
NQC Programmer's Guide

Version 2.3 r1, by Dave Baum

Page i

Contents

1 Introduction..1

2 The NQC Language ...2

2.1 Lexical Rules..2

2.1.1 Comments ..2

2.1.2 Whitespace...3

2.1.3 Numerical Constants..3

2.1.4 Identifiers and Keywords...3

2.2 Program Structure ..4

2.2.1 Tasks ..4

2.2.2 Functions..5

2.2.3 Subroutines...8

2.2.4 Variables ..9

2.2.5 Arrays...11

2.3 Statements ..11

2.3.1 Variable Declaration ..12

2.3.2 Assignment...12

2.3.3 Control Structures ..13

2.3.4 Access Control and Events ..15

2.3.5 Other Statements..17

2.4 Expressions ..18

2.4.1 Conditions ..20

2.5 The Preprocessor..21

2.5.1 #include..21

Page ii

2.5.2 #define..21

2.5.3 Conditional Compilation..22

2.5.4 Program Initialization ..22

2.5.5 Reserving Storage ..22

3 NQC API..24

3.1 Sensors ...24

3.1.1 Types and Modes RCX, CyberMaster ...24

3.1.2 Sensor Information...27

3.1.3 Scout Light Sensor Scout...28

3.2 Outputs...29

3.2.1 Primitive Calls..29

3.2.2 Convenience Calls..31

3.2.3 Global Control RCX2, Scout ...32

3.3 Sound ...33

3.4 LCD Display RCX...34

3.5 Communication..36

3.5.1 Messages RCX, Scout..36

3.5.2 Serial RCX2...37

3.5.3 VLL Scout..39

3.6 Timers ..39

3.7 Counters RCX2, Scout...40

3.8 Access Control RCX2, Scout...41

3.9 Events RCX2, Scout ..42

3.9.1 RCX2 Events RCX2 ..42

Page iii

3.9.2 Scout Events Scout...47

3.10 Data Logging RCX ..49

3.11 General Features ..50

3.12 RCX Specific Features...51

3.13 Scout Specific Features..52

3.14 CyberMaster Specific Features ..53

4 Technical Details..56

4.1 The asm statement..56

4.2 Data Sources ..57

NQC Programmer's Guide

Page 1

1 Introduction

NQC stands for Not Quite C, and is a simple language for programming several LEGO

MINDSTORMS products. Some of the NQC features depend on which MINDSTORMS

product you are using. This product is referred to as the target for NQC. Presently, NQC

supports four different targets: RCX, CyberMaster, Scout, and RCX2 (an RCX running

2.0 firmware).

The preprocessor and control structures of NQC are very similar to C. NQC is not a

general purpose language - there are many restrictions that stem from limitations of the

targets.

Logically, NQC is defined as two separate pieces. The NQC language describes the

syntax to be used in writing programs. The NQC API describes the system functions,

constants, and macros that can be used by programs. This API is defined in a special file

built in to the compiler. By default, this file is always processed before compiling a

program.

This document describes both the NQC language and the NQC API. In short, it provides

the information needed to write NQC programs. Since there are several different

interfaces for NQC, this document does not describe how to use any specific NQC

implementation. Refer to the documentation provided with the NQC tool, such as the

NQC User Manual for information specific to that implementation.

For up-to-date information and documentation for NQC, visit the NQC Web Site at

http://www.enteract.com/~dbaum/nqc

http://www.enteract.com/~dbaum/nqc

NQC Programmer's Guide

Page 2

2 The NQC Language

This section describes the NQC language itself. This includes the lexical rules used by

the compiler, the structure programs, statements, and expressions, and the operation of

the preprocessor.

2.1 Lexical Rules

The lexical rules describe how NQC breaks a source file into individual tokens. This

includes the way comments are written, then handling of whitespace, and valid characters

for identifiers.

2.1.1 Comments

Two forms of comments are supported in NQC. The first form (traditional C comments)

begin with /* and end with */. They may span multiple lines, but do not nest:

/ * th is i s a co mm en t */

/ * th is i s a tw o

 li ne c om me nt * /

/ * an ot he r co mm en t. ..

 /* t ry in g to n es t. ..

 e nd in g th e in ne r co mm en t. .. */

 th is t ex t is n o lo ng er a c om me nt ! */

The second form of comments begins with // and ends with a newline (sometimes

known as C++ style comments).

/ / a si ng le l in e co mm en t

Comments are ignored by the compiler. Their only purpose is to allow the programmer

to document the source code.

NQC Programmer's Guide

Page 3

2.1.2 Whitespace

Whitespace (spaces, tabs, and newlines) is used to separate tokens and to make programs

more readable. As long as the tokens are distinguishable, adding or subtracting

whitespace has no effect on the meaning of a program. For example, the following lines

of code both have the same meaning:

x =2 ;

x = 2 ;

Some of the C++ operators consist of multiple characters. In order to preserve these

tokens whitespace must not be inserted within them. In the example below, the first line

uses a right shift operator ('>>'), but in the second line the added space causes the '>'

symbols to be interpreted as two separate tokens and thus generate an error.

x = 1 > > 4; / / se t x to 1 r ig ht s hi ft ed b y 4 bi ts

x = 1 > > 4 ; // e rr or

2.1.3 Numerical Constants

Numerical constants may be written in either decimal or hexadecimal form. Decimal

constants consist of one or more decimal digits. Hexadecimal constants start with 0x or

0X followed by one or more hexadecimal digits.

x = 1 0; // s et x t o 10

x = 0 x1 0; / / se t x to 1 6 (1 0 he x)

2.1.4 Identifiers and Keywords

Identifiers are used for variable, task, and function names. The first character of an

identifier must be an upper or lower case letter or the underscore ('_'). Remaining

characters may be letters, numbers, an underscore.

A number of potential identifiers are reserved for use in the NQC language itself. These

reserved words are call keywords and may not be used as identifiers. A complete list of

keywords appears below:

__event_src

__sensor

__type

abs

acquire

asm

break

case

NQC Programmer's Guide

Page 4

catch

const

continue

default

do

else

false

for

if

inline

int

monitor

repeat

return

sign

start

stop

sub

switch

task

true

void

while

2.2 Program Structure

An NQC program is composed of code blocks and global variables. There are three

distinct types of code blocks: tasks, inline functions, and subroutines. Each type of code

block has its own unique features and restrictions, but they all share a common structure.

2.2.1 Tasks

The RCX implicitly supports multi-tasking, thus an NQC task directly corresponds to an

RCX task. Tasks are defined using the task keyword using the following syntax:

t as k n am e()

{

/ / th e ta sk 's c od e is p la ce d he re

}

The name of the task may be any legal identifier. A program must always have at least

one task - named "main" - which is started whenever the program is run. The maximum

number of tasks depends on the target - the RCX supports 10 tasks, CyberMaster

supports 4, and Scout supports 6.

The body of a task consists of a list of statements. Tasks may be started and stopped

using the start and stop statements (described in the section titled Statements). There

is also an RCX API command, StopAllTasks, which stops all currently running tasks.

NQC Programmer's Guide

Page 5

2.2.2 Functions

It is often helpful to group a set of statements together into a single function, which can

then be called as needed. NQC supports functions with arguments, but not return values.

Functions are defined using the following syntax:

v oi d n am e(a rg um en t_ li st)

{

/ / bo dy o f th e fu nc ti on

}

The keyword void is an artifact of NQC's heritage - in C functions are specified with the

type of data they return. Functions that do not return data are specified to return void.

Returning data is not supported in NQC, thus all functions are declared using the void

keyword.

The argument list may be empty, or may contain one or more argument definitions. An

argument is defined by its type followed by its name. Multiple arguments are separated

by commas. All values in the RCX are represented as 16 bit signed integers. However

NQC supports four different argument types which correspond to different argument

passing semantics and restrictions:

Type Meaning Restriction

int pass by value none

const int pass by value only constants may be used

int& pass by reference only variables may be used

const int & pass by reference function cannot modify argument

Arguments of type int are passed by value from the calling function to the callee. This

usually means that the compiler must allocate a temporary variable to hold the argument.

There are no restrictions on the type of value that may be used. However, since the

function is working with a copy of the actual argument, any changes it makes to the value

will not be seen by the caller. In the example below, the function foo attempts to set the

value of its argument to 2. This is perfectly legal, but since foo is working on a copy of

the original argument, the variable y from main task remains unchanged.

NQC Programmer's Guide

Page 6

v oi d fo o(in t x)

{

x = 2 ;

}

t as k ma in ()

{

i nt y = 1 ; / / y is n ow e qu al t o 1

f oo (y); / / y is s ti ll e qu al t o 1!

}

The second type of argument, const int, is also passed by value, but with the

restriction that only constant values (e.g. numbers) may be used. This is rather important

since there are a number of RCX functions that only work with constant arguments.

v oi d fo o(co ns t in t x)

{

P la yS ou nd (x); / / ok

x = 1 ; / / er ro r - ca nn ot m od if y ar gu me nt

}

t as k ma in ()

{

f oo (2); / / ok

f oo (4 *5); / / ok - e xp re ss io n is s ti ll c on st an t

f oo (x); / / er ro r - x is n ot a c on st an t

}

The third type, int &, passes arguments by reference rather than by value. This allows

the callee to modify the value and have those changes visible in the caller. However,

only variables may be used when calling a function using int & arguments:

v oi d fo o(in t &x)

{

x = 2 ;

}

NQC Programmer's Guide

Page 7

t as k ma in ()

{

i nt y = 1 ; / / y is e qu al t o 1

f oo (y); / / y is n ow e qu al t o 2

f oo (2); / / er ro r - on ly v ar ia bl es a ll ow ed

}

The last type, const int &, is rather unusual. It is also passed by reference, but with

the restriction that the callee is not allowed to modify the value. Because of this

restriction, the compiler is able to pass anything (not just variables) to functions using

this type of argument. In general this is the most efficient way to pass arguments in

NQC.

There is one important difference between int arguments and const int & arguments.

