CRAN Package Check Results for Package mlr3pipelines

Last updated on 2025-12-23 17:49:31 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.10.0 39.24 661.00 700.24 ERROR
r-devel-linux-x86_64-debian-gcc 0.10.0 22.62 421.96 444.58 ERROR
r-devel-linux-x86_64-fedora-clang 0.10.0 67.00 1074.39 1141.39 ERROR
r-devel-linux-x86_64-fedora-gcc 0.10.0 62.00 1046.37 1108.37 ERROR
r-devel-windows-x86_64 0.10.0 39.00 562.00 601.00 OK
r-patched-linux-x86_64 0.10.0 53.21 713.01 766.22 OK
r-release-linux-x86_64 0.10.0 36.47 698.05 734.52 OK
r-release-macos-arm64 0.10.0 OK
r-release-macos-x86_64 0.10.0 26.00 542.00 568.00 OK
r-release-windows-x86_64 0.10.0 37.00 525.00 562.00 OK
r-oldrel-macos-arm64 0.10.0 8.00 133.00 141.00 ERROR
r-oldrel-macos-x86_64 0.10.0 29.00 1101.00 1130.00 ERROR
r-oldrel-windows-x86_64 0.10.0 50.00 659.00 709.00 ERROR

Additional issues

noLD

Check Details

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: mlr_graphs_stacking > ### Title: Create A Graph to Perform Stacking. > ### Aliases: mlr_graphs_stacking pipeline_stacking > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces("rpart", quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3) + library(mlr3learners) + + base_learners = list( + lrn("classif.rpart", predict_type = "prob"), + lrn("classif.nnet", predict_type = "prob") + ) + super_learner = lrn("classif.log_reg") + + graph_stack = pipeline_stacking(base_learners, super_learner) + graph_learner = as_learner(graph_stack) + graph_learner$train(tsk("german_credit")) + ## Don't show: + }) # examplesIf > library(mlr3) > library(mlr3learners) > base_learners = list(lrn("classif.rpart", predict_type = "prob"), lrn("classif.nnet", + predict_type = "prob")) > super_learner = lrn("classif.log_reg") > graph_stack = pipeline_stacking(base_learners, super_learner) > graph_learner = as_learner(graph_stack) > graph_learner$train(tsk("german_credit")) INFO [04:37:47.532] [mlr3] Resampling 'cv' is being instantiated on task 'german_credit' INFO [04:37:47.932] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/3) INFO [04:37:48.010] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 2/3) INFO [04:37:48.106] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 3/3) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Calls: withAutoprint ... .__ResultData__initialize -> [ -> [.data.table -> .handleSimpleError -> h Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed mlr_graphs_ovr 4.257 0.105 8.279 Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [394s/201s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain Saving _problems/test_conversion-143.R Saving _problems/test_conversion-165.R > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. Saving _problems/test_filter_ensemble-291.R Saving _problems/test_filter_ensemble-447.R Saving _problems/test_mlr_graphs_bagging-49.R Saving _problems/test_mlr_graphs_stacking-16.R > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-depr > test_mlr_graphs_robustify.R: ecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_isomap.R: 2025-12-23 04:39:20.608538: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:20.60928: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:20.621909: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:20.642521: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:20.702247: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:20.702737: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:20.712258: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:20.730727: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:20.759112: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:20.759799: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:20.776453: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:20.819317: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:20.820528: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:20.846747: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:20.847283: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:20.86739: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:20.931833: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:20.934145: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:21.026839: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:21.027356: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:21.04161: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:21.141268: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:21.176411: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:21.177107: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:21.204464: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:21.411146: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:21.416934: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:21.589291: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:21.589792: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:21.59751: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:21.616257: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:21.647016: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:21.649283: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:21.663508: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:21.708681: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:21.709929: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:21.858299: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:21.858802: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:21.866428: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:21.885361: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:21.93478: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:21.935477: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:21.94996: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:21.992188: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:21.995016: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:22.07761: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:22.078123: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.087562: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.106418: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:22.170741: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:22.171482: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.190146: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.232962: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:22.234224: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:22.315289: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:22.315801: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.325012: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.343798: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:22.396032: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:22.396804: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.413116: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.456379: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:22.457615: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:22.540136: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:22.542341: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.55025: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.56887: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:22.619932: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 04:39:22.620635: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.648017: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.690667: embedding > test_pipeop_isomap.R: 2025-12-23 04:39:22.691956: DONE > test_pipeop_isomap.R: 2025-12-23 04:39:22.784068: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:22.784555: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.792247: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.811429: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:22.891634: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:22.892084: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.899396: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.918288: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 04:39:22.944135: Isomap START > test_pipeop_isomap.R: 2025-12-23 04:39:22.944616: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 04:39:22.952191: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 04:39:22.970898: Classical Scaling Saving _problems/test_pipeop_learnercv-11.R Saving _problems/test_pipeop_learnercv-100.R Saving _problems/test_pipeop_learnercv-139.R Saving _problems/test_pipeop_learnercv-152.R Saving _problems/test_pipeop_learnercv-203.R Saving _problems/test_pipeop_learnercv-250.R Saving _problems/test_pipeop_learnercv-278.R Saving _problems/test_pipeop_learnercv-323.R Saving _problems/test_pipeop_learnercv-350.R Saving _problems/test_pipeop_learnercv-387.R Saving _problems/test_pipeop_learnercv-419.R Saving _problems/test_pipeop_learnercv-455.R Saving _problems/test_pipeop_learnercv-493.R Saving _problems/test_pipeop_learnercv-516.R Saving _problems/test_pipeop_learnercv-531.R Saving _problems/test_pipeop_learnercv-557.R Saving _problems/test_pipeop_learnercv-612.R Saving _problems/test_pipeop_learnercv-628.R Saving _problems/test_pipeop_learnercv-671.R Saving _problems/test_pipeop_learnerpicvplus-35.R Saving _problems/test_pipeop_learnerpicvplus-91.R Saving _problems/test_pipeop_learnerpicvplus-116.R Saving _problems/test_pipeop_learnerpicvplus-130.R Saving _problems/test_pipeop_learnerpicvplus-152.R > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols Saving _problems/test_pipeop_tunethreshold-7.R Saving _problems/test_pipeop_tunethreshold-38.R Saving _problems/test_pipeop_tunethreshold-73.R Saving _problems/test_pipeop_tunethreshold-101.R Saving _problems/test_pipeop_tunethreshold-260.R Saving _problems/test_resample-13.R Saving _problems/test_usecases-153.R Saving _problems/test_ppl-73.R [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] ══ Skipped tests (98) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_datefeatures.R:10:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_yeojohnson.R:7:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (2): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_conversion.R:143:3'): Graph to GraphLearner ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:143:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_conversion.R:165:3'): PipeOp to GraphLearner ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:165:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:291:3'): FilterEnsemble ignores NA scores from wrapped filters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─permutation_filter$calculate(task) at test_filter_ensemble.R:291:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:447:7'): FilterEnsemble weight search space works with bbotk ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_filter_ensemble.R:463:3 2. └─bbotk:::.__OptimizerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(design$data) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss) 19. └─bbotk:::.__Objective__.eval_many(...) 20. └─mlr3misc::map_dtr(...) 21. ├─data.table::rbindlist(...) 22. ├─base::unname(map(.x, .f, ...)) 23. └─mlr3misc::map(.x, .f, ...) 24. └─base::lapply(.x, .f, ...) 25. └─bbotk (local) FUN(X[[i]], ...) 26. └─self$eval(xs) 27. └─bbotk:::.__ObjectiveRFun__eval(...) 28. ├─mlr3misc::invoke(private$.fun, xs, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.fun(xs) 33. └─mlr3::resample(task, learner, resampling) at test_filter_ensemble.R:447:7 34. └─ResultData$new(data, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_bagging.R:49:3'): Bagging with replacement ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk, GraphLearner$new(p), rsmp("holdout")) at test_mlr_graphs_bagging.R:49:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_stacking.R:16:3'): Stacking Pipeline ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp base.rpart's $train() Backtrace: ▆ 1. ├─graph_learner$train(tsk("iris")) at test_mlr_graphs_stacking.R:16:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:11:3'): PipeOpLearnerCV - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task = task)) at test_pipeop_learnercv.R:11:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 7. │ └─private$.train_task(intask) 8. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 9. │ └─mlr3::resample(...) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:100:3'): PipeOpLearnerCV - cv ensemble averages fold learners ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:100:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:139:3'): PipeOpLearnerCV - cv ensemble drops response when requested ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:139:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:152:3'): PipeOpLearnerCV - cv ensemble averages classif responses ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:203:3'): PipeOpLearnerCV - cv ensemble log prob aggregation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:203:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:250:3'): PipeOpLearnerCV - log aggregation with zeros uses epsilon ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:250:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:278:3'): PipeOpLearnerCV - log aggregation epsilon controls shrinkage ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:278:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:323:3'): PipeOpLearnerCV - cv ensemble averages regression predictions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:323:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:350:3'): PipeOpLearnerCV - cv ensemble handles multiplicity ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(tasks)) at test_pipeop_learnercv.R:350:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:387:3'): PipeOpLearnerCV - learner_model returns averaged ensemble ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:387:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:419:3'): PipeOpLearnerCV - cv ensemble with predict_type = 'se' ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.lm's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:419:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:455:3'): PipeOpLearnerCV - within resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), gr, rsmp("holdout")) at test_pipeop_learnercv.R:455:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_pipeop_learnercv.R:493:3'): PipeOpLearnerCV - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:493:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:516:3'): predict_type ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─global expect_equal(...) at test_pipeop_learnercv.R:516:3 2. │ ├─testthat::expect_true(...) 