Abstract
Genome-wide CRISPR (clustered regularly interspaced short palindrome repeats) coupled with nuclease Cas9 (CRISPR/Cas9) screens represent a promising technology to systematically evaluate gene functions. Data analysis for CRISPR/Cas9 screens is a critical process that includes identifying screen hits and exploring biological functions for these hits in downstream analysis. We have previously developed two algorithms, MAGeCK and MAGeCK-VISPR, to analyze CRISPR/Cas9 screen data in various scenarios. These two algorithms allow users to perform quality control, read count generation and normalization, and calculate beta score to evaluate gene selection performance. In downstream analysis, the biological functional analysis is required for understanding biological functions of these identified genes with different screening purposes. Here, We developed MAGeCKFlute for supporting downstream analysis, utilizing the data provided through MAGeCK and MAGeCK-VISPR. MAGeCKFlute provides several strategies to remove potential biases within sgRNA-level read counts and gene-level beta scores. The downstream analysis with the package includes identifying essential, non-essential, and target-associated genes, and performing biological functional category analysis and pathway enrichment analysis of these genes. The package also visualizes genes in the context of pathways to benefit users exploring screening data. Collectively, MAGeCKFlute enables accurate identification of essential, non-essential, and targeted genes, as well as their related biological functions. This vignette explains the use of the package and demonstrates typical workflows. MAGeCKFlute package version: 1.2.2Note: if you use MAGeCKFlute in published research, please cite:
Any and all MAGeCKFlute questions should be posted to the Bioconductor support site, which serves as a searchable knowledge base of questions and answers:
https://support.bioconductor.org
Posting a question and tagging with “MAGeCKFlute” will automatically send an alert to the package authors to respond on the support site. See the first question in the list of Frequently Asked Questions (FAQ) for information about how to construct an informative post.
You should not email your question to the package authors, as we will just reply that the question should be posted to the Bioconductor support site.
As input, the MAGeCKFlute package expects gene summary file as obtained by running commands mageck test
or mageck mle
in MAGeCK (Wei Li and Liu. 2014) and MAGeCK-VISPR (Wei Li and Liu. 2015), which are developed by our lab previously, to analyze CRISPR/Cas9 screen data in different scenarios(Tim Wang 2014, Hiroko Koike-Yusa (2014), Ophir Shalem1 (2014), Luke A.Gilbert (2014), Silvana Konermann (2015)). Both algorithms use negative binomial models to model the variances of sgRNAs, and use Robust Rank Aggregation (for MAGeCK) or maximum likelihood framework (for MAGeCK-VISPR) for a robust identification of selected genes.
MAGeCK-MLE can be used to analyze CRISPR screen data from multi-conditioned experiments. MAGeCK-MLE also normalizes the data across multiple samples, making them comparable to each other. The most important ouput of MAGeCK MLE is “gene_summary” file, which includes the beta scores of multiple conditions and the associated statistics. The ‘beta score’ for each gene describes how the gene is selected: a positive beta score indicates a positive selection, and a negative beta score indicates a negative selection.
MAGeCK RRA allows for the comparison between two experimental conditions. It can identify genes and sgRNAs are significantly selected between the two conditions. The most important output of MAGeCK RRA is the file “gene_summary.txt”. MAGeCK RRA will output both the negative score and positive score for each gene. A smaller score indicates higher gene importance. MAGeCK RRA will also output the statistical value for the scores of each gene. Genes that are significantly positively and negatively selected can be identified based on the p-value or FDR.
Here we show the most basic steps for integrative analysis pipeline using gene summary file. Before using MAGeCKFlute, analyzing CRISPR/Cas9 screen data using MAGeCK RRA (in MAGeCK (Wei Li and Liu. 2014)) or MAGeCK MLE (in MAGeCK-VISPR (Wei Li and Liu. 2015)) is necessary, which result in the generation of the gene summary file.
To run MAGeCKFlute pipeline, we need gene summary file generated by running MAGeCK RRA or MAGeCK MLE. MAGeCKFlute package provides two example data, one is MLE_Data
, and the other is RRA_Data
. We will work with them in this document.