An int argument is passed by value, so in the case of a dynamic expression (such as a

sensor reading), the value is read once then saved. With const int & arguments, the

expression will be re-read each time it is used in the function:

v oi d fo o(in t x)

{

i f (x == x) // t hi s wi ll a lw ay s be t ru e

P la yS ou nd (S OU ND _C LI CK);

}

v oi d ba r(co ns t in t &x)

{

i f (x == x) / / ma y no t be t ru e. .v al ue c ou ld c ha ng e

P la yS ou nd (S OU ND _C LI CK);

}

t as k ma in ()

{

f oo (S EN SO R_ 1) ; / / wi ll p la y so un d

b ar (2); / / wi ll p la y so un d

NQC Programmer's Guide

Page 8

b ar (S EN SO R_ 1) ; / / ma y no t pl ay s ou nd

}

Functions must be invoked with the correct number (and type) of arguments. The

example below shows several different legal and illegal calls to function foo:

v oi d fo o(in t ba r, c on st i nt b az)

{

/ / do s om et hi ng h er e. ..

}

t as k ma in ()

{

i nt x ; / / de cl ar e va ri ab le x

f oo (1 , 2) ; / / ok

f oo (x , 2) ; / / ok

f oo (2 , x) ; / / er ro r - 2n d ar gu me nt n ot c on st an t!

f oo (2); / / er ro r - wr on g nu mb er o f ar gu me nt s!

}

NQC functions are always expanded as inline functions. This means that each call to a

function results in another copy of the function's code being included in the program.

Unless used judiciously, inline functions can lead to excessive code size.

2.2.3 Subroutines

Unlike inline functions, subroutines allow a single copy of some code to be shared

between several different callers. This makes subroutines much more space efficient than

inline functions, but due to some limitations in the RCX, subroutines have some

significant restrictions. First of all, subroutines cannot use any arguments. Second, a

subroutine cannot call another subroutine. Last, the maximum number of subroutines is

limited to 8 for the RCX, 4 for CyberMaster, and 3 for Scout. In addition, if the

subroutine is called from multiple tasks then it cannot have any local variables or perform

calculations that require temporary variables (this restriction is lifted for the Scout and

RCX2). These significant restrictions make subroutines less desirable than functions,

NQC Programmer's Guide

Page 9

therefore their use should be minimized to those situations where the resultant savings in

code size is absolutely necessary. The syntax for a subroutine appears below:

s ub n am e()

{

/ / bo dy o f su br ou ti ne

}

2.2.4 Variables

All variables in NQC are of the same type - specifically 16 bit signed integers. Variables

are declared using the int keyword followed by a comma separated list of variable

names and terminated by a semicolon (';'). Optionally, an initial value for each variable

may be specified using an equals sign ('=') after the variable name. Several examples

appear below:

i nt x ; / / de cl ar e x

i nt y ,z ; / / de cl ar e y an d z

i nt a =1 ,b ; / / de cl ar e a an d b, i ni ti al iz e a to 1

Global variables are declared at the program scope (outside any code block). Once

declared, they may be used within all tasks, functions, and subroutines. Their scope

begins at declaration and ends at the end of the program.

Local variables may be declared within tasks, functions, and sometimes within

subroutines. Such variables are only accessible within the code block in which they are

defined. Specifically, their scope begins with their declaration and ends at the end of

their code block. In the case of local variables, a compound statement (a group of

statements bracketed by { and }) is considered a block:

i nt x ; / / x is g lo ba l

t as k ma in ()

{

i nt y ; / / y is l oc al t o ta sk m ai n

x = y ; // o k

{ / / be gi n co mp ou nd s ta te me nt

i nt z ; / / lo ca l z de cl ar ed

NQC Programmer's Guide

Page 10

y = z ; // o k

}

y = z ; // e rr or - z n o lo ng er i n sc op e

}

t as k fo o()

{

x = 1 ; // o k

y = 2 ; // e rr or - y i s no t gl ob al

}

In many cases NQC must allocate one or more temporary variables for its own use. In

some cases a temporary variable is used to hold an intermediate value during a

calculation. In other cases it is used to hold a value as it is passed to a function. These

temporary variables deplete the pool of variables available to the rest of the program.

NQC attempts to be as efficient as possible with temporary variables (including reusing

them when possible).

The RCX (and other targets) provide a number of storage locations which can be used to

hold variables in an NQC program. There are two kinds of storage locations - global and

local. When compiling a program, NQC assigns each variable to a specific storage

location. Programmers for the most part can ignore the details of this assignment by

following two basic rules:

• If a variable needs to be in a global location, declare it as a global variable.

• If a variable does not need to be a global variable, make it as local as possible.

This gives the compiler the most flexibility in assigning an actual storage

location.

The number of global and local locations varies by target

Target Global Local

RCX 32 0

CyberMaster 32 0

NQC Programmer's Guide

Page 11

Scout 10 8

RCX2 32 16

2.2.5 Arrays

The RCX2 target supports arrays (the other targets do not have suitable support in

firmware for arrays). Arrays are declared the same way as ordinary variables, but with

the size of the array enclosed in brackets. The size must be a constant.

i nt m y_ ar ra y[3] ; / / de cl ar e an a rr ay w it h th re e el em en ts

The elements of an array are identified by their position within the array (called an

index). The first element has an index of 0, the second has index 1, etc. For example:

m y_ ar ra y[0] = 1 23 ; // s et f ir st e le me nt t o 12 3

m y_ ar ra y[1] = m y_ ar ra y[2] ; // c op y th ir d in to s ec on d

Currently there are a number of limitations on how arrays can be used. These limitations

will likely be removed in future versions of NQC:

• An array cannot be an argument to a function. An individual array element,

however, can be passed to a function.

• Neither arrays nor their elements can be used with the increment (++) or

decrement (--) operators.

• Only ordinary assignment (=) is allowed for array elements. The math

assignments (i.e. +=) are not allowed.

• The initial values for an array's elements cannot be specified - an explicit

assignment is required within the program itself to set the value of an element.

2.3 Statements

The body of a code block (task, function, or subroutine) is composed of statements.

Statements are terminated with a semi-colon (';').

NQC Programmer's Guide

Page 12

2.3.1 Variable Declaration

Variable declaration, as described in the previous section, is one type of statement. It

declares a local variable (with optional initialization) for use within the code block. The

syntax for a variable declaration is:

i nt v ar ia bl es ;

where variables is a comma separated list of names with optional initial values:

n am e[=e xp re ss io n]

Arrays of variables may also be declared (for the RCX2 only):

i nt a rr ay [s iz e] ;

2.3.2 Assignment

Once declared, variables may be assigned the value of an expression:

v ar ia bl e a ss ig n_ op er at or e xp re ss io n;

There are nine different assignment operators. The most basic operator, '=', simply

assigns the value of the expression to the variable. The other operators modify the

variable's value in some other way as shown in the table below

Operator Action

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression

/= Divide variable by expression

&= Bitwise AND expression into variable

|= Bitwise OR expression into variable

||= Set variable to absolute value of expression

+-= Set variable to sign (-1,+1,0) of expression

Some examples:

x = 2 ; / / se t x to 2

y = 7 ; / / se t y to 7

x + = y; / / x is 9 , y is s ti ll 7

NQC Programmer's Guide

Page 13

2.3.3 Control Structures

The simplest control structure is a compound statement. This is a list of statements

enclosed within curly braces ('{' and '}'):

{

x = 1 ;

y = 2 ;

}

Although this may not seem very significant, it plays a crucial role in building more

complicated control structures. Many control structures expect a single statement as their

body. By using a compound statement, the same control structure can be used to control

multiple statements.

The if statement evaluates a condition. If the condition is true it executes one statement

(the consequence). An optional second statement (the alternative) is executed if the

condition is false. The two syntaxes for an if statement is shown below.

i f (c on di ti on) c on se qu en ce

i f (c on di ti on) c on se qu en ce el se a lt er na ti ve

Note that the condition is enclosed in parentheses. Examples are shown below. Note

how a compound statement is used in the last example to allow two statements to be

executed as the consequence of the condition.

i f (x == 1) y = 2 ;

i f (x == 1) y = 3 ; el se y = 4 ;

i f (x == 1) { y = 1 ; z = 2; }

The while statement is used to construct a conditional loop. The condition is evaluated,

and if true the body of the loop is executed, then the condition is tested again. This

process continues until the condition becomes false (or a break statement is executed).

The syntax for a while loop appears below:

w hi le (c on di ti on) b od y

It is very common to use a compound statement as the body of a loop:

w hi le (x < 1 0)

{

NQC Programmer's Guide

Page 14

x = x +1 ;

y = y *2 ;

}

A variant of the while loop is the do-while loop. Its syntax is:

d o b od y wh il e (c on di ti on)

The difference between a while loop and a do-while loop is that the do-while loop

always executes the body at least once, whereas the while loop may not execute it at all.

Another kind of loop is the for loop:

f or (s tm t1 ; c on di ti on ; s tm t2) b od y

A for loop always executes stmt1, then it repeatedly checks the condition and while it

remains true executes the body followed by stmt2. The for loop is equivalent to:

s tm t1 ;

w hi le (c on di ti on)

{

b od y

s tm t2 ;

}

The repeat statement executes a loop a specified number of times:

r ep ea t (e xp re ss io n) b od y

The expression determines how many times the body will be executed. Note that it is

only evaluated a single time, then the body is repeated that number of times. This is

different from both the while and do-while loops which evaluate their condition each

time through the loop.