3. │ │ └─testthat::quasi_label(enquo(object), label) 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─base::all.equal(...) 6. ├─lcv$train(list(tsk("iris"))) 7. │ └─mlr3pipelines:::.__PipeOp__train(...) 8. │ ├─base::withCallingHandlers(...) 9. │ └─private$.train(input) 10. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 11. │ └─private$.train_task(intask) 12. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 13. │ └─mlr3::resample(...) 14. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 15. │ └─mlr3 (local) initialize(...) 16. │ └─mlr3:::.__ResultData__initialize(...) 17. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 18. │ └─data.table:::`[.data.table`(...) 19. └─base::.handleSimpleError(...) 20. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:531:3'): marshal ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po_lrn$train(list(task)) at test_pipeop_learnercv.R:531:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:557:3'): marshal multiplicity ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris"), tsk("sonar")))) at test_pipeop_learnercv.R:557:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:612:3'): marshal with cv ensemble ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:612:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:628:3'): state class and multiplicity ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris")))) at test_pipeop_learnercv.R:628:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:671:5'): PipeOpLearnerCV cv ensemble aggregates SE like PipeOpRegrAvg ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:671:5 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:35:3'): PipeOpLearnerPICVPlus - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task)) at test_pipeop_learnerpicvplus.R:35:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 7. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 8. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 9. │ └─mlr3 (local) initialize(...) 10. │ └─mlr3:::.__ResultData__initialize(...) 11. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. │ └─data.table:::`[.data.table`(...) 13. └─base::.handleSimpleError(...) 14. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:91:3'): PipeOpLearnerPICVPlus - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:91:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:116:3'): PipeOpLearnerPICVPlus - integration with larger graph ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─graph$train(task) at test_pipeop_learnerpicvplus.R:116:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 9. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:130:3'): marshal ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:130:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:152:3'): marshal multiplicity ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(task1, task2))) at test_pipeop_learnerpicvplus.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 14. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 15. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 16. │ └─mlr3 (local) initialize(...) 17. │ └─mlr3:::.__ResultData__initialize(...) 18. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. │ └─data.table:::`[.data.table`(...) 20. └─base::.handleSimpleError(...) 21. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:7:3'): threshold works for multiclass ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:7:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:38:3'): threshold works for binary ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:38:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:73:3'): tunethreshold graph works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─graph$train(tsk("pima")) at test_pipeop_tunethreshold.R:73:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:101:3'): threshold works for classes that are not valid R names ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─ppl$train(testtask) at test_pipeop_tunethreshold.R:101:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:260:3'): threshold graph transparency ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─lrn_prob$train(t) at test_pipeop_tunethreshold.R:260:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_resample.R:13:3'): PipeOp - Resample ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, pp, resa) at test_resample.R:13:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_usecases.R:153:3'): stacking ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─pipe$train(task) at test_usecases.R:153:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_ppl.R:73:3'): mlr3book authors don't sleepwalk through life ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart.classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 2))) at test_ppl.R:73:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: mlr_graphs_stacking > ### Title: Create A Graph to Perform Stacking. > ### Aliases: mlr_graphs_stacking pipeline_stacking > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces("rpart", quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3) + library(mlr3learners) + + base_learners = list( + lrn("classif.rpart", predict_type = "prob"), + lrn("classif.nnet", predict_type = "prob") + ) + super_learner = lrn("classif.log_reg") + + graph_stack = pipeline_stacking(base_learners, super_learner) + graph_learner = as_learner(graph_stack) + graph_learner$train(tsk("german_credit")) + ## Don't show: + }) # examplesIf > library(mlr3) > library(mlr3learners) > base_learners = list(lrn("classif.rpart", predict_type = "prob"), lrn("classif.nnet", + predict_type = "prob")) > super_learner = lrn("classif.log_reg") > graph_stack = pipeline_stacking(base_learners, super_learner) > graph_learner = as_learner(graph_stack) > graph_learner$train(tsk("german_credit")) INFO [17:18:13.850] [mlr3] Resampling 'cv' is being instantiated on task 'german_credit' INFO [17:18:14.088] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/3) INFO [17:18:14.234] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 2/3) INFO [17:18:14.328] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 3/3) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Calls: withAutoprint ... .__ResultData__initialize -> [ -> [.data.table -> .handleSimpleError -> h Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [250s/125s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain Saving _problems/test_conversion-143.R Saving _problems/test_conversion-165.R > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. Saving _problems/test_filter_ensemble-291.R Saving _problems/test_filter_ensemble-447.R Saving _problems/test_mlr_graphs_bagging-49.R Saving _problems/test_mlr_graphs_stacking-16.R > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_isomap.R: 2025-12-22 17:19:13.694554: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:13.695309: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:13.703772: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:13.718212: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:13.75171: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:13.752135: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:13.758068: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:13.771962: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:13.79094: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:13.791496: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:13.802366: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:13.834387: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:13.835379: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:13.851611: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:13.852052: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:13.86373: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:13.896: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:13.897153: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:14.013631: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:14.013979: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.02877: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.105453: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:14.132438: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:14.13302: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.171092: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.346651: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:14.350074: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:14.460308: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:14.460732: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.466748: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.482522: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:14.503583: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:14.504177: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.515608: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.547952: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:14.549251: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:14.669898: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:14.670323: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.677714: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.691103: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:14.722205: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:14.722837: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.734325: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.766851: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:14.767872: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:14.820849: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:14.821292: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.828862: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.842909: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:14.87596: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:14.876527: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.888224: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:14.920611: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:14.921573: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:14.979495: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:14.97993: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:14.998384: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:15.012737: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:15.05878: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:15.059359: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:15.071612: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:15.104153: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:15.105324: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:15.164378: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:15.164806: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:15.176221: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:15.190325: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:15.226433: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 17:19:15.227058: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:15.238437: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:15.270741: embedding > test_pipeop_isomap.R: 2025-12-22 17:19:15.271724: DONE > test_pipeop_isomap.R: 2025-12-22 17:19:15.327781: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:15.328171: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:15.345986: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:15.360378: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:15.427852: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:15.428263: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:15.434331: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:15.44837: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 17:19:15.464582: Isomap START > test_pipeop_isomap.R: 2025-12-22 17:19:15.464975: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 17:19:15.47095: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 17:19:15.484976: Classical Scaling Saving _problems/test_pipeop_learnerpicvplus-35.R Saving _problems/test_pipeop_learnerpicvplus-91.R Saving _problems/test_pipeop_learnerpicvplus-116.R Saving _problems/test_pipeop_learnerpicvplus-130.R Saving _problems/test_pipeop_learnerpicvplus-152.R Saving _problems/test_pipeop_learnercv-11.R Saving _problems/test_pipeop_learnercv-100.R Saving _problems/test_pipeop_learnercv-139.R Saving _problems/test_pipeop_learnercv-152.R Saving _problems/test_pipeop_learnercv-203.R Saving _problems/test_pipeop_learnercv-250.R Saving _problems/test_pipeop_learnercv-278.R Saving _problems/test_pipeop_learnercv-323.R Saving _problems/test_pipeop_learnercv-350.R Saving _problems/test_pipeop_learnercv-387.R Saving _problems/test_pipeop_learnercv-419.R Saving _problems/test_pipeop_learnercv-455.R Saving _problems/test_pipeop_learnercv-493.R Saving _problems/test_pipeop_learnercv-516.R Saving _problems/test_pipeop_learnercv-531.R Saving _problems/test_pipeop_learnercv-557.R Saving _problems/test_pipeop_learnercv-612.R Saving _problems/test_pipeop_learnercv-628.R Saving _problems/test_pipeop_learnercv-671.R > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols Saving _problems/test_pipeop_tunethreshold-7.R Saving _problems/test_pipeop_tunethreshold-38.R Saving _problems/test_pipeop_tunethreshold-73.R Saving _problems/test_pipeop_tunethreshold-101.R Saving _problems/test_pipeop_tunethreshold-260.R Saving _problems/test_resample-13.R Saving _problems/test_usecases-153.R Saving _problems/test_ppl-73.R [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] ══ Skipped tests (98) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_datefeatures.R:10:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_yeojohnson.R:7:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (2): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_conversion.R:143:3'): Graph to GraphLearner ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:143:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_conversion.R:165:3'): PipeOp to GraphLearner ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:165:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:291:3'): FilterEnsemble ignores NA scores from wrapped filters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─permutation_filter$calculate(task) at test_filter_ensemble.R:291:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:447:7'): FilterEnsemble weight search space works with bbotk ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_filter_ensemble.R:463:3 2. └─bbotk:::.__OptimizerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(design$data) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss) 19. └─bbotk:::.__Objective__.eval_many(...) 20. └─mlr3misc::map_dtr(...) 21. ├─data.table::rbindlist(...) 22. ├─base::unname(map(.x, .f, ...)) 23. └─mlr3misc::map(.x, .f, ...) 24. └─base::lapply(.x, .f, ...) 25. └─bbotk (local) FUN(X[[i]], ...) 26. └─self$eval(xs) 27. └─bbotk:::.__ObjectiveRFun__eval(...) 28. ├─mlr3misc::invoke(private$.fun, xs, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.fun(xs) 33. └─mlr3::resample(task, learner, resampling) at test_filter_ensemble.R:447:7 34. └─ResultData$new(data, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_bagging.R:49:3'): Bagging with replacement ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk, GraphLearner$new(p), rsmp("holdout")) at test_mlr_graphs_bagging.R:49:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_stacking.R:16:3'): Stacking Pipeline ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp base.rpart's $train() Backtrace: ▆ 1. ├─graph_learner$train(tsk("iris")) at test_mlr_graphs_stacking.R:16:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:35:3'): PipeOpLearnerPICVPlus - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task)) at test_pipeop_learnerpicvplus.R:35:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 7. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 8. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 9. │ └─mlr3 (local) initialize(...) 10. │ └─mlr3:::.__ResultData__initialize(...) 11. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. │ └─data.table:::`[.data.table`(...) 13. └─base::.handleSimpleError(...) 14. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:91:3'): PipeOpLearnerPICVPlus - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:91:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:116:3'): PipeOpLearnerPICVPlus - integration with larger graph ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─graph$train(task) at test_pipeop_learnerpicvplus.R:116:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 9. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:130:3'): marshal ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:130:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:152:3'): marshal multiplicity ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(task1, task2))) at test_pipeop_learnerpicvplus.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 14. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 15. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 16. │ └─mlr3 (local) initialize(...) 17. │ └─mlr3:::.__ResultData__initialize(...) 18. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. │ └─data.table:::`[.data.table`(...) 20. └─base::.handleSimpleError(...) 21. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:11:3'): PipeOpLearnerCV - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task = task)) at test_pipeop_learnercv.R:11:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 7. │ └─private$.train_task(intask) 8. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 9. │ └─mlr3::resample(...) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:100:3'): PipeOpLearnerCV - cv ensemble averages fold learners ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:100:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:139:3'): PipeOpLearnerCV - cv ensemble drops response when requested ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:139:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:152:3'): PipeOpLearnerCV - cv ensemble averages classif responses ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:203:3'): PipeOpLearnerCV - cv ensemble log prob aggregation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:203:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:250:3'): PipeOpLearnerCV - log aggregation with zeros uses epsilon ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:250:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:278:3'): PipeOpLearnerCV - log aggregation epsilon controls shrinkage ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:278:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:323:3'): PipeOpLearnerCV - cv ensemble averages regression predictions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:323:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:350:3'): PipeOpLearnerCV - cv ensemble handles multiplicity ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(tasks)) at test_pipeop_learnercv.R:350:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:387:3'): PipeOpLearnerCV - learner_model returns averaged ensemble ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:387:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:419:3'): PipeOpLearnerCV - cv ensemble with predict_type = 'se' ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.lm's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:419:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:455:3'): PipeOpLearnerCV - within resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), gr, rsmp("holdout")) at test_pipeop_learnercv.R:455:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_pipeop_learnercv.R:493:3'): PipeOpLearnerCV - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:493:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:516:3'): predict_type ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─global expect_equal(...) at test_pipeop_learnercv.R:516:3 2. │ ├─testthat::expect_true(...) 3. │ │ └─testthat::quasi_label(enquo(object), label) 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─base::all.equal(...) 6. ├─lcv$train(list(tsk("iris"))) 7. │ └─mlr3pipelines:::.__PipeOp__train(...) 8. │ ├─base::withCallingHandlers(...) 9. │ └─private$.train(input) 10. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 11. │ └─private$.train_task(intask) 12. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 13. │ └─mlr3::resample(...) 14. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 15. │ └─mlr3 (local) initialize(...) 16. │ └─mlr3:::.__ResultData__initialize(...) 17. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 18. │ └─data.table:::`[.data.table`(...) 19. └─base::.handleSimpleError(...) 20. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:531:3'): marshal ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po_lrn$train(list(task)) at test_pipeop_learnercv.R:531:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:557:3'): marshal multiplicity ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris"), tsk("sonar")))) at test_pipeop_learnercv.R:557:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:612:3'): marshal with cv ensemble ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:612:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:628:3'): state class and multiplicity ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris")))) at test_pipeop_learnercv.R:628:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:671:5'): PipeOpLearnerCV cv ensemble aggregates SE like PipeOpRegrAvg ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:671:5 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:7:3'): threshold works for multiclass ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:7:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:38:3'): threshold works for binary ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:38:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:73:3'): tunethreshold graph works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─graph$train(tsk("pima")) at test_pipeop_tunethreshold.R:73:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:101:3'): threshold works for classes that are not valid R names ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─ppl$train(testtask) at test_pipeop_tunethreshold.R:101:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:260:3'): threshold graph transparency ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─lrn_prob$train(t) at test_pipeop_tunethreshold.R:260:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_resample.R:13:3'): PipeOp - Resample ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, pp, resa) at test_resample.R:13:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_usecases.R:153:3'): stacking ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─pipe$train(task) at test_usecases.R:153:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_ppl.R:73:3'): mlr3book authors don't sleepwalk through life ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart.classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 2))) at test_ppl.R:73:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_graphs_stacking > ### Title: Create A Graph to Perform Stacking. > ### Aliases: mlr_graphs_stacking pipeline_stacking > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces("rpart", quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3) + library(mlr3learners) + + base_learners = list( + lrn("classif.rpart", predict_type = "prob"), + lrn("classif.nnet", predict_type = "prob") + ) + super_learner = lrn("classif.log_reg") + + graph_stack = pipeline_stacking(base_learners, super_learner) + graph_learner = as_learner(graph_stack) + graph_learner$train(tsk("german_credit")) + ## Don't show: + }) # examplesIf > library(mlr3) > library(mlr3learners) > base_learners = list(lrn("classif.rpart", predict_type = "prob"), lrn("classif.nnet", + predict_type = "prob")) > super_learner = lrn("classif.log_reg") > graph_stack = pipeline_stacking(base_learners, super_learner) > graph_learner = as_learner(graph_stack) > graph_learner$train(tsk("german_credit")) INFO [17:55:07.334] [mlr3] Resampling 'cv' is being instantiated on task 'german_credit' INFO [17:55:07.897] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/3) INFO [17:55:08.022] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 2/3) INFO [17:55:08.141] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 3/3) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Calls: withAutoprint ... .