
syslog-ng reference manual

Balázs Scheidler

syslog-ng reference manual
by Balázs Scheidler

Copyright © 1999-2004 Balázs Scheidler

This manual is free software; you may redistribute it and/ormodify it under the terms of the GNU General Public License aspublished by the Free

Software Foundation; either version 2, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a

particular purpose. See the GNU General Public License for more details.

Table of Contents
1. Introduction to syslog-ng..1

2. Message paths...2

2.1. Sources..2
2.2. Filters..3
2.3. Destinations...4
2.4. Log paths...4
2.5. Options..5

3. Reference..6

3.1. Source drivers..6
3.1.1. internal()...6
3.1.2. unix-stream() and unix-dgram()...6
3.1.3. tcp() and udp()..7
3.1.4. file()..8
3.1.5. pipe()...9
3.1.6. sun-streams() driver..10

3.2. Destination drivers..10
3.2.1. file()..11
3.2.2. pipe()...14
3.2.3. unix-stream() & unix-dgram()..15
3.2.4. udp() & tcp()...16
3.2.5. usertty()...18
3.2.6. program()..19

3.3. Filter functions..19
3.4. Options..20

4. Performance tuning in syslog-ng..23

4.1. Setting garbage collector parameters..23
4.1.1. gc_idle_threshold()...23
4.1.2. gc_busy_threshold()...23

4.2. Setting output queue size..23
4.3. Setting sync parameter..24

iii

List of Tables
2-1. Communication method between syslogd and its clients...2
2-2. Available source drivers in syslog-ng...3
2-3. Available destination drivers in syslog-ng..4
2-4. Log statement flags...5
3-1. Available options for unix-stream & unix-dgram..7
3-2. Available options for udp() & tcp()..8
3-3. Available options for file..9
3-4. Available options for pipe..9
3-5. Available options for sun-streams..10
3-6. Available macros in filename expansion..11
3-7. Available options for file()..12
3-8. Available options for pipe()..14
3-9. Available options for unix-stream() & unix-dgram()...15
3-10. Available options for udp() & tcp()..16
3-11. Additional options for tcp()..17
3-12. Available options for usertty()..18
3-13. Available options for program()...19
3-14. Available filter functions in syslog-ng..20
3-15. List of supported global options in syslog-ng..20

iv

Chapter 1. Introduction to syslog-ng
One of the most neglected area of Unix is handling system events. Daily checks for system messages is
crucial for the security and health conditions of a computersystem.

System logs contain much "noise" - messages which have no importance - and on the contrary important
events, which should not be lost in the load of messages. Withcurrent tools it’s difficult to select which
messages we are interested in.

A message is sent to different destinations based on the assigned facility/priority pair. There are 12+8 (12
real and 8 local) predefined facilities (mail, news, auth etc.), and 8 different priorities (ranging from alert
to debug).

One problem is that there are facilities which are too general (daemon), and these facilities are used by
many programs, even if they do not relate each other. It is difficult to find the interesting bits from the
enourmous amount of messages.

A second problem is that there are very few programs which allow setting their "facility code" to log
under. It’s at best a compile time parameter.

So using facilities as a means of filtering is not the best way.For it to be a good solution would require
runtime option for all applications, which specifies the logfacility to log under, and the ability to create
new facilities in syslogd. Neither of these are available, and the first is neither feasible.

One of the design principles of syslog-ng was to make messagefiltering much more finegrained.
syslog-ng is able to filter messages based on the contents of messages in addition to the priority/facility
pair. This way only the messages we are really interested in get to a specific destination. Another design
principle was to make logforwarding between firewalled segments easier: long hostname format, which
makes it easy to find the originating and chain of forwarding hosts even if a log message traverses several
computers. And last principle was a clean and powerful configuration file format.

1

Chapter 2. Message paths
In syslog-ng a message path (or message route) consist of oneor more sources, one or more filtering
rules and one or more destinations. A message is entered to syslog-ng in one of its sources, if that
message matches the filtering rules it goes out using the destinations. Note that a message goes to _all_
matching destinations by default, although this behaviourcan be changed.