A switch statement can be used to execute one of several different blocks of code

depending on the value of an expression. Each block of code is preceded by one or more

case labels. Each case must be a constant and unique within the switch statement. The

switch statement evaluates the expression then looks for a matching case label. It will

then execute any statements following the matching case until either a break statement or

the end of the switch is reaches. A single default label may also be used - it will match

any value not already appearing in a case label. Technically, a switch statement has the

following syntax:

NQC Programmer's Guide

Page 15

s wi tc h (e xp re ss io n) b od y

The case and default labels are not statements in themselves - they are labels that precede

statements. Multiple labels can precede the same statement. These labels have the

following syntax

c as e c on st an t_ ex pr es si on :

d ef au lt :

A typical switch statement might look like this:

s wi tc h(x)

{

c as e 1:

/ / do s om et hi ng w he n X is 1

b re ak ;

c as e 2:

c as e 3:

/ / do s om et hi ng e ls e wh en x i s 2 or 3

b re ak ;

d ef au lt :

/ / do t hi s wh en x i s no t 1, 2 , or 3

b re ak ;

}

NQC also defines the until macro which provides a convenient alternative to the

while loop. The actual definition of until is:

de fi ne u nt il (c) w hi le (! (c))

In other words, until will continue looping until the condition becomes true. It is most

often used in conjunction with an empty body statement:

u nt il (S EN SO R_ 1 == 1); / / wa it f or s en so r to b e pr es se d

2.3.4 Access Control and Events

The Scout and RCX2 support access control and event monitoring. Access control

allows a task to request ownership of one or more resources. In NQC, access control is

provided by the acquire statement, which has two forms:

NQC Programmer's Guide

Page 16

a cq ui re (r es ou rc es) b od y

a cq ui re (r es ou rc es) b od y ca tc h h an dl er

where resources is a constant that specifies the resources to be acquired and body and

handler are statements. The NQC API defines constants for individual resources which

may be added together to request multiple resources at the same time. The behavior of

the acquire statement is as follows: Ownership of the specified resources will be

requested. If another task of higher priority already owns the resources, then the request

will fail and execution will jump to the handler (if present). Otherwise, the request will

succeed, and the body will begin to be executed. While executing the body, if another

task of equal or higher priority requests any of the owned resources, then the original task

will lose ownership. When ownership is lost, execution will jump to the handler (if

present). Once the body has completed, the resources will be returned back to the system

(so that lower priority tasks may acquire them), and execution will continue with the

statement following the acquire statement. If a handler is not specified, then in both the

case of a failed request, or a subsequent loss of ownership, control will pass to the

statement following the acquire statement. For example, the following code acquires a

resource for 10 seconds, playing a sound if it cannot complete successfully:

a cq ui re (A CQ UI RE _O UT _A)

{

W ai t(10 00);

}

c at ch

{

P la yS ou nd (S OU ND _U P) ;

}

Event monitoring is implemented with the monitor statement, which has a syntax very

similar to acquire:

m on it or (e ve nt s) b od y

m on it or (e ve nt s) b od y ha nd le r_ li st

Where handler_list is one or more handlers of the form

c at ch (c at ch _e ve nt s) h an dl er

The last handler in a handler list can omit the event specification:

NQC Programmer's Guide

Page 17

c at ch h an dl er

Events is a constant that determines which events should be monitored. For the Scout,

events are predefined, so there are constants such as EVENT_1_PRESSED which can be

used to specify events. With RCX2, the meaning of each event is configured by the

programmer. There are 16 events (numbers 0 to 15). In order to specify an event in a

monitor statement, the event number must be converted to an event mask using the

EVENT_MASK() macro. The Scout event constants or event masks may be added

together to specify multiple events. Multiple masks can be combined using bitwise OR.

The monitor statement will execute the body while monitoring the specified events. If

any of the events occur, execution will jump to the first handler for that event (a handler

without an event specification handles any event). If no event handler exists for the

event, then control will continue at the statement following the monitor statement. The

following example waits for 10 seconds while monitoring events 2, 3, and 4 for RCX2:

m on it or (EV EN T_ MA SK (2) | EV EN T_ MA SK (3) | EV EN T_ MA SK (4))

{

W ai t(10 00);

}

c at ch (E VE NT _M AS K(4))

{

P la yS ou nd (S OU ND _D OW N) ; // e ve nt 4 h ap pe ne d

}

c at ch

{

P la yS ou nd (S OU ND _U P) ; // e ve nt 2 o r 3 ha pp en ed

}

Note that the acquire and monitor statements are only supported for targets that

implement access control and event monitoring - specifically the Scout and RCX2.

2.3.5 Other Statements

A function (or subroutine) call is a statement of the form:

n am e(a rg um en ts) ;

NQC Programmer's Guide

Page 18

The arguments list is a comma separated list of expressions. The number and type of

arguments supplied must match the definition of the function itself.

Tasks may be started or stopped with the following statements:

s ta rt t as k_ na me ;

s to p t as k_ na me ;

Within loops (such as a while loop) the break statement can be used to exit the loop

and the continue statement can be used to skip to the top of the next iteration of the

loop. The break statement can also be used to exit a switch statement.

b re ak ;

c on ti nu e;

It is possible to cause a function to return before it reaches the end of its code using the

return statement.

r et ur n;

Any expression is also a legal statement when terminated by a semicolon. It is rare to use

such a statement since the value of the expression would then be discarded. The one

notable exception is expressions involving the increment (++) or decrement (--)

operators.

x ++ ;

The empty statement (just a bare semicolon) is also a legal statement.

2.4 Expressions

Earlier versions of NQC made a distinction between expressions and conditions. As of

version 2.3, this distinction was eliminated: everything is an expression, and there are

NQC Programmer's Guide

Page 19

now conditional operators for expressions. This is similar to how C/C++ treats

conditional operations.

Values are the most primitive type of expressions. More complicated expressions are

formed from values using various operators. The NQC language only has two built in

kinds of values: numerical constants and variables. The RCX API defines other values

corresponding to various RCX features such as sensors and timers.

Numerical constants in the RCX are represented as 16 bit signed integers. NQC

internally uses 32 bit signed math for constant expression evaluation, then reduces to 16

bits when generating RCX code. Numeric constants can be written as either decimal (e.g.

123) or hexadecimal (e.g. 0xABC). Presently, there is very little range checking on

constants, so using a value larger than expected may have unusual effects.

Two special values are predefined: true and false. The value of false is zero, while

the value of true is only guaranteed to be non-zero. The same values hold for relational

operators (e.g. <): when the relation is false, the value is 0, otherwise the value is non-

zero.

Values may be combined using operators. Several of the operators may only be used in

evaluating constant expressions, which means that their operands must either be

constants, or expressions involving nothing but constants. The operators are listed here

in order of precedence (highest to lowest).

Operator Description Associativity Restriction Example

abs()

sign()

Absolute value

Sign of operand

n/a

n/a

abs(x)

sign(x)

++, -- Increment, decrement left variables only x++ or ++x

-

~

!

Unary minus

Bitwise negation (unary)

Logical negation

right

right

right

constant only

-x

~123

!x

*, /, % Multiplication, division,

modulo

left x * y

NQC Programmer's Guide

Page 20

+, - Addition, subtraction left x + y

<<, >> Left and right shift left constant only 123 << 4

<, >,

<=, >=

relational operators left x < y

==, != equal to, not equal to left x == 1

& Bitwise AND left x & y

^ Bitwise XOR left constant only 123 ^ 4

| Bitwise OR left x | y

&& Logical AND left x && y

|| Logical OR left x || y

Where needed, parentheses may be used to change the order of evaluation:

x = 2 + 3 * 4 ; / / se t x to 1 4

y = (2 + 3) * 4 ; / / se t y to 2 0

2.4.1 Conditions

Conditions are generally formed by comparing two expressions. There are also two

constant conditions - true and false - which always evaluate to true or false

respectively. A condition may be negated with the negation operator, or two conditions

combined with the AND and OR operators. The table below summarizes the different

types of conditions.

Condition Meaning

true always true

false always false

expr true if expr is not equal to 0

expr1 == expr2 true if expr1 equals expr2

expr1 != expr2 true if expr1 is not equal to expr2

expr1 < expr2 true if one expr1 is less than expr2

NQC Programmer's Guide

Page 21

expr1 <= expr2 true if expr1 is less than or equal to expr2

expr1 > expr2 true if expr1 is greater than expr2

expr1 >= expr2 true if expr1 is greater than or equal to expr2

! condition logical negation of a condition - true if condition is false

cond1 && cond2 logical AND of two conditions (true if and only if both conditions are

true)

cond1 || cond2 logical OR of two conditions (true if and only if at least one of the

conditions are true)

2.5 The Preprocessor

The preprocessor implements the following directives: #include, #define, #ifdef,

#ifndef, #if, #elif, #else, #endif, #undef. Its implementation is fairly close to a

standard C preprocessor, so most things that work in a generic C preprocessor should

have the expected effect in NQC. Significant deviations are listed below.

2.5.1 #include

The #include command works as expected, with the caveat that the filename must be

enclosed in double quotes. There is no notion of a system include path, so enclosing a

filename in angle brackets is forbidden.

#include "foo.nqh" // ok

#include <foo.nqh> // error!

2.5.2 #define

The #define command is used for simple macro substitution. Redefinition of a macro

is an error (unlike in C where it is a warning). Macros are normally terminated by the

end of the line, but the newline may be escaped with the backslash ('\') to allow multi-

line macros:

de fi ne f oo (x) d o { ba r(x) ; \

 ba z(x) ; } wh il e(fa ls e)

NQC Programmer's Guide

Page 22

The #undef directive may be used to remove a macro’s definition.

2.5.3 Conditional Compilation

Conditional compilation works similar to the C preprocessor. The following

preprocessor directives may be used:

if c on di ti on

if de f s ym bo l

if nd ef s ym bo l

el se

el if c on di ti on

en di f

Conditions in #if directives use the same operators and precedence as in C. The

defined() operator is supported.

2.5.4 Program Initialization

The compiler will insert a call to a special initialization function, _init, at the start of a

program. This default function is part of the RCX API and sets all three outputs to full

power in the forward direction (but still turned off). The initialization function can be

disabled using the #pragma noinit directive:

pr ag ma n oi ni t / / do n' t do a ny p ro gr am i ni ti al iz at io n

The default initialization function can be replaced with a different function using the

#pragma init directive.

pr ag ma i ni t f un ct io n / / us e cu st om i ni ti al iz at io n

2.5.5 Reserving Storage

The NQC compiler automatically assigns variables to storage locations. However,

sometimes it is necessary to prevent the compiler from using certain storage locations.

This can be done with the #pragma reserve directive:

pr ag ma r es er ve s ta rt

NQC Programmer's Guide

Page 23

pr ag ma r es er ve s ta rt e nd

This directive forces the compiler to ignore one or more storage locations during variable

assignment. Start and end must be numbers that refer to valid storage locations. If only a

start is provided, then that single location is reserved. If start and end are both specified,

then the range of locations from start to end (inclusive) are reserved. The most common

use of this directive is to reserve locations 0, 1, and/or 2 when using counters for RCX2.