Downstream analysis pipeline for MAGeCK RRA
##Load gene summary data in MAGeCK RRA results
data("rra.gene_summary")
data("rra.sgrna_summary")
##Run the downstream analysis pipeline for MAGeCK RRA
FluteRRA(rra.gene_summary, rra.sgrna_summary, prefix="RRA", organism="hsa", lfcCutoff = c(-0.3, 0.3))
All pipeline results are written into local directory “./BRAF_Flute_Results/” too, and all figures are integrated into file “RRA_Flute.rra_summary.pdf”.
Downstream analysis pipeline for MAGeCK MLE
##Load gene summary data in MAGeCK MLE results
data("mle.gene_summary")
##Run the downstream analysis pipeline for MAGeCK MLE
FluteMLE(mle.gene_summary, ctrlname=c("dmso"), treatname=c("plx"), prefix="MLE_", organism="hsa")
All pipeline results are written into local directory “./MLE_Flute_Results/”, and all figures are integrated into file “MLE_Flute.mle_summary.pdf”.
** Count summary ** MAGeCK Count
in MAGeCK/MAGeCK-VISPR generates a count summary file, which summarizes some basic QC scores at raw count level, including map ratio, Gini index, and NegSelQC. Use function ‘data’ to load the dataset, and have a look at the file with a text editor to see how it is formatted.
## File Label Reads Mapped
## 1 ../data/GSC_0131_Day23_Rep1.fastq.gz day23_r1 62818064 39992777
## 2 ../data/GSC_0131_Day0_Rep2.fastq.gz day0_r2 47289074 31709075
## 3 ../data/GSC_0131_Day0_Rep1.fastq.gz day0_r1 51190401 34729858
## 4 ../data/GSC_0131_Day23_Rep2.fastq.gz day23_r2 58686580 37836392
## Percentage TotalsgRNAs Zerocounts GiniIndex NegSelQC NegSelQCPval
## 1 0.6366 64076 57 0.08510 0 1
## 2 0.6705 64076 17 0.07496 0 1
## 3 0.6784 64076 14 0.07335 0 1
## 4 0.6447 64076 51 0.08587 0 1
## NegSelQCPvalPermutation NegSelQCPvalPermutationFDR NegSelQCGene
## 1 1 1 0
## 2 1 1 0
## 3 1 1 0
## 4 1 1 0
IdentBarView(countsummary, x = "Label", y = "GiniIndex",
ylab = "Gini index", main = "Evenness of sgRNA reads")
countsummary$Missed = log10(countsummary$Zerocounts)
IdentBarView(countsummary, x = "Label", y = "Missed", fill = "#394E80",
ylab = "Log10 missed gRNAs", main = "Missed sgRNAs")
For experiments with two experimental conditions, we recommend using MAGeCK-RRA to identify essential genes from CRISPR/Cas9 knockout screens and tests the statistical significance of each observed change between two states. Gene summary file in MAGeCK-RRA results summarizes the statistical significance of positive selection and negative selection. Use function ‘data’ to load the dataset, and have a look at the file with a text editor to see how it is formatted.
## id num neg.score neg.p.value neg.fdr neg.rank neg.goodsgrna
## 1 NF2 4 4.1770e-12 2.9738e-07 0.000275 1 4
## 2 SRSF10 4 4.4530e-11 2.9738e-07 0.000275 2 4
## 3 EIF2B4 8 2.8994e-10 2.9738e-07 0.000275 3 8
## 4 LAS1L 6 1.4561e-09 2.9738e-07 0.000275 4 6
## 5 RPL3 15 2.3072e-09 2.9738e-07 0.000275 5 12
## 6 ATP6V0 7 3.8195e-09 2.9738e-07 0.000275 6 7
## neg.lfc pos.score pos.p.value pos.fdr pos.rank pos.goodsgrna pos.lfc
## 1 -1.3580 1.00000 1.00000 1 16645 0 -1.3580
## 2 -1.8544 1.00000 1.00000 1 16647 0 -1.8544
## 3 -1.5325 1.00000 1.00000 1 16646 0 -1.5325
## 4 -2.2402 0.99999 0.99999 1 16570 0 -2.2402
## 5 -1.0663 0.95519 0.99205 1 15359 2 -1.0663
## 6 -1.6380 1.00000 1.00000 1 16644 0 -1.6380
Then, extract “neg.fdr” and “pos.fdr” from the gene summary table.