__ResultData__initialize -> [ -> [.data.table -> .handleSimpleError -> h Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [648s/590s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain Saving _problems/test_conversion-143.R Saving _problems/test_conversion-165.R > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. Saving _problems/test_filter_ensemble-291.R Saving _problems/test_filter_ensemble-447.R Saving _problems/test_mlr_graphs_bagging-49.R Saving _problems/test_mlr_graphs_stacking-16.R > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_isomap.R: 2025-12-19 17:59:36.782777: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:36.788131: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:36.823643: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:36.905406: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:37.148005: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:37.154927: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:37.217492: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:37.293734: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:37.427053: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:37.428331: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:37.492675: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:37.638962: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:37.647458: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:37.738513: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:37.739327: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:37.948353: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:38.085035: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:38.094977: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:38.420522: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:38.423569: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:38.473072: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:38.788484: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:38.914818: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:38.915874: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:39.272942: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:40.080209: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:40.095217: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:40.516095: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:40.51697: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:40.53553: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:40.587082: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:40.759665: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:40.766864: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:40.827477: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:40.971903: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:40.980267: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:41.518087: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:41.52384: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:41.606861: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:41.673903: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:41.888372: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:41.889426: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:41.942357: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:42.084522: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:42.086255: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:42.363597: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:42.364286: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:42.388848: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:42.453632: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:42.587881: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:42.591163: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:42.640784: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:42.733569: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:42.737515: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:42.919924: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:42.920698: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:42.95613: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:43.015573: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:43.186374: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:43.191629: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:43.241857: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:43.377422: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:43.381857: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:43.668476: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:43.669277: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:43.694776: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:43.794544: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:43.992826: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-19 17:59:43.993972: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:44.044239: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:44.185145: embedding > test_pipeop_isomap.R: 2025-12-19 17:59:44.187031: DONE > test_pipeop_isomap.R: 2025-12-19 17:59:44.574771: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:44.581328: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:44.604874: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:44.672687: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:45.045445: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:45.050264: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:45.077913: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:45.202453: Classical Scaling > test_pipeop_isomap.R: 2025-12-19 17:59:45.332021: Isomap START > test_pipeop_isomap.R: 2025-12-19 17:59:45.332778: constructing knn graph > test_pipeop_isomap.R: 2025-12-19 17:59:45.365373: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-19 17:59:45.429788: Classical Scaling Saving _problems/test_pipeop_learnerpicvplus-35.R Saving _problems/test_pipeop_learnerpicvplus-91.R Saving _problems/test_pipeop_learnerpicvplus-116.R Saving _problems/test_pipeop_learnerpicvplus-130.R Saving _problems/test_pipeop_learnerpicvplus-152.R Saving _problems/test_pipeop_learnercv-11.R Saving _problems/test_pipeop_learnercv-100.R Saving _problems/test_pipeop_learnercv-139.R Saving _problems/test_pipeop_learnercv-152.R Saving _problems/test_pipeop_learnercv-203.R Saving _problems/test_pipeop_learnercv-250.R Saving _problems/test_pipeop_learnercv-278.R Saving _problems/test_pipeop_learnercv-323.R Saving _problems/test_pipeop_learnercv-350.R Saving _problems/test_pipeop_learnercv-387.R Saving _problems/test_pipeop_learnercv-419.R Saving _problems/test_pipeop_learnercv-455.R Saving _problems/test_pipeop_learnercv-493.R Saving _problems/test_pipeop_learnercv-516.R Saving _problems/test_pipeop_learnercv-531.R Saving _problems/test_pipeop_learnercv-557.R Saving _problems/test_pipeop_learnercv-612.R Saving _problems/test_pipeop_learnercv-628.R Saving _problems/test_pipeop_learnercv-671.R > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols Saving _problems/test_pipeop_tunethreshold-7.R Saving _problems/test_pipeop_tunethreshold-38.R Saving _problems/test_pipeop_tunethreshold-73.R Saving _problems/test_pipeop_tunethreshold-101.R Saving _problems/test_pipeop_tunethreshold-260.R Saving _problems/test_resample-13.R Saving _problems/test_ppl-73.R Saving _problems/test_usecases-153.R [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] ══ Skipped tests (98) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_datefeatures.R:10:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (2): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_conversion.R:143:3'): Graph to GraphLearner ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:143:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_conversion.R:165:3'): PipeOp to GraphLearner ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:165:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:291:3'): FilterEnsemble ignores NA scores from wrapped filters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─permutation_filter$calculate(task) at test_filter_ensemble.R:291:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:447:7'): FilterEnsemble weight search space works with bbotk ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_filter_ensemble.R:463:3 2. └─bbotk:::.__OptimizerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(design$data) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss) 19. └─bbotk:::.__Objective__.eval_many(...) 20. └─mlr3misc::map_dtr(...) 21. ├─data.table::rbindlist(...) 22. ├─base::unname(map(.x, .f, ...)) 23. └─mlr3misc::map(.x, .f, ...) 24. └─base::lapply(.x, .f, ...) 25. └─bbotk (local) FUN(X[[i]], ...) 26. └─self$eval(xs) 27. └─bbotk:::.__ObjectiveRFun__eval(...) 28. ├─mlr3misc::invoke(private$.fun, xs, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.fun(xs) 33. └─mlr3::resample(task, learner, resampling) at test_filter_ensemble.R:447:7 34. └─ResultData$new(data, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_bagging.R:49:3'): Bagging with replacement ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk, GraphLearner$new(p), rsmp("holdout")) at test_mlr_graphs_bagging.R:49:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_stacking.R:16:3'): Stacking Pipeline ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp base.rpart's $train() Backtrace: ▆ 1. ├─graph_learner$train(tsk("iris")) at test_mlr_graphs_stacking.R:16:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:35:3'): PipeOpLearnerPICVPlus - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task)) at test_pipeop_learnerpicvplus.R:35:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 7. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 8. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 9. │ └─mlr3 (local) initialize(...) 10. │ └─mlr3:::.__ResultData__initialize(...) 11. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. │ └─data.table:::`[.data.table`(...) 13. └─base::.handleSimpleError(...) 14. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:91:3'): PipeOpLearnerPICVPlus - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:91:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:116:3'): PipeOpLearnerPICVPlus - integration with larger graph ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─graph$train(task) at test_pipeop_learnerpicvplus.R:116:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 9. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:130:3'): marshal ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:130:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:152:3'): marshal multiplicity ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(task1, task2))) at test_pipeop_learnerpicvplus.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 14. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 15. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 16. │ └─mlr3 (local) initialize(...) 17. │ └─mlr3:::.__ResultData__initialize(...) 18. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. │ └─data.table:::`[.data.table`(...) 20. └─base::.handleSimpleError(...) 21. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:11:3'): PipeOpLearnerCV - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task = task)) at test_pipeop_learnercv.R:11:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 7. │ └─private$.train_task(intask) 8. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 9. │ └─mlr3::resample(...) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:100:3'): PipeOpLearnerCV - cv ensemble averages fold learners ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:100:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:139:3'): PipeOpLearnerCV - cv ensemble drops response when requested ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:139:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:152:3'): PipeOpLearnerCV - cv ensemble averages classif responses ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:203:3'): PipeOpLearnerCV - cv ensemble log prob aggregation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:203:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:250:3'): PipeOpLearnerCV - log aggregation with zeros uses epsilon ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:250:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:278:3'): PipeOpLearnerCV - log aggregation epsilon controls shrinkage ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:278:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:323:3'): PipeOpLearnerCV - cv ensemble averages regression predictions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:323:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:350:3'): PipeOpLearnerCV - cv ensemble handles multiplicity ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(tasks)) at test_pipeop_learnercv.R:350:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:387:3'): PipeOpLearnerCV - learner_model returns averaged ensemble ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:387:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:419:3'): PipeOpLearnerCV - cv ensemble with predict_type = 'se' ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.lm's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:419:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:455:3'): PipeOpLearnerCV - within resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), gr, rsmp("holdout")) at test_pipeop_learnercv.R:455:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_pipeop_learnercv.R:493:3'): PipeOpLearnerCV - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:493:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:516:3'): predict_type ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─global expect_equal(...) at test_pipeop_learnercv.R:516:3 2. │ ├─testthat::expect_true(...) 3. │ │ └─testthat::quasi_label(enquo(object), label) 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─base::all.equal(...) 6. ├─lcv$train(list(tsk("iris"))) 7. │ └─mlr3pipelines:::.__PipeOp__train(...) 8. │ ├─base::withCallingHandlers(...) 9. │ └─private$.train(input) 10. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 11. │ └─private$.train_task(intask) 12. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 13. │ └─mlr3::resample(...) 14. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 15. │ └─mlr3 (local) initialize(...) 16. │ └─mlr3:::.__ResultData__initialize(...) 17. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 18. │ └─data.table:::`[.data.table`(...) 19. └─base::.handleSimpleError(...) 20. