(fit_kw_interact)

# Interpretation:
# - Full interaction: Third verdict option may have different effects
# depending on whether evidence is conflicting

# Test interaction significance
anova(fit_kw, fit_kw_interact)
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# Example 3: McDonald distribution for extreme confidence patterns
# Jurors may show very high confidence (ceiling effects) or very low
# confidence depending on conditions
fit_mc <- gkwreg(

confidence ~ verdict * conflict | # gamma: full interaction
verdict * conflict | # delta: full interaction
verdict + conflict, # lambda: additive extremity effects

data = MockJurors,
family = "mc",
control = gkw_control(

method = "BFGS",
maxit = 1500,
reltol = 1e-8

)
)
summary(fit_mc)

# Interpretation:
# - Lambda: Models asymmetry and extreme confidence
# Some conditions produce more polarized confidence (very high or very low)

# Example 4: Exponentiated Kumaraswamy alternative
fit_ekw <- gkwreg(

confidence ~ verdict * conflict | # alpha
verdict + conflict | # beta
conflict, # lambda: conflict affects extremity

data = MockJurors,
family = "ekw",
control = gkw_control(

method = "BFGS",
maxit = 1500

)
)
summary(fit_ekw)

# Compare 3-parameter models
AIC(fit_ekw, fit_mc)

model.frame.gkwreg Extract Model Frame from GKw Regression Model

Description

Extracts the model frame from a fitted Generalized Kumaraswamy regression model object.

Usage

## S3 method for class 'gkwreg'
model.frame(formula, ...)
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Arguments

formula An object of class "gkwreg".

... Currently not used.

Value

A data frame containing the variables used in fitting the model.

Author(s)

Lopes, J. E.

See Also

gkwreg, model.matrix.gkwreg

Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
head(model.frame(fit))

model.matrix.gkwreg Extract Model Matrix from GKw Regression Model

Description

Extracts the model matrix (design matrix) from a fitted Generalized Kumaraswamy regression
model object.

Usage

## S3 method for class 'gkwreg'
model.matrix(object, ...)

Arguments

object An object of class "gkwreg".

... Currently not used.

Value

A design matrix.
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Author(s)

Lopes, J. E.

See Also

gkwreg, model.frame.gkwreg

Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
head(model.matrix(fit))

nobs.gkwreg Number of Observations for GKw Regression Models

Description

Extracts the number of observations from a fitted Generalized Kumaraswamy regression model.

Usage

## S3 method for class 'gkwreg'
nobs(object, ...)

Arguments

object An object of class "gkwreg", typically obtained from gkwreg.

... Currently not used.

Value

Integer representing the number of observations used in model fitting.

Author(s)

Lopes, J. E.

See Also

gkwreg
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Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
nobs(fit)

plot.gkwreg Diagnostic Plots for Generalized Kumaraswamy Regression Models

Description

Produces a comprehensive set of diagnostic plots for assessing the adequacy of a fitted Generalized
Kumaraswamy (GKw) regression model (objects of class "gkwreg"). The function offers flexible
plot selection, multiple residual types, and support for both base R graphics and ggplot2 with ex-
tensive customization options. Designed for thorough model evaluation including residual analysis,
influence diagnostics, and goodness-of-fit assessment.

Usage

## S3 method for class 'gkwreg'
plot(
x,
which = 1:6,
type = c("quantile", "pearson", "deviance"),
family = NULL,
caption = NULL,
main = "",
sub.caption = "",
ask = NULL,
use_ggplot = FALSE,
arrange_plots = FALSE,
nsim = 100,
level = 0.9,
sample_size = NULL,
theme_fn = NULL,
save_diagnostics = FALSE,
...

)

Arguments

x An object of class "gkwreg", typically the result of a call to gkwreg.

which Integer vector specifying which diagnostic plots to produce. If a subset of the
plots is required, specify a subset of the numbers 1:6. Defaults to 1:6 (all plots).
The plots correspond to:
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1. Residuals vs. Observation Indices: Checks for temporal patterns, trends,
or autocorrelation in residuals across observation order.

2. Cook’s Distance Plot: Identifies influential observations that have dispro-
portionate impact on model estimates. Points exceeding the 4/n threshold
warrant investigation.

3. Generalized Leverage vs. Fitted Values: Identifies high leverage points
with unusual predictor combinations. Points exceeding 2p/n threshold may
be influential.

4. Residuals vs. Linear Predictor: Checks for non-linearity in the predictor-
response relationship and heteroscedasticity (non-constant variance).

5. Half-Normal Plot with Simulated Envelope: Assesses normality of resid-
uals (particularly useful for quantile residuals) by comparing observed resid-
uals against simulated quantiles. Points outside the envelope indicate po-
tential model misspecification.

6. Predicted vs. Observed Values: Overall goodness-of-fit check showing
model prediction accuracy and systematic bias.

type Character string indicating the type of residuals to be used for plotting. Defaults
to "quantile". Valid options are:

• "quantile": Randomized quantile residuals (Dunn & Smyth, 1996). Rec-
ommended for bounded responses as they should be approximately N(0,1)
if the model is correctly specified. Most interpretable with standard diag-
nostic tools.

• "pearson": Pearson residuals (response residual standardized by estimated
standard deviation). Useful for checking the variance function and identi-
fying heteroscedasticity patterns.

• "deviance": Deviance residuals. Related to the log-likelihood contribu-
tion of each observation. Sum of squared deviance residuals equals the
model deviance.

family Character string specifying the distribution family assumptions to use when cal-
culating residuals and other diagnostics. If NULL (default), the family stored
within the fitted object is used. Specifying a different family can be useful for
diagnostic comparisons across competing model specifications. Available op-
tions match those in gkwreg: "gkw", "bkw", "kkw", "ekw", "mc", "kw", "beta".

caption Titles for the diagnostic plots. Can be specified in three ways:

• NULL (default): Uses standard default captions for all plots.
• Character vector (backward compatibility): A vector of 6 strings corre-

sponding to plots 1-6. Must provide all 6 titles even if only customizing
some.

• Named list (recommended): A list with plot numbers as names (e.g., list("3"
= "My Custom Title")). Only specified plots are customized; others use
defaults. This allows partial customization without repeating all titles.

Default captions are:

1. "Residuals vs. Observation Indices"
2. "Cook’s Distance Plot"
3. "Generalized Leverage vs. Fitted Values"
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4. "Residuals vs. Linear Predictor"
5. "Half-Normal Plot of Residuals"
6. "Predicted vs. Observed Values"

main Character string to be prepended to individual plot captions (from the caption
argument). Useful for adding a common prefix to all plot titles. Defaults to ""
(no prefix).

sub.caption Character string used as a common subtitle positioned above all plots (especially
when multiple plots are arranged). If NULL (default), automatically generates
a subtitle from the model call (deparse(x$call)). Set to "" to suppress the
subtitle entirely.

ask Logical. If TRUE (and using base R graphics with multiple plots on an interactive
device), the user is prompted before displaying each plot. If NULL (default), au-
tomatically determined: TRUE if more plots are requested than fit on the current
screen layout and the session is interactive; FALSE otherwise. Explicitly set to
FALSE to disable prompting or TRUE to force prompting.

use_ggplot Logical. If TRUE, plots are generated using the ggplot2 package, providing
modern, publication-quality graphics with extensive theming capabilities. If
FALSE (default), uses base R graphics, which are faster and require no additional
dependencies. Requires the ggplot2 package to be installed if set to TRUE.

arrange_plots Logical. Only relevant if use_ggplot = TRUE and multiple plots are requested
(length(which) > 1). If TRUE, attempts to arrange the generated ggplot objects
into a grid layout using either the gridExtra or ggpubr package (requires one
of them to be installed). If FALSE (default), plots are displayed individually in
sequence. Ignored when using base R graphics.

nsim Integer. Number of simulations used to generate the confidence envelope in the
half-normal plot (which = 5). Higher values provide more accurate envelopes
but increase computation time. Defaults to 100, which typically provides ade-
quate precision. Must be a positive integer. Typical range: 50-500.

level Numeric. The confidence level (between 0 and 1) for the simulated envelope
in the half-normal plot (which = 5). Defaults to 0.90 (90\ falling outside this
envelope suggest potential model inadequacy or outliers.

sample_size Integer or NULL. If specified as an integer less than the total number of obser-
vations (x$nobs), a random sample of this size is used for calculating diag-
nostics and plotting. This can significantly speed up plot generation for very
large datasets (n > 10,000) with minimal impact on diagnostic interpretation.
Defaults to NULL (use all observations). Recommended values: 1000-5000 for
large datasets.

theme_fn A function. Only relevant if use_ggplot = TRUE. Specifies a ggplot2 theme
function to apply to all plots for consistent styling (e.g., ggplot2::theme_bw,
ggplot2::theme_classic, ggplot2::theme_minimal). If NULL (default), au-
tomatically uses ggplot2::theme_minimal when use_ggplot = TRUE. Can also
be a custom theme function. Ignored when using base R graphics.

save_diagnostics

Logical. If TRUE, the function invisibly returns a list containing all calculated
diagnostic measures (residuals, leverage, Cook’s distance, fitted values, etc.) in-
stead of the model object. Useful for programmatic access to diagnostic values
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for custom analysis or reporting. If FALSE (default), the function invisibly re-
turns the original model object x. The function is primarily called for its side
effect of generating plots.

... Additional graphical parameters passed to the underlying plotting functions. For
base R graphics, these are standard par() parameters such as col, pch, cex,
lwd, etc. For ggplot2, these are typically ignored but can be used for specific
geom customizations in advanced usage. Always specified last to follow R best
practices.

Details

Diagnostic plots are essential for evaluating the assumptions and adequacy of fitted regression mod-
els. This function provides a comprehensive suite of standard diagnostic tools adapted specifically
for gkwreg objects, which model bounded responses in the (0,1) interval.

Residual Types and Interpretation: The choice of residual type (type) is important and de-
pends on the diagnostic goal:

• Quantile Residuals (type = "quantile"): Recommended as default for bounded response
models. These residuals are constructed to be approximately N(0,1) under a correctly speci-
fied model, making standard diagnostic tools (QQ-plots, hypothesis tests) directly applicable.
They are particularly effective for detecting model misspecification in the distributional fam-
ily or systematic bias.

• Pearson Residuals (type = "pearson"): Standardized residuals that account for the mean-
variance relationship. Useful for assessing whether the assumed variance function is appro-
priate. If plots show patterns or non-constant spread, this suggests the variance model may
be misspecified.

• Deviance Residuals (type = "deviance"): Based on the contribution of each observation to
the model deviance. Often have more symmetric distributions than Pearson residuals and are
useful for identifying observations that fit poorly according to the likelihood criterion.

Individual Plot Interpretations:
Plot 1 - Residuals vs. Observation Indices:

• Purpose: Detect temporal patterns or autocorrelation
• What to look for: Random scatter around zero. Any systematic patterns (trends, cycles,

clusters) suggest autocorrelation or omitted time-varying predictors.
• Action: If patterns are detected, consider adding time-related predictors or modeling autocor-

relation structure.