## Official EntrezID LFC FDR
## 4771 NF2 4771 -1.3580 0.000275
## 10772 SRSF10 10772 -1.8544 0.000275
## 8890 EIF2B4 8890 -1.5325 0.000275
## 81887 LAS1L 81887 -2.2402 0.000275
## 6122 RPL3 6122 -1.0663 0.000275
## 7536 SF1 7536 -1.8365 0.000275
We provide a function VolcanoView
to visualize top negative and positive selected genes.
## Warning: Removed 1 rows containing missing values (geom_text_repel).
We provide a function sgRankView
to visualize the rank of sgRNA targeting top negative and positive selected genes.
We also provide a function RankView
to visualize top negative and positive selected genes.
Select negative selection and positive selection genes and perform enrichment analysis.
universe = dd.rra$EntrezID
geneList= dd.rra$LFC
names(geneList) = universe
enrich = enrich.GSE(geneList = geneList, type = "All")
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (4.34% of the list).
## The order of those tied genes will be arbitrary, which may produce unexpected results.
Visualize the top enriched genes and pathways/GO terms using EnrichedGeneView
, EnrichedView
and EnrichedGSEView
.
** Gene summary ** The gene summary file in MAGeCK-MLE results includes beta scores of all genes in multiple condition samples.
## Gene sgRNA dmso.beta dmso.z dmso.p.value dmso.fdr dmso.wald.p.value
## 1 FEZ1 6 -0.045088 -0.66798 0.79649 0.97939 5.0415e-01
## 2 TNN 6 0.094325 1.36120 0.34176 0.89452 1.7344e-01
## 3 NAT8L 3 0.026362 0.24661 0.54185 0.94568 8.0521e-01
## 4 OAS2 8 -0.271210 -4.76860 0.46995 0.93572 1.8555e-06
## 5 OR10H3 2 -0.098324 -0.86408 0.99473 0.99872 3.8754e-01
## 6 CCL16 3 -0.309750 -3.43910 0.38495 0.90896 5.8372e-04
## dmso.wald.fdr plx.beta plx.z plx.p.value plx.fdr plx.wald.p.value
## 1 6.3060e-01 -0.036721 -0.54346 0.81604 0.98345 5.8681e-01
## 2 2.8578e-01 0.065533 0.94344 0.47309 0.93207 3.4546e-01
## 3 8.7248e-01 0.044979 0.42072 0.53600 0.94583 6.7396e-01
## 4 1.4126e-05 -0.289010 -5.07170 0.40411 0.90933 3.9431e-07
## 5 5.2094e-01 -0.365730 -3.16890 0.26493 0.85892 1.5300e-03
## 6 2.4781e-03 -0.148830 -1.66090 0.78757 0.98229 9.6739e-02
## plx.wald.fdr
## 1 6.9940e-01
## 2 4.7400e-01
## 3 7.7008e-01
## 4 3.5296e-06
## 5 5.4996e-03
## 6 1.7459e-01
Then, extract beta scores of control and treatment samples from the gene summary table(can be a file path of ‘gene_summary’ or data frame).
data("mle.gene_summary")
ctrlname = c("dmso")
treatname = c("plx")
#Read beta scores from gene summary table in MAGeCK MLE results
dd=ReadBeta(mle.gene_summary, organism="hsa")
head(dd)
## Gene EntrezID dmso plx
## 9638 FEZ1 9638 -0.045088 -0.036721
## 63923 TNN 63923 0.094325 0.065533
## 339983 NAT8L 339983 0.026362 0.044979
## 4939 OAS2 4939 -0.271210 -0.289010
## 26532 OR10H3 26532 -0.098324 -0.365730
## 6360 CCL16 6360 -0.309750 -0.148830
Is there batch effects? This is a commonly asked question before perform later analysis. In our package, we provide HeatmapView
to ensure whether the batch effect exists in data and use BatchRemove
to remove easily if same batch samples cluster together.