This is because the RCX2 counters are overlapped with storage locations 0, 1, and 2. For

example, if all three counters were going to be used:

pr ag ma r es er ve 0 1 2

NQC Programmer's Guide

Page 24

3 NQC API

The NQC API defines a set of constants, functions, values, and macros that provide

access to various capabilities of the target such as sensors, outputs, timers, and

communication. Some features are only available on certain targets. Where appropriate,

a section's title will indicate which targets it applies to. The RCX2 is a superset of RCX

features, so if RCX is listed, then the feature works with both the original firmware and

2.0 firmware. If RCX2 is listed, then the feature only applies to the 2.0 firmware.

The API consists of functions, values, and constants. A function is something that can be

called as a statement. Typically it takes some action or configures some parameter.

Values represent some parameter or quantity and can be used in expressions. Constants

are symbolic names for values that have special meanings for the target. Often, a set of

constants will be used in conjunction with a function. For example, the PlaySound

function takes a single argument which determines which sound is to be played.

Constants, such as SOUND_UP, are defined for each sound.

3.1 Sensors

There are three sensors, which internally are numbered 0, 1, and 2. This is potentially

confusing since they are externally labeled as sensors 1, 2, and 3. To help mitigate this

confusion, the sensor names SENSOR_1, SENSOR_2, and SENSOR_3 have been defined.

These sensor names may be used in any function that requires a sensor as an argument.

Furthermore, the names may also be used whenever a program wishes to read the current

value of the sensor:

x = S EN SO R_ 1; / / re ad s en so r an d st or e va lu e in x

3.1.1 Types and Modes RCX, CyberMaster

The sensor ports on the RCX are capable of interfacing to a variety of different sensors

(other targets don't support configurable sensor types). It is up to the program to tell the

RCX what kind of sensor is attached to each port. A sensor's type may be configured by

calling SetSensorType. . There are four sensor types, each corresponding to a specific

NQC Programmer's Guide

Page 25

LEGO sensor. A fifth type (SENSOR_TYPE_NONE) can be used for reading the raw

values of generic passive sensors. In general, a program should configure the type to

match the actual sensor. If a sensor port is configured as the wrong type, the RCX may

not be able to read it accurately.

Sensor Type Meaning

SENSOR_TYPE_NONE generic passive sensor

SENSOR_TYPE_TOUCH a touch sensor

SENSOR_TYPE_TEMPERATURE a temperature sensor

SENSOR_TYPE_LIGHT a light sensor

SENSOR_TYPE_ROTATION a rotation sensor

Both the RCX and CyberMaster allow a sensor to be configured in different modes. The

sensor mode determines how a sensor's raw value is processed. Some modes only make

sense for certain types of sensors, for example SENSOR_MODE_ROTATION is useful only

with rotation sensors. The sensor mode can be set by calling SetSensorMode. The

possible modes are shown below. Note that since CyberMaster does not support

temperature or rotation sensors, the last three modes are restricted to the RCX only.

Sensor Mode Meaning

SENSOR_MODE_RAW raw value from 0 to 1023

SENSOR_MODE_BOOL boolean value (0 or 1)

SENSOR_MODE_EDGE counts number of boolean transitions

SENSOR_MODE_PULSE counts number of boolean periods

SENSOR_MODE_PERCENT value from 0 to 100

SENSOR_MODE_FAHRENHEIT degrees F - RCX only

SENSOR_MODE_CELSIUS degrees C - RCX only

SENSOR_MODE_ROTATION rotation (16 ticks per revolution) - RCX only

When using the RCX, it is common to set both the type and mode at the same time. The

SetSensor function makes this process a little easier by providing a single function to call

and a set of standard type/mode combinations.

Sensor Configuration Type Mode

SENSOR_TOUCH SENSOR_TYPE_TOUCH SENSOR_MODE_BOOL

NQC Programmer's Guide

Page 26

SENSOR_LIGHT SENSOR_TYPE_LIGHT SENSOR_MODE_PERCENT

SENSOR_ROTATION SENSOR_TYPE_ROTATION SENSOR_MODE_ROTATION

SENSOR_CELSIUS SENSOR_TYPE_TEMPERATURE SENSOR_MODE_CELSIUS

SENSOR_FAHRENHEIT SENSOR_TYPE_TEMPERATURE SENSOR_MODE_FAHRENHEIT

SENSOR_PULSE SENSOR_TYPE_TOUCH SENSOR_MODE_PULSE

SENSOR_EDGE SENSOR_TYPE_TOUCH SENSOR_MODE_EDGE

The RCX provides a boolean conversion for all sensors - not just touch sensors. This

boolean conversion is normally based on preset thresholds for the raw value. A "low"

value (less than 460) is a boolean value of 1. A high value (greater than 562) is a boolean

value of 0. This conversion can be modified: a slope value between 0 and 31 may be

added to a sensor's mode when calling SetSensorMode. If the sensor's value changes

more than the slope value during a certain time (3ms), then the sensor's boolean state will

change. This allows the boolean state to reflect rapid changes in the raw value. A rapid

increase will result in a boolean value of 0, a rapid decrease is a boolean value of 1.

Even when a sensor is configured for some other mode (i.e. SENSOR_MODE_PERCENT),

the boolean conversion will still be carried out.

SetSensor(sensor, configuration) Function - RCX

Set the type and mode of the given sensor to the specified configuration, which must

be a special constant containing both type and mode information.

S et Se ns or (S EN SO R_ 1, S EN SO R_ TO UC H) ;

SetSensorType(sensor, type) Function - RCX

Set a sensor's type, which must be one of the predefined sensor type constants.

S et Se ns or Ty pe (S EN SO R_ 1, S EN SO R_ TY PE _T OU CH);

SetSensorMode(sensor, mode) Function - RCX, CyberMaster

Set a sensor's mode, which should be one of the predefined sensor mode constants. A

slope parameter for boolean conversion, if desired, may be added to the mode (RCX

only).

NQC Programmer's Guide

Page 27

S et Se ns or Mo de (S EN SO R_ 1, S EN SO R_ MO DE _R AW); / / ra w mo de

S et Se ns or Mo de (S EN SO R_ 1, S EN SO R_ MO DE _R AW + 1 0) ; // s lo pe 1 0

ClearSensor(sensor) Function - All

Clear the value of a sensor - only affects sensors that are configured to measure a

cumulative quantity such as rotation or a pulse count.

C le ar Se ns or (S EN SO R_ 1) ;

3.1.2 Sensor Information

There are a number of values that can be inspected for each sensor. For all of these

values the sensor must be specified by its sensor number (0, 1, or 2), and not a sensor

name (e.g. SENSOR_1).

SensorValue(n) Value - All

Returns the processed sensor reading for sensor n, where n is 0, 1, or 2. This is the

same value that is returned by the sensor names (e.g. SENSOR_1).

x = S en so rV al ue (0); / / re ad s en so r 1

SensorType(n) Value - All

Returns the configured type of sensor n, which must be 0, 1, or 2. Only the RCX has

configurable sensors types, other targets will always return the pre-configured type of

the sensor.

x = S en so rT yp e(0) ;

SensorMode(n) Value - RCX, CyberMaster

Returns the current sensor mode for sensor n, which must be 0, 1, or 2.

x = S en so rM od e(0) ;

SensorValueBool(n) Value - RCX

Returns the boolean value of sensor n, which must be 0, 1, or 2. Boolean conversion

is either done based on preset cutoffs, or a slope parameter specified by calling

SetSensorMode.

NQC Programmer's Guide

Page 28

x = S en so rV al ue Bo ol (0);

SensorValueRaw(n) Value - RCX, Scout

Returns the raw value of sensor n, which must be 0, 1, or 2. Raw values may range

from 0 to 1023.

x = S en so rV al ue Ra w(0) ;

3.1.3 Scout Light Sensor Scout

On the Scout, SENSOR_3 refers to the built-in light sensor. Reading the light sensor's

value (with SENSOR_3) will return one of three levels: 0 (dark), 1 (normal), or 2 (bright).

The sensor's raw value can be read with SensorValueRaw(SENSOR_3), but bear in

mind that brighter light will result in a lower raw value. The conversion of the sensor's

raw value (between 0 and 1023) to one of the three levels depends on three parameters:

lower limit, upper limit, and hysteresis. The lower limit is the smallest (brightest) raw

value that is still considered normal. Values below the lower limit will be considered

bright. The upper limit is the largest (darkest) raw value that is considered normal.

Values about this limit are considered dark.

Hysteresis can be used to prevent the level from changing when the raw value hovers

near one of the limits. This is accomplished by making it a little harder to leave the dark

and bright states than it is to enter them. Specifically, the limit for moving from normal

to bright will be a little lower than the limit for moving from bright back to normal. The

difference between these two limits is the amount of hysteresis. A symmetrical case

holds for the transition between normal and dark.

SetSensorLowerLimit(value) Function - Scout

Set the light sensor's lower limit. Value may be any expression.

S et Se ns or Lo we rL im it (1 00);

SetSensorUpperLimit(value) Function - Scout

Set the light sensor's upper limit. Value may be any expression.

S et Se ns or Up pe rL im it (9 00);

NQC Programmer's Guide

Page 29

SetSensorHysteresis (value) Function - Scout

Set the light sensor's hysteresis. Value may be any expression.

S et Se ns or Hy st er es is (2 0) ;

CalibrateSensor() Function - Scout

Reads the current value of the light sensor, then sets the upper and lower limits to

12.5% above and below the current reading, and sets the hysteresis to 3.12% of the

reading.

C al ib ra te Se ns or () ;

3.2 Outputs

3.2.1 Primitive Calls

All of the functions dealing with outputs take a set of outputs as their first argument.

This set must be a constant. The names OUT_A, OUT_B, and OUT_C are used to identify

the three outputs. Multiple outputs can be combined by adding individual outputs

together. For example, use OUT_A+OUT_B to specify outputs A and B together. The set

of outputs must always be a compile time constant (it cannot be a variable).