Plot 2 - Cook’s Distance:

• Purpose: Identify influential observations affecting coefficient estimates
• What to look for: Points exceeding the 4/n reference line have high influence. These obser-

vations, if removed, would substantially change model estimates.
• Action: Investigate high-influence points for data entry errors, outliers, or legitimately un-

usual cases. Consider sensitivity analysis.

Plot 3 - Leverage vs. Fitted Values:

• Purpose: Identify observations with unusual predictor combinations
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• What to look for: Points exceeding the 2p/n reference line have high leverage. These are
unusual in predictor space but may or may not be influential.

• Action: High leverage points deserve scrutiny but are only problematic if they also have large
residuals (check Plots 1, 4).

Plot 4 - Residuals vs. Linear Predictor:

• Purpose: Detect non-linearity and heteroscedasticity
• What to look for: Random scatter around zero with constant spread. Curved patterns suggest

non-linear relationships. Funnel shapes indicate heteroscedasticity (non-constant variance).
• Action: For non-linearity, add polynomial terms or use splines. For heteroscedasticity, con-

sider alternative link functions or variance models.

Plot 5 - Half-Normal Plot with Envelope:

• Purpose: Assess overall distributional adequacy
• What to look for: Points should follow the reference line and stay within the simulated enve-

lope. Systematic deviations indicate distributional misspecification. Isolated points outside
the envelope suggest outliers.

• Action: If many points fall outside the envelope, try a different distributional family or check
for outliers and data quality issues.

Plot 6 - Predicted vs. Observed:

• Purpose: Overall model fit and prediction accuracy
• What to look for: Points should cluster around the 45-degree line. Systematic deviations

above or below indicate over- or under-prediction. Large scatter indicates poor predictive
performance.

• Action: Poor fit suggests missing predictors, incorrect functional form, or inappropriate dis-
tributional family.

Using Caption Customization: The new named list interface for caption allows elegant
partial customization:

# OLD WAY (still supported): Must repeat all 6 titles
plot(model, caption = c(
"Residuals vs. Observation Indices",
"Cook's Distance Plot",
"MY CUSTOM TITLE FOR PLOT 3", # Only want to change this
"Residuals vs. Linear Predictor",
"Half-Normal Plot of Residuals",
"Predicted vs. Observed Values"

))

# NEW WAY: Specify only what changes
plot(model, caption = list(
"3" = "MY CUSTOM TITLE FOR PLOT 3"

))
# Plots 1,2,4,5,6 automatically use defaults

# Customize multiple plots
plot(model, caption = list(
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"1" = "Time Series of Residuals",
"5" = "Distributional Assessment"

))

The vector interface remains fully supported for backward compatibility.

NULL Defaults and Intelligent Behavior: Several arguments default to NULL, triggering intel-
ligent automatic behavior:

• sub.caption = NULL: Automatically generates subtitle from model call
• ask = NULL: Automatically prompts only when needed (multiple plots on interactive device)
• theme_fn = NULL: Automatically uses theme_minimal when use_ggplot = TRUE

You can override these by explicitly setting values:

plot(model, sub.caption = "") # Disable subtitle
plot(model, ask = FALSE) # Never prompt
plot(model, theme_fn = theme_classic) # Custom theme

Performance Considerations: For large datasets (n > 10,000):

• Use sample_size to work with a random subset (e.g., sample_size = 2000)
• Reduce nsim for half-normal plot (e.g., nsim = 50)
• Use base R graphics (use_ggplot = FALSE) for faster rendering
• Skip computationally intensive plots: which = c(1,2,4,6) (excludes half-normal plot)

Graphics Systems: Base R Graphics (use_ggplot = FALSE):

• Faster rendering, especially for large datasets
• No external dependencies beyond base R
• Traditional R look and feel
• Interactive ask prompting supported
• Customize via ... parameters (standard par() settings)

ggplot2 Graphics (use_ggplot = TRUE):

• Modern, publication-quality aesthetics
• Consistent theming via theme_fn

• Grid arrangement support via arrange_plots

• Requires ggplot2 package (and optionally gridExtra or ggpubr for arrangements)
• No interactive ask prompting (ggplot limitation)

Value

Invisibly returns either:

• The original fitted model object x (if save_diagnostics = FALSE, the default). This allows
piping or chaining operations.

• A list containing diagnostic measures (if save_diagnostics = TRUE), including:

– data: Data frame with observation indices, observed values, fitted values, residuals,
Cook’s distance, leverage, and linear predictors

– model_info: List with model metadata (n, p, thresholds, family, type, etc.)
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– half_normal: Data frame with half-normal plot data and envelope (if which includes 5)

The function is primarily called for its side effect of generating diagnostic plots. The invisible return
allows:

# Silent plotting
plot(model)

# Or capture for further use
diag <- plot(model, save_diagnostics = TRUE)
head(diag$data)

Author(s)

Lopes, J. E.

References

Dunn, P. K., & Smyth, G. K. (1996). Randomized Quantile Residuals. Journal of Computational
and Graphical Statistics, 5(3), 236-244. doi:10.1080/10618600.1996.10474708

Cook, R. D. (1977). Detection of Influential Observation in Linear Regression. Technometrics,
19(1), 15-18. doi:10.1080/00401706.1977.10489493

Atkinson, A. C. (1985). Plots, Transformations and Regression. Oxford University Press.

See Also

• gkwreg for fitting Generalized Kumaraswamy regression models

• residuals.gkwreg for extracting different types of residuals

• fitted.gkwreg for extracting fitted values

• summary.gkwreg for model summaries

• plot.lm for analogous diagnostics in linear models

• ggplot for ggplot2 graphics system

• grid.arrange for arranging ggplot2 plots

Examples

# EXAMPLE 1: Basic Usage with Default Settings

# Simulate data
library(gkwdist)

set.seed(123)
n <- 200
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)

# True model parameters
alpha_true <- exp(0.7 + 0.3 * x1)

https://doi.org/10.1080/10618600.1996.10474708
https://doi.org/10.1080/00401706.1977.10489493
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beta_true <- exp(1.2 - 0.2 * x2)

# Generate response
y <- rkw(n, alpha = alpha_true, beta = beta_true)
df <- data.frame(y = y, x1 = x1, x2 = x2)

# Fit model
model <- gkwreg(y ~ x1 | x2, data = df, family = "kw")

# Generate all diagnostic plots with defaults
par(mfrow = c(3, 2))
plot(model, ask = FALSE)

# EXAMPLE 2: Selective Plots with Custom Residual Type

# Focus on key diagnostic plots only
par(mfrow = c(3, 1))
plot(model,

which = c(2, 4, 5), # Cook's distance, Resid vs LinPred, Half-normal
type = "pearson"

) # Use Pearson residuals

# Check for influential points (plot 2) and non-linearity (plot 4)
par(mfrow = c(2, 1))
plot(model,

which = c(2, 4),
type = "deviance"

)

# EXAMPLE 3: Caption Customization - New Named List Interface

# Customize only specific plot titles (RECOMMENDED NEW WAY)
par(mfrow = c(3, 1))
plot(model,

which = c(1, 4, 6),
caption = list(
"1" = "Time Pattern Check",
"4" = "Linearity Assessment",
"6" = "Predictive Accuracy"

)
)

# Customize subtitle and main title
par(mfrow = c(2, 1))
plot(model,

which = c(1, 5),
main = "Model Diagnostics",
sub.caption = "Kumaraswamy Regression - Training Data",
caption = list("5" = "Normality Check with 95% Envelope")

)

# Suppress subtitle entirely
par(mfrow = c(3, 2))
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plot(model, sub.caption = "")

# EXAMPLE 4: Backward Compatible Caption (Vector Interface)

# OLD WAY - still fully supported
par(mfrow = c(3, 2))
plot(model,

which = 1:6,
caption = c(
"Residual Pattern Analysis",
"Influence Diagnostics",
"Leverage Assessment",
"Linearity Check",
"Distributional Fit",
"Prediction Quality"

)
)

# EXAMPLE 5: ggplot2 Graphics with Theming

# Modern publication-quality plots
plot(model,

use_ggplot = TRUE,
arrange_plots = TRUE

)

# With custom theme
plot(model,

use_ggplot = TRUE,
theme_fn = ggplot2::theme_bw,
arrange_plots = TRUE

)

# With classic theme and custom colors (via ...)
plot(model,

use_ggplot = TRUE,
theme_fn = ggplot2::theme_classic,
arrange_plots = TRUE

)

# EXAMPLE 6: Arranged Multi-Panel ggplot2 Display

# Requires gridExtra or ggpubr package
plot(model,

which = 1:4,
use_ggplot = TRUE,
arrange_plots = TRUE, # Arrange in grid
theme_fn = ggplot2::theme_minimal

)

# Focus plots in 2x2 grid
plot(model,

which = c(2, 3, 4, 6),
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use_ggplot = TRUE,
arrange_plots = TRUE,
caption = list(

"2" = "Influential Cases",
"3" = "High Leverage Points"

)
)

# EXAMPLE 7: Half-Normal Plot Customization

# Higher precision envelope (more simulations)
par(mfrow = c(1, 2))
plot(model,

which = 5,
nsim = 500, # More accurate envelope
level = 0.95

) # 95% confidence level

# Quick envelope for large datasets
plot(model,

which = 5,
nsim = 500, # Faster computation
level = 0.90

)

# EXAMPLE 8: Different Residual Types Comparison

# Compare different residual types
par(mfrow = c(2, 2))
plot(model, which = 4, type = "quantile", main = "Quantile")
plot(model, which = 4, type = "pearson", main = "Pearson")
plot(model, which = 4, type = "deviance", main = "Deviance")
par(mfrow = c(1, 1))

# Quantile residuals for half-normal plot (recommended)
plot(model, which = 5, type = "quantile")

# EXAMPLE 9: Family Comparison Diagnostics

# Compare diagnostics under different distributional assumptions
# Helps assess if alternative family would fit better
par(mfrow = c(2, 2))
plot(model,

which = c(5, 6),
family = "kw", # Original family
main = "Kumaraswamy"

)

plot(model,
which = c(5, 6),
family = "beta", # Alternative family
main = "Beta"

)
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par(mfrow = c(1, 1))

# EXAMPLE 10: Large Dataset - Performance Optimization

# Simulate large dataset
set.seed(456)
n_large <- 50000
x1_large <- runif(n_large, -2, 2)
x2_large <- rnorm(n_large)
alpha_large <- exp(0.5 + 0.2 * x1_large)
beta_large <- exp(1.0 - 0.1 * x2_large)
y_large <- rkw(n_large, alpha = alpha_large, beta = beta_large)
df_large <- data.frame(y = y_large, x1 = x1_large, x2 = x2_large)

model_large <- gkwreg(y ~ x1 | x2, data = df_large, family = "kw")

# Optimized plotting for large dataset
par(mfrow = c(2, 2), mar = c(3, 3, 2, 2))
plot(model_large,

which = c(1, 2, 4, 6), # Skip computationally intensive plot 5
sample_size = 2000, # Use random sample of 2000 observations
ask = FALSE