##Before batch removal
data(bladderdata, package = "bladderbatch")
dat <- bladderEset[, 1:10]
pheno = pData(dat)
edata = exprs(dat)
HeatmapView(cor(edata))
## After batch removal
batchMat = pheno[, c("sample", "batch", "cancer")]
batchMat$sample = rownames(batchMat)
edata1 = BatchRemove(edata, batchMat)
## Standardizing Data across genes
It is difficult to control all samples with a consistent cell cycle in a CRISPR screen experiment with multi conditions. Besides, beta score among different states with an inconsistent cell cycle is incomparable. So it is necessary to do the normalization when comparing the beta scores in different conditions. Essential genes are those genes that are indispensable for its survival. The effect generated by knocking out these genes in different cell types is consistent. Based on this, we developed the cell cycle normalization method to shorten the gap of the cell cycle in different conditions. Besides, a previous normalization method called loess normalization is available in this package.(Laurent Gautier 2004)
dd_essential = NormalizeBeta(dd, samples=c(ctrlname, treatname), method="cell_cycle")
head(dd_essential)
## Gene EntrezID dmso plx
## 9638 FEZ1 9638 -0.05174381 -0.04904438
## 63923 TNN 63923 0.10824908 0.08752554
## 339983 NAT8L 339983 0.03025351 0.06007372
## 4939 OAS2 4939 -0.31124551 -0.38600029
## 26532 OR10H3 26532 -0.11283840 -0.48846714
## 6360 CCL16 6360 -0.35547471 -0.19877660
## Gene EntrezID dmso plx
## 9638 FEZ1 9638 -0.04286430 -0.03894470
## 63923 TNN 63923 0.10089378 0.05896422
## 339983 NAT8L 339983 0.03117202 0.04016898
## 4939 OAS2 4939 -0.27155646 -0.28866354
## 26532 OR10H3 26532 -0.09892640 -0.36512760
## 6360 CCL16 6360 -0.31036292 -0.14821708
After normalization, the distribution of beta scores in different conditions should be similar. We can evaluate the distribution of beta scores using the function ‘ViolinView’, ‘DensityView’, and ‘DensityDiffView’.
#we can also use the function 'MAView' to evaluate the data quality of normalized
#beta score profile.
MAView(dd_essential, ctrlname, treatname, cex=1, main="Cell cycle normalized")
After normalization, the cell cycle time in different condition should be almost consistent. Here we use a linear fitting to estimate the cell cycle time, and use function CellCycleView
to view the cell cycle time of all samples.
##Fitting beta score of all genes
CellCycleView(dd_essential, ctrlname, treatname, main="Cell cycle normalized")
The function ScatterView
can group all genes into three groups, positive selection genes (GroupA), negative selection genes (GroupB), and others, and visualize these three grouped genes in scatter plot. We can also use function RankView
to rank the beta score deviation between control and treatment and mark top selected genes in the figure.
## Add column of 'diff'
dd_essential$Control = rowMeans(dd_essential[,ctrlname, drop = FALSE])
dd_essential$Treatment = rowMeans(dd_essential[,treatname, drop = FALSE])
rankdata = dd_essential$Treatment - dd_essential$Control
names(rankdata) = dd_essential$Gene
p2 = RankView(rankdata, main="Cell cycle normalized")
print(p2)
For gene set enrichment analysis, we provide three methods in this package, including “ORT”(Over-Representing Test (Guangchuang Yu and He. 2012)), “GSEA”(Gene Set Enrichment Analysis (Aravind Subramanian and Mesirov. 2005)), and “HGT”(hypergeometric test), which can be performed on annotations of Gene ontology(GO) terms (Consortium. 2014), Kyoto encyclopedia of genes and genomes (KEGG) pathways (Minoru Kanehisa 2014), MsigDB gene sets, or custom gene sets. The enrichment analysis can be done easily using function enrichment_analysis
, which return a list containing gridPlot
(ggplot object) and enrichRes
(enrichResult instance). Alternatively, you can do enrichment analysis using the function enrich.ORT
for “ORT”, enrich.GSE
for GSEA, and enrich.HGT
for “HGT”, which return an enrichResult instance. Function EnrichedView
and EnrichedGSEView
(for enrich.GSE
) can be used to generate gridPlot
from enrichRes
easily, as shown below.