Each output has three different attributes: mode, direction, and power level. The mode

can be set by calling SetOutput(outputs, mode). The mode parameter should be one of

the following constants:

Output Mode Meaning

OUT_OFF output is off (motor is prevented from turning)

OUT_ON output is on (motor will be powered)

OUT_FLOAT motor can "coast"

The other two attributes, direction and power level, may be set at any time, but only have

an effect when the output is on. The direction is set with the SetDirection(outputs,

direction) command. The direction parameter should be one of the following constants:

NQC Programmer's Guide

Page 30

Direction Meaning

OUT_FWD Set to forward direction

OUT_REV Set to reverse direction

OUT_TOGGLE Switch direction to the opposite of what it is presently

The power level can range 0 (lowest) to 7 (highest). The names OUT_LOW, OUT_HALF,

and OUT_FULL are defined for use in setting power level. The level is set using the

SetPower(outputs, power) function.

Be default, all three motors are set to full power and the forward direction (but still turned

off) when a program starts.

SetOutput(outputs, mode) Function - All

Set the outputs to the specified mode. Outputs is one or more of OUT_A, OUT_B, and

OUT_C. Mode must be OUT_ON, OUT_OFF, or OUT_FLOAT.

S et Ou tp ut (O UT _A + O UT _B , OU T_ ON); / / tu rn A a nd B o n

SetDirection(outputs, direction) Function - All

Set the outputs to the specified direction. Outputs is one or more of OUT_A, OUT_B,

and OUT_C. Direction must be OUT_FWD, OUT_REV, or OUT_TOGGLE.

S et Di re ct io n(OU T_ A, O UT _R EV); / / ma ke A t ur n ba ck wa rd s

SetPower(outputs, power) Function - All

Sets the power level of the specified outputs. Power may be an expression, but

should result in a value between 0 and 7. The constants OUT_LOW, OUT_HALF, and

OUT_FULL may also be used.

S et Po we r(OU T_ A, O UT _F UL L) ; // A f ul l po we r

S et Po we r(OU T_ B, x);

OutputStatus(n) Value - All

Returns the current output setting for motor n. Note that n must be 0, 1, or 2 - not

OUT_A, OUT_B, or OUT_C.

NQC Programmer's Guide

Page 31

x = O ut pu tS ta tu s(0) ; // s ta tu s of O UT _A

3.2.2 Convenience Calls

Since control of outputs is such a common feature of programs, a number of convenience

functions are provided that make it easier to work with the outputs. It should be noted

that these commands do not provide any new functionality above the SetOutput and

SetDirection commands. They are merely convenient ways to make programs more

concise.

On(outputs) Function - All

Turn specified outputs on. Outputs is one or more of OUT_A, OUT_B, and OUT_C

added together.

O n(OU T_ A + OU T_ C) ; // t ur n on o ut pu ts A a nd C

Off(outputs) Function - All

Turn specified outputs off. Outputs is one or more of OUT_A, OUT_B, and OUT_C

added together.

O ff (O UT _A); / / tu rn o ff o ut pu t A

Float(outputs) Function - All

Make outputs float. Outputs is one or more of OUT_A, OUT_B, and OUT_C added

together.

F lo at (O UT _A); / / fl oa t ou tp ut A

Fwd(outputs) Function - All

Set outputs to forward direction. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.

F wd (O UT _A);

Rev(outputs) Function - All

NQC Programmer's Guide

Page 32

Set outputs to reverse direction. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.

R ev (O UT _A);

Toggle(outputs) Function - All

Flip the direction of the outputs. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.

T og gl e(OU T_ A) ;

OnFwd(outputs) Function - All

Set outputs to forward direction and turn them on. Outputs is one or more of OUT_A,

OUT_B, and OUT_C added together.

O nF wd (O UT _A);

OnRev(outputs) Function - All

Set outputs to reverse direction and turn them on. Outputs is one or more of OUT_A,

OUT_B, and OUT_C added together.

O nR ev (O UT _A);

OnFor(outputs, time) Function - All

Turn outputs on for a specified amount of time, then turn them off. Outputs is one or

more of OUT_A, OUT_B, and OUT_C added together. Time is measures in 10ms

increments (one second = 100) and may be any expression.

O nF or (O UT _A , x) ;

3.2.3 Global Control RCX2, Scout

SetGlobalOutput(outputs, mode) Function - RCX2, Scout

Disable or re-enable outputs depending on the mode parameter. If mode is OUT_OFF,

then the outputs will be turned off and disabled. While disabled any subsequent calls

to SetOutput() (including convenience functions such as On()) will be ignored.

NQC Programmer's Guide

Page 33

Using a mode of OUT_FLOAT will put the outputs in float mode before disabling

them. Outputs can be re-enabled by calling SetGlobalOutput() with a mode of

OUT_ON. Note that enabling an output doesn't immediately turn it on - it just allows

future calls to SetOutput() to take effect.

S et Gl ob al Ou tp ut (O UT _A , OU T_ OF F) ; / / di sa bl e ou tp ut A

S et Gl ob al Ou tp ut (O UT _A , OU T_ ON); // e na bl e ou tp ut A

SetGlobalDirection(outputs, direction) Function - RCX2, Scout

Reverses or restores the directions of outputs. The direction parameter should be

OUT_FWD, OUT_REV, or OUT_TOGGLE. Normal behavior is a global direction of

OUT_FWD. When the global direction is OUT_REV, then the actual output direction

will be the opposite of whatever the regular output calls request. Calling

SetGlobalDirection() with OUT_TOGGLE will switch between normal and

opposite behavior.

S et Gl ob al Di re ct io n(OU T_ A, O UT _R EV); / / op po si te d ir ec ti on

S et Gl ob al Di re ct io n(OU T_ A, O UT _F WD); / / no rm al d ir ec ti on

SetMaxPower(outputs, power) Function - RCX2, Scout

Sets the maximum power level allowed for the outputs. The power level may be a

variable, but should have a value between OUT_LOW and OUT_FULL.

S et Ma xP ow er (O UT _A , OU T_ HA LF);

GlobalOutputStatus(n) Value - RCX2, Scout

Returns the current global output setting for motor n. Note that n must be 0, 1, or 2 -

not OUT_A, OUT_B, or OUT_C.

x = G lo ba lO ut pu tS ta tu s(0) ; // g lo ba l st at us o f OU T_ A

3.3 Sound

PlaySound(sound) Function - All

NQC Programmer's Guide

Page 34

Plays one of the 6 preset RCX sounds. The sound argument must be a constant. The

following constants are pre-defined for use with PlaySound: SOUND_CLICK,

SOUND_DOUBLE_BEEP, SOUND_DOWN, SOUND_UP, SOUND_LOW_BEEP,

SOUND_FAST_UP.

P la yS ou nd (S OU ND _C LI CK);

PlayTone(frequency, duration) Function - All

Plays s single tone of the specified frequency and duration. The frequency is in Hz

and can be a variable for RCX2 and Scout, but has to be constant for RCX and

CyberMaster. The duration is in 100ths of a second and must be a constant.

P la yT on e(44 0, 5 0) ; / / Pl ay ' A' f or o ne h al f se co nd

MuteSound() Function - RCX2, Scout

Stops all sounds and tones from being played.

M ut eS ou nd () ;

UnmuteSound() Function - RCX2, Scout

Restores normal operation of sounds and tones.

U nm ut eS ou nd () ;

ClearSound() Function - RCX2

Removes any pending sounds from the sound buffer.

C le ar So un d();

SelectSounds(group) Function - Scout

Selects which group of system sounds should be used. The group must be a constant.

S el ec tS ou nd s(0) ;

3.4 LCD Display RCX

The RCX has seven different display modes as shown below. The RCX defaults to

DISPLAY_WATCH.

NQC Programmer's Guide

Page 35

Mode LCD Contents

DISPLAY_WATCH show the system "watch"

DISPLAY_SENSOR_1 show value of sensor 1

DISPLAY_SENSOR_2 show value of sensor 2

DISPLAY_SENSOR_3 show value of sensor 3

DISPLAY_OUT_A show setting for output A

DISPLAY_OUT_B show setting for output B

DISPLAY_OUT_C show setting for output C

The RCX2 adds an eighth display mode - DISPLAY_USER. User display mode

continuously reads a source value and updates the display. It can optionally display a

decimal point at any position within the number. This allows the display to give the

illusion of working with fractions even though all values are stored internally as integers.

For example, the following call will set the user display to show the value 1234 with two

digits appearing after the decimal point, resulting in "12.34" appearing on the LCD.

S et Us er Di sp la y(12 34 , 2) ;

The following short program illustrates the update of the user display:

t as k ma in ()

{

C le ar Ti me r(0) ;

S et Us er Di sp la y(Ti me r(0) , 0) ;

u nt il (f al se);

}

Because the user display mode continuously updates the LCD, there are certain

restrictions on the source value. If a variable is used it must be assigned to a global

storage location. The best way to ensure this is to make the variable a global one. There

can also be some strange side effects. For example, if a variable is being displayed and

later used as the target of a calculation, it is possible for the display to show some

intermediate results of the calculation:

i nt x ;

t as k ma in ()

{

NQC Programmer's Guide

Page 36

S et Us er Di sp la y(x, 0);

w hi le (t ru e)

{

/ / di sp la y ma y br ie fl y sh ow 1 !

x = 1 + T im er (0);

}

}

SelectDisplay(mode) Function - RCX

Select a display mode.

S el ec tD is pl ay (D IS PL AY _S EN SO R_ 1) ; / / vi ew s en so r 1

SetUserDisplay(value, precision) Function - RCX2

Set the LCD display to continuously monitor the specified value. Precision specifies

the number of digits to the right of the decimal point. A precision of zero shows no

decimal point.

S et Us er Di sp la y(Ti me r(0) , 0) ; // v ie w ti me r 0

3.5 Communication

3.5.1 Messages RCX, Scout

The RCX and Scout can send and receive simple messages using IR. A message can

have a value from 0 to 255, but the use of message 0 is discouraged. The most recently

received message is remembered and can be accessed as Message(). If no message has

been received, Message() will return 0. Note that due to the nature of IR

communication, receiving is disabled while a message is being transmitted.

ClearMessage() Function - RCX, Scout

Clear the message buffer. This facilitates detection of the next received message

since the program can then wait for Message() to become non-zero:

C le ar Me ss ag e(); / / cl ea r ou t th e re ce iv ed m es sa ge

u nt il (M es sa ge () > 0); / / wa it f or n ex t me ss ag e

NQC Programmer's Guide

Page 37

SendMessage(message) Function - RCX, Scout

Send an IR message. Message may be any expression, but the RCX can only send

messages with a value between 0 and 255, so only the lowest 8 bits of the argument

are used.

