SeSAMe implements inference of sex, age, ethnicity. These are valuable information for checking the integrity of the experiment and detecting sample swaps.
## [1] TRUE
Sex is inferred based on our curated X-linked probes and Y chromosome probes excluding pseudo-autosomal regions.
## [1] "MALE"
## [1] "XaY"
Ethnicity is inferred using a random forest model trained based on both the built-in SNPs (rs
probes) and channel-switching Type-I probes.
## [1] "WHITE"
SeSAMe provides age regression a la the Horvath 353 model.
## [1] 84.13913
The mean intensity of all the probes characterize the quantity of input DNA and efficiency of probe hybridization.
## [1] 3155.071
SeSAMe performs copy number variation in three steps: 1) normalizes the signal intensity using a copy-number-normal data set; 2) groups adjacent probes into bins; 3) runs DNAcopy internally to group bins into segments.
To visualize segmentation in SeSAMe,
SeSAMe estimates leukocyte fraction using a two-component model.This function works for samples whose targeted cell-of-origin is not related to white blood cells.
## [1] 0.2007592
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scales_1.1.1 DNAcopy_1.68.0 GenomicRanges_1.46.0
## [4] GenomeInfoDb_1.30.0 IRanges_2.28.0 S4Vectors_0.32.2
## [7] wheatmap_0.1.0 ggplot2_3.3.5 sesame_1.12.3
## [10] sesameData_1.12.0 rmarkdown_2.11 ExperimentHub_2.2.0
## [13] AnnotationHub_3.2.0 BiocFileCache_2.2.0 dbplyr_2.1.1
## [16] BiocGenerics_0.40.0
##
## loaded via a namespace (and not attached):
## [1] matrixStats_0.61.0 bitops_1.0-7
## [3] bit64_4.0.5 RColorBrewer_1.1-2
## [5] filelock_1.0.2 httr_1.4.2
## [7] tools_4.1.2 bslib_0.3.1
## [9] utf8_1.2.2 R6_2.5.1
## [11] KernSmooth_2.23-20 DBI_1.1.1
## [13] colorspace_2.0-2 withr_2.4.2
## [15] tidyselect_1.1.1 gridExtra_2.3
## [17] preprocessCore_1.56.0 bit_4.0.4
## [19] curl_4.3.2 compiler_4.1.2
## [21] Biobase_2.54.0 DelayedArray_0.20.0
## [23] labeling_0.4.2 sass_0.4.0
## [25] randomForest_4.6-14 proxy_0.4-26
## [27] rappdirs_0.3.3 stringr_1.4.0
## [29] digest_0.6.28 XVector_0.34.0
## [31] pkgconfig_2.0.3 htmltools_0.5.2
## [33] MatrixGenerics_1.6.0 highr_0.9
## [35] fastmap_1.1.0 rlang_0.4.12
## [37] RSQLite_2.2.8 shiny_1.7.1
## [39] farver_2.1.0 jquerylib_0.1.4
## [41] generics_0.1.1 jsonlite_1.7.2
## [43] BiocParallel_1.28.0 dplyr_1.0.7
## [45] RCurl_1.98-1.5 magrittr_2.0.1
## [47] GenomeInfoDbData_1.2.7 Matrix_1.3-4
## [49] Rcpp_1.0.7 munsell_0.5.0
## [51] fansi_0.5.0 lifecycle_1.0.1
## [53] stringi_1.7.5 yaml_2.2.1
## [55] MASS_7.3-54 SummarizedExperiment_1.24.0
## [57] zlibbioc_1.40.0 plyr_1.8.6
## [59] grid_4.1.2 blob_1.2.2
## [61] parallel_4.1.2 promises_1.2.0.1
## [63] ggrepel_0.9.1 crayon_1.4.2
## [65] lattice_0.20-45 Biostrings_2.62.0
## [67] KEGGREST_1.34.0 knitr_1.36
## [69] pillar_1.6.4 fgsea_1.20.0
## [71] reshape2_1.4.4 fastmatch_1.1-3
## [73] glue_1.5.0 BiocVersion_3.14.0
## [75] evaluate_0.14 data.table_1.14.2
## [77] BiocManager_1.30.16 png_0.1-7
## [79] vctrs_0.3.8 httpuv_1.6.3
## [81] gtable_0.3.0 purrr_0.3.4
## [83] assertthat_0.2.1 cachem_1.0.6
## [85] xfun_0.28 mime_0.12
## [87] xtable_1.8-4 e1071_1.7-9
## [89] later_1.3.0 class_7.3-19
## [91] tibble_3.1.6 AnnotationDbi_1.56.2
## [93] memoise_2.0.0 ellipsis_0.3.2
## [95] interactiveDisplayBase_1.32.0 BiocStyle_2.22.0