) # Don't prompt

# If half-normal plot needed, reduce simulations
par(mfrow = c(1, 1))
plot(model_large,

which = 5,
sample_size = 1000, # Smaller sample
nsim = 50

) # Fewer simulations

# EXAMPLE 11: Saving Diagnostic Data for Custom Analysis

# Extract diagnostic measures without plotting
par(mfrow = c(1, 1))
diag_data <- plot(model_large,

which = 1:6,
save_diagnostics = TRUE

)

# Examine structure
str(diag_data)

# Access diagnostic measures
head(diag_data$data) # Residuals, Cook's distance, leverage, etc.

# Identify influential observations
influential <- which(diag_data$data$cook_dist > diag_data$model_info$cook_threshold)
cat("Influential observations:", head(influential), "\n")

# High leverage points
high_lev <- which(diag_data$data$leverage > diag_data$model_info$leverage_threshold)
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cat("High leverage points:", head(high_lev), "\n")

# Custom diagnostic plot using saved data
plot(diag_data$data$fitted, diag_data$data$resid,

xlab = "Fitted Values", ylab = "Residuals",
main = "Custom Diagnostic Plot",
col = ifelse(diag_data$data$cook_dist >
diag_data$model_info$cook_threshold, "red", "black"),

pch = 16
)
abline(h = 0, col = "gray", lty = 2)
legend("topright", legend = "Influential", col = "red", pch = 16)

# EXAMPLE 12: Interactive Plotting Control

# ask = TRUE Force prompting between plots (useful for presentations)
# Disable prompting (batch processing)
par(mfrow = c(3, 2))
plot(model,

which = 1:6,
ask = FALSE

) # Never prompts

# EXAMPLE 13: Base R Graphics Customization via ...

# Customize point appearance
par(mfrow = c(2, 2))
plot(model,

which = c(1, 4, 6),
pch = 16, # Filled circles
col = "steelblue", # Blue points
cex = 0.8

) # Smaller points

# Multiple customizations
plot(model,

which = 2,
pch = 21, # Circles with border
col = "black", # Border color
bg = "lightblue", # Fill color
cex = 1.2, # Larger points
lwd = 2

) # Thicker lines

# EXAMPLE 14: Comparing Models

# Fit competing models
model_kw <- gkwreg(y ~ x1 | x2, data = df, family = "kw")
model_beta <- gkwreg(y ~ x1 | x2, data = df, family = "beta")

# Compare diagnostics side-by-side
par(mfrow = c(2, 2))
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# Kumaraswamy model
plot(model_kw, which = 5, main = "Kumaraswamy - Half-Normal")
plot(model_kw, which = 6, main = "Kumaraswamy - Pred vs Obs")

# Beta model
plot(model_beta, which = 5, main = "Beta - Half-Normal")
plot(model_beta, which = 6, main = "Beta - Pred vs Obs")

par(mfrow = c(1, 1))

predict.gkwreg Predictions from a Fitted Generalized Kumaraswamy Regression
Model

Description

Computes predictions and related quantities from a fitted Generalized Kumaraswamy (GKw) re-
gression model object. This method can extract fitted values, predicted means, linear predictors,
parameter values, variances, densities, probabilities, and quantiles based on the estimated model.
Predictions can be made for new data or for the original data used to fit the model.

Usage

## S3 method for class 'gkwreg'
predict(
object,
newdata = NULL,
type = "response",
na.action = stats::na.pass,
at = 0.5,
elementwise = NULL,
family = NULL,
...

)

Arguments

object An object of class "gkwreg", typically the result of a call to gkwreg.

newdata An optional data frame containing the variables needed for prediction. If omit-
ted, predictions are made for the data used to fit the model.

type A character string specifying the type of prediction. Options are:

"response" or "mean" Predicted mean response (default).
"link" Linear predictors for each parameter before applying inverse link func-

tions.
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"parameter" Parameter values on their original scale (after applying inverse
link functions).

"alpha", "beta", "gamma", "delta", "lambda" Values for a specific distribu-
tion parameter.

"variance" Predicted variance of the response.
"density" or "pdf" Density function values at points specified by at.
"probability" or "cdf" Cumulative distribution function values at points spec-

ified by at.
"quantile" Quantiles corresponding to probabilities specified by at.

na.action Function determining how to handle missing values in newdata. Default is
stats::na.pass, which returns NA for cases with missing predictors.

at Numeric vector of values at which to evaluate densities, probabilities, or for
which to compute quantiles, depending on type. Required for type = "density",
type = "probability", or type = "quantile". Defaults to 0.5.

elementwise Logical. If TRUE and at has the same length as the number of observations,
applies each value in at to the corresponding observation. If FALSE (default),
applies all values in at to each observation, returning a matrix.

family Character string specifying the distribution family to use for calculations. If
NULL (default), uses the family from the fitted model. Options match those in
gkwreg: "gkw", "bkw", "kkw", "ekw", "mc", "kw", "beta".

... Additional arguments (currently not used).

Details

The predict.gkwreg function provides a flexible framework for obtaining predictions and infer-
ence from fitted Generalized Kumaraswamy regression models. It handles all subfamilies of GKw
distributions and respects the parametrization and link functions specified in the original model.

Prediction Types: The function supports several types of predictions:

• Response/Mean: Computes the expected value of the response variable based on the model
parameters. For most GKw family distributions, this requires numerical integration or special
formulas.

• Link: Returns the linear predictors for each parameter without applying inverse link func-
tions. These are the values ηj = Xβj for each parameter j.

• Parameter: Computes the distribution parameter values on their original scale by applying
the appropriate inverse link functions to the linear predictors. For example, if alpha uses a
log link, then α = exp(Xβα).

• Individual Parameters: Extract specific parameter values (alpha, beta, gamma, delta, lambda)
on their original scale.

• Variance: Estimates the variance of the response based on the model parameters. For some
distributions, analytical formulas are used; for others, numerical approximations are em-
ployed.

• Density/PDF: Evaluates the probability density function at specified points given the model
parameters.

• Probability/CDF: Computes the cumulative distribution function at specified points given
the model parameters.
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• Quantile: Calculates quantiles corresponding to specified probabilities given the model pa-
rameters.

Link Functions: The function respects the link functions specified in the original model for each
parameter. The supported link functions are:

• "log": g(µ) = log(µ), g−1(η) = exp(η)

• "logit": g(µ) = log(µ/(1− µ)), g−1(η) = 1/(1 + exp(−η))

• "probit": g(µ) = Φ−1(µ), g−1(η) = Φ(η)

• "cauchy": g(µ) = tan(π ∗ (µ− 0.5)), g−1(η) = 0.5 + (1/π) arctan(η)

• "cloglog": g(µ) = log(− log(1− µ)), g−1(η) = 1− exp(− exp(η))

• "identity": g(µ) = µ, g−1(η) = η

• "sqrt": g(µ) =
√
µ, g−1(η) = η2

• "inverse": g(µ) = 1/µ, g−1(η) = 1/η

• "inverse-square": g(µ) = 1/
√
µ, g−1(η) = 1/η2

Family-Specific Constraints: The function enforces appropriate constraints for each distribution
family:

• "gkw": All 5 parameters (α, β, γ, δ, λ) are used.
• "bkw": λ = 1 is fixed.
• "kkw": γ = 1 is fixed.
• "ekw": γ = 1, δ = 0 are fixed.
• "mc": α = 1, β = 1 are fixed.
• "kw": γ = 1, δ = 0, λ = 1 are fixed.
• "beta": α = 1, β = 1, λ = 1 are fixed.

Parameter Bounds: All parameters are constrained to their valid ranges:

• α, β, γ, λ > 0

• 0 < δ < 1

Using with New Data: When providing newdata, ensure it contains all variables used in the
model’s formula. The function extracts the terms for each parameter’s model matrix and applies
the appropriate link functions to calculate predictions. If any variables are missing, the function
will attempt to substitute reasonable defaults or raise an error if critical variables are absent.

Using for Model Evaluation: The function is useful for model checking, generating predicted
values for plotting, and evaluating the fit of different distribution families. By specifying the
family parameter, you can compare predictions under different distributional assumptions.

Value

The return value depends on the type argument:

• For type = "response", type = "variance", or individual parameters (type = "alpha", etc.):
A numeric vector of length equal to the number of rows in newdata (or the original data).

• For type = "link" or type = "parameter": A data frame with columns for each parameter
and rows corresponding to observations.
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• For type = "density", type = "probability", or type = "quantile":

– If elementwise = TRUE: A numeric vector of length equal to the number of rows in
newdata (or the original data).

– If elementwise = FALSE: A matrix where rows correspond to observations and columns
correspond to the values in at.

Author(s)

Lopes, J. E. and contributors

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation, 81(7), 883-898.

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

Ferrari, S. L. P., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions.
Journal of Applied Statistics, 31(7), 799-815.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6(1), 70-81.

See Also

gkwreg for fitting Generalized Kumaraswamy regression models, fitted.gkwreg for extracting
fitted values, residuals.gkwreg for calculating residuals, summary.gkwreg for model summaries,
coef.gkwreg for extracting coefficients.

Examples

# Generate a sample dataset (n = 1000)
library(gkwdist)
set.seed(123)
n <- 1000

# Create predictors
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
x3 <- factor(rbinom(n, 1, 0.4))

# Simulate Kumaraswamy distributed data
# True parameters with specific relationships to predictors
true_alpha <- exp(0.7 + 0.3 * x1)
true_beta <- exp(1.2 - 0.2 * x2 + 0.4 * (x3 == "1"))

# Generate random responses
y <- rkw(n, alpha = true_alpha, beta = true_beta)

# Ensure responses are strictly in (0, 1)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7)
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# Create data frame
df <- data.frame(y = y, x1 = x1, x2 = x2, x3 = x3)

# Split into training and test sets
set.seed(456)
train_idx <- sample(n, 800)
train_data <- df[train_idx, ]
test_data <- df[-train_idx, ]

# ====================================================================
# Example 1: Basic usage - Fit a Kumaraswamy model and make predictions
# ====================================================================

# Fit the model
kw_model <- gkwreg(y ~ x1 | x2 + x3, data = train_data, family = "kw")

# Predict mean response for test data
pred_mean <- predict(kw_model, newdata = test_data, type = "response")

# Calculate prediction error
mse <- mean((test_data$y - pred_mean)^2)
cat("Mean Squared Error:", mse, "\n")

# ====================================================================
# Example 2: Different prediction types
# ====================================================================

# Create a grid of values for visualization
x1_grid <- seq(-2, 2, length.out = 100)
grid_data <- data.frame(x1 = x1_grid, x2 = 0, x3 = 0)

# Predict different quantities
pred_mean <- predict(kw_model, newdata = grid_data, type = "response")
pred_var <- predict(kw_model, newdata = grid_data, type = "variance")
pred_params <- predict(kw_model, newdata = grid_data, type = "parameter")
pred_alpha <- predict(kw_model, newdata = grid_data, type = "alpha")
pred_beta <- predict(kw_model, newdata = grid_data, type = "beta")