S en dM es sa ge (3); / / se nd m es sa ge 3

S en dM es sa ge (2 59); / / an ot he r wa y to s en d me ss ag e 3

SetTxPower(power) Function - RCX, Scout

Set the power level for IR transmission. Power should be one of the constants

TX_POWER_LO or TX_POWER_HI.

3.5.2 Serial RCX2

The RCX2 can transmit serial data out the IR port. Prior to transmitting any data, the

communication and packet settings must be specified. Then, for each transmission, data

should be placed in the transmit buffer, then sent using the SendSerial() function.

The communication settings are set with SetSerialComm, and determine how bits are

sent over IR. Possible values are shown below.

Option Effect

SERIAL_COMM_DEFAULT default settings

SERIAL_COMM_4800 4800 baud

SERIAL_COMM_DUTY25 25% duty cycle

SERIAL_COMM_76KHZ 76kHz carrier

The default is to send data at 2400 baud using a 50% duty cycle on a 38kHz carrier. To

specify multiple options (such as 4800 baud with 25% duty cycle), combine the

individual options using bitwise or (SERIAL_COMM_4800 | SERIAL_COMM_DUTY25).

The packet settings are set with SetSerialPacket and control how bytes are

assembled into packets. Possible values are shown below.

NQC Programmer's Guide

Page 38

Option Effect

SERIAL_PACKET_DEFAULT no packet format - just data bytes

SERIAL_PACKET_PREAMBLE send a packet preamble

SERIAL_PACKET_NEGATED follow each byte with its complement

SERIAL_PACKET_CHECKSUM include a checksum for each packet

SERIAL_PACKET_RCX standard RCX format (preamble,

negated data, and checksum)

Note that negated packets always include a checksum, so the

SERIAL_PACKET_CHECKSUM option is only meaningful when

SERIAL_PACKET_NEGATED is not specified. Likewise the preamble, negated, and

checksum settings are implied by SERIAL_PACKET_RCX.

The transmit buffer can hold up to 16 data bytes. These bytes may be set using

SetSerialData, then transmitted by calling SendSerial. For example, the following

code sends two bytes (0x12 and 0x34) out the serial port:

S et Se ri al Co mm (S ER IA L_ CO MM _D EF AU LT);

S et Se ri al Pa ck et (S ER IA L_ PA CK ET _D EF AU LT);

S et Se ri al Da ta (0 , 0x 12);

S et Se ri al Da ta (1 , 0x 34);

S en dS er ia l(0, 2);

SetSerialComm(settings) Function - RCX2

Set the communication settings, which determine how the bits are sent over IR

S et Se ri al Co mm (S ER IA L_ CO MM _D EF AU LT);

SetSerialPacket(settings) Function - RCX2

Set the packet settings, which control how bytes are assembled into packets.

S et Se ri al Pa ck et (S ER IA L_ PA CK ET _D EF AU LT);

SetSerialData(n, value) Function - RCX2

NQC Programmer's Guide

Page 39

Set one byte of data in the transmit buffer. N is the index of the byte to set (0-15),

and value can be any expression.

S et Se ri al Da ta (3 , x) ; // s et b yt e 3 to x

SerialData(n) Value - RCX2

Returns the value of a byte in the transmit buffer (NOT received data). N must be a

constant between 0 and 15.

x = S er ia lD at a(7) ; // r ea d by te # 7

SendSerial(start, count) Function - RCX2

Use the contents of the transmit buffer to build a packet and send it out the IR port

(according to the current packet and communication settings). Start and count are

both constants that specify the first byte and the number of bytes within the buffer to

be sent.

S en dS er ia l(0, 2) ; // s en d fi rs t tw o by te s in b uf fe r

3.5.3 VLL Scout

SendVLL(value) Function - Scout

Sends a Visible Light Link (VLL) command, which can be used to communicate with

the MicroScout or Code Pilot. The specific VLL commands are described in the

Scout SDK.

S en dV LL (4); / / se nd V LL c om ma nd # 4

3.6 Timers

All targets provide several independent timers with 100ms resolution (10 ticks per

second). The Scout provides 3 such timers while the RCX and CyberMaster provide 4.

The timers wrap around to 0 after 32767 ticks (about 55 minutes). The value of a timer

can be read using Timer(n), where n is a constant that determines which timer to use (0-

2 for Scout, 0-3 for the others). RCX2 provides the ability to read the same timers with

NQC Programmer's Guide

Page 40

higher resolution by using FastTimer(n), which returns the timer's value with 10ms

resolution (100 ticks per second).

ClearTimer(n) Function - All

Reset the specified timer to 0.

C le ar Ti me r(0) ;

Timer(n) Value - All

Return the current value of specified timer (in 100ms resolution).

x = T im er (0);

SetTimer(n, value) Function - RCX2

Set a timer to a specific value (which may be any expression).

S et Ti me r(0, x);

FastTimer(n) Value - RCX2

Return the current value of specified timer in 10ms resolution.

x = F as tT im er (0);

3.7 Counters RCX2, Scout

Counters are like very simple variables that can be incremented, decremented, and

cleared. The Scout provides two counters (0 and 1), while the RCX2 provides three (0, 1,

and 2). In the case of RCX2, these counters are overlapped with global storage locations

0-2, so if they are going to be used as counters, a #pragma reserve should be used to

prevent NQC from using the storage location for a regular variable. For example, to use

counter 1:

pr ag ma r es er ve 1

ClearCounter(n) Function - RCX2, Scout

Reset counter n to 0. N must be 0 or 1 for Scout, 0-2 for RCX2.

C le ar Co un te r(1) ;

NQC Programmer's Guide

Page 41

IncCounter(n) Function - RCX2, Scout

Increment counter n by 1. N must be 0 or 1 for Scout, 0-2 for RCX2

I nc Co un te r(1) ;

DecCounter(n) Function - RCX2, Scout

Decrement counter n by 1. N must be 0 or 1 for Scout, 0-2 for RCX2

D ec Co un te r(1) ;

Counter(n) Value - RCX, Scout

Return the current value of counter n. N must be 0 or 1 for Scout, 0-3 for RCX2

x = C ou nt er (1);

3.8 Access Control RCX2, Scout

Access control is implemented primarily by the acquire statement. The SetPriority

function can be used to set a task's priority, and the following constants may be used to

specify resources in an acquire statement. Note that the user defined resources are only

available on the RCX2.

Constant Resource

ACQUIRE_OUT_A,

ACQUIRE_OUT_B,

ACQUIRE_OUT_C

outputs

ACQUIRE_SOUND sound

ACQUIRE_USER_1,

ACQUIRE_USER_2,

ACQUIRE_USER_3,

ACQUIRE_USER_4

user defined -

RCX2 only

SetPriority(p) - Function - RCX2, Scout

NQC Programmer's Guide

Page 42

Set a task's priority to p, which must be a constant. RCX2 supports priorities 0-255,

while Scout supports priorities 0-7. Note that lower numbers are higher priority.

S et Pr io ri ty (1);

3.9 Events RCX2, Scout

Although the RCX2 and Scout share a common event mechanism, the RCX2 provides 16

completely configurable events while the Scout has 15 predefined events. The only

functions common to both targets are the commands to inspect or force events.

ActiveEvents(task) Value - RCX2, Scout

Return the set of events that have been triggered for a given task.

x = A ct iv eE ve nt s(0) ;

CurrentEvents() Value - RCX2

Return the set of events that have been triggered for the active task.

x = C ur re nt Ev en ts () ;

Event(events) Function - RCX2, Scout

Manually triggers the specified events. This can be useful in testing event handling

of the program, or in other cases simulating an event based on other criteria. Note

that the specification of the events themselves is slightly different between RCX2 and

Scout. RCX2 uses the EVENT_MASK macro to compute an event mask, while Scout

has predefined masks.

E ve nt (E VE NT _M AS K(3)); / / tr ig ge ri ng a n RC X2 e ve nt

E ve nt (E VE NT _1 _P RE SS ED); // t ri gg er in g a Sc ou t ev en t

3.9.1 RCX2 Events RCX2

RCX2 provides an extremely flexible event system. There are 16 events, each of which

can be mapped to one of several event sources (the stimulus that can trigger the event),

and an event type (the criteria for triggering). A number of other parameters may also be

NQC Programmer's Guide

Page 43

specified depending on the event type. For all of the configuration calls an event is

identified by its event number - a constant from 0 to 15.

Legal event sources are sensors, timers, counters, or the message buffer. An event is

configured by calling SetEvent(event, source, type), where event is a constant

event number (0-15), source is the event source itself, and type is one of the types shown

below (some combinations of sources and types are illegal).

Event Type Condition Event Source

EVENT_TYPE_PRESSED value becomes on sensors only

EVENT_TYPE_RELEASED value becomes off sensors only

EVENT_TYPE_PULSE value goes from off to on to off sensors only

EVENT_TYPE_EDGE value goes from on to off or vice

versa

sensors only

EVENT_TYPE_FASTCHANGE value changes rapidly sensors only

EVENT_TYPE_LOW value becomes low any

EVENT_TYPE_NORMAL value becomes normal any

EVENT_TYPE_HIGH value becomes high any

EVENT_TYPE_CLICK value from low to high back to low any

EVENT_TYPE_DOUBLECLICK two clicks within a certain time any

EVENT_TYPE_MESSAGE new message received Message() only

The first four event types make use of a sensor's boolean value, thus are most useful with

touch sensors. For example, to set event #2 to be triggered when a touch sensor on port 1

is pressed, the following call could be made:

S et Ev en t(2, S EN SO R_ 1, E VE NT _T YP E_ PR ES SE D) ;

NQC Programmer's Guide

Page 44

In order for EVENT_TYPE_PULSE or EVENT_TYPE_EDGE to be used, the sensor must be

configured in the SENSOR_MODE_PULSE or SENSOR_MODE_EDGE respectively.

EVENT_TYPE_FASTCHANGE should be used with sensors that have been configured with

a slope parameter. When the raw value changes faster than the slope parameter an

EVENT_TYPE_FASTCHANGE event will be triggered.

The next three types (EVENT_TYPE_LOW, EVENT_TYPE_NORMAL, and

EVENT_TYPE_HIGH) convert an event source's value into one of three ranges (low,

normal, or high), and trigger an event when the value moves from one range into another.