## Get information of positive and negative selection genes
groupAB = p1$data
## select positive selection genes
idx1=groupAB$group=="up"
genes=rownames(groupAB)[idx1]
geneList=groupAB$diff[idx1]
names(geneList)=genes
geneList = sort(geneList, decreasing = TRUE)
universe=rownames(groupAB)
## Do enrichment analysis using HGT method
keggA = enrich.HGT(geneList[1:100], universe, organism = "hsa", limit = c(3, 50))
keggA_grid = EnrichedGSEView(as.data.frame(keggA), plotTitle = "Positive selection")
## look at the results
head(as.data.frame(keggA))
## ID Description NES
## GOBP_0034605 GOBP_0034605 CELLULAR RESPONSE TO HEAT 1.9912700
## GOBP_0003094 GOBP_0003094 GLOMERULAR FILTRATION 0.9423385
## GOBP_0007080 GOBP_0007080 MITOTIC METAPHASE PLATE CONGRESSION 1.5074272
## GOBP_0045859 GOBP_0045859 REGULATION OF PROTEIN KINASE ACTIVITY 0.6944344
## GOBP_0006378 GOBP_0006378 MRNA POLYADENYLATION 0.6630682
## GOBP_0006596 GOBP_0006596 POLYAMINE BIOSYNTHETIC PROCESS 0.7863045
## pvalue p.adjust GeneRatio BgRatio geneID geneName
## GOBP_0034605 0.0290198211 0.029769411 1/46 46/59 4763 NF1
## GOBP_0003094 0.0009050609 0.003068377 1/8 8/11 4643 MYO1E
## GOBP_0007080 0.0203060509 0.021965300 1/38 38/39 8452 CUL3
## GOBP_0045859 0.0070836039 0.009748722 1/22 22/22 1460 CSNK2B
## GOBP_0006378 0.0113337256 0.014065963 1/28 28/29 123169 LEO1
## GOBP_0006596 0.0006813630 0.002667872 1/7 7/7 6723 SRM
## Count
## GOBP_0034605 1
## GOBP_0003094 1
## GOBP_0007080 1
## GOBP_0045859 1
## GOBP_0006378 1
## GOBP_0006596 1
## Do enrichment analysis using GSEA method
gseA = enrich.GSE(geneList, type = "KEGG", organism = "hsa", pvalueCutoff = 1)
gseA_grid = EnrichedGSEView(as.data.frame(gseA), plotTitle = "Positive selection")
#should same as
head(as.data.frame(gseA))
## ID Description NES
## KEGG_hsa00590 KEGG_hsa00590 ARACHIDONIC ACID METABOLISM -2.148852
## KEGG_hsa01230 KEGG_hsa01230 BIOSYNTHESIS OF AMINO ACIDS 1.682917
## KEGG_hsa04922 KEGG_hsa04922 GLUCAGON SIGNALING PATHWAY 1.615475
## KEGG_hsa04140 KEGG_hsa04140 AUTOPHAGY - ANIMAL -1.816380
## KEGG_hsa00480 KEGG_hsa00480 GLUTATHIONE METABOLISM 1.577863
## KEGG_hsa04120 KEGG_hsa04120 UBIQUITIN MEDIATED PROTEOLYSIS 1.682948
## pvalue p.adjust
## KEGG_hsa00590 0.002890173 0.4306358
## KEGG_hsa01230 0.007610350 0.5669711
## KEGG_hsa04922 0.011627907 0.5775194
## KEGG_hsa04140 0.017456359 0.6502494
## KEGG_hsa00480 0.025875190 0.6703476
## KEGG_hsa04120 0.026993865 0.6703476
## geneID
## KEGG_hsa00590 11145/240/257202
## KEGG_hsa01230 226/445/5315/7167
## KEGG_hsa04922 5531/1387/5315
## KEGG_hsa04140 1508/64798
## KEGG_hsa00480 5226/6723
## KEGG_hsa04120 8452/9040/9039/6923/9616/8065/9817/7332
## geneName Count
## KEGG_hsa00590 PLA2G16/ALOX5/GPX6 3
## KEGG_hsa01230 ALDOA/ASS1/PKM/TPI1 4
## KEGG_hsa04922 PPP4C/CREBBP/PKM 3
## KEGG_hsa04140 CTSB/DEPTOR 2
## KEGG_hsa00480 PGD/SRM 2
## KEGG_hsa04120 CUL3/UBE2M/UBA3/ELOB/RNF7/CUL5/KEAP1/UBE2L3 8
For enriched pathways, we can use function KeggPathwayView
to visualize the beta score level in control and treatment on pathway map.(Weijun Luo 2013)
genedata = dd_essential[,c("Control","Treatment")]
keggID = gsub("KEGG_", "", as.data.frame(gseA)$ID[1])
#The pathway map will be located on current workspace
KeggPathwayView(gene.data = genedata, pathway.id = keggID, species = "hsa")