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:531:3'): marshal ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po_lrn$train(list(task)) at test_pipeop_learnercv.R:531:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:557:3'): marshal multiplicity ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris"), tsk("sonar")))) at test_pipeop_learnercv.R:557:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:612:3'): marshal with cv ensemble ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:612:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:628:3'): state class and multiplicity ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris")))) at test_pipeop_learnercv.R:628:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:671:5'): PipeOpLearnerCV cv ensemble aggregates SE like PipeOpRegrAvg ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:671:5 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:7:3'): threshold works for multiclass ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:7:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:38:3'): threshold works for binary ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:38:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:73:3'): tunethreshold graph works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─graph$train(tsk("pima")) at test_pipeop_tunethreshold.R:73:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:101:3'): threshold works for classes that are not valid R names ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─ppl$train(testtask) at test_pipeop_tunethreshold.R:101:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:260:3'): threshold graph transparency ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─lrn_prob$train(t) at test_pipeop_tunethreshold.R:260:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_resample.R:13:3'): PipeOp - Resample ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, pp, resa) at test_resample.R:13:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_ppl.R:73:3'): mlr3book authors don't sleepwalk through life ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart.classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 2))) at test_ppl.R:73:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_usecases.R:153:3'): stacking ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─pipe$train(task) at test_usecases.R:153:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_graphs_stacking > ### Title: Create A Graph to Perform Stacking. > ### Aliases: mlr_graphs_stacking pipeline_stacking > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces("rpart", quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3) + library(mlr3learners) + + base_learners = list( + lrn("classif.rpart", predict_type = "prob"), + lrn("classif.nnet", predict_type = "prob") + ) + super_learner = lrn("classif.log_reg") + + graph_stack = pipeline_stacking(base_learners, super_learner) + graph_learner = as_learner(graph_stack) + graph_learner$train(tsk("german_credit")) + ## Don't show: + }) # examplesIf > library(mlr3) > library(mlr3learners) > base_learners = list(lrn("classif.rpart", predict_type = "prob"), lrn("classif.nnet", + predict_type = "prob")) > super_learner = lrn("classif.log_reg") > graph_stack = pipeline_stacking(base_learners, super_learner) > graph_learner = as_learner(graph_stack) > graph_learner$train(tsk("german_credit")) INFO [00:12:04.066] [mlr3] Resampling 'cv' is being instantiated on task 'german_credit' INFO [00:12:04.465] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/3) INFO [00:12:04.696] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 2/3) INFO [00:12:04.814] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 3/3) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Calls: withAutoprint ... .__ResultData__initialize -> [ -> [.data.table -> .handleSimpleError -> h Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [619s/355s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain Saving _problems/test_conversion-143.R Saving _problems/test_conversion-165.R > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. Saving _problems/test_filter_ensemble-291.R Saving _problems/test_filter_ensemble-447.R Saving _problems/test_mlr_graphs_bagging-49.R Saving _problems/test_mlr_graphs_stacking-16.R > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-depr > test_mlr_graphs_robustify.R: ecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] > test_pipeop_blsmote.R: "Borderline-SMOTE done" > test_pipeop_isomap.R: 2025-12-22 00:14:46.194992: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:46.196115: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:46.223586: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:46.255276: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:46.338729: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:46.339449: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:46.355589: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:46.391414: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:46.44009: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:46.4432: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:46.467103: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:46.531911: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:46.535963: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:46.572513: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:46.575602: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:46.629767: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:46.696064: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:46.70023: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:46.868734: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:46.869844: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:46.893008: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:47.044152: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:47.098104: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:47.10175: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:47.172462: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:47.496292: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:47.502979: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:47.736426: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:47.737119: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:47.750529: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:47.781252: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:47.828796: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:47.832161: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:47.858837: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:47.923917: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:47.928197: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:48.17312: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:48.175875: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:48.190323: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:48.221833: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:48.301948: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:48.305237: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:48.331094: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:48.39641: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:48.402595: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:48.536938: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:48.537648: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:48.551397: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:48.590179: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:48.838233: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:48.839369: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:48.867209: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:48.94989: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:48.955322: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:49.104003: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:49.104746: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:49.119502: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:49.15744: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:49.231536: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:49.232549: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:49.260679: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:49.325991: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:49.330358: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:49.460304: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:49.461009: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:49.479462: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:49.519416: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:49.635107: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 00:14:49.636754: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:49.668386: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:49.745751: embedding > test_pipeop_isomap.R: 2025-12-22 00:14:49.750515: DONE > test_pipeop_isomap.R: 2025-12-22 00:14:49.897416: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:49.900436: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:49.917072: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:49.950853: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:50.091607: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:50.093216: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:50.108793: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:50.149088: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 00:14:50.188545: Isomap START > test_pipeop_isomap.R: 2025-12-22 00:14:50.189249: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 00:14:50.202983: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 00:14:50.233355: Classical Scaling Saving _problems/test_pipeop_learnerpicvplus-35.R Saving _problems/test_pipeop_learnerpicvplus-91.R Saving _problems/test_pipeop_learnerpicvplus-116.R Saving _problems/test_pipeop_learnerpicvplus-130.R Saving _problems/test_pipeop_learnerpicvplus-152.R Saving _problems/test_pipeop_learnercv-11.R Saving _problems/test_pipeop_learnercv-100.R Saving _problems/test_pipeop_learnercv-139.R Saving _problems/test_pipeop_learnercv-152.R Saving _problems/test_pipeop_learnercv-203.R Saving _problems/test_pipeop_learnercv-250.R Saving _problems/test_pipeop_learnercv-278.R Saving _problems/test_pipeop_learnercv-323.R Saving _problems/test_pipeop_learnercv-350.R Saving _problems/test_pipeop_learnercv-387.R Saving _problems/test_pipeop_learnercv-419.R Saving _problems/test_pipeop_learnercv-455.R Saving _problems/test_pipeop_learnercv-493.R Saving _problems/test_pipeop_learnercv-516.R Saving _problems/test_pipeop_learnercv-531.R Saving _problems/test_pipeop_learnercv-557.R Saving _problems/test_pipeop_learnercv-612.R Saving _problems/test_pipeop_learnercv-628.R Saving _problems/test_pipeop_learnercv-671.R > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_nmf.R: [PipeOpNMFstate] > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). Saving _problems/test_pipeop_tunethreshold-7.R Saving _problems/test_pipeop_tunethreshold-38.R Saving _problems/test_pipeop_tunethreshold-73.R Saving _problems/test_pipeop_tunethreshold-101.R Saving _problems/test_pipeop_tunethreshold-260.R Saving _problems/test_resample-13.R Saving _problems/test_usecases-153.R Saving _problems/test_ppl-73.R [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] ══ Skipped tests (98) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_datefeatures.R:10:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_yeojohnson.R:7:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (2): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_conversion.R:143:3'): Graph to GraphLearner ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:143:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_conversion.R:165:3'): PipeOp to GraphLearner ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, glrn1, cv) at test_conversion.R:165:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:291:3'): FilterEnsemble ignores NA scores from wrapped filters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─permutation_filter$calculate(task) at test_filter_ensemble.R:291:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_ensemble.R:447:7'): FilterEnsemble weight search space works with bbotk ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_filter_ensemble.R:463:3 2. └─bbotk:::.__OptimizerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(design$data) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss) 19. └─bbotk:::.__Objective__.eval_many(...) 20. └─mlr3misc::map_dtr(...) 21. ├─data.table::rbindlist(...) 22. ├─base::unname(map(.x, .f, ...)) 23. └─mlr3misc::map(.x, .f, ...) 24. └─base::lapply(.x, .f, ...) 25. └─bbotk (local) FUN(X[[i]], ...) 26. └─self$eval(xs) 27. └─bbotk:::.__ObjectiveRFun__eval(...) 28. ├─mlr3misc::invoke(private$.fun, xs, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.fun(xs) 33. └─mlr3::resample(task, learner, resampling) at test_filter_ensemble.R:447:7 34. └─ResultData$new(data, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_bagging.R:49:3'): Bagging with replacement ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk, GraphLearner$new(p), rsmp("holdout")) at test_mlr_graphs_bagging.R:49:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_graphs_stacking.R:16:3'): Stacking Pipeline ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp base.rpart's $train() Backtrace: ▆ 1. ├─graph_learner$train(tsk("iris")) at test_mlr_graphs_stacking.R:16:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:35:3'): PipeOpLearnerPICVPlus - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task)) at test_pipeop_learnerpicvplus.R:35:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 7. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 8. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 9. │ └─mlr3 (local) initialize(...) 10. │ └─mlr3:::.__ResultData__initialize(...) 11. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. │ └─data.table:::`[.data.table`(...) 13. └─base::.handleSimpleError(...) 14. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:91:3'): PipeOpLearnerPICVPlus - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:91:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:116:3'): PipeOpLearnerPICVPlus - integration with larger graph ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─graph$train(task) at test_pipeop_learnerpicvplus.R:116:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 9. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:130:3'): marshal ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnerpicvplus.R:130:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 6. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 7. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 8. │ └─mlr3 (local) initialize(...) 9. │ └─mlr3:::.__ResultData__initialize(...) 10. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. │ └─data.table:::`[.data.table`(...) 12. └─base::.handleSimpleError(...) 13. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnerpicvplus.R:152:3'): marshal multiplicity ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(task1, task2))) at test_pipeop_learnerpicvplus.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpLearnerPICVPlus__.train(...) 14. │ └─mlr3::resample(task, private$.learner, rdesc, store_models = TRUE) 15. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 16. │ └─mlr3 (local) initialize(...) 17. │ └─mlr3:::.__ResultData__initialize(...) 18. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. │ └─data.table:::`[.data.table`(...) 20. └─base::.handleSimpleError(...) 21. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:11:3'): PipeOpLearnerCV - basic properties ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─global train_pipeop(po, list(task = task)) at test_pipeop_learnercv.R:11:3 2. │ └─po$train(inputs) 3. │ └─mlr3pipelines:::.__PipeOp__train(...) 4. │ ├─base::withCallingHandlers(...) 5. │ └─private$.train(input) 6. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 7. │ └─private$.train_task(intask) 8. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 9. │ └─mlr3::resample(...) 10. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 11. │ └─mlr3 (local) initialize(...) 12. │ └─mlr3:::.__ResultData__initialize(...) 13. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. │ └─data.table:::`[.data.table`(...) 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:100:3'): PipeOpLearnerCV - cv ensemble averages fold learners ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:100:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:139:3'): PipeOpLearnerCV - cv ensemble drops response when requested ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:139:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:152:3'): PipeOpLearnerCV - cv ensemble averages classif responses ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:152:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:203:3'): PipeOpLearnerCV - cv ensemble log prob aggregation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:203:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:250:3'): PipeOpLearnerCV - log aggregation with zeros uses epsilon ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:250:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:278:3'): PipeOpLearnerCV - log aggregation epsilon controls shrinkage ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:278:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:323:3'): PipeOpLearnerCV - cv ensemble averages regression predictions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:323:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:350:3'): PipeOpLearnerCV - cv ensemble handles multiplicity ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(tasks)) at test_pipeop_learnercv.R:350:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:387:3'): PipeOpLearnerCV - learner_model returns averaged ensemble ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:387:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:419:3'): PipeOpLearnerCV - cv ensemble with predict_type = 'se' ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.lm's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:419:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:455:3'): PipeOpLearnerCV - within resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), gr, rsmp("holdout")) at test_pipeop_learnercv.R:455:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_pipeop_learnercv.R:493:3'): PipeOpLearnerCV - model active binding to state ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.featureless's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:493:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:516:3'): predict_type ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─global expect_equal(...) at test_pipeop_learnercv.R:516:3 2. │ ├─testthat::expect_true(...) 3. │ │ └─testthat::quasi_label(enquo(object), label) 4. │ │ └─rlang::eval_bare(expr, quo_get_env(quo)) 5. │ └─base::all.equal(...) 6. ├─lcv$train(list(tsk("iris"))) 7. │ └─mlr3pipelines:::.__PipeOp__train(...) 8. │ ├─base::withCallingHandlers(...) 9. │ └─private$.train(input) 10. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 11. │ └─private$.train_task(intask) 12. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 13. │ └─mlr3::resample(...) 14. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 15. │ └─mlr3 (local) initialize(...) 16. │ └─mlr3:::.__ResultData__initialize(...) 17. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 18. │ └─data.table:::`[.data.table`(...) 19. └─base::.handleSimpleError(...) 20. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:531:3'): marshal ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po_lrn$train(list(task)) at test_pipeop_learnercv.R:531:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:557:3'): marshal multiplicity ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris"), tsk("sonar")))) at test_pipeop_learnercv.R:557:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:612:3'): marshal with cv ensemble ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:612:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:628:3'): state class and multiplicity ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.debug's $train() Backtrace: ▆ 1. ├─po$train(list(Multiplicity(tsk("iris")))) at test_pipeop_learnercv.R:628:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ └─mlr3pipelines:::evaluate_multiplicities(...) 4. │ └─mlr3misc::imap(...) 5. │ ├─stats::setNames(mapply_list(.f, list(.x, .nn), list(...)), names(.x)) 6. │ └─mlr3misc:::mapply_list(.f, list(.x, .nn), list(...)) 7. │ └─base::.mapply(.f, .dots, .args) 8. │ └─mlr3pipelines (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]]) 9. │ └─self[[evalcall]](input) 10. │ └─mlr3pipelines:::.__PipeOp__train(...) 11. │ ├─base::withCallingHandlers(...) 12. │ └─private$.train(input) 13. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 14. │ └─private$.train_task(intask) 15. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 16. │ └─mlr3::resample(...) 17. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 18. │ └─mlr3 (local) initialize(...) 19. │ └─mlr3:::.__ResultData__initialize(...) 20. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 21. │ └─data.table:::`[.data.table`(...) 22. └─base::.handleSimpleError(...) 23. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_learnercv.R:671:5'): PipeOpLearnerCV cv ensemble aggregates SE like PipeOpRegrAvg ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp regr.debug's $train() Backtrace: ▆ 1. ├─po$train(list(task)) at test_pipeop_learnercv.R:671:5 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:7:3'): threshold works for multiclass ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:7:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:38:3'): threshold works for binary ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─po_cv$train(list(t)) at test_pipeop_tunethreshold.R:38:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 8. │ └─mlr3::resample(...) 9. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 10. │ └─mlr3 (local) initialize(...) 11. │ └─mlr3:::.__ResultData__initialize(...) 12. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 13. │ └─data.table:::`[.data.table`(...) 14. └─base::.handleSimpleError(...) 15. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:73:3'): tunethreshold graph works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─graph$train(tsk("pima")) at test_pipeop_tunethreshold.R:73:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:101:3'): threshold works for classes that are not valid R names ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─ppl$train(testtask) at test_pipeop_tunethreshold.R:101:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_pipeop_tunethreshold.R:260:3'): threshold graph transparency ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─lrn_prob$train(t) at test_pipeop_tunethreshold.R:260:3 2. │ └─mlr3:::.__Learner__train(...) 3. │ └─mlr3:::learner_train(...) 4. │ └─mlr3misc::encapsulate(...) 5. │ ├─mlr3misc::invoke(...) 6. │ │ └─base::eval.parent(expr, n = 1L) 7. │ │ └─base::eval(expr, p) 8. │ │ └─base::eval(expr, p) 9. │ └─mlr3 (local) .f(learner = `<GrphLrnr>`, task = `<TskClssf>`) 10. │ └─get_private(learner)$.train(task) 11. │ └─mlr3pipelines:::.__GraphLearner__.train(...) 12. │ └─self$graph$train(task) 13. │ └─mlr3pipelines:::.__Graph__train(...) 14. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 15. │ └─op[[fun]](input) 16. │ └─mlr3pipelines:::.__PipeOp__train(...) 17. │ ├─base::withCallingHandlers(...) 18. │ └─private$.train(input) 19. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 20. │ └─private$.train_task(intask) 21. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 22. │ └─mlr3::resample(...) 23. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 24. │ └─mlr3 (local) initialize(...) 25. │ └─mlr3:::.__ResultData__initialize(...) 26. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. │ └─data.table:::`[.data.table`(...) 28. └─base::.handleSimpleError(...) 29. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_resample.R:13:3'): PipeOp - Resample ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, pp, resa) at test_resample.R:13:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_usecases.R:153:3'): stacking ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart's $train() Backtrace: ▆ 1. ├─pipe$train(task) at test_usecases.R:153:3 2. │ └─mlr3pipelines:::.__Graph__train(...) 3. │ └─mlr3pipelines:::graph_reduce(self, input, "train", single_input) 4. │ └─op[[fun]](input) 5. │ └─mlr3pipelines:::.__PipeOp__train(...) 6. │ ├─base::withCallingHandlers(...) 7. │ └─private$.train(input) 8. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 9. │ └─private$.train_task(intask) 10. │ └─mlr3pipelines:::.__PipeOpLearnerCV__.train_task(...) 11. │ └─mlr3::resample(...) 12. │ └─ResultData$new(data, data_extra, store_backends = store_backends) 13. │ └─mlr3 (local) initialize(...) 14. │ └─mlr3:::.__ResultData__initialize(...) 15. │ ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. │ └─data.table:::`[.data.table`(...) 17. └─base::.handleSimpleError(...) 18. └─mlr3pipelines (local) h(simpleError(msg, call)) ── Error ('test_ppl.R:73:3'): mlr3book authors don't sleepwalk through life ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT This happened in PipeOp classif.rpart.classif.rpart's $train() Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 2))) at test_ppl.R:73:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 38 | WARN 2 | SKIP 98 | PASS 12316 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.0
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_pipeops_nmf > ### Title: Non-negative Matrix Factorization > ### Aliases: mlr_pipeops_nmf PipeOpNMF > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces(c("NMF", "MASS"), quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + ## Don't show: + # NMF attaches these packages to search path on load, #929 + lapply(c("package:Biobase", "package:BiocGenerics", "package:generics"), detach, character.only = TRUE) + ## End(Don't show) + library("mlr3") + + task = tsk("iris") + pop = po("nmf") + + task$data() + pop$train(list(task))[[1]]$data() + + pop$state + ## Don't show: + # BiocGenerics overwrites printer for our tables mlr-org/mlr3#1112 + # Necessary as detaching packages does not remove registered S3 methods + suppressWarnings(try(rm("format.list", envir = .BaseNamespaceEnv$.