In this vignette, we demonstrate the unsegmented block bootstrap functionality implemented in nullranges. “Unsegmented” refers to the fact that this implementation does not consider segmentation of the genome for sampling of blocks, see the segmented block bootstrap vignette for the alternative implementation.
First we use the DNase hypersensitivity peaks in A549 downloaded from AnnotationHub, and pre-processed as described in the nullrangesOldData package.
## see ?nullrangesData and browseVignettes('nullrangesData') for documentation
## loading from cache
The following chunk of code evaluates various types of bootstrap/permutation schemes, first within chromosome, and then across chromosome (the default). The default type
is bootstrap, and the default for withinChrom
is FALSE
(bootstrapping with blocks moving across chromosomes).
set.seed(5) # reproducibility
library(microbenchmark)
blockLength <- 5e5
microbenchmark(
list=alist(
p_within=bootRanges(dhs, blockLength=blockLength,
type="permute", withinChrom=TRUE),
b_within=bootRanges(dhs, blockLength=blockLength,
type="bootstrap", withinChrom=TRUE),
p_across=bootRanges(dhs, blockLength=blockLength,
type="permute", withinChrom=FALSE),
b_across=bootRanges(dhs, blockLength=blockLength,
type="bootstrap", withinChrom=FALSE)
), times=10)
## Unit: milliseconds
## expr min lq mean median uq max neval cld
## p_within 1147.3913 1453.6238 2175.5391 1732.7732 2519.8905 4291.4450 10 b
## b_within 1171.7769 1264.0087 2005.2745 1806.3868 2629.1096 3554.7887 10 b
## p_across 259.4592 324.7963 428.4972 355.8430 530.2943 814.4434 10 a
## b_across 575.3773 637.1122 666.8529 660.4226 705.4704 741.7321 10 a
We create some synthetic ranges in order to visualize the different options of the unsegmented bootstrap implemented in nullranges.
library(GenomicRanges)
seq_nms <- rep(c("chr1","chr2","chr3"),c(4,5,2))
gr <- GRanges(seqnames=seq_nms,
IRanges(start=c(1,101,121,201,
101,201,216,231,401,
1,101),
width=c(20, 5, 5, 30,
20, 5, 5, 5, 30,
80, 40)),
seqlengths=c(chr1=300,chr2=450,chr3=200),
chr=factor(seq_nms))
The following function uses functionality from plotgardener to plot the ranges. Note in the plotting helper function that chr
will be used to color ranges by chromosome of origin.
suppressPackageStartupMessages(library(plotgardener))
plotGRanges <- function(gr) {
pageCreate(width = 5, height = 2, xgrid = 0,
ygrid = 0, showGuides = FALSE)
for (i in seq_along(seqlevels(gr))) {
chrom <- seqlevels(gr)[i]
chromend <- seqlengths(gr)[[chrom]]
suppressMessages({
p <- pgParams(chromstart = 0, chromend = chromend,
x = 0.5, width = 4*chromend/500, height = 0.5,
at = seq(0, chromend, 50),
fill = colorby("chr", palette=palette.colors))
prngs <- plotRanges(data = gr, params = p,
chrom = chrom,
y = 0.25 + (i-1)*.7,
just = c("left", "bottom"))
annoGenomeLabel(plot = prngs, params = p, y = 0.30 + (i-1)*.7)
})
}
}
Visualizing two permutations of blocks within chromosome:
for (i in 1:2) {
gr_prime <- bootRanges(gr, blockLength=100, type="permute", withinChrom=TRUE)
plotGRanges(gr_prime)
}
Visualizing two bootstraps within chromosome:
for (i in 1:2) {
gr_prime <- bootRanges(gr, blockLength=100, withinChrom=TRUE)
plotGRanges(gr_prime)
}
Visualizing two permutations of blocks across chromosome. Here we use larger blocks than previously.