The ranges are defined by the lower limit and upper limit for the event. When the source

value is lower than the lower limit, the source is considered low. When the source value

is higher than the upper limit, the source is considered high. The source is normal

whenever it is between the limits.

The following example configures event #3 to trigger when the sensor on port 2's value

goes into the high range. The upper limit is set for 80, and the lower limit is set for 50.

This configuration is typical of how an event can be triggered when a light sensor

detected a bright light.

S et Ev en t(3, S EN SO R_ 2, E VE NT _T YP E_ HI GH);

S et Lo we rL im it (3 , 50);

S et Up pe rL im it (3 , 80);

A hysteresis parameter can be used to provide more stable transitions in cases where the

source value may jitter. Hysteresis works by making the transition from low to normal a

little higher than the transition from normal to low. In a sense, it makes it easier to get

into the low range than get out of it. A symmetrical case applies to the transition between

normal and high.

A transition from low to high back to low will trigger a EVENT_TYPE_CLICK event,

provided that the entire sequence is faster than the click time for the event. If two

successive clicks occur and the time between clicks is also less than the click time, then

an EVENT_TYPE_DOUBLECLICK event will be triggered. The system also keeps track of

the total number of clicks for each event.

NQC Programmer's Guide

Page 45

The last event type, EVENT_TYPE_MESSAGE, is only valid when Message() is used as

the event source. The event will be triggered whenever a new message arrives (even if its

value is the same as a previous message).

The monitor statement and some API functions (such as ActiveEvents() or Event()) need

to handle multiple events. This is done by converting each event number to an event

mask, and then combining the masks with a bitwise OR. The EVENT_MASK(event)

macro converts an event number to a mask. For example, to monitor events 2 and 3, the

following statement could be used:

m on it or (E VE NT _M AS K(2) | E VE NT _M AS K(3))

SetEvent(event, source, type) Function - RCX2

Configure an event (a number from 0 to 15) to use the specified source and type.

Both event and type must be constants, and source should be the actual source

expression.

S et Ev en t(2, T im er (0), E VE NT _T YP E_ HI GH);

ClearEvent(event) Value - RCX2

Clear the configuration for the specified event. This prevents it from triggering until

it is re-configured.

C le ar Ev en t(2) ; // c le ar e ve nt # 2

ClearAllEvents() Value - RCX2

Clear the configurations for all events.

C le ar Al lE ve nt s();

EventState(event) Value - RCX2

Return the state of a given event. States are 0: Low, 1: Normal, 2: High, 3:

Undefined, 4: Start calibrating, 5: Calibrating in process.

x = E ve nt St at e(2) ;

CalibrateEvent(event, lower, upper, hyst) Function - RCX2

NQC Programmer's Guide

Page 46

Calibrate the event by taking an actual sensor reading and then applying the specified

lower, upper, and hyst ratios to determine actual limits and hysteresis value. The

specific formulas for calibration depend on sensor type and are explained in the

LEGO SDK. Calibration is not instantaneous - EventState() can be checked to

determine when the calibration is complete (typically about 50ms).

C al ib ra te Ev en t(2, 5 0, 5 0, 2 0) ;

u nt il (E ve nt St at e(2) ! = 5) ; // w ai t fo r ca li br at io n

SetUpperLimit(event, limit) Function - RCX2

Set the upper limit for the event, where event is a constant event number and limit can

be any expression.

S et Up pe rL im it (2 , x) ; // s et u pp er l im it f or # 2 to x

UpperLimit(event) Value - RCX2

Return the current upper limit for the specified event number.

x = U pp er Li mi t(2) ; // g et u pp er l im it f or e ve nt 2

SetLowerLimit(event, limit) Function - RCX2

Set the lower limit for the event, where event is a constant event number and limit can

be any expression.

S et Lo we rL im it (2 , x) ; // s et l ow er l im it f or # 2 to x

LowerLimit(event) Value - RCX2

Return the current lower limit for the specified event number.

x = L ow er Li mi t(2) ; // g et l ow er l im it f or e ve nt 2

SetHysteresis(event, value) Function - RCX2

Set the hysteresis for the event, where event is a constant event number and value can

be any expression.

S et Hy st er es is (2 , x) ;

Hysteresis(event) Value - RCX2

NQC Programmer's Guide

Page 47

Return the current hysteresis for the specified event number.

x = H ys te re si s(2) ;

SetClickTime(event, value) Function - RCX2

Set the click time for the event, where event is a constant event number and value can

be any expression. The time is specified in increments of 10ms, so one second would

be a value of 100.

S et Cl ic kT im e(2, x);

ClickTime(event) Value - RCX2

Return the current click time for the specified event number.

x = C li ck Ti me (2);

SetClickCounter(event, value) Function - RCX2

Set the click counter for the event, where event is a constant event number and value

can be any expression.

S et Cl ic kC ou nt er (2 , x) ;

ClickCounter(event) Value - RCX2

Return the current click counter for the specified event number.

x = C li ck Co un te r(2) ;

3.9.2 Scout Events Scout

The Scout provides 15 events, each of which has a predefined meaning as shown in the

table below.

Event Name Condition

EVENT_1_PRESSED sensor 1 pressed

EVENT_1_RELEASED sensor 1 released

NQC Programmer's Guide

Page 48

EVENT_2_PRESSED sensor 2 pressed

EVENT_2_RELEASED sensor 2 released

EVENT_LIGHT_HIGH light sensor "high"

EVENT_LIGHT_NORMAL light sensor "normal"

EVENT_LIGHT_LOW light sensor "low"

EVENT_LIGHT_CLICK low to high to low

EVENT_LIGHT_DOUBLECLICK two clicks

EVENT_COUNTER_0 counter 0 over limit

EVENT_COUNTER_1 counter 1 over limit

EVENT_TIMER_0 timer 0 over limit

EVENT_TIMER_1 timer 1 over limit

EVENT_TIMER_2 timer 2 over limit

EVENT_MESSAGE new message received

The first four events are triggered by touch sensors connected to the two sensor ports.

EVENT_LIGHT_HIGH, EVENT_LIGHT_NORMAL, and EVENT_LIGHT_LOW are triggered

by the light sensor's value changing from one range to another. The ranges are defined

by SetSensorUpperLimit, SetSensorLowerLimit, and SetSensorHysteresis

which were described previously.

EVENT_LIGHT_CLICK and EVENT_LIGHT_DOUBLECLICK are also triggered by the light

sensor. A click is a transition from low to high and back to low within a certain amount

of time, called the click time.

Each counter has a counter limit. When the counter exceeds this limit,

EVENT_COUNTER_0 or EVENT_COUNTER_1 is triggered. Timers also have a limit, and

they generate EVENT_TIMER_0, EVENT_TIMER_1, and EVENT_TIMER_2.

EVENT_MESSAGE is triggered whenever a new IR message is received.

NQC Programmer's Guide

Page 49

SetSensorClickTime(value) Function - Scout

Set the click time used to generate events from the light sensor. Value should be

specified in increments of 10ms, and may be any expression.

S et Se ns or Cl ic kT im e(x) ;

SetCounterLimit(n, value) Function - Scout

Set the limit for counter n. N must be 0 or 1, and value may be any expression.

S et Co un te rL im it (0 , 10 0) ; // s et c ou nt er 0 l im it t o 10 0

SetTimerLimit(n, value) Function - Scout

Set the limit for timer n. N must be 0, 1, or 2, and value may be any expression.

S et Ti me rL im it (1 , 10 0) ; // s et t im er 1 l im it t o 10 0

3.10 Data Logging RCX

The RCX contains a datalog which can be used to store readings from sensors, timers,

variables, and the system watch. Before adding data, the datalog first needs to be created

using the CreateDatalog(size) command. The 'size' parameter must be a constant and

determines how many data points the datalog can hold.

C re at eD at al og (1 00); / / da ta lo g fo r 10 0 po in ts

Values can then be added to the datalog using AddToDatalog(value). When the datalog

is uploaded to a computer it will show both the value itself and the source of the value

(timer, variable, etc). The datalog directly supports the following data sources: timers,

sensor values, variables, and the system watch. Other data types (such as a constant or

random number) may also be logged, but in this case NQC will first move the value into

a variable and then log the variable. The values will still be captured faithfully in the

datalog, but the sources of the data may be a bit misleading.

A dd To Da ta lo g(Ti me r(0)); / / ad d ti me r 0 to d at al og

A dd To Da ta lo g(x) ; / / ad d va ri ab le ' x'

A dd To Da ta lo g(7) ; / / ad d 7 - wi ll l oo k li ke a v ar ia bl e

NQC Programmer's Guide

Page 50

The RCX itself cannot read values back out of the datalog. The datalog must be

uploaded to a host computer . The specifics of uploading the datalog depend on the NQC

environment being used. For example, in the command line version of NQC, the

following commands will upload and print the datalog:

n qc - da ta lo g

n qc - da ta lo g_ fu ll

CreateDatalog(size) Function - RCX

Create a datalog of the specified size (which must be a constant). A size of 0 clears

the existing datalog without creating a new one.

C re at eD at al og (1 00); / / da ta lo g fo r 10 0 po in ts

AddToDatalog(value) Function - RCX

Add the value, which may be an expression, to the datalog. If the datalog is full the

call has no effect.

A dd To Da ta lo g(x) ;

UploadDatalog(start, count) Function - RCX

Initiate and upload of count data points beginning at start. This is of relatively little

use since the host computer usually initiates the upload.

U pl oa dD at al og (0 , 10 0) ; / / up lo ad e nt ir e 10 0 po in t lo g

3.11 General Features

Wait(time) Function - All

Make a task sleep for specified amount of time (in 100ths of a second). The time

argument may be an expression or a constant:

W ai t(10 0) ; / / wa it 1 s ec on d

W ai t(Ra nd om (1 00)) ; // w ai t ra nd om t im e up t o 1 se co nd

StopAllTasks() Function - All

NQC Programmer's Guide

Page 51

Stop all currently running tasks. This will halt the program completely, so any code

following this command will be ignored.

S to pA ll Ta sk s(); / / st op t he p ro gr am

Random(n) Value - All

Return a random number between 0 and n. N must be a constant.

x = R an do m(10);

SetRandomSeed(n) Function - RCX2

Seed the random number generator with n. N may be an expression.