# Plot predicted mean and parameters against x1
plot(x1_grid, pred_mean,

type = "l", col = "blue",
xlab = "x1", ylab = "Predicted Mean", main = "Mean Response vs x1"

)
plot(x1_grid, pred_var,

type = "l", col = "red",
xlab = "x1", ylab = "Predicted Variance", main = "Response Variance vs x1"

)
plot(x1_grid, pred_alpha,

type = "l", col = "purple",
xlab = "x1", ylab = "Alpha", main = "Alpha Parameter vs x1"

)
plot(x1_grid, pred_beta,

type = "l", col = "green",
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xlab = "x1", ylab = "Beta", main = "Beta Parameter vs x1"
)

# ====================================================================
# Example 3: Computing densities, CDFs, and quantiles
# ====================================================================

# Select a single observation
obs_data <- test_data[1, ]

# Create a sequence of y values for plotting
y_seq <- seq(0.01, 0.99, length.out = 100)

# Compute density at each y value
dens_values <- predict(kw_model,

newdata = obs_data,
type = "density", at = y_seq, elementwise = FALSE

)

# Compute CDF at each y value
cdf_values <- predict(kw_model,

newdata = obs_data,
type = "probability", at = y_seq, elementwise = FALSE

)

# Compute quantiles for a sequence of probabilities
prob_seq <- seq(0.1, 0.9, by = 0.1)
quant_values <- predict(kw_model,

newdata = obs_data,
type = "quantile", at = prob_seq, elementwise = FALSE

)

# Plot density and CDF
plot(y_seq, dens_values,

type = "l", col = "blue",
xlab = "y", ylab = "Density", main = "Predicted PDF"

)
plot(y_seq, cdf_values,

type = "l", col = "red",
xlab = "y", ylab = "Cumulative Probability", main = "Predicted CDF"

)

# ====================================================================
# Example 4: Prediction under different distributional assumptions
# ====================================================================

# Fit models with different families
beta_model <- gkwreg(y ~ x1 | x2 + x3, data = train_data, family = "beta")
gkw_model <- gkwreg(y ~ x1 | x2 + x3 | 1 | 1 | x3, data = train_data, family = "gkw")

# Predict means using different families
pred_kw <- predict(kw_model, newdata = test_data, type = "response")
pred_beta <- predict(beta_model, newdata = test_data, type = "response")
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pred_gkw <- predict(gkw_model, newdata = test_data, type = "response")

# Calculate MSE for each family
mse_kw <- mean((test_data$y - pred_kw)^2)
mse_beta <- mean((test_data$y - pred_beta)^2)
mse_gkw <- mean((test_data$y - pred_gkw)^2)

cat("MSE by family:\n")
cat("Kumaraswamy:", mse_kw, "\n")
cat("Beta:", mse_beta, "\n")
cat("GKw:", mse_gkw, "\n")

# Compare predictions from different families visually
plot(test_data$y, pred_kw,

col = "blue", pch = 16,
xlab = "Observed", ylab = "Predicted", main = "Predicted vs Observed"

)
points(test_data$y, pred_beta, col = "red", pch = 17)
points(test_data$y, pred_gkw, col = "green", pch = 18)
abline(0, 1, lty = 2)
legend("topleft",

legend = c("Kumaraswamy", "Beta", "GKw"),
col = c("blue", "red", "green"), pch = c(16, 17, 18)

)

# ====================================================================
# Example 5: Working with linear predictors and link functions
# ====================================================================

# Extract linear predictors and parameter values
lp <- predict(kw_model, newdata = test_data, type = "link")
params <- predict(kw_model, newdata = test_data, type = "parameter")

# Verify that inverse link transformation works correctly
# For Kumaraswamy model, alpha and beta use log links by default
alpha_from_lp <- exp(lp$alpha)
beta_from_lp <- exp(lp$beta)

# Compare with direct parameter predictions
cat("Manual inverse link vs direct parameter prediction:\n")
cat("Alpha difference:", max(abs(alpha_from_lp - params$alpha)), "\n")
cat("Beta difference:", max(abs(beta_from_lp - params$beta)), "\n")

# ====================================================================
# Example 6: Elementwise calculations
# ====================================================================

# Generate probabilities specific to each observation
probs <- runif(nrow(test_data), 0.1, 0.9)

# Calculate quantiles for each observation at its own probability level
quant_elementwise <- predict(kw_model,

newdata = test_data,
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type = "quantile", at = probs, elementwise = TRUE
)

# Calculate probabilities at each observation's actual value
prob_at_y <- predict(kw_model,

newdata = test_data,
type = "probability", at = test_data$y, elementwise = TRUE

)

# Create Q-Q plot
plot(sort(prob_at_y), seq(0, 1, length.out = length(prob_at_y)),

xlab = "Empirical Probability", ylab = "Theoretical Probability",
main = "P-P Plot", type = "l"

)
abline(0, 1, lty = 2, col = "red")

# ====================================================================
# Example 7: Predicting for the original data
# ====================================================================

# Fit a model with original data
full_model <- gkwreg(y ~ x1 + x2 + x3 | x1 + x2 + x3, data = df, family = "kw")

# Get fitted values using predict and compare with model's fitted.values
fitted_from_predict <- predict(full_model, type = "response")
fitted_from_model <- full_model$fitted.values

# Compare results
cat(

"Max difference between predict() and fitted.values:",
max(abs(fitted_from_predict - fitted_from_model)), "\n"

)

# ====================================================================
# Example 8: Handling missing data
# ====================================================================

# Create test data with some missing values
test_missing <- test_data
test_missing$x1[1:5] <- NA
test_missing$x2[6:10] <- NA

# Predict with different na.action options
pred_na_pass <- tryCatch(

predict(kw_model, newdata = test_missing, na.action = na.pass),
error = function(e) rep(NA, nrow(test_missing))

)
pred_na_omit <- tryCatch(

predict(kw_model, newdata = test_missing, na.action = na.omit),
error = function(e) rep(NA, nrow(test_missing))

)

# Show which positions have NAs
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cat("Rows with missing predictors:", which(is.na(pred_na_pass)), "\n")
cat("Length after na.omit:", length(pred_na_omit), "\n")

print.anova.gkwreg Print Method for ANOVA of GKw Models

Description

Print method for analysis of deviance tables produced by anova.gkwreg.

Usage

## S3 method for class 'anova.gkwreg'
print(
x,
digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars", TRUE),
dig.tst = digits,
...

)

Arguments

x An object of class "anova.gkwreg" from anova.gkwreg.

digits Minimum number of significant digits to print. Default is max(getOption("digits")
- 2, 3).

signif.stars Logical; if TRUE (default), significance stars are printed alongside p-values. Can
be controlled globally via options(show.signif.stars = FALSE).

dig.tst Number of digits for test statistics. Default is digits.

... Additional arguments (currently ignored).

Value

The object x, invisibly.

Author(s)

Lopes, J. E.

See Also

anova.gkwreg
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print.gkwreg Print Method for Generalized Kumaraswamy Regression Models

Description

Print method for objects of class "gkwreg". Provides a concise summary of the fitted model fol-
lowing the style of print.lm.

Usage

## S3 method for class 'gkwreg'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x An object of class "gkwreg", typically obtained from gkwreg.

digits Minimum number of significant digits to print. Default is max(3, getOption("digits")
- 3).

... Additional arguments passed to or from other methods.

Details

The print method provides a concise overview of the fitted model, showing: the call, deviance
residuals summary, coefficient estimates, link functions, and basic fit statistics. For more detailed
output including standard errors and significance tests, use summary.gkwreg.

Value

The object x, invisibly.

Author(s)

Lopes, J. E.

See Also

gkwreg, summary.gkwreg

Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
print(fit)

# With more digits
print(fit, digits = 5)
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ReadingSkills Dyslexia and IQ Predicting Reading Accuracy

Description

Data for assessing the contribution of non-verbal IQ to children’s reading skills in dyslexic and non-
dyslexic children. This is a classic dataset demonstrating beta regression with interaction effects and
heteroscedasticity.

Usage

ReadingSkills

Format

A data frame with 44 observations on 4 variables:

accuracy numeric. Reading accuracy score scaled to the open unit interval (0, 1). Perfect scores
of 1 were replaced with 0.99.

accuracy1 numeric. Unrestricted reading accuracy score in (0, 1), including boundary observa-
tions.

dyslexia factor. Is the child dyslexic? Levels: no (control group) and yes (dyslexic group). Sum
contrast coding is employed.

iq numeric. Non-verbal intelligence quotient transformed to z-scores (mean = 0, SD = 1).

Details

The data were collected by Pammer and Kevan (2004) and employed by Smithson and Verkuilen
(2006) in their seminal beta regression paper. The sample includes 19 dyslexic children and 25
controls recruited from primary schools in the Australian Capital Territory. Children’s ages ranged
from 8 years 5 months to 12 years 3 months.

Mean reading accuracy was 0.606 for dyslexic readers and 0.900 for controls. The study investigates
whether dyslexia contributes to reading accuracy even when controlling for IQ (which is on average
lower for dyslexics).

Transformation details: The original reading accuracy score was transformed by Smithson and
Verkuilen (2006) to fit beta regression requirements:

1. First, the original accuracy was scaled using the minimal and maximal scores (a and b) that
can be obtained in the test: accuracy1 = (original - a)/(b - a) (a and b values are not
provided).

2. Subsequently, accuracy was obtained from accuracy1 by replacing all observations with a
value of 1 with 0.99 to fit the open interval (0, 1).

The data clearly show asymmetry and heteroscedasticity (especially in the control group), making
beta regression more appropriate than standard linear regression.
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Source

Data collected by Pammer and Kevan (2004).

References

Cribari-Neto, F., and Zeileis, A. (2010). Beta Regression in R. Journal of Statistical Software,
34(2), 1–24. doi:10.18637/jss.v034.i02

Grün, B., Kosmidis, I., and Zeileis, A. (2012). Extended Beta Regression in R: Shaken, Stirred,
Mixed, and Partitioned. Journal of Statistical Software, 48(11), 1–25. doi:10.18637/jss.v048.i11

Kosmidis, I., and Zeileis, A. (2024). Extended-Support Beta Regression for (0, 1) Responses.
arXiv:2409.07233. doi:10.48550/arXiv.2409.07233

Pammer, K., and Kevan, A. (2004). The Contribution of Visual Sensitivity, Phonological Process-
ing and Nonverbal IQ to Children’s Reading. Unpublished manuscript, The Australian National
University, Canberra.

Smithson, M., and Verkuilen, J. (2006). A Better Lemon Squeezer? Maximum-Likelihood Regres-
sion with Beta-Distributed Dependent Variables. Psychological Methods, 11(1), 54–71.