for (i in 1:2) {
gr_prime <- bootRanges(gr, blockLength=200, type="permute", withinChrom=FALSE)
plotGRanges(gr_prime)
}
Visualizing two bootstraps across chromosome:
for (i in 1:2) {
gr_prime <- bootRanges(gr, blockLength=200, withinChrom=FALSE)
plotGRanges(gr_prime)
}
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] microbenchmark_1.4-7 excluderanges_0.99.6
## [3] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.17.4
## [5] AnnotationFilter_1.17.1 GenomicFeatures_1.45.2
## [7] AnnotationDbi_1.55.2 patchwork_1.1.1
## [9] plyranges_1.13.1 nullrangesData_0.99.2
## [11] ExperimentHub_2.1.4 AnnotationHub_3.1.7
## [13] BiocFileCache_2.1.1 dbplyr_2.1.1
## [15] ggplot2_3.3.5 plotgardener_0.99.16
## [17] nullranges_0.99.19 InteractionSet_1.21.1
## [19] SummarizedExperiment_1.23.5 Biobase_2.53.0
## [21] MatrixGenerics_1.5.4 matrixStats_0.61.0
## [23] GenomicRanges_1.45.0 GenomeInfoDb_1.29.10
## [25] IRanges_2.27.2 S4Vectors_0.31.5
## [27] BiocGenerics_0.39.2
##
## loaded via a namespace (and not attached):
## [1] plyr_1.8.6 RcppHMM_1.2.2
## [3] lazyeval_0.2.2 splines_4.1.1
## [5] BiocParallel_1.27.17 TH.data_1.1-0
## [7] digest_0.6.28 yulab.utils_0.0.4
## [9] htmltools_0.5.2 fansi_0.5.0
## [11] magrittr_2.0.1 memoise_2.0.0
## [13] ks_1.13.2 Biostrings_2.61.2
## [15] sandwich_3.0-1 prettyunits_1.1.1
## [17] colorspace_2.0-2 blob_1.2.2
## [19] rappdirs_0.3.3 xfun_0.27
## [21] dplyr_1.0.7 crayon_1.4.1
## [23] RCurl_1.98-1.5 jsonlite_1.7.2
## [25] survival_3.2-13 zoo_1.8-9
## [27] glue_1.4.2 gtable_0.3.0
## [29] zlibbioc_1.39.0 XVector_0.33.0
## [31] strawr_0.0.9 DelayedArray_0.19.4
## [33] scales_1.1.1 mvtnorm_1.1-3
## [35] DBI_1.1.1 Rcpp_1.0.7
## [37] xtable_1.8-4 progress_1.2.2
## [39] gridGraphics_0.5-1 bit_4.0.4
## [41] mclust_5.4.7 httr_1.4.2
## [43] RColorBrewer_1.1-2 speedglm_0.3-3
## [45] ellipsis_0.3.2 pkgconfig_2.0.3
## [47] XML_3.99-0.8 farver_2.1.0
## [49] sass_0.4.0 utf8_1.2.2
## [51] DNAcopy_1.67.0 ggplotify_0.1.0
## [53] tidyselect_1.1.1 labeling_0.4.2
## [55] rlang_0.4.12 later_1.3.0
## [57] munsell_0.5.0 BiocVersion_3.14.0
## [59] tools_4.1.1 cachem_1.0.6
## [61] generics_0.1.0 RSQLite_2.2.8
## [63] ggridges_0.5.3 evaluate_0.14
## [65] stringr_1.4.0 fastmap_1.1.0
## [67] yaml_2.2.1 knitr_1.36
## [69] bit64_4.0.5 purrr_0.3.4
## [71] KEGGREST_1.33.0 mime_0.12
## [73] pracma_2.3.3 xml2_1.3.2
## [75] biomaRt_2.49.7 compiler_4.1.1
## [77] filelock_1.0.2 curl_4.3.2
## [79] png_0.1-7 interactiveDisplayBase_1.31.2
## [81] tibble_3.1.5 bslib_0.3.1
## [83] stringi_1.7.5 highr_0.9
## [85] lattice_0.20-45 ProtGenerics_1.25.1
## [87] Matrix_1.3-4 vctrs_0.3.8
## [89] pillar_1.6.4 lifecycle_1.0.1
## [91] BiocManager_1.30.16 jquerylib_0.1.4
## [93] data.table_1.14.2 bitops_1.0-7
## [95] httpuv_1.6.3 rtracklayer_1.53.1
## [97] R6_2.5.1 BiocIO_1.3.0
## [99] promises_1.2.0.1 KernSmooth_2.23-20
## [101] codetools_0.2-18 MASS_7.3-54
## [103] assertthat_0.2.1 rjson_0.2.20
## [105] withr_2.4.2 GenomicAlignments_1.29.0
## [107] Rsamtools_2.9.1 multcomp_1.4-17
## [109] GenomeInfoDbData_1.2.7 parallel_4.1.1
## [111] hms_1.1.1 rmarkdown_2.11
## [113] shiny_1.7.1 restfulr_0.0.13