__S3MethodsTable__.), silent = TRUE)) + ## End(Don't show) + ## Don't show: + }) # examplesIf > lapply(c("package:Biobase", "package:BiocGenerics", "package:generics"), + detach, character.only = TRUE) Error in FUN(X[[i]], ...) : invalid 'name' argument Calls: withAutoprint ... withVisible -> eval -> eval -> lapply -> lapply -> FUN Execution halted Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [113s/60s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" Saving _problems/test_pipeop_datefeatures-7.R Saving _problems/test_pipeop_datefeatures-17.R > test_pipeop_isomap.R: 2025-12-24 03:32:14.847535: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:14.85651: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:14.862975: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:14.87027: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:14.883064: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:14.883251: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:14.885955: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:14.892097: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:14.900649: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:14.900859: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:14.90582: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:14.921214: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:14.921676: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:14.926757: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:14.926869: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:14.93139: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:14.947342: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:14.947833: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:14.972075: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:14.97221: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:14.977002: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.012294: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.021809: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:15.022007: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.031522: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.117257: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:15.118702: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:15.161539: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.161716: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.164676: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.172032: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.179231: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:15.179423: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.185356: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.201396: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:15.201937: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:15.238099: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.238322: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.241083: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.247643: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.2613: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:15.261603: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.267359: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.283386: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:15.283974: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:15.304311: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.304445: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.307019: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.313562: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.32613: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:15.326349: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.331215: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.348405: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:15.348996: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:15.368559: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.374884: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.377549: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.384078: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.397495: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:15.397703: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.402839: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.418732: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:15.419163: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:15.434236: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.434341: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.436472: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.443185: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.455316: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-24 03:32:15.4555: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.460528: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.476726: embedding > test_pipeop_isomap.R: 2025-12-24 03:32:15.477303: DONE > test_pipeop_isomap.R: 2025-12-24 03:32:15.497758: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.497907: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.500371: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.506735: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.528268: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.528439: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.531121: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.537585: Classical Scaling > test_pipeop_isomap.R: 2025-12-24 03:32:15.543365: Isomap START > test_pipeop_isomap.R: 2025-12-24 03:32:15.543488: constructing knn graph > test_pipeop_isomap.R: 2025-12-24 03:32:15.582856: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-24 03:32:15.589911: Classical Scaling Saving _problems/test_pipeop_nmf-45.R Saving _problems/test_pipeop_nmf-73.R Saving _problems/test_pipeop_nmf-93.R Saving _problems/test_pipeop_nmf-98.R > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] ══ Skipped tests (99) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_learnercv.R:31:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (3): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1', 'test_ppl.R:61:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_pipeop_datefeatures.R:7:3'): PipeOpDateFeatures - basic properties ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:7:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_datefeatures.R:17:3'): PipeOpDateFeatures - finds POSIXct column ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:17:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_nmf.R:45:3'): PipeOpNMF - does not modify search path when NMF is not loaded, fix for #929 ── Error in `detach(package:generics)`: invalid 'name' argument Backtrace: ▆ 1. └─base::detach(package:generics) at test_pipeop_nmf.R:45:3 ── Failure ('test_pipeop_nmf.R:73:3'): PipeOpNMF - does not modify search path when NMF is loaded, fix for #929 ── Expected `all(...)` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Failure ('test_pipeop_nmf.R:93:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Expected `all(paste0("package:", c("BiocGenerics", "generics")) %in% search())` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Error ('test_pipeop_nmf.R:98:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Error in `FUN(X[[i]], ...)`: invalid 'name' argument This happened in PipeOp nmf's $train() Backtrace: ▆ 1. ├─op$train(list(tsk("iris"))) at test_pipeop_nmf.R:98:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train_task(...) 8. │ ├─data.table::as.data.table(...) 9. │ └─private$.train_dt(dt, task$levels(cols), task$truth()) 10. │ └─mlr3pipelines:::.__PipeOpNMF__.train_dt(...) 11. │ └─mlr3misc::map(to_be_detached, detach, character.only = TRUE) 12. │ └─base::lapply(.x, .f, ...) 13. │ └─base (local) FUN(X[[i]], ...) 14. │ └─base::stop("invalid 'name' argument") 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-macos-arm64

Version: 0.10.0
Check: tests
Result: ERROR Running ‘testthat.R’ [361s/461s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" Saving _problems/test_pipeop_datefeatures-7.R Saving _problems/test_pipeop_datefeatures-17.R > test_pipeop_isomap.R: 2025-12-23 07:35:20.252459: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:20.254098: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:20.271048: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:20.358693: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:20.489892: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:20.490191: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:20.497595: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:20.544739: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:20.594509: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:20.595114: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:20.695322: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:20.760873: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:20.844842: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:20.869576: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:20.869891: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:20.903551: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:20.964058: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:20.995783: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:21.162701: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:21.163238: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:21.186941: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:21.526211: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:21.635103: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:21.636209: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:21.708391: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:22.447791: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:22.480345: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:22.812883: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:22.813239: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:22.822395: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:22.881573: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:22.919155: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:22.919739: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:22.984323: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:23.070066: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:23.071351: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:23.329862: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:23.330299: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:23.340522: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:23.408347: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:23.472758: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:23.473208: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:23.512005: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:23.651617: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:23.653285: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:23.926891: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:23.928929: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:23.939399: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:24.021659: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:24.093543: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:24.113261: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:24.15315: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:24.252751: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:24.255499: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:24.403532: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:24.403819: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:24.418673: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:24.46426: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:24.548401: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:24.550077: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:24.606664: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:24.708521: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:24.710676: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:24.804513: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:24.816049: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:24.844933: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:24.875777: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:24.977592: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-23 07:35:24.978044: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:25.032357: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:25.124594: embedding > test_pipeop_isomap.R: 2025-12-23 07:35:25.126701: DONE > test_pipeop_isomap.R: 2025-12-23 07:35:25.312603: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:25.312928: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:25.320394: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:25.396262: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:25.573646: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:25.574106: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:25.667845: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:25.744838: Classical Scaling > test_pipeop_isomap.R: 2025-12-23 07:35:25.779407: Isomap START > test_pipeop_isomap.R: 2025-12-23 07:35:25.779748: constructing knn graph > test_pipeop_isomap.R: 2025-12-23 07:35:25.789646: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-23 07:35:25.827128: Classical Scaling Saving _problems/test_pipeop_nmf-45.R Saving _problems/test_pipeop_nmf-73.R Saving _problems/test_pipeop_nmf-93.R Saving _problems/test_pipeop_nmf-98.R > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_textvectorizer.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_pipeop_textvectorizer.R: Use 'as(., "TsparseMatrix")' instead. > test_pipeop_textvectorizer.R: See help("Deprecated") and help("Matrix-deprecated"). > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] ══ Skipped tests (99) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_learnercv.R:31:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (3): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1', 'test_ppl.R:61:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_pipeop_datefeatures.R:7:3'): PipeOpDateFeatures - basic properties ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:7:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_datefeatures.R:17:3'): PipeOpDateFeatures - finds POSIXct column ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:17:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_nmf.R:45:3'): PipeOpNMF - does not modify search path when NMF is not loaded, fix for #929 ── Error in `detach(package:generics)`: invalid 'name' argument Backtrace: ▆ 1. └─base::detach(package:generics) at test_pipeop_nmf.R:45:3 ── Failure ('test_pipeop_nmf.R:73:3'): PipeOpNMF - does not modify search path when NMF is loaded, fix for #929 ── Expected `all(...)` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Failure ('test_pipeop_nmf.R:93:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Expected `all(paste0("package:", c("BiocGenerics", "generics")) %in% search())` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Error ('test_pipeop_nmf.R:98:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Error in `FUN(X[[i]], ...)`: invalid 'name' argument This happened in PipeOp nmf's $train() Backtrace: ▆ 1. ├─op$train(list(tsk("iris"))) at test_pipeop_nmf.R:98:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train_task(...) 8. │ ├─data.table::as.data.table(...) 9. │ └─private$.train_dt(dt, task$levels(cols), task$truth()) 10. │ └─mlr3pipelines:::.__PipeOpNMF__.train_dt(...) 11. │ └─mlr3misc::map(to_be_detached, detach, character.only = TRUE) 12. │ └─base::lapply(.x, .f, ...) 13. │ └─base (local) FUN(X[[i]], ...) 14. │ └─base::stop("invalid 'name' argument") 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-macos-x86_64