2.1. Sources
A source is a collection of source drivers, which collect messages using a given method. For instance
there’s a source driver for AF_UNIX, SOCK_STREAM style sockets, which is used by the Linux
syslog() call.

To declare a source, you’ll need to use the source statement in the configuration file with the following
syntax:

source <identifier> { source-driver(params); source-driver(params); ... };

The identifier has to uniquely identify this given source andof course may not clash with any of the
reserved words (in case you had a nameclash, simply enclose the identifier in quotation marks)

You can control exactly which drivers are used to gather log messages, thus you’ll have to know how
your system and its native syslogd communicate. Here’s a introduction to the inner workings of syslogd
on some of the platforms I tested:

Table 2-1. Communication method between syslogd and its clients

Platform Method

Linux A SOCK_STREAM unix socket named /dev/log

BSD flavors A SOCK_DGRAM unix socket named /var/run/log

Solaris (2.5 or below) An SVR4 style STREAMS device named /dev/log

Solaris (2.6 or above) In addition to the STREAMS device used in
versions below 2.6, uses a new multithreaded IPC
method called door. By default the door used by
syslogd is /etc/.syslog_door

Each possible communication mechanism has the corresponding source driver in syslog-ng. For instance
to open a unix socket with SOCK_DGRAM style communication you use the driver unix-dgram, the
same with SOCK_STREAM style - as used under Linux - is called unix-stream.

Example 2-1. Source statement on a Linux based operating system

source src { unix-stream("/dev/log"); internal(); udp(ip(0.0.0.0) port(514)); };

2

Chapter 2. Message paths

Each driver may take parameters, some of them are required, others are optional. The required
parameters are positional, meaning that they must be specified in a defined order. A unix-stream() driver
has a single required argument, the name of the socket to listen to, and several optional parameters,
which follow the socket name. Optional arguments can be specified in any order and must have the form
option(value).

Table 2-2. Available source drivers in syslog-ng

Name Description

internal() Messages generated internally in syslog-ng

unix-stream() Opens the specified unix socket in
SOCK_STREAM mode, and listens for messages.

unix-dgram() Opens the specified unix socket in SOCK_DGRAM
mode, and listens for messages.

file() Opens the specified file, and reads messages.

pipe(), fifo Opens the specified named pipe and reads messages

udp() Listens on the specified UDP port for messages.

tcp() Listens on the specified TCP port for messages.

sun-stream(), sun-streams() Opens the specified STREAMS device on Solaris
systems, and reads messages.

For a complete descriptions on the above drivers, seeChapter 3

2.2. Filters
Filters perform log routing inside syslog-ng. You can writea boolean expression using internal functions,
which has to evaluate to true for the message to pass.

Filters have also a uniquely identifying name, so you can refer to filters in your log statements.

Syntax for the filter statement:

filter <identifier> { expression; };

An expression may contain parentheses, the boolean operators "and", "or" and "not", and any of the
functions listen inTable 3-14.

Example 2-2. A filter statement finding the messages containing the word deny coming from the
host blurp

filter f_blurp_deny { host("blurp") and match("deny"); };

For a complete description on the above functions, seeChapter 3.

In earlier revisions of syslog-ng there was a special filter identifier, "DEFAULT", which matched all
not-yet-matched messages. This could make your configuration much simpler and easier to manage. This

3

Chapter 2. Message paths

feature was removed in syslog-ng 1.5.x, and a more powerful idea was introduced. For more details
consultSection 2.4.

2.3. Destinations
A destination is where log is sent if filtering rules match. Similarly to sources, destinations are comprised
of one or more drivers, each of which define how messages are handled. To declare a destination in the
configuration file, you’ll need a destination statement, whose syntax is as following:

destination <identifier> { destination-driver(params); destination-driver(params); ...

Table 2-3. Available destination drivers in syslog-ng

Name Description

file() Writes messages to the given file

fifo(), pipe() Writes messages to the given named pipe

unix-stream() Sends messages to the given unix socket in
SOCK_STREAM style (Linux)

unix-dgram() Sends messages to the given unix socket in
SOCK_DGRAM style (BSD)

udp() Sends messages to specified host and UDP port

tcp() Sends messages to specified host and TCP port

usertty() Sends messages to specified user if logged in

program() Forks and launches given program, and sends
messages to its standard input.