Examples

require(gkwreg)
require(gkwdist)

data(ReadingSkills)

# Example 1: Standard Kumaraswamy with interaction and heteroscedasticity
# Mean: Dyslexia × IQ interaction (do groups differ in IQ effect?)
# Precision: Main effects (variability differs by group and IQ level)
fit_kw <- gkwreg(

accuracy ~ dyslexia * iq |
dyslexia + iq,

data = ReadingSkills,
family = "kw",
control = gkw_control(method = "L-BFGS-B", maxit = 2000)

)
summary(fit_kw)

# Interpretation:
# - Alpha (mean): Interaction shows dyslexic children benefit less from
# higher IQ compared to controls
# - Beta (precision): Controls show more variable accuracy (higher precision)
# IQ increases consistency of performance

# Example 2: Simpler model without interaction
fit_kw_simple <- gkwreg(

accuracy ~ dyslexia + iq |
dyslexia + iq,

data = ReadingSkills,
family = "kw",
control = gkw_control(method = "L-BFGS-B", maxit = 2000)

)

https://doi.org/10.18637/jss.v034.i02
https://doi.org/10.18637/jss.v048.i11
https://doi.org/10.48550/arXiv.2409.07233
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# Test if interaction is significant
anova(fit_kw_simple, fit_kw)

# Example 3: Exponentiated Kumaraswamy for ceiling effects
# Reading accuracy often shows ceiling effects (many perfect/near-perfect scores)
# Lambda parameter can model this right-skewed asymmetry
fit_ekw <- gkwreg(

accuracy ~ dyslexia * iq | # alpha
dyslexia + iq | # beta
dyslexia, # lambda: ceiling effect by group

data = ReadingSkills,
family = "ekw",
control = gkw_control(method = "L-BFGS-B", maxit = 2000)

)
summary(fit_ekw)

# Interpretation:
# - Lambda varies by dyslexia status: Controls have stronger ceiling effect
# (more compression at high accuracy) than dyslexic children

# Test if ceiling effect modeling improves fit
anova(fit_kw, fit_ekw)

# Example 4: McDonald distribution alternative
# Provides different parameterization for extreme values
fit_mc <- gkwreg(

accuracy ~ dyslexia * iq | # gamma
dyslexia + iq | # delta
dyslexia * iq, # lambda: interaction affects tails

data = ReadingSkills,
family = "mc",
control = gkw_control(method = "L-BFGS-B", maxit = 2000)

)
summary(fit_mc)

# Compare 3-parameter models
AIC(fit_ekw, fit_mc)

residuals.gkwreg Extract Residuals from a Generalized Kumaraswamy Regression
Model

Description

Extracts or calculates various types of residuals from a fitted Generalized Kumaraswamy (GKw)
regression model object of class "gkwreg", useful for model diagnostics.
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Usage

## S3 method for class 'gkwreg'
residuals(
object,
type = c("response", "pearson", "deviance", "quantile", "modified.deviance",
"cox-snell", "score", "partial"),

covariate_idx = 1,
parameter = "alpha",
family = NULL,
...

)

Arguments

object An object of class "gkwreg", typically the result of a call to gkwreg.

type Character string specifying the type of residuals to compute. Available options
are:

• "response": (Default) Raw response residuals: y−µ, where µ is the fitted
mean.

• "pearson": Pearson residuals: (y − µ)/
√
V (µ), where V (µ) is the vari-

ance function of the specified family.
• "deviance": Deviance residuals: Signed square root of the unit deviances.

Sum of squares equals the total deviance.
• "quantile": Randomized quantile residuals (Dunn & Smyth, 1996). Trans-

formed via the model’s CDF and the standard normal quantile function.
Should approximate a standard normal distribution if the model is correct.

• "modified.deviance": (Not typically implemented, placeholder) Stan-
dardized deviance residuals, potentially adjusted for leverage.

• "cox-snell": Cox-Snell residuals: − log(1 − F (y)), where F (y) is the
model’s CDF. Should approximate a standard exponential distribution if
the model is correct.

• "score": (Not typically implemented, placeholder) Score residuals, related
to the derivative of the log-likelihood.

• "partial": Partial residuals for a specific predictor in one parameter’s lin-
ear model: etap + βpkxik, where etap is the partial linear predictor and
βpkxik is the component associated with the k-th covariate for the i-th ob-
servation. Requires parameter and covariate_idx.

covariate_idx Integer. Only used if type = "partial". Specifies the index (column number in
the corresponding model matrix) of the covariate for which to compute partial
residuals.

parameter Character string. Only used if type = "partial". Specifies the distribution
parameter ("alpha", "beta", "gamma", "delta", or "lambda") whose linear
predictor contains the covariate of interest.

family Character string specifying the distribution family assumptions to use when cal-
culating residuals (especially for types involving variance, deviance, CDF, etc.).
If NULL (default), the family stored within the fitted object is used. Specifying
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a different family may be useful for diagnostic comparisons. Available options
match those in gkwreg: "gkw", "bkw", "kkw", "ekw", "mc", "kw", "beta".

... Additional arguments, currently ignored by this method.

Details

This function calculates various types of residuals useful for diagnosing the adequacy of a fitted
GKw regression model.

• Response residuals (type="response") are the simplest, showing raw differences between
observed and fitted mean values.

• Pearson residuals (type="pearson") account for the mean-variance relationship specified by
the model family. Constant variance when plotted against fitted values suggests the variance
function is appropriate.

• Deviance residuals (type="deviance") are related to the log-likelihood contribution of each
observation. Their sum of squares equals the total model deviance. They often have more
symmetric distributions than Pearson residuals.

• Quantile residuals (type="quantile") are particularly useful for non-standard distributions
as they should always be approximately standard normal if the assumed distribution and model
structure are correct. Deviations from normality in a QQ-plot indicate model misspecification.

• Cox-Snell residuals (type="cox-snell") provide another check of the overall distributional
fit. A plot of the sorted residuals against theoretical exponential quantiles should approximate
a straight line through the origin with slope 1.

• Partial residuals (type="partial") help visualize the marginal relationship between a spe-
cific predictor and the response on the scale of the linear predictor for a chosen parameter,
adjusted for other predictors.

Calculations involving the distribution’s properties (variance, CDF, PDF) depend heavily on the
specified family. The function relies on internal helper functions (potentially implemented in C++
for efficiency) to compute these based on the fitted parameters for each observation.

Value

A numeric vector containing the requested type of residuals. The length corresponds to the number
of observations used in the model fit.

Author(s)

Lopes, J. E.

References

Dunn, P. K., & Smyth, G. K. (1996). Randomized Quantile Residuals. Journal of Computational
and Graphical Statistics, 5(3), 236-244.

Cox, D. R., & Snell, E. J. (1968). A General Definition of Residuals. Journal of the Royal Statistical
Society, Series B (Methodological), 30(2), 248-275.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.). Chapman and
Hall/CRC.
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See Also

gkwreg, fitted.gkwreg, predict.gkwreg, residuals

Examples

require(gkwreg)
require(gkwdist)

# Example 1: Comprehensive residual analysis for FoodExpenditure
data(FoodExpenditure)
FoodExpenditure$prop <- FoodExpenditure$food / FoodExpenditure$income

fit_kw <- gkwreg(
prop ~ income + persons | income + persons,
data = FoodExpenditure,
family = "kw"

)

# Extract different types of residuals
res_response <- residuals(fit_kw, type = "response")
res_pearson <- residuals(fit_kw, type = "pearson")
res_deviance <- residuals(fit_kw, type = "deviance")
res_quantile <- residuals(fit_kw, type = "quantile")
res_coxsnell <- residuals(fit_kw, type = "cox-snell")

# Summary statistics
residual_summary <- data.frame(

Type = c("Response", "Pearson", "Deviance", "Quantile", "Cox-Snell"),
Mean = c(
mean(res_response), mean(res_pearson),
mean(res_deviance), mean(res_quantile),
mean(res_coxsnell)

),
SD = c(

sd(res_response), sd(res_pearson),
sd(res_deviance), sd(res_quantile),
sd(res_coxsnell)

),
Min = c(

min(res_response), min(res_pearson),
min(res_deviance), min(res_quantile),
min(res_coxsnell)

),
Max = c(

max(res_response), max(res_pearson),
max(res_deviance), max(res_quantile),
max(res_coxsnell)

)
)
print(residual_summary)

# Example 2: Diagnostic plots for model assessment
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data(GasolineYield)

fit_ekw <- gkwreg(
yield ~ batch + temp | temp | batch,
data = GasolineYield,
family = "ekw"

)

# Set up plotting grid
par(mfrow = c(2, 3))

# Plot 1: Residuals vs Fitted
fitted_vals <- fitted(fit_ekw)
res_pears <- residuals(fit_ekw, type = "pearson")
plot(fitted_vals, res_pears,

xlab = "Fitted Values", ylab = "Pearson Residuals",
main = "Residuals vs Fitted",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
abline(h = 0, col = "red", lwd = 2, lty = 2)
lines(lowess(fitted_vals, res_pears), col = "blue", lwd = 2)

# Plot 2: Normal QQ-plot (Quantile Residuals)
res_quant <- residuals(fit_ekw, type = "quantile")
qqnorm(res_quant,

main = "Normal Q-Q Plot (Quantile Residuals)",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
qqline(res_quant, col = "red", lwd = 2)

# Plot 3: Scale-Location (sqrt of standardized residuals)
plot(fitted_vals, sqrt(abs(res_pears)),

xlab = "Fitted Values", ylab = expression(sqrt("|Std. Residuals|")),
main = "Scale-Location",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
lines(lowess(fitted_vals, sqrt(abs(res_pears))), col = "red", lwd = 2)

# Plot 4: Histogram of Quantile Residuals
hist(res_quant,

breaks = 15, probability = TRUE,
xlab = "Quantile Residuals",
main = "Histogram with Normal Overlay",
col = "lightblue", border = "white"

)
curve(dnorm(x, mean(res_quant), sd(res_quant)),

add = TRUE, col = "red", lwd = 2
)

# Plot 5: Cox-Snell Residual Plot
res_cs <- residuals(fit_ekw, type = "cox-snell")
plot(qexp(ppoints(length(res_cs))), sort(res_cs),

xlab = "Theoretical Exponential Quantiles",
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ylab = "Ordered Cox-Snell Residuals",
main = "Cox-Snell Residual Plot",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
abline(0, 1, col = "red", lwd = 2)

# Plot 6: Residuals vs Index
plot(seq_along(res_pears), res_pears,

xlab = "Observation Index", ylab = "Pearson Residuals",
main = "Residuals vs Index",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
abline(h = 0, col = "red", lwd = 2, lty = 2)

par(mfrow = c(1, 1))

# Example 3: Partial residual plots for covariate effects
data(ReadingSkills)

fit_interact <- gkwreg(
accuracy ~ dyslexia * iq | dyslexia + iq,
data = ReadingSkills,
family = "kw"

)

# Partial residuals for IQ effect on alpha parameter
X_alpha <- fit_interact$model_matrices$alpha
iq_col_alpha <- which(colnames(X_alpha) == "iq")

if (length(iq_col_alpha) > 0) {
res_partial_alpha <- residuals(fit_interact,

type = "partial",
parameter = "alpha",
covariate_idx = iq_col_alpha

)

par(mfrow = c(1, 2))

# Partial residual plot for alpha
plot(ReadingSkills$iq, res_partial_alpha,

xlab = "IQ (z-scores)",
ylab = "Partial Residual (alpha)",
main = "Effect of IQ on Mean (alpha)",
pch = 19, col = ReadingSkills$dyslexia