S et Ra nd om Se ed (x); / / se ed w it h va lu e of x

SetSleepTime(minutes) Function - All

Set the sleep timeout the requested number of minutes (which must be a constant).

Specifying 0 minutes disables the sleep feature.

S et Sl ee pT im e(5) ; // s le ep a ft er 5 m in ut es

S et Sl ee pT im e(0) ; // d is ab le s le ep t im e

SleepNow() Function - All

Force the device to go to sleep. Only works if the sleep time is non-zero.

S le ep No w(); / / go t o sl ee p

3.12 RCX Specific Features

Program() Value - RCX

Number of the currently selected program.

x = P ro gr am () ;

SelectProgram(n) Function - RCX2

Select the specified program and start running it. Note that programs are numbered

0-4 (not 1-5 as displayed on the LCD).

NQC Programmer's Guide

Page 52

S el ec tP ro gr am (3);

BatteryLevel() Value - RCX2

Return the battery level in millivolts.

x = B at te ry Le ve l();

FirmwareVersion() Value - RCX2

Return the firmware version as an integer. For example, version 3.2.6 is 326.

x = F ir mw ar eV er si on () ;

Watch() Value - RCX

Return the value of the system clock in minutes.

x = W at ch () ;

SetWatch(hours, minutes) Function - RCX

Set the system watch to the specified number of hours and minutes. Hours must be a

constant between 0 and 23 inclusive. Minutes must be a constant between 0 and 59

inclusive.

S et Wa tc h(3, 1 5) ; / / se t wa tc h to 3 :1 5

3.13 Scout Specific Features

SetScoutRules(motion, touch, light, time, fx) Function - Scout

Set the various rules used by the scout in stand-alone mode.

ScoutRules(n) Value - Scout

Return current setting for one of the rules. N should be a constant between 0 and 4.

x = S co ut Ru le s(1) ; // g et s et ti ng f or r ul e #1

SetScoutMode(mode) Function - Scout

NQC Programmer's Guide

Page 53

Put the scout into stand-alone (0) or power (1) mode. As a programming call it really

only makes sense to put into stand-alone mode since it would already be in power

mode to run an NQC program.

SetEventFeedback(events) Function - Scout

Set which events should be accompanied by audio feedback.

S et Ev en tF ee db ac k(EV EN T_ 1_ PR ES SE D) ;

EventFeedback() Value - Scout

Return the set of events that have audio feedback.

x = E ve nt Fe ed ba ck () ;

SetLight(mode) Function - Scout

Control the Scout's LED. Mode must be LIGHT_ON or LIGHT_OFF.

S et Li gh t(LI GH T_ ON); / / tu rn o n LE D

3.14 CyberMaster Specific Features

CyberMaster provides alternate names for the sensors: SENSOR_L, SENSOR_M, and

SENSOR_R. It also provides alternate names for the outputs: OUT_L, OUT_R, OUT_X.

Additionally, the two internal motors have tachometers, which measure 'clicks' and speed

as the motors turn. There are about 50 clicks per revolution of the shaft. The tachometers

can be used, for example, to create a robot which can detect if it has bumped into an

object without using any external sensors. The tachometers have maximum values of

32767 and do not differentiate between directions. They will also count up if the shaft is

turned by hand, including when no program is running.

Drive(motor0, motor1) Function - CyberMaster

Turns on both motors at the power levels specified. If a power level is negative, then

the motor will run in reverse. Equivalent to this code:

S et Po we r(OU T_ L, a bs (p ow er 0));

NQC Programmer's Guide

Page 54

S et Po we r(OU T_ R, a bs (p ow er 1));

i f(po we r0 < 0)

 { S et Di re ct io n(OU T_ L, O UT _R EV) }

e ls e

 { S et Di re ct io n(OU T_ L, O UT _F WD) }

i f(po we r1 < 0)

 { S et Di re ct io n(OU T_ R, O UT _R EV) }

e ls e

 { S et Di re ct io n(OU T_ R, O UT _F WD) }

S et Ou tp ut (O UT _L + O UT _R , OU T_ ON);

OnWait(motors, n time) Function - CyberMaster

Turns on the motors specified, all at the same power level then waits for

the given time. The time is in 10ths of a second, with a maximum of 255 (or

25.5 seconds). Equivalent to this code:

S et Po we r(mo to rs , ab s(po we r));

i f(po we r < 0)

 { S et Di re ct io n(mo to rs , OU T_ RE V) }

e ls e

 { S et Di re ct io n(mo to rs , OU T_ FW D) }

S et Ou tp ut (m ot or s, O UT _O N) ;

W ai t(t im e * 10) ;

OnWaitDifferent(motors, n0, n1, n2, time) Function - CyberMaster

Like OnWait(), except different power levels can be given for each motor.

ClearTachoCounter(motors) Function - CyberMaster

Resets the tachometer for the motor(s) specified.

TachoCount(n) Value - CyberMaster

Returns the current value of the tachometer for a specified motor.

TachoSpeed(n) Value - CyberMaster

NQC Programmer's Guide

Page 55

Returns the current speed of the tachometer for a specified motor. The speed is fairly

constant for an unladen motor at any speed, with a maximum value of 90. (This will

be lower as your batteries lose power!) The value drops as the load on the motor

increases. A value of 0 indicates that the motor is stalled.

ExternalMotorRunning() Value - CyberMaster

This is actually a measure of the current being drawn by the motor. The values

returned tends to fluctuate slightly, but are, on average, as follows for an unladen

motor:

0 motor is floating

1 motor is off

 <=7 motor is running at around this power level. This is where the value

fluctuates the most (probably related to the PWM method used to drive the motors.)

In any case, you should know what power level you set the motor to in the first place.

The value increases as the load on the motor increases, and a value between 260 and

300 indicates that the motor has stalled.

AGC() Value - CyberMaster

Return the current value of the automatic gain control on the RF receiver. This can

be used to give a very rough (and somewhat inaccurate) measure of the distance

between the CyberMaster and the RF transmitter.

x = A GC () ;

NQC Programmer's Guide

Page 56

4 Technical Details

This section explains some of the low-level features of NQC. In general, these

mechanisms should only be used as a last resort since they may change in future releases.

Most programmers will never need to use the features described below - they are mainly

used in the creation of the NQC API file.

4.1 The asm statement

The asm statement is used to define almost all of the NQC API calls. The syntax of the

statement is:

a sm { i te m1 , it em 2 .. . it em N }

Where an item is one of the following

c on st an t_ ex pr es si on

& e xp re ss io n

& e xp re ss io n : r es tr ic to r

The statement simply emits the values of each of the items as raw bytecodes. Constant

items are the simplest - they result in a single byte of raw data (the lower 8 bits of the

constant value). For example, the API file defines the following inline function:

v oi d Cl ea rM es sa ge () { a sm { 0 x9 0 }; }

Whenever ClearMessage() is called by a program, the value 0x90 is emitted as a

bytecode.

Many API functions take arguments, and these arguments must be encoded into an

appropriate effective address for the bytecode interpreter. In the most general case, an

effective address contains a source code followed by a two byte value (least significant

byte first). Source codes are explained in the SDK documentation available from LEGO.

However, it is often desirable to encode the value in some other manner - for example to

use only a single byte value after the source code, omit the source code itself, or only

allow certain sources to be used. A restrictor may be used to control how the effective

address is formatted. A restrictor is a 32 bit constant value. The lower 24 bits form a

bitmask indicating which sources are valid (bit 0 should be set to allow source 0, etc).

NQC Programmer's Guide

Page 57

The upper 8 bits include formatting flags for the effective address. Note that when no

restrictor is specified, this is the same as using a restrictor of 0 (no restriction on sources,

and a format of source followed by two value bytes). The API file defines the following

constants which can be used to build restrictors:

de fi ne _ _A SM _S MA LL _V AL UE 0x 01 00 00 00

de fi ne _ _A SM _N O_ TY PE 0x 02 00 00 00

de fi ne _ _A SM _N O_ LO CA L 0x 04 00 00 00

if _ _R CX == 2

 / / no r es tr ic ti on

 # de fi ne _ _A SM _S RC _B AS IC 0

 # de fi ne _ _A SM _S RC _E XT 0

el se

 # de fi ne _ _A SM _S RC _B AS IC 0 x0 00 00 5

 # de fi ne _ _A SM _S RC _E XT 0 x0 00 01 5

en di f

The __ASM_SMALL_VALUE flag indicates that a one-byte value should be used instead of

a two-byte value. The __ASM_NO_TYPE flag indicates that the source code should be

omitted. The __ASM_NO_LOCAL flag specifies that local variables are not a legal source

for the expression. Note that the RCX2 firmware is less restrictive than the other

interpreters, thus the definition of __ASM_SRC_BASIC and __ASM_SRC_EXT are relaxed

in the RCX2 case. The API definition file for NQC contains numerous examples of using

restrictors within asm statement. If you are using a command-line version of NQC, you

can emit the API file by typing the following command:

n qc - ap i

4.2 Data Sources

The bytecode interpreters use different data sources to represent the various kinds of data

(constants, variables, random numbers, sensor values, etc). The specific sources depend

to a certain extent on which device you are using and are described in the SDK

documentation available from LEGO.

NQC Programmer's Guide

Page 58

NQC provides a special operator to represent a data source:

@ c on st an t

The value of this expression is the data source described by the constant. The lower 16

bits of the constant represent the data value, and the next 8 bits are the source code. For

example, the source code for a random number is 4, so the expression for a random

number between 0 and 9 would be:

@ 0x 40 00 9

The NQC API file defines a number of macros which make the use of the @ operator

transparent to the programmer. For example, in the case of random numbers:

de fi ne R an do m(n) @(0x 40 00 0 + (n))

Note that since source 0 is the global variable space, the global storage locations can be

referenced by number: @0 refers to storage location 0. If for some reason you need

explicit control over where variables are being stored, then you should use #pragma

reserve to instruct NQC not to use those storage locations, and then access them

manually with the @ operator. For example, the following code snippet reserves location

0 and creates a macro for it called x.

pr ag ma r es er ve 0

de fi ne x (@0)

mailto:@
mailto:@