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
## Warning in structure(x$children, class = "XMLNodeList"): Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
## Consider 'structure(list(), *)' instead.
##Read the figure into R
pngname=paste0(keggID, ".pathview.multi.png")
grid.arrange(grid::rasterGrob(png::readPNG(pngname)))
## [1] TRUE TRUE TRUE
Considering the difference of beta scores in control and treatment sample, we developed a 9-square model, which group all genes into several subgroups. Among these subgroups, four subgroup genes are treatment-associated, which correspond to specific functions. Group1 and Group3 genes are not selected in the control sample, while they are significantly selected in the treatment sample, so they may be related to drug resistance. Group2 and Group4 genes are selected in control, but they are not selected in treatment, so maybe these genes are associated with drug targets.
Same as the section above. We can do enrichment analysis for treatment-associated genes.
##Get information of treatment-associated genes
Square9 = p3$data
##==select group1 genes in 9-Square
idx=Square9$group=="Group1"
geneList = (Square9$Treatment - Square9$Control)[idx]
names(geneList) = rownames(Square9)[idx]
universe=rownames(Square9)
#====KEGG_enrichment=====
kegg1=enrich.ORT(geneList = geneList, universe = universe, type = "KEGG", limit = c(3, 50))
## look at the results
head(as.data.frame(kegg1))
## [1] ID Description NES pvalue p.adjust
## [6] GeneRatio BgRatio geneID geneName Count
## <0 rows> (or 0-length row.names)
Also, pathway visualization can be done using function KeggPathwayView
, the same as the section above.
genedata = dd_essential[, c("Control","Treatment")]
keggID = gsub("KEGG_", "", as.data.frame(kegg1)$ID[1])
KeggPathwayView(gene.data = genedata, pathway.id = keggID, species="hsa")
##Read the figure into R
pngname=paste0(keggID, ".pathview.multi.png")
grid.arrange(grid::rasterGrob(png::readPNG(pngname)))
file.remove(paste0(keggID, c(".pathview.multi.png", ".png", ".xml")))
## R version 3.5.1 Patched (2018-07-12 r74967)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] MAGeCKFlute_1.2.2 gridExtra_2.3 pathview_1.22.0
## [4] org.Hs.eg.db_3.7.0 AnnotationDbi_1.44.0 IRanges_2.16.0
## [7] S4Vectors_0.20.1 Biobase_2.42.0 BiocGenerics_0.28.0
## [10] ggplot2_3.1.0
##
## loaded via a namespace (and not attached):
## [1] fgsea_1.8.0 colorspace_1.3-2 ggridges_0.5.1
## [4] qvalue_2.14.0 XVector_0.22.0 farver_1.1.0
## [7] urltools_1.7.1 ggrepel_0.8.0 bit64_0.9-7
## [10] xml2_1.2.0 codetools_0.2-15 splines_3.5.1
## [13] GOSemSim_2.8.0 knitr_1.20 jsonlite_1.6
## [16] annotate_1.60.0 GO.db_3.7.0 png_0.1-7
## [19] pheatmap_1.0.10 graph_1.60.0 ggforce_0.1.3
## [22] shiny_1.2.0 compiler_3.5.1 httr_1.3.1
## [25] rvcheck_0.1.3 assertthat_0.2.0 Matrix_1.2-15
## [28] lazyeval_0.2.1 limma_3.38.3 later_0.7.5
## [31] tweenr_1.0.0 htmltools_0.3.6 prettyunits_1.0.2
## [34] tools_3.5.1 bindrcpp_0.2.2 igraph_1.2.2
## [37] gtable_0.2.0 glue_1.3.0 reshape2_1.4.3
## [40] DO.db_2.9 dplyr_0.7.8 fastmatch_1.1-0
## [43] Rcpp_1.0.0 enrichplot_1.2.0 Biostrings_2.50.1
## [46] nlme_3.1-137 ggraph_1.0.2 stringr_1.3.1
## [49] mime_0.6 miniUI_0.1.1.1 clusterProfiler_3.10.0
## [52] XML_3.98-1.16 DOSE_3.8.0 europepmc_0.3