For detailed list of the supported drivers, seeChapter 3.

2.4. Log paths
In the previous chapters we learnt how to define sources, filters and destinations. We’ll need to connect
those components together, which is accomplished by the logstatement. The needed syntax is here:

log { source(s1); source(s2); ...
filter(f1); filter(f2); ...
destination(d1); destination(d2); ...
flags(flag1[, flag2...]); };

Any message coming from any of the listed sources, matching the all the filters are sent to all listed
destinations. Log statements are processed in the order they appear in the config file.

By default all matching log statements are processed, therefore a single log message might be sent to the
same destination several times, given that destination is listed on several log statements.

4

Chapter 2. Message paths

This default behaviour can be changed by the flags() parameter.

Table 2-4. Log statement flags

Flag Description

final This flag means that the processing of log
statements ends here. Note that this doesn’t
necessarily mean that matching messages will be
stored once, as they can be matching log statements
processed prior the current one.

fallback This flag makes a log statement ’fallback’. Being a
fallback statement means that only messages not
matching any ’non-fallback’ log statements will be
dispatched.

catchall This flag means that the source of the message is
ignored, only the filters are taken into account when
matching messages.

2.5. Options
There are several options you can specify, which modifies thebehaviour of syslog-ng. For an exact list of
possible options see theChapter 3. The general syntax is here:

options { option1(params); option2(params); ... };

Each option may have parameters, just like in driver specification.

5

Chapter 3. Reference
This chapter documents the drivers and options you may specify in the configuration file.

3.1. Source drivers
The following drivers may be used in the source statement, asdescribed in the previous chapter.

3.1.1. internal()
All internally generated messages "come" from this specialsource. If you want warnings, errors and
notices from syslog-ng itself, you have to include this source in one of your source statements.

Declaration: internal()

Syslog-ng will issue a warning upon startup, if this driver is not referenced.

Example 3-1. Using the internal() driver

source s_local { internal(); };

3.1.2. unix-stream() and unix-dgram()
These two drivers behave similarly: they open the given AF_UNIX socket, and start listening on them for
messages. unix-stream() is primarily used on Linux, and uses SOCK_STREAM semantics (connection
oriented, no messages are lost), unix-dgram() is used on BSDs, and uses SOCK_DGRAM semantics,
this may result in lost local messages, if the system is overloaded.

To avoid denial of service attacks when using connection-oriented protocols, the number of
simultaneously accepted connections should be limited. This can be achieved using the
max-connections() parameter. The default value of this parameter is quite strict, you might have to
increase it on a busy system.

Both unix-stream and unix-dgram has a single required positional argument, specifying the filename of
the socket to create, and several optional parameters.

NOTE: syslogd on Linux originally was using SOCK_STREAM sockets but this was changed in some
distributions to SOCK_DGRAM at around 1999. The change was used as a fix to a possible DoS
problem, however I do not think it was a proper solution. On Linux you can choose to use whichever you
like as syslog clients automatically detect the socket typebeing used. My original post to bugtraq from
1999 when the change occurred. (http://www.security-express.com/archives/bugtraq/1999-q4/0071.html)

Declaration:
unix-stream(filename [options]);
unix-dgram(filename [options]);

6

Chapter 3. Reference

The following options can be specified:

Table 3-1. Available options for unix-stream & unix-dgram

Name Type Description Default

owner() string Set the uid of the socket.root

group() string Set the gid of the socket.
Default: root.

root

perm() number Set the permission mask.
For octal numbers prefix
the number with ’0’, e.g.
use 0755 for rwxr-xr-x.

0666

keep-alive() yes or no Selects whether to keep
connections opened when
syslog-ng is restarted, can
be used only with
unix-stream(). Default:
yes.

yes

max-connections() number Limits the number of
simultaneously opened
connections. Can be used
only with unix-stream().