Version: 0.10.0
Check: tests
Result: ERROR Running 'testthat.R' [283s] Running the tests in 'tests/testthat.R' failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + library("paradox") + library("mlr3pipelines") + test_check("mlr3pipelines") + } Starting 2 test processes. > test_Graph.R: Training debug.multi with input list(input_1 = 1, input_2 = 1) > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_PipeOp.R: Training test_autotrain > test_PipeOp.R: Predicting test_autotrain > test_filter_ensemble.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_mlr_graphs_robustify.R: 'as(<dgCMatrix>, "dgTMatrix")' is deprecated. > test_mlr_graphs_robustify.R: Use 'as(., "TsparseMatrix")' instead. > test_mlr_graphs_robustify.R: See help("Deprecated") and help("Matrix-deprecated"). > test_multiplicities.R: > test_multiplicities.R: [[1]] > test_multiplicities.R: > test_multiplicities.R: [1] 0 > test_multiplicities.R: > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" > test_pipeop_blsmote.R: [1] "Borderline-SMOTE done" Saving _problems/test_pipeop_datefeatures-7.R Saving _problems/test_pipeop_datefeatures-17.R > test_pipeop_isomap.R: 2025-12-22 15:20:13.299257: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:13.300242: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:13.313809: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:13.336109: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:13.416001: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:13.41666: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:13.427963: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:13.450985: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:13.493861: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:13.494781: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:13.516055: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:13.564643: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:13.56627: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:13.606333: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:13.607032: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:13.62741: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:13.677365: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:13.678945: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:13.803843: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:13.804476: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:13.829882: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:13.942266: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:13.994147: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:13.995056: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:14.057107: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:14.278284: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:14.283452: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:14.512786: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:14.513557: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:14.524763: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:14.547382: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:14.599349: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:14.600375: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:14.62077: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:14.661497: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:14.662764: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:14.845617: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:14.846285: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:14.858026: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:14.880703: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:14.960588: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:14.961684: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:14.9852: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:15.03418: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:15.057644: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:15.184788: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:15.185558: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:15.196751: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:15.219105: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:15.2964: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:15.297343: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:15.316794: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:15.366068: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:15.367332: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:15.474467: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:15.475143: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:15.485318: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:15.507591: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:15.572011: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:15.572655: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:15.592848: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:15.640865: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:15.642868: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:15.754993: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:15.755698: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:15.766362: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:15.788108: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:15.881901: L-Isomap embed START > test_pipeop_isomap.R: 2025-12-22 15:20:15.883002: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:15.904368: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:15.953444: embedding > test_pipeop_isomap.R: 2025-12-22 15:20:15.955361: DONE > test_pipeop_isomap.R: 2025-12-22 15:20:16.0885: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:16.089165: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:16.101325: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:16.123926: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:16.242435: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:16.243082: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:16.255289: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:16.277987: Classical Scaling > test_pipeop_isomap.R: 2025-12-22 15:20:16.312319: Isomap START > test_pipeop_isomap.R: 2025-12-22 15:20:16.313095: constructing knn graph > test_pipeop_isomap.R: 2025-12-22 15:20:16.326189: calculating geodesic distances > test_pipeop_isomap.R: 2025-12-22 15:20:16.348884: Classical Scaling Saving _problems/test_pipeop_nmf-45.R Saving _problems/test_pipeop_nmf-73.R Saving _problems/test_pipeop_nmf-93.R Saving _problems/test_pipeop_nmf-98.R > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_task_preproc.R: Training debug_affectcols > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. > test_pipeop_tunethreshold.R: OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead. [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] ══ Skipped tests (99) ══════════════════════════════════════════════════════════ • On CRAN (95): 'test_CnfFormula_simplify.R:6:3', 'test_CnfFormula.R:591:3', 'test_Graph.R:283:3', 'test_PipeOp.R:32:1', 'test_GraphLearner.R:5:3', 'test_GraphLearner.R:221:3', 'test_GraphLearner.R:343:3', 'test_GraphLearner.R:408:3', 'test_GraphLearner.R:571:3', 'test_dictionary.R:7:3', 'test_learner_weightedaverage.R:5:3', 'test_learner_weightedaverage.R:57:3', 'test_learner_weightedaverage.R:105:3', 'test_learner_weightedaverage.R:152:3', 'test_meta.R:39:3', 'test_mlr_graphs_branching.R:26:3', 'test_mlr_graphs_bagging.R:6:3', 'test_mlr_graphs_robustify.R:5:3', 'test_pipeop_adas.R:8:3', 'test_pipeop_blsmote.R:8:3', 'test_pipeop_branch.R:4:3', 'test_pipeop_chunk.R:4:3', 'test_pipeop_classbalancing.R:7:3', 'test_pipeop_boxcox.R:7:3', 'test_pipeop_classweights.R:10:3', 'test_pipeop_collapsefactors.R:6:3', 'test_pipeop_colapply.R:9:3', 'test_pipeop_copy.R:5:3', 'test_pipeop_colroles.R:6:3', 'test_pipeop_decode.R:14:3', 'test_pipeop_encode.R:21:3', 'test_pipeop_encodeimpact.R:11:3', 'test_pipeop_encodepl.R:5:3', 'test_pipeop_encodepl.R:72:3', 'test_pipeop_encodelmer.R:15:3', 'test_pipeop_encodelmer.R:37:3', 'test_pipeop_encodelmer.R:80:3', 'test_pipeop_featureunion.R:9:3', 'test_pipeop_featureunion.R:134:3', 'test_pipeop_filter.R:7:3', 'test_pipeop_fixfactors.R:9:3', 'test_pipeop_histbin.R:7:3', 'test_pipeop_ica.R:7:3', 'test_pipeop_ensemble.R:6:3', 'test_pipeop_impute.R:4:3', 'test_pipeop_imputelearner.R:43:3', 'test_pipeop_isomap.R:10:3', 'test_pipeop_kernelpca.R:9:3', 'test_pipeop_learner.R:17:3', 'test_pipeop_info.R:6:3', 'test_pipeop_learnerpicvplus.R:163:3', 'test_pipeop_missind.R:6:3', 'test_pipeop_modelmatrix.R:7:3', 'test_pipeop_multiplicityexply.R:9:3', 'test_pipeop_learnercv.R:31:3', 'test_pipeop_mutate.R:9:3', 'test_pipeop_multiplicityimply.R:9:3', 'test_pipeop_nearmiss.R:7:3', 'test_pipeop_ovr.R:9:3', 'test_pipeop_ovr.R:48:3', 'test_pipeop_pca.R:8:3', 'test_pipeop_proxy.R:14:3', 'test_pipeop_quantilebin.R:5:3', 'test_pipeop_randomprojection.R:6:3', 'test_pipeop_randomresponse.R:5:3', 'test_pipeop_removeconstants.R:6:3', 'test_pipeop_renamecolumns.R:6:3', 'test_pipeop_replicate.R:9:3', 'test_pipeop_nmf.R:6:3', 'test_pipeop_rowapply.R:6:3', 'test_pipeop_scale.R:6:3', 'test_pipeop_scale.R:10:3', 'test_pipeop_scalemaxabs.R:6:3', 'test_pipeop_scalerange.R:7:3', 'test_pipeop_select.R:9:3', 'test_pipeop_smotenc.R:8:3', 'test_pipeop_smote.R:10:3', 'test_pipeop_subsample.R:6:3', 'test_pipeop_targetinvert.R:4:3', 'test_pipeop_targetmutate.R:5:3', 'test_pipeop_targettrafo.R:4:3', 'test_pipeop_targettrafoscalerange.R:5:3', 'test_pipeop_task_preproc.R:4:3', 'test_pipeop_task_preproc.R:14:3', 'test_pipeop_spatialsign.R:6:3', 'test_pipeop_tomek.R:7:3', 'test_pipeop_textvectorizer.R:37:3', 'test_pipeop_textvectorizer.R:186:3', 'test_pipeop_unbranch.R:10:3', 'test_pipeop_updatetarget.R:89:3', 'test_pipeop_vtreat.R:9:3', 'test_pipeop_yeojohnson.R:7:3', 'test_pipeop_tunethreshold.R:111:3', 'test_pipeop_tunethreshold.R:191:3', 'test_typecheck.R:188:3' • Skipping (1): 'test_GraphLearner.R:1278:3' • empty test (3): 'test_pipeop_isomap.R:111:1', 'test_pipeop_missind.R:101:1', 'test_ppl.R:61:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_pipeop_datefeatures.R:7:3'): PipeOpDateFeatures - basic properties ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:7:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_datefeatures.R:17:3'): PipeOpDateFeatures - finds POSIXct column ── Error in `seq.Date(as.Date("2020-01-31"), length.out = 150L)`: exactly two of 'to', 'by' and 'length.out' / 'along.with' must be specified Backtrace: ▆ 1. ├─base::seq(as.Date("2020-01-31"), length.out = 150L) at test_pipeop_datefeatures.R:17:3 2. └─base::seq.Date(as.Date("2020-01-31"), length.out = 150L) ── Error ('test_pipeop_nmf.R:45:3'): PipeOpNMF - does not modify search path when NMF is not loaded, fix for #929 ── Error in `detach(package:generics)`: invalid 'name' argument Backtrace: ▆ 1. └─base::detach(package:generics) at test_pipeop_nmf.R:45:3 ── Failure ('test_pipeop_nmf.R:73:3'): PipeOpNMF - does not modify search path when NMF is loaded, fix for #929 ── Expected `all(...)` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Failure ('test_pipeop_nmf.R:93:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Expected `all(paste0("package:", c("BiocGenerics", "generics")) %in% search())` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE ── Error ('test_pipeop_nmf.R:98:3'): PipeOpNMF - does not modify search path when some of NMF's dependencies are loaded, fix for #929 ── Error in `FUN(X[[i]], ...)`: invalid 'name' argument This happened in PipeOp nmf's $train() Backtrace: ▆ 1. ├─op$train(list(tsk("iris"))) at test_pipeop_nmf.R:98:3 2. │ └─mlr3pipelines:::.__PipeOp__train(...) 3. │ ├─base::withCallingHandlers(...) 4. │ └─private$.train(input) 5. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train(...) 6. │ └─private$.train_task(intask) 7. │ └─mlr3pipelines:::.__PipeOpTaskPreproc__.train_task(...) 8. │ ├─data.table::as.data.table(...) 9. │ └─private$.train_dt(dt, task$levels(cols), task$truth()) 10. │ └─mlr3pipelines:::.__PipeOpNMF__.train_dt(...) 11. │ └─mlr3misc::map(to_be_detached, detach, character.only = TRUE) 12. │ └─base::lapply(.x, .f, ...) 13. │ └─base (local) FUN(X[[i]], ...) 14. │ └─base::stop("invalid 'name' argument") 15. └─base::.handleSimpleError(...) 16. └─mlr3pipelines (local) h(simpleError(msg, call)) [ FAIL 6 | WARN 0 | SKIP 99 | PASS 13006 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-windows-x86_64