## [55] zlibbioc_1.28.0 MASS_7.3-51.1 scales_1.0.0
## [58] hms_0.4.2 promises_1.0.1 KEGGgraph_1.42.0
## [61] RColorBrewer_1.1-2 yaml_2.2.0 memoise_1.1.0
## [64] UpSetR_1.3.3 biomaRt_2.38.0 triebeard_0.3.0
## [67] ggExtra_0.8 stringi_1.2.4 RSQLite_2.1.1
## [70] genefilter_1.64.0 BiocParallel_1.16.2 matrixStats_0.54.0
## [73] rlang_0.3.0.1 pkgconfig_2.0.2 bitops_1.0-6
## [76] evaluate_0.12 lattice_0.20-38 purrr_0.2.5
## [79] bindr_0.1.1 labeling_0.3 cowplot_0.9.3
## [82] bit_1.1-14 tidyselect_0.2.5 ggsci_2.9
## [85] plyr_1.8.4 magrittr_1.5 R6_2.3.0
## [88] DBI_1.0.0 mgcv_1.8-26 pillar_1.3.0
## [91] withr_2.1.2 units_0.6-2 survival_2.43-3
## [94] KEGGREST_1.22.0 RCurl_1.95-4.11 tibble_1.4.2
## [97] crayon_1.3.4 rmarkdown_1.11 viridis_0.5.1
## [100] progress_1.2.0 grid_3.5.1 sva_3.30.0
## [103] data.table_1.11.8 blob_1.1.1 Rgraphviz_2.26.0
## [106] digest_0.6.18 xtable_1.8-3 tidyr_0.8.2
## [109] httpuv_1.4.5 gridGraphics_0.3-0 munsell_0.5.0
## [112] bladderbatch_1.20.0 viridisLite_0.3.0 ggplotify_0.0.3
Aravind Subramanian, Vamsi K. Moothaa, Pablo Tamayo, and Jill P. Mesirov. 2005. “Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.” http://www.pnas.org/content/102/43/15545.full.
Consortium., The Gene Ontology. 2014. “Gene Ontology Consortium: going forward.” https://academic.oup.com/nar/article/43/D1/D1049/2439067.
Guangchuang Yu, Yanyan Han, Li-Gen Wang, and Qing-Yu He. 2012. “clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters.” http://online.liebertpub.com/doi/abs/10.1089/omi.2011.0118.
Hiroko Koike-Yusa, E-Pien Tan, Yilong Li. 2014. “Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.” http://science.sciencemag.org/content/343/6166/80.long.
Laurent Gautier, Benjamin M. Bolstad, Leslie Cope. 2004. “affy—analysis of Affymetrix GeneChip data at the probe level.” https://academic.oup.com/bioinformatics/article/20/3/307/185980.
Luke A.Gilbert, BrittAdamson, Max A.Horlbeck. 2014. “Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.” https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(14)01178-7.
Minoru Kanehisa, Yoko Sato, Susumu Goto. 2014. “Data, information, knowledge and principle: back to metabolism in KEGG.” https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkt1076.
Ophir Shalem1, *, 2. 2014. “Genome-scale CRISPR-Cas9 knockout screening in human cells.” http://science.sciencemag.org/content/343/6166/84.long.
Silvana Konermann, Alexandro E. Trevino, Mark D. Brigham. 2015. “Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.” https://www.nature.com/nature/journal/vnfv/ncurrent/full/nature14136.html.
Tim Wang, David M. Sabatini, Jenny J. Wei1. 2014. “Genetic Screens in Human Cells Using the CRISPR-Cas9 System.” http://science.sciencemag.org/content/343/6166/80.long.
Wei Li, Han Xu, Johannes Köster, and X. Shirley Liu. 2015. “Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR.” https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0843-6.
Wei Li, Tengfei Xiao, Han Xu, and X Shirley Liu. 2014. “MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.” https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0554-4.
Weijun Luo, Cory Brouwer. 2013. “Pathview: an R/Bioconductor package for pathway-based data integration and visualization.” https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btt285.