10

Example 3-2. Using the unix-stream() and unix-dgram() drivers

source declaration on Linux
source s_stream { unix-stream("/dev/log" max-connections(10)); };

source declaration on BSDs
source s_dgram { unix-dgram("/var/run/log"); };

3.1.3. tcp() and udp()
These drivers let you receive messages from the network, andas the name of the drivers show, you can
use both UDP and TCP as transport.

UDP is a simple datagram oriented protocol, which provides "best effort service" to transfer messages
between hosts. It may lose messages, and no attempt is made toretransmit such lost messages at the
protocol level.

TCP provides connection-oriented service, which basically means a flow-controlled message pipeline. In
this pipeline, each message is acknowledged, and retransmission is done for lost packets. Generally it’s
safer to use TCP, because lost connections can be detected, and no messages get lost, but traditionally the
syslog protocol uses UDP.

7

Chapter 3. Reference

None of tcp() and udp() drivers require positional parameters. By default they bind to 0.0.0.0:514, which
means that syslog-ng will listen on all available interfaces, port 514. To limit accepted connections to one
interface only, use the localip() parameter as described below.

NOTE: the tcp port 514 is reserved for use with rshell, so you have to pick another port if you intend
to use syslog-ng and rshell at the same time.

Declaration:
tcp([options]);
udp([options]);

The following options are valid for udp() and tcp()

Table 3-2. Available options for udp() & tcp()

Name Type Description Default

ip() or localip() string The IP address to bind to.
Note that this is not the
address where messages
are accepted from.

0.0.0.0

port() or localport() number The port number to bind
to.

514

keep-alive() yes or no Available for tcp() only,
and specifies whether to
close connections upon
the receival of a SIGHUP
signal.

yes

tcp-keep-alive() yes or no Available for tcp() only,
and specifies whether to
enable TCP keep alive
messages using the
SO_KEEPALIVE socket
option.

no

max-connections() number Specifies the maximum
number of simultaneous
connections.

10

Example 3-3. Using the udp() and tcp() drivers

source s_tcp { tcp(ip(127.0.0.1) port(1999) max-connections(10)); };
source s_udp { udp(); };

8

Chapter 3. Reference

3.1.4. file()
Usually the kernel presents its messages in a special file (/dev/kmsg on BSDs, /proc/kmsg on Linux), so
to read such special files, you’ll need the file() driver. Please note that you can’t use this driver to follow a
file like tail -f does. To feed a growing logfile into syslog-ng(HTTP access.log for instance), use a script
like this:

Example 3-4. example script to feed a growing logfile into syslog-ng

#!/bin/sh
tail -f logfile | logger -p local4.info

The file driver has a single required parameter specifying the file to open and the following options:

Table 3-3. Available options for file

Name Type Description Default

log_prefix() string The string to prepend log
messages. Useful for
logging kernel messages
as it is not prefixed by
’kernel:’ by default

empty string

Declaration:
file(filename);

Example 3-5. Using the file() driver

source s_file { file("/proc/kmsg"); };

NOTE: on Linux, historically the klogd daemon was used to read kernel messages and forward
them to the syslogd process. klogd preprocessed kernel messages and replaced addresses with
symbolic names (from /boot/System.map), but this method of symbol resolving has been deprecated
by the ksymoops utility and similar kernel features. For these reasons it is not recommended to use
both klogd and syslog-ng at the same time.

3.1.5. pipe()
The pipe driver opens a named pipe with the specified name, andlistens for messages. It’s used as the
native message getting protocol on HP-UX.

The pipe driver has a single required parameter, specifyingthe filename of the pipe to open, and the
following options:

9

Chapter 3. Reference

Table 3-4. Available options for pipe

Name Type Description Default

pad_size() number Specifies input padding.
Some operating systems
(such as HP-UX) pad all
messages to block
boundary. This option can
be used to specify the
block size. (HP-UX uses
2048 bytes)

0

Declaration:
pipe(filename);

NOTE: you’ll need to create this pipe using mkfifo(1).

