SeSAMe implements inference of sex, age, ethnicity. These are valuable information for checking the integrity of the experiment and detecting sample swaps.

## [1] TRUE

Sex

Sex is inferred based on our curated X-linked probes and Y chromosome probes excluding pseudo-autosomal regions.

## [1] "MALE"
## [1] "XaY"

Ethnicity

Ethnicity is inferred using a random forest model trained based on both the built-in SNPs (rs probes) and channel-switching Type-I probes.

## [1] "WHITE"

Age

SeSAMe provides age regression a la the Horvath 353 model.

## [1] 84.13913

Mean intensity

The mean intensity of all the probes characterize the quantity of input DNA and efficiency of probe hybridization.

## [1] 3155.071

Copy Number

SeSAMe performs copy number variation in three steps: 1) normalizes the signal intensity using a copy-number-normal data set; 2) groups adjacent probes into bins; 3) runs DNAcopy internally to group bins into segments.

To visualize segmentation in SeSAMe,

Cell Composition Deconvolution

SeSAMe estimates leukocyte fraction using a two-component model.This function works for samples whose targeted cell-of-origin is not related to white blood cells.

## [1] 0.2007592

Session Info

## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] scales_1.1.1         DNAcopy_1.68.0       GenomicRanges_1.46.0
##  [4] GenomeInfoDb_1.30.0  IRanges_2.28.0       S4Vectors_0.32.2    
##  [7] wheatmap_0.1.0       ggplot2_3.3.5        sesame_1.12.3       
## [10] sesameData_1.12.0    rmarkdown_2.11       ExperimentHub_2.2.0 
## [13] AnnotationHub_3.2.0  BiocFileCache_2.2.0  dbplyr_2.1.1        
## [16] BiocGenerics_0.40.0 
## 
## loaded via a namespace (and not attached):
##  [1] matrixStats_0.61.0            bitops_1.0-7                 
##  [3] bit64_4.0.5                   RColorBrewer_1.1-2           
##  [5] filelock_1.0.2                httr_1.4.2                   
##  [7] tools_4.1.2                   bslib_0.3.1                  
##  [9] utf8_1.2.2                    R6_2.5.1                     
## [11] KernSmooth_2.23-20            DBI_1.1.1                    
## [13] colorspace_2.0-2              withr_2.4.2                  
## [15] tidyselect_1.1.1              gridExtra_2.3                
## [17] preprocessCore_1.56.0         bit_4.0.4                    
## [19] curl_4.3.2                    compiler_4.1.2               
## [21] Biobase_2.54.0                DelayedArray_0.20.0          
## [23] labeling_0.4.2                sass_0.4.0                   
## [25] randomForest_4.6-14           proxy_0.4-26                 
## [27] rappdirs_0.3.3                stringr_1.4.0                
## [29] digest_0.6.28                 XVector_0.34.0               
## [31] pkgconfig_2.0.3               htmltools_0.5.2              
## [33] MatrixGenerics_1.6.0          highr_0.9                    
## [35] fastmap_1.1.0                 rlang_0.4.12                 
## [37] RSQLite_2.2.8                 shiny_1.7.1                  
## [39] farver_2.1.0                  jquerylib_0.1.4              
## [41] generics_0.1.1                jsonlite_1.7.2               
## [43] BiocParallel_1.28.0           dplyr_1.0.7                  
## [45] RCurl_1.98-1.5                magrittr_2.0.1               
## [47] GenomeInfoDbData_1.2.7        Matrix_1.3-4                 
## [49] Rcpp_1.0.7                    munsell_0.5.0                
## [51] fansi_0.5.0                   lifecycle_1.0.1              
## [53] stringi_1.7.5                 yaml_2.2.1                   
## [55] MASS_7.3-54                   SummarizedExperiment_1.24.0  
## [57] zlibbioc_1.40.0               plyr_1.8.6                   
## [59] grid_4.1.2                    blob_1.2.2                   
## [61] parallel_4.1.2                promises_1.2.0.1             
## [63] ggrepel_0.9.1                 crayon_1.4.2                 
## [65] lattice_0.20-45               Biostrings_2.62.0            
## [67] KEGGREST_1.34.0               knitr_1.36                   
## [69] pillar_1.6.4                  fgsea_1.20.0                 
## [71] reshape2_1.4.4                fastmatch_1.1-3              
## [73] glue_1.5.0                    BiocVersion_3.14.0           
## [75] evaluate_0.14                 data.table_1.14.2            
## [77] BiocManager_1.30.16           png_0.1-7                    
## [79] vctrs_0.3.8                   httpuv_1.6.3                 
## [81] gtable_0.3.0                  purrr_0.3.4                  
## [83] assertthat_0.2.1              cachem_1.0.6                 
## [85] xfun_0.28                     mime_0.12                    
## [87] xtable_1.8-4                  e1071_1.7-9                  
## [89] later_1.3.0                   class_7.3-19                 
## [91] tibble_3.1.6                  AnnotationDbi_1.56.2         
## [93] memoise_2.0.0                 ellipsis_0.3.2               
## [95] interactiveDisplayBase_1.32.0 BiocStyle_2.22.0