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ABSTRACT

Summary:

Gene set enrichment analysis (GSEA) is an important approach in microarray data 

analysis since it can reveal unifying biological schemes based on previously accumulated 

knowledge. We describe a new GSEA method, FDR-FET, which employs a False 

Discovery Rate (FDR) procedure to select a series of differentially expressed gene lists at 

multiple FDR cutoff values and computes the P value of overrepresentation of a gene set 

using a Fisher’s exact test (FET) in each of these gene lists. The lowest P value is 

retained to represent the significance of the gene set of interest, thereby dynamically 

setting the most sensitive FDR cutoff. We demonstrate the validity of the method using a 

published microarray dataset.
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1 INTRODUCTION

Microarray data analysis usually begins with the generation of a gene list sorted by their 

fold changes between treatment groups or differential expression P values from either a t-

test or analysis of variance (ANOVA). Interpretation of the list is often a daunting task, 

but can be greatly assisted by a group of analytical approaches generally referred to as 

gene set enrichment analysis (GSEA) (Allison et al 2005). Many varieties of GSEA have 

been proposed, all of which utilize a priori constructed gene sets that contain related 

genes with the same annotation such as biological function or chromosome location 

(Ackermann and Strimmer, 2009). Focusing on gene sets instead of individual genes has 

obvious advantages. First, it can make use of previously accumulated biological 

knowledge and thus allow for a more biology-driven analysis. Second, from a statistical 

point of view it increases power and reduces the dimensionality of the problem.

The general framework and methodology of GSEA approaches have been thoroughly 

analyzed and discussed recently (Goeman and Buhlmann, 2007; Ackermann and 

Strimmer, 2