Example 3-6. Using the pipe() driver

source s_pipe { pipe("/dev/log"); };

3.1.6. sun-streams() driver
Solaris uses its STREAMS API to send messages to the syslogd process. You’ll have to compile
syslog-ng with this driver compiled in (see ./configure --help).

Newer versions of Solaris (2.5.1 and above), uses a new IPC inaddition to STREAMS, called door to
confirm delivery of a message. Syslog-ng supports this new IPC mechanism with the door() option (see
below).

The sun-streams() driver has a single required argument, specifying the STREAMS device to open and a
single option.

Example 3-7. Using the sun-streams() driver

source s_stream { sun-streams("/dev/log" door("/etc/.syslog_door"); };

Table 3-5. Available options for sun-streams

Name Type Description Default

door() string Specifies the filename of
a door to open, needed on
Solaris above 2.5.1.

none

10

Chapter 3. Reference

3.2. Destination drivers
Destination drivers output log messages to somewhere outside syslog-ng: a file or a network socket.

3.2.1. file()
The file driver is one of the most important destination drivers in syslog-ng. It allows you to output
messages to the named file, or as you’ll see to a set of files.

The destination filename may include macros which gets expanded when the message is written, thus a
simple file() driver may result in several files to be created.Macros can be included by prefixing the
macro name with a ’$’ sign (without the quotes), just like in Perl/PHP.

If the expanded filename refers to a directory which doesn’t exist, it will be created depending on the
create_dirs() setting (both global and a per destination option)

Warning: since the state of each created file must be tracked by syslog-ng, it consumes some memory for
each file. If no new messages are written to a file within 60 seconds (controlled by the time_reap global
option), it’s closed, and its state is freed.

Exploiting this, a DoS attack can be mounted against your system. If the number of possible destination
files and its needed memory is more than the amount your logserver has.

The most suspicious macro is $PROGRAM, where the possible variations is quite high, so in untrusted
environments $PROGRAM usage should be avoided.

Table 3-6. Available macros in filename expansion

Name Description

FACILITY The name of the facility, the message is tagged as
coming from.

PRIORITY or LEVEL The priority of the message.

TAG The priority and facility encoded as a 2 digit
hexadecimal number.

DATE

FULLDATE

ISODATE

YEAR The year the message was sent. Time expansion
macros can either use the time specified in the log
message, e.g. the time the log message is sent, or the
time the message was received by the log server.
This is controlled by the use_time_recvd() option.

MONTH The month the message was sent.

DAY The day of month the message was sent.

WEEKDAY The 3-letter name of the day of week the message
was sent, e.g. ’Thu’.

HOUR The hour of day the message was sent.

MIN The minute the message was sent.

11

Chapter 3. Reference

Name Description

SEC The second the message was sent.

TZOFFSET The time-zone as hour offset from GMT. e.g.
’-0700’

TZ The time zone or name or abbreviation. e.g. ’PDT’

FULLHOST

HOST The name of the source host where the message is
originated from. If the message traverses several
hosts, and chain_hostnames() is on, the first one is
used.

PROGRAM The name of the program the message was sent by.

MSG or MESSAGE Message contents including the programname and
pid.

MSGONLY Message contents without the program name.

Table 3-7. Available options for file()

Name Type Description Default

log_fifo_size() number The number of entries in
the output fifo.

Use global setting.

fsync() yes or no Forces an fsync() call on
the destination fd after
each write. Note: this may
degrade performance
seriously

sync_freq() number The logfile is synced
when this number of
messages has been
written to it.

Use global setting.

encrypt() yes or no Encrypt the resulting file.
NOTE: this is not
implemented as of 1.3.14.

Use global setting.

compress() yes or no Compress the resulting
logfile using zlib. NOTE:
this is not implemented as
of 1.3.14.

Use global setting.

owner() string Set the owner of the
created filename to the
one specified.

root

group() string Set the group of the
created filename to the
one specified.

root

12

Chapter 3. Reference

Name Type Description Default

perm() number The permission mask of
the file if it is created by
syslog-ng.

0600

create_dirs() yes or no Enable creating
non-existing directories.

no

dir_perm() number The permission mask of
directories created by
syslog-ng. Log directories
are only created if a file
after macro expansion
refers to a non-existing
directory, and dir creation
is enabled using
create_dirs().