)
lines(lowess(ReadingSkills$iq, res_partial_alpha),

col = "blue", lwd = 2
)
legend("topleft",

legend = c("Control", "Dyslexic"),
col = c("black", "red"), pch = 19

)
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# Partial residuals for IQ effect on beta parameter
X_beta <- fit_interact$model_matrices$beta
iq_col_beta <- which(colnames(X_beta) == "iq")

if (length(iq_col_beta) > 0) {
res_partial_beta <- residuals(fit_interact,

type = "partial",
parameter = "beta",
covariate_idx = iq_col_beta

)

plot(ReadingSkills$iq, res_partial_beta,
xlab = "IQ (z-scores)",
ylab = "Partial Residual (beta)",
main = "Effect of IQ on Precision (beta)",
pch = 19, col = ReadingSkills$dyslexia

)
lines(lowess(ReadingSkills$iq, res_partial_beta),

col = "blue", lwd = 2
)

}

par(mfrow = c(1, 1))
}

# Example 4: Comparing residuals across different families
data(StressAnxiety)

fit_kw_stress <- gkwreg(
anxiety ~ stress | stress,
data = StressAnxiety,
family = "kw"

)

# Quantile residuals under different family assumptions
res_quant_kw <- residuals(fit_kw_stress, type = "quantile", family = "kw")
res_quant_beta <- residuals(fit_kw_stress, type = "quantile", family = "beta")

# Compare normality
par(mfrow = c(1, 2))

qqnorm(res_quant_kw,
main = "QQ-Plot: Kumaraswamy Residuals",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
qqline(res_quant_kw, col = "red", lwd = 2)

qqnorm(res_quant_beta,
main = "QQ-Plot: Beta Residuals",
pch = 19, col = rgb(0, 0.5, 0, 0.5)

)
qqline(res_quant_beta, col = "red", lwd = 2)
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par(mfrow = c(1, 1))

# Formal normality tests
shapiro_kw <- shapiro.test(res_quant_kw)
shapiro_beta <- shapiro.test(res_quant_beta)

cat("\nShapiro-Wilk Test Results:\n")
cat(

"Kumaraswamy: W =", round(shapiro_kw$statistic, 4),
", p-value =", round(shapiro_kw$p.value, 4), "\n"

)
cat(

"Beta: W =", round(shapiro_beta$statistic, 4),
", p-value =", round(shapiro_beta$p.value, 4), "\n"

)

# Example 5: Outlier detection using standardized residuals
data(MockJurors)

fit_mc <- gkwreg(
confidence ~ verdict * conflict | verdict + conflict,
data = MockJurors,
family = "mc"

)

res_dev <- residuals(fit_mc, type = "deviance")
res_quant <- residuals(fit_mc, type = "quantile")

# Identify potential outliers (|z| > 2.5)
outlier_idx <- which(abs(res_quant) > 2.5)

if (length(outlier_idx) > 0) {
cat("\nPotential outliers detected at indices:", outlier_idx, "\n")

# Display outlier information
outlier_data <- data.frame(
Index = outlier_idx,
Confidence = MockJurors$confidence[outlier_idx],
Verdict = MockJurors$verdict[outlier_idx],
Conflict = MockJurors$conflict[outlier_idx],
Quantile_Residual = round(res_quant[outlier_idx], 3),
Deviance_Residual = round(res_dev[outlier_idx], 3)

)
print(outlier_data)

# Influence plot
plot(seq_along(res_quant), res_quant,

xlab = "Observation Index",
ylab = "Quantile Residual",
main = "Outlier Detection: Mock Jurors",
pch = 19, col = rgb(0, 0, 1, 0.5)

)
points(outlier_idx, res_quant[outlier_idx],
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col = "red", pch = 19, cex = 1.5
)
abline(

h = c(-2.5, 0, 2.5), col = c("orange", "black", "orange"),
lty = c(2, 1, 2), lwd = 2

)
legend("topright",

legend = c("Normal", "Outlier", "±2.5 SD"),
col = c(rgb(0, 0, 1, 0.5), "red", "orange"),
pch = c(19, 19, NA),
lty = c(NA, NA, 2),
lwd = c(NA, NA, 2)

)
} else {

cat("\nNo extreme outliers detected (|z| > 2.5)\n")
}

response Extract Response Variable from GKw Regression Model

Description

Extracts the response variable from a fitted Generalized Kumaraswamy regression model object.

Usage

response(object, ...)

## S3 method for class 'gkwreg'
response(object, ...)

Arguments

object An object of class "gkwreg".

... Currently not used.

Value

A numeric vector containing the response variable values.

Author(s)

Lopes, J. E.

See Also

gkwreg, fitted.gkwreg, residuals.gkwreg
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Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
y <- response(fit)
head(y)

retinal Intraocular Gas Decay in Retinal Surgery

Description

Longitudinal data on the recorded decay of intraocular gas (perfluoropropane) in complex retinal
surgeries. The dataset tracks the proportion of gas remaining over time following vitrectomy pro-
cedures.

Usage

retinal

Format

A data frame with 40 observations on 7 variables:

ID integer. Patient identification number for longitudinal tracking.

Gas numeric. Proportion of intraocular gas remaining (0-1 scale). Response variable measuring
the fraction of perfluoropropane gas still present in the vitreous cavity.

Time numeric. Time point of measurement (days or weeks post-surgery).

LogT numeric. Logarithm of time, log(Time). Used to linearize the exponential decay pattern.

LogT2 numeric. Squared logarithm of time, (log(Time))^2. Captures nonlinear decay patterns.

Level factor. Initial gas concentration level at the time of injection. Different starting concentra-
tions affect decay kinetics.

Details

This longitudinal dataset comes from a study of gas decay following vitreoretinal surgery. Perfluo-
ropropane (C3F8) is commonly used as a temporary tamponade agent in retinal detachment repair
and other complex vitreoretinal procedures.

Clinical background: During vitrectomy for retinal detachment, gas bubbles are injected into the
vitreous cavity to help reattach the retina by providing internal tamponade. The gas gradually
absorbs and dissipates over time. Understanding the decay rate is important for:

• Predicting when patients can resume normal activities (esp. air travel)

• Assessing treatment efficacy

• Planning follow-up examinations
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Decay kinetics: Gas decay typically follows a nonlinear pattern that can be approximated by ex-
ponential or power-law functions. The log transformation (LogT, LogT2) helps linearize these
relationships for regression modeling.

Data structure: This is a longitudinal/panel dataset with repeated measurements on the same pa-
tients over time. Correlation structures (exchangeable, AR(1), etc.) should be considered when
modeling.

The proportional nature of the gas variable (bounded between 0 and 1) makes this dataset ideal for:

• Simplex marginal models (original application by Song & Tan 2000)

• Beta regression with longitudinal correlation structures

• Kumaraswamy regression with heteroscedastic errors

Source

Based on clinical data from vitreoretinal surgery patients. Originally analyzed in Song and Tan
(2000).

References

Meyers, S.M., Ambler, J.S., Tan, M., Werner, J.C., and Huang, S.S. (1992). Variation of Perfluoro-
propane Disappearance After Vitrectomy. Retina, 12, 359–363.

Song, P.X.-K., and Tan, M. (2000). Marginal Models for Longitudinal Continuous Proportional
Data. Biometrics, 56, 496–502. doi:10.1111/j.0006341x.2000.00496.x

Song, P.X.-K., Qiu, Z., and Tan, M. (2004). Modelling Heterogeneous Dispersion in Marginal
Models for Longitudinal Proportional Data. Biometrical Journal, 46, 540–553.

Qiu, Z., Song, P.X.-K., and Tan, M. (2008). Simplex Mixed-Effects Models for Longitudinal Pro-
portional Data. Scandinavian Journal of Statistics, 35, 577–596. doi:10.1111/j.14679469.2008.00603.x

Zhang, P., Qiu, Z., and Shi, C. (2016). simplexreg: An R Package for Regression Analysis of
Proportional Data Using the Simplex Distribution. Journal of Statistical Software, 71(11), 1–21.
doi:10.18637/jss.v071.i11

Examples

require(gkwreg)
require(gkwdist)

data(retinal)

# Example 1: Nonlinear time decay with level effects
# Model gas decay as quadratic function of log-time
# Allow precision to vary by initial gas concentration
fit_kw <- gkwreg(

Gas ~ LogT + LogT2 + Level |
Level,

data = retinal,
family = "kw"

)
summary(fit_kw)

https://doi.org/10.1111/j.0006-341x.2000.00496.x
https://doi.org/10.1111/j.1467-9469.2008.00603.x
https://doi.org/10.18637/jss.v071.i11
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# Interpretation:
# - Alpha: Decay curve shape varies by initial gas concentration
# LogT + LogT2 capture nonlinear exponential-like decay
# - Beta: Precision differs by concentration level
# Higher concentration may produce more/less variable decay

# Example 2: Heteroscedastic model
# Variability in gas proportion may change over time
fit_kw_hetero <- gkwreg(

Gas ~ LogT + LogT2 + Level |
Level + LogT,

data = retinal,
family = "kw"

)
summary(fit_kw_hetero)

# Interpretation:
# - Beta: Precision varies with both level and time
# Early measurements may be more variable than late measurements

# Test heteroscedasticity
anova(fit_kw, fit_kw_hetero)

# Example 3: Exponentiated Kumaraswamy for decay tails
# Gas decay may show different tail behavior at extreme time points
# (very fast initial decay or very slow residual decay)
fit_ekw <- gkwreg(

Gas ~ LogT + LogT2 + Level | # alpha: decay curve
Level + LogT | # beta: heteroscedasticity
Level, # lambda: tail heaviness by level

data = retinal,
family = "ekw"

)
summary(fit_ekw)

# Interpretation:
# - Lambda varies by level: Different initial concentrations may have
# different rates of extreme decay (very fast or very slow residual gas)
# - Important for predicting complete absorption time

# Example 4: McDonald distribution for asymmetric decay
# Alternative parameterization for skewed decay patterns
fit_mc <- gkwreg(

Gas ~ LogT + LogT2 + Level | # gamma
LogT + Level | # delta
Level, # lambda

data = retinal,
family = "mc",
control = gkw_control(

method = "BFGS",
maxit = 1500,
reltol = 1e-8



sdac 95

)
)
summary(fit_mc)

# Model comparison
AIC(fit_kw, fit_kw_hetero, fit_ekw, fit_mc)

sdac Autologous Peripheral Blood Stem Cell Transplants Data

Description

Data on Autologous Peripheral Blood Stem Cell Transplants from the Stem Cell Lab in the Cross
Cancer Institute, Alberta Health Services. The dataset examines recovery rates of CD34+ cells after
peripheral blood stem cell (PBSC) transplants.