0600

dir_owner() string The owner of directories
created by syslog-ng.

root

dir_group() string The group of directories
created by syslog-ng.

root

template() string Specifies a template
which defines the
logformat to be used in
this file. Possible macros
are the same as with
destination file().

a format conforming to
the default logfile format.

template_escape() yes or no Turns on escaping ’ and "
in templated output files.
This is useful for
generating SQL
statements and quoting
string contents so that
parts of your log message
don’t get interpreted as
commands to the SQL
server.

yes

13

Chapter 3. Reference

Name Type Description Default

remove_if_older() number If set to a value higher
than 0, before writing to a
file, syslog-ng checks
whether this file is older
than the specified amount
of time (specified in
seconds). If so, it removes
the existing file and the
line to be written is the
first line in a new file with
the same name. In
combination with e.g. the
$WEEKDAY macro, this
is can be used for simple
log rotation, in case not
all history need to be
kept.

Do never remove existing
files, but append (= 0).

Example 3-8. Using the file() driver

destination d_file { file("/var/log/messages"); };

Example 3-9. Using the file() driver with macros in the file name and a template for the message

destination d_file {
file("/var/log/$YEAR.$MONTH.$DAY/messages"

template("$HOUR:$MIN:$SEC $TZ $HOST [$LEVEL] $MSG $MSG\n")
template_escape(no)

);
};

3.2.2. pipe()
This driver sends messages to a named pipe like /dev/xconsole

The pipe driver has a single required parameter, specifyingthe filename of the pipe to open.

Declaration:
pipe(filename);

NOTE: you’ll need to create this pipe using mkfifo(1).

Table 3-8. Available options for pipe()

14

Chapter 3. Reference

Name Type Description Default

owner() string Set the owner of the pipe
to the one specified.

root

group() string Set the group of the pipe
to the one specified.

root

perm() number The permission mask of
the pipe.

0600

template() string Specifies a template
which defines the
logformat to be used.
Possible macros are the
same as with destination
file().

a format conforming to
the default logfile format.

template_escape() yes or no Turns on escaping ’ and "
in templated output files.
This is useful for
generating SQL
statements and quoting
string contents so that
parts of your log message
don’t get interpreted as
commands to the SQL
server.

yes

Example 3-10. Using the pipe() driver

destination d_pipe { pipe("/dev/xconsole"); };

3.2.3. unix-stream() & unix-dgram()
This driver sends messages to a unix socket in either SOCK_STREAM or SOCK_DGRAM mode.

Both drivers have a single required argument specifying thename of the socket to connect to.

Declaration:
unix-stream(filename [options]);
unix-dgram(filename [options]);

Table 3-9. Available options for unix-stream() & unix-dgram()

Name Type Description Default

15

Chapter 3. Reference

Name Type Description Default

template() string Specifies a template
which defines the
logformat to be used.
Possible macros are the
same as with destination
file().

a format conforming to
the default logfile format.

template_escape() yes or no Turns on escaping ’ and "
in templated output files.
This is useful for
generating SQL
statements and quoting
string contents so that
parts of your log message
don’t get interpreted as
commands to the SQL
server.

yes

Example 3-11. Using the unix-stream() driver

destination d_unix_stream { unix-stream("/var/run/logs"); };

3.2.4. udp() & tcp()
This driver sends messages to another host on the local intranet or internet using either UDP or TCP
protocol.

Both drivers have a single required argument specifying thedestination host address, where messages
should be sent, and several optional parameters. Note that this differs from source drivers, where local
bind address is implied, and none of the parameters are required.

Declaration:
tcp(host [options]);
udp(host [options]);

Table 3-10. Available options for udp() & tcp()

Name Type Description Default

localip() string The IP address to bind to
before connecting to
target.

0.0.0.0

localport() number The port number to bind
to.

0

port() or destport() number The port number to
connect to.

514

16

Chapter 3. Reference

Name Type Description Default

template() string Specifies a template
which defines the
logformat to be used.
Possible macros are the
same as with destination
file().

a format conforming to
the default logfile format.

template_escape() yes or no Turns on escaping ’ and "
in templated output. This
is useful for generating
SQL statements and
quoting string contents so
that parts of your log
message don’t get
interpreted as commands
to the SQL server.

yes

tcp-keep-alive() yes or no Available for tcp() only,
and specifies whether to
enable TCP keep alive
messages using the
SO_KEEPALIVE socket
option.

no

spoof_source yes or no Enables source address
spoofing. This means that
the host running
syslog-ng generates UDP
packets with the source IP
address matching the
original sender of the
message. It is useful when
you want to perform some
kind of preprocessing via
syslog-ng then forward
messages to your central
log management solution
with the source address of
the original sender. This
option only works for
UDP destinations though
the original message can
be received by TCP as
well. This option is only
available if syslog-ng was
compiled using the
--enable-spoof-source
configure option.

no

17

Chapter 3. Reference

Table 3-11. Additional options for tcp()

Name Type Description Default

sync() number The messages are sent to
the remote host when this
number of messages have
been collected.

0

Example 3-12. Using the tcp() driver

destination d_tcp { tcp("10.1.2.3" port(1999) localport(999)); };

3.2.5. usertty()
This driver writes messages to the terminal of a logged-in user.

The usertty driver has a single required argument, specifying a username who should receive a copy of
matching messages, and no optional arguments.

Declaration:
usertty(username);

Table 3-12. Available options for usertty()

Name Type Description Default

template() string Specifies a template
which defines the
logformat to be used.
Possible macros are the
same as with destination
file().

a format conforming to
the default logfile format.

template_escape() yes or no Turns on escaping ’ and "
in templated output. This
is useful for generating
SQL statements and
quoting string contents so
that parts of your log
message don’t get
interpreted as commands
to the SQL server.

yes

Example 3-13. Using the usertty() driver

destination d_usertty { usertty("root"); };

18

Chapter 3. Reference

3.2.6. program()
This driver fork()’s executes the given program with the given arguments and sends messages down to
the stdin of the child.

The program driver has a single required parameter, specifying a program name to start and no options.
The program is executed with the help of the current shell, sothe command may include both file
patterns and I/O redirection, they will be processed.

Declaration:
program(commandtorun);

NOTE: the program is executed once at startup, and kept running until SIGHUP or exit. The reason
is to prevent starting up a large number of programs for messages, which would imply an easy DoS.

Table 3-13. Available options for program()

Name Type Description Default

template() string Specifies a template
which defines the
logformat to be used.
Possible macros are the
same as with destination
file().

a format conforming to
the default logfile format.

template_escape() yes or no Turns on escaping ’ and "
in templated output. This
is useful for generating
SQL statements and
quoting string contents so
that parts of your log
message don’t get
interpreted as commands
to the SQL server.

yes

Example 3-14. Using the program() destination driver

destination d_prg { program("/bin/cat >/dev/null"); };

19

Chapter 3. Reference

3.3. Filter functions
The following functions may be used in the filter statement, as described in the previous chapter.

Table 3-14. Available filter functions in syslog-ng

Name Synopsis Description

facility facility(faciliy[,facility]) Match messages

level() or priority() level(pri[,pri1..pri2[,pri3]]) Match messages

program() program(regexp) Match messages

host() host(regexp) Match messages

match() match(regexp) Tries to match

filter() filter(filtername) Call another filter

netmask() netmask(ip/mask) Check the sender’

3.4. Options
The following options can be specified in the options statement, as described in the previous chapter.

Table 3-15. List of supported global options in syslog-ng

Name Accepted values Description

time_reopen() number The time to wait before a died
connection is reestablished

time_reap() number The time to wait before an idle
destination file is closed.

sync() number The number of lines buffered
before written to file

mark() number The number of seconds between
two MARK lines. NOTE: not
implemented yet.

stats() number The number of seconds between
two STATS.

log_fifo_size() number The number of lines fitting to the
output queue

chain_hostnames() yes or no Enable or disable the chained
hostname format.

keep_hostname() yes or no Enable or disable hostname
rewriting.