Usage

sdac

Format

A data frame with 60 observations on 5 variables:

rcd numeric. Recovery rate of CD34+ cells (proportion in (0, 1)). Response variable measuring
the proportion of CD34+ cells recovered after PBSC transplant.

age numeric. Patient age in years (range: 18-71 years).

ageadj numeric. Age-adjusted covariate. Centered and scaled version of age for improved numer-
ical stability in regression models.

chemo factor. Type of chemotherapy protocol used for stem cell mobilization. Levels include:
1-day, 3-day, G-CSF only, and other.

gender factor. Patient gender. Most patients in the study are male.

Details

This dataset contains clinical data from autologous peripheral blood stem cell (PBSC) transplant pa-
tients treated at the Cross Cancer Institute, Alberta Health Services. CD34+ cells are hematopoietic
stem and progenitor cells critical for successful transplantation and hematopoietic recovery.

Clinical context: Autologous PBSC transplantation is used to treat various hematological malig-
nancies including multiple myeloma, non-Hodgkin’s lymphoma, acute leukemia, and some solid
tumors. The recovery rate of CD34+ cells is a crucial predictor of engraftment success and patient
outcomes.

Chemotherapy protocols:

• 1-day protocol: Single-day high-dose chemotherapy for mobilization
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• 3-day protocol: Multi-day chemotherapy regimen

• G-CSF only: Granulocyte colony-stimulating factor without chemotherapy

• Other: Alternative or combined protocols

The proportion of recovered CD34+ cells naturally falls in the interval (0, 1), making it ideal for
proportional data regression modeling. Age effects are particularly important as older patients may
show different recovery patterns.

This dataset is particularly suitable for:

• Simplex regression (original application by Zhang et al. 2016)

• Beta regression with variable dispersion

• Kumaraswamy regression for flexible distributional modeling

Source

Stem Cell Lab, Cross Cancer Institute, Alberta Health Services, Canada.

References

Zhang, P., Qiu, Z., and Shi, C. (2016). simplexreg: An R Package for Regression Analysis of
Proportional Data Using the Simplex Distribution. Journal of Statistical Software, 71(11), 1–21.
doi:10.18637/jss.v071.i11

Examples

require(gkwreg)
require(gkwdist)

data(sdac)

# Example 1: Basic Kumaraswamy regression
# Mean recovery depends on age and chemotherapy protocol
# Precision varies with age (older patients more variable)
fit_kw <- gkwreg(

rcd ~ ageadj + chemo |
age,

data = sdac,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha (mean recovery): Depends on age-adjusted covariate and chemo protocol
# Different protocols show different baseline recovery rates
# G-CSF-only may differ from multi-day chemotherapy protocols
# - Beta (precision): Raw age affects recovery variability
# Hypothesis: Older patients show more heterogeneous responses

# Example 2: Include gender effects
# Gender may influence stem cell recovery rates

https://doi.org/10.18637/jss.v071.i11
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fit_kw_gender <- gkwreg(
rcd ~ ageadj + chemo + gender |
age + gender,

data = sdac,
family = "kw"

)
summary(fit_kw_gender)

# Interpretation:
# - Gender effects in both mean and precision
# - Precision may differ between males and females

# Test gender significance
anova(fit_kw, fit_kw_gender)

# Example 3: Exponentiated Kumaraswamy for extreme recovery patterns
# Some patients show unusually high or low recovery (outliers)
# Lambda parameter captures tail heaviness
fit_ekw <- gkwreg(

rcd ~ ageadj + chemo + gender | # alpha: mean model
age + chemo | # beta: precision varies with age and protocol
chemo, # lambda: protocol affects extremity

data = sdac,
family = "ekw"

)
summary(fit_ekw)

# Clinical interpretation:
# - Lambda varies by chemotherapy protocol: Some protocols produce more
# extreme recovery patterns (very high or very low CD34+ counts)
# - G-CSF-only vs multi-day protocols may differ in tail behavior
# - Important for risk stratification and clinical decision-making

# Test if extreme patterns differ by protocol
anova(fit_kw_gender, fit_ekw)

# Example 4: Interaction between age and protocol
# Protocol effectiveness may vary with patient age
fit_kw_interact <- gkwreg(

rcd ~ ageadj * chemo |
age * chemo,

data = sdac,
family = "kw"

)
summary(fit_kw_interact)

# Interpretation:
# - Interaction: Does protocol effectiveness decline with age?
# - Critical for personalized treatment selection
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StressAnxiety Dependency of Anxiety on Stress

Description

Data from a study examining the relationship between stress and anxiety levels among nonclinical
women in Townsville, Queensland, Australia.

Usage

StressAnxiety

Format

A data frame with 166 observations on 2 variables:

stress numeric. Stress score transformed to the open unit interval (0, 1). Original scale ranged
from 0 to 42 on the Depression Anxiety Stress Scales (DASS).

anxiety numeric. Anxiety score transformed to the open unit interval (0, 1). Original scale ranged
from 0 to 42 on the DASS.

Details

Both stress and anxiety were assessed using the Depression Anxiety Stress Scales (DASS), ranging
from 0 to 42. Smithson and Verkuilen (2006) transformed these scores to the open unit interval
(without providing specific details about the transformation method).

The dataset is particularly interesting for demonstrating heteroscedastic relationships: not only does
mean anxiety increase with stress, but the variability in anxiety also changes systematically with
stress levels. This makes it an ideal case for beta regression with variable dispersion.

Source

Data from Smithson and Verkuilen (2006) supplements. Original data source not specified.

References

Smithson, M., and Verkuilen, J. (2006). A Better Lemon Squeezer? Maximum-Likelihood Regres-
sion with Beta-Distributed Dependent Variables. Psychological Methods, 11(1), 54–71.

Examples

require(gkwreg)
require(gkwdist)

data(StressAnxiety)

# Example 1: Basic heteroscedastic relationship
# Mean anxiety increases with stress
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# Variability in anxiety also changes with stress
fit_kw <- gkwreg(

anxiety ~ stress |
stress,

data = StressAnxiety,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha: Positive relationship between stress and mean anxiety
# - Beta: Precision changes with stress level
# (anxiety becomes more/less variable at different stress levels)

# Compare to homoscedastic model
fit_kw_homo <- gkwreg(anxiety ~ stress,

data = StressAnxiety, family = "kw"
)
anova(fit_kw_homo, fit_kw)

# Example 2: Nonlinear stress effects via polynomial
# Stress-anxiety relationship often shows threshold or saturation effects
fit_kw_poly <- gkwreg(

anxiety ~ poly(stress, 2) | # quadratic mean
poly(stress, 2), # quadratic precision

data = StressAnxiety,
family = "kw"

)
summary(fit_kw_poly)

# Interpretation:
# - Quadratic terms allow for:
# * Threshold effects (anxiety accelerates at high stress)
# * Saturation effects (anxiety plateaus at extreme stress)

# Test nonlinearity
anova(fit_kw, fit_kw_poly)

# Example 3: Exponentiated Kumaraswamy for extreme anxiety patterns
# Some individuals may show very extreme anxiety responses to stress
fit_ekw <- gkwreg(

anxiety ~ poly(stress, 2) | # alpha: quadratic mean
poly(stress, 2) | # beta: quadratic precision
stress, # lambda: linear tail effect

data = StressAnxiety,
family = "ekw"

)
summary(fit_ekw)

# Interpretation:
# - Lambda: Linear component captures asymmetry at extreme stress levels
# (very high stress may produce different tail behavior)
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# Example 4: McDonald distribution for highly skewed anxiety
# Anxiety distributions are often right-skewed (ceiling effects)
fit_mc <- gkwreg(

anxiety ~ poly(stress, 2) | # gamma
poly(stress, 2) | # delta
stress, # lambda: extremity

data = StressAnxiety,
family = "mc",
control = gkw_control(method = "BFGS", maxit = 1500)

)
summary(fit_mc)

# Compare models
AIC(fit_kw, fit_kw_poly, fit_ekw, fit_mc)

# Visualization: Stress-Anxiety relationship
plot(anxiety ~ stress,

data = StressAnxiety,
xlab = "Stress Level", ylab = "Anxiety Level",
main = "Stress-Anxiety Relationship with Heteroscedasticity",
pch = 19, col = rgb(0, 0, 1, 0.3)

)

# Add fitted curve
stress_seq <- seq(min(StressAnxiety$stress), max(StressAnxiety$stress),

length.out = 100
)
pred_mean <- predict(fit_kw, newdata = data.frame(stress = stress_seq))
lines(stress_seq, pred_mean, col = "red", lwd = 2)

# Add lowess smooth for comparison
lines(lowess(StressAnxiety$stress, StressAnxiety$anxiety),

col = "blue", lwd = 2, lty = 2
)
legend("topleft",

legend = c("Kumaraswamy fit", "Lowess smooth"),
col = c("red", "blue"), lwd = 2, lty = c(1, 2)

)

summary.gkwreg Summary Method for Generalized Kumaraswamy Regression Models

Description

Computes and returns a detailed statistical summary for a fitted Generalized Kumaraswamy (GKw)
regression model object of class "gkwreg".
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Usage

## S3 method for class 'gkwreg'
summary(object, conf.level = 0.95, ...)

Arguments

object An object of class "gkwreg", typically the result of a call to gkwreg.

conf.level Numeric. The desired confidence level for constructing confidence intervals for
the regression coefficients. Default is 0.95.

... Additional arguments, currently ignored by this method.

Details

This method provides a comprehensive summary of the fitted gkwreg model. It calculates z-values
and p-values for the regression coefficients based on the estimated standard errors (if available) and
computes confidence intervals at the specified conf.level. The summary includes:

• The model call.

• The distribution family used.

• A table of coefficients including estimates, standard errors, z-values, and p-values. Note:
Significance stars are typically added by the corresponding print.summary.gkwreg method.

• Confidence intervals for the coefficients.

• Link functions used for each parameter.

• Mean values of the fitted distribution parameters (α, β, γ, δ, λ).

• A five-number summary (Min, Q1, Median, Q3, Max) plus the mean of the response residuals.

• Key model fit statistics (Log-likelihood, AIC, BIC, RMSE, Efron’s R^2).

• Information about model convergence and optimizer iterations.

If standard errors were not computed (e.g., hessian = FALSE in the original gkwreg call), the coef-
ficient table will only contain estimates, and confidence intervals will not be available.

Value

An object of class "summary.gkwreg", which is a list containing the following components:

call The original function call that created the object.

family Character string specifying the distribution family.

coefficients A data frame (matrix) containing the coefficient estimates, standard errors, z-
values, and p-values.

conf.int A matrix containing the lower and upper bounds of the confidence intervals for
the coefficients (if standard errors are available).

link A list of character strings specifying the link functions used.
fitted_parameters

A list containing the mean values of the estimated distribution parameters.
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residuals A named numeric vector containing summary statistics for the response residu-
als.

nobs Number of observations used in the fit.

npar Total number of estimated regression coefficients.

df.residual Residual degrees of freedom.

loglik The maximized log-likelihood value.

aic Akaike Information Criterion.

bic Bayesian Information Criterion.

rmse Root Mean Squared Error of the residuals.

efron_r2 Efron’s pseudo-R-squared value.
mean_absolute_error

Mean Absolute Error of the residuals.

convergence Convergence code from the optimizer.

iterations Number of iterations reported by the optimizer.

conf.level The confidence level used for calculating intervals.