20

Chapter 3. Reference

Name Accepted values Description

check_hostname() yes or no Enable or disable whether the
hostname contains valid
characters.

bad_hostname() regular expression A regexp which matches
hostnames which should not be
taken as such.

create_dirs() yes or no Enable or disable directory
creation for destination files.

owner() userid .

group() groupid .

perm() permission value .

dir_owner() userid .

dir_group() groupid .

dir_perm() permission value .

use_time_recvd() yes or no Use the time a message is received
instead of the one specified in the
message.

use_dns() yes or no Enable or disable DNS usage.
syslog-ng blocks on DNS queries,
so enabling DNS may lead to a
Denial of Service attack. To
prevent DoS, protect your
syslog-ng network endpoint with
firewall rules, and make sure that
all hosts, which may get to
syslog-ng is resolvable.

dns_cache() yes or no Enable or disable DNS cache
usage.

dns_cache_size() number Number of hostnames in the DNS
cache.

dns_cache_expire() number Number of seconds while a
successful lookup is cached.

dns_cache_expire_failed() number Number of seconds while a failed
lookup is cached.

log_msg_size() number Maximum length of message in
bytes.

use_fqdn() yes or no Add Fully Qualified Domain
Name instead of short hostname.

gc_idle_threshold() number Sets the threshold value for the
garbage collector, when syslog-ng
is idle. GC phase starts when the
number of allocated objects reach
this number. Default: 100.

21

Chapter 3. Reference

Name Accepted values Description

gc_busy_threshold() number Sets the threshold value for the
garbage collector, when syslog-ng
is busy. GC phase starts when the
number of allocated objects reach
this number. Default: 3000.

22

Chapter 4. Performance tuning in syslog-ng
There are several settings available you can finetune the behaviour of syslog-ng. The defaults should be
adequate for a single server or workstation installation, but for a central loghost receiving the logs from
multiple computers it may not be enough.

4.1. Setting garbage collector parameters
Syslog-ng uses a garbage collector internally, and while the garbage collector is running it does not
accept messages. This may cause problems if some non-connection oriented transport protocol is used,
like unix-dgram() or udp(). There are two settings which control the garbage collection phase:

4.1.1. gc_idle_threshold()
With this option you can specify the idle threshold of the gc.If the number of allocated objects reach this
number, and the system is idle (no message arrived within 100msec), a gc phase starts. Since the system
is idle, presumably no messages will be lost if the gc is ran. Therefore this value should be low, but
higher than the minimally allocated objects. The minimum number of objects allocated depends on your
configuration, but you can get exact numbers by specifying the -v command line option.

4.1.2. gc_busy_threshold()
This threshold is used when syslog-ng is busy accepting messages (this means that within 100msec an
I/O event occured), however to prevent syslog-ng eating allyour memory, gc should be ran in these cases
as well. Set this value high, so that your log bursts don’t getinterrupted by the gc.

4.2. Setting output queue size
Syslog-ng always reads its incoming log channels to preventyour running daemons from blocking. This
may result in lost messages if the output queue is full. It’s therefore important to set the output queue size
(termed in number of messages), which you can do globally, oron a per destination basis.

options { log_fifo_size(1000); };

or

destination d_messages { file("/var/log/messages" log_fifo_size(1000)); };

You should set your fifo size to the estimated number of messages in a message burst. If bursts extend the
bandwidth of your destination pipe, syslog-ng can feed messages into the destination pipe after the burst
has collapsed.

23

Chapter 4. Performance tuning in syslog-ng

Of course syslog-ng cannot widen your network bandwidth, soif your destination host lives on a noisy
network, and your logtraffic extends the bandwidth of this network, syslog-ng can’t do anything. It’ll do
its best however.

4.3. Setting sync parameter
The sync parameter doesn’t exactly do what you might expect.As you have seen messages to be sent are
buffered in an output queue. The sync parameter specifies thenumber of messages held in this buffer
before anything is written.

Note that it doesn’t write all buffered messages in one single chunk, it writes each distinct message with
a single write() system call.

24