Author(s)

Lopes, J. E.

See Also

gkwreg, print.summary.gkwreg, coef, confint

Examples

set.seed(123)
n <- 100
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
alpha_coef <- c(0.8, 0.3, -0.2)
beta_coef <- c(1.2, -0.4, 0.1)
eta_alpha <- alpha_coef[1] + alpha_coef[2] * x1 + alpha_coef[3] * x2
eta_beta <- beta_coef[1] + beta_coef[2] * x1 + beta_coef[3] * x2
alpha_true <- exp(eta_alpha)
beta_true <- exp(eta_beta)
# Use stats::rbeta as a placeholder if rkw is unavailable
y <- stats::rbeta(n, shape1 = alpha_true, shape2 = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7)
df <- data.frame(y = y, x1 = x1, x2 = x2)

# Fit a Kumaraswamy regression model
kw_reg <- gkwreg(y ~ x1 + x2 | x1 + x2, data = df, family = "kw")

# Generate detailed summary using the summary method
summary_kw <- summary(kw_reg)
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# Print the summary object (uses print.summary.gkwreg)
print(summary_kw)

# Extract coefficient table directly from the summary object
coef_table <- coef(summary_kw) # Equivalent to summary_kw$coefficients
print(coef_table)

terms.gkwreg Extract Terms from GKw Regression Model

Description

Extracts the terms object from a fitted Generalized Kumaraswamy regression model.

Usage

## S3 method for class 'gkwreg'
terms(x, ...)

Arguments

x An object of class "gkwreg".

... Currently not used.

Value

A terms object.

Author(s)

Lopes, J. E.

See Also

gkwreg, formula.gkwreg

Examples

data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
terms(fit)
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update.gkwreg Update and Re-fit a GKw Regression Model

Description

Updates and (by default) re-fits a Generalized Kumaraswamy regression model. This method allows
modification of the model formula, data, or other arguments without having to completely re-specify
the model call. Supports formulas with up to 5 parts (alpha, beta, gamma, delta, lambda) using the
Formula package.

Usage

## S3 method for class 'gkwreg'
update(object, formula., ..., data. = NULL, evaluate = TRUE)

Arguments

object An object of class "gkwreg", typically obtained from gkwreg.

formula. Changes to the formula. This is a formula where . refers to the corresponding
part of the old formula. For multi-part formulas (e.g., y ~ x1 | x2 | x3), you can
update each part separately using the | separator.

... Additional arguments to the call, or arguments with changed values. Use name
= NULL to remove an argument.

data. Optional. A new data frame in which to evaluate the updated model. If omitted,
the original data is used.

evaluate Logical. If TRUE (default), the updated model is fitted. If FALSE, the updated call
is returned without fitting.

Details

The update method allows you to modify a fitted model and re-fit it with the changes. The
GKw regression model supports formulas with up to 5 parts: y ~ model_alpha | model_beta |
model_gamma | model_delta | model_lambda

Each part can be updated independently using . to refer to the current specification:

• . ~ . + x | . | . | . | . - Add x to alpha only

• . ~ . | . + x | . | . | . - Add x to beta only

• . ~ . | . | . + x | . | . - Add x to gamma only

• . ~ . + x | . + x | . | . | . - Add x to alpha and beta

• . ~ . - x | . | . | . | . - Remove x from alpha

Omitting parts at the end is allowed (they default to .):

• . ~ . + x | . is equivalent to . ~ . + x | . | . | . | .

• . ~ . | . + x is equivalent to . ~ . | . + x | . | . | .
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Value

If evaluate = TRUE, a new fitted model object of class "gkwreg". If evaluate = FALSE, an updated
call.

Author(s)

Lopes, J. E.

See Also

gkwreg, update, Formula

Examples

# Load example data
require(gkwreg)

data(GasolineYield)

# EXAMPLE 1: Simple formulas (1 part - alpha only)

m1_0 <- gkwreg(yield ~ 1, data = GasolineYield, family = "kw")
m1_1 <- update(m1_0, . ~ . + temp)
m1_2 <- update(m1_1, . ~ . + batch)
m1_3 <- update(m1_2, . ~ . - temp)

anova(m1_0, m1_1, m1_2)
AIC(m1_0, m1_1, m1_2, m1_3)
BIC(m1_0, m1_1, m1_2, m1_3)

# EXAMPLE 2: Two-part formulas (alpha | beta)

# Start with intercept-only for both
m2_0 <- gkwreg(yield ~ 1 | 1, data = GasolineYield, family = "kw")

# Add temp to alpha
m2_1 <- update(m2_0, . ~ . + temp | .)

# Add batch to beta
m2_2 <- update(m2_1, . ~ . | . + batch)

# Add batch to alpha too
m2_3 <- update(m2_2, . ~ . + batch | .)

anova(m2_0, m2_1, m2_2, m2_3)
AIC(m2_0, m2_1, m2_2, m2_3)

# EXAMPLE 3: Three-part formulas (alpha | beta | gamma)

m3_0 <- gkwreg(yield ~ 1,
data = GasolineYield,
family = "gkw",
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control = gkw_control(method = "BFGS", maxit = 2000)
)

m3_1 <- update(m3_0, . ~ . + temp | . | .)
m3_2 <- update(m3_1, . ~ . | . + batch | .)
m3_3 <- update(m3_2, . ~ . | . | . + temp)

anova(m3_0, m3_1, m3_2, m3_3)

# EXAMPLE 4: Practical nested model comparison

# Null model
fit0 <- gkwreg(yield ~ 1,

data = GasolineYield,
family = "kw",
control = gkw_control(method = "BFGS", maxit = 2000)

)

# Add main effects to alpha
fit1 <- update(fit0, . ~ . + temp)
fit2 <- update(fit1, . ~ . + batch)

# Model beta parameter
fit3 <- update(fit2, . ~ . | temp)
fit4 <- update(fit3, . ~ . | . + batch)

# Full comparison
anova(fit0, fit1, fit2, fit3, fit4)
AIC(fit0, fit1, fit2, fit3, fit4)
BIC(fit0, fit1, fit2, fit3, fit4)

# EXAMPLE 5: Changing other parameters

# Change family
fit_gkw <- update(fit2, family = "gkw")

# Change link function
fit_logit <- update(fit2, link = list(alpha = "logit"))

# View call without fitting
update(fit2, . ~ . | . + temp, evaluate = FALSE)

vcov.gkwreg Extract Variance-Covariance Matrix from a Generalized Ku-
maraswamy Regression Model
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Description

This function extracts the variance-covariance matrix of the estimated parameters from a fitted Gen-
eralized Kumaraswamy regression model. The variance-covariance matrix is essential for statistical
inference, including hypothesis testing and confidence interval calculation.

Usage

## S3 method for class 'gkwreg'
vcov(object, complete = TRUE, ...)

Arguments

object An object of class "gkwreg", typically the result of a call to gkwreg.

complete Logical indicating whether the complete variance-covariance matrix should be
returned in case some coefficients were omitted from the original fit. Currently
ignored for gkwreg objects.

... Additional arguments (currently not used).

Details

The variance-covariance matrix is estimated based on the observed information matrix, which is
derived from the second derivatives of the log-likelihood function with respect to the model pa-
rameters. For gkwreg objects, this matrix is typically computed using the TMB (Template Model
Builder) automatic differentiation framework during model fitting.

The diagonal elements of the variance-covariance matrix correspond to the squared standard errors
of the parameter estimates, while the off-diagonal elements represent the covariances between pairs
of parameters.

Value

A square matrix with row and column names corresponding to the coefficients in the model. If the
variance-covariance matrix is not available (for example, if the model was fitted with hessian =
FALSE), the function returns NULL with a warning.

See Also

gkwreg, confint, summary.gkwreg

WeatherTask Weather Task with Priming and Precise and Imprecise Probabilities

Description

Data from a cognitive psychology experiment on probabilistic learning and probability judgments.
Participants estimated probabilities for weather events under different priming and precision condi-
tions.
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Usage

WeatherTask

Format

A data frame with 345 observations on 4 variables:

agreement numeric. Probability indicated by participants, or the average between minimum and
maximum estimates in the imprecise condition. Response variable scaled to (0, 1).

priming factor with levels two-fold (case prime) and seven-fold (class prime). Indicates the
partition priming condition.

eliciting factor with levels precise and imprecise (lower and upper limit). Indicates whether
participants gave point estimates or interval estimates.

Details

All participants in the study were either first- or second-year undergraduate students in psychology,
none of whom had a strong background in probability or were familiar with imprecise probability
theories.

Task description: Participants were asked: "What is the probability that the temperature at Can-
berra airport on Sunday will be higher than ’specified temperature’?"

Experimental manipulations:

• Priming: Two-fold (simple binary: above/below) vs. seven-fold (multiple temperature cate-
gories)

• Eliciting: Precise (single probability estimate) vs. imprecise (lower and upper bounds)

The study examines how partition priming (number of response categories) and elicitation format
affect probability judgments. Classical findings suggest that more categories (seven-fold) lead to
different probability assessments than binary categories (two-fold).

Source

Taken from Smithson et al. (2011) supplements.

References

Smithson, M., Merkle, E.C., and Verkuilen, J. (2011). Beta Regression Finite Mixture Models
of Polarization and Priming. Journal of Educational and Behavioral Statistics, 36(6), 804–831.
doi:10.3102/1076998610396893

Smithson, M., and Segale, C. (2009). Partition Priming in Judgments of Imprecise Probabilities.
Journal of Statistical Theory and Practice, 3(1), 169–181.

https://doi.org/10.3102/1076998610396893
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Examples

require(gkwreg)
require(gkwdist)

data(WeatherTask)

# Example 1: Main effects model
# Probability judgments affected by priming and elicitation format
fit_kw <- gkwreg(

agreement ~ priming + eliciting,
data = WeatherTask,
family = "kw"

)
summary(fit_kw)

# Interpretation:
# - Alpha: Seven-fold priming may shift probability estimates
# Imprecise elicitation may produce different mean estimates

# Example 2: Interaction model with heteroscedasticity
# Priming effects may differ by elicitation format
# Variability may also depend on conditions
fit_kw_interact <- gkwreg(

agreement ~ priming * eliciting |
priming + eliciting,

data = WeatherTask,
family = "kw"

)
summary(fit_kw_interact)

# Interpretation:
# - Alpha: Interaction tests if partition priming works differently
# for precise vs. imprecise probability judgments
# - Beta: Precision varies by experimental condition

# Test interaction
anova(fit_kw, fit_kw_interact)

# Example 3: McDonald distribution for polarized responses
# Probability judgments often show polarization (clustering at extremes)
# particularly under certain priming conditions
fit_mc <- gkwreg(

agreement ~ priming * eliciting | # gamma
priming * eliciting | # delta
priming, # lambda: priming affects polarization

data = WeatherTask,
family = "mc",
control = gkw_control(method = "BFGS", maxit = 1500)

)
summary(fit_mc)

# Interpretation:
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# - Lambda varies by priming: Seven-fold priming may produce more
# extreme/polarized probability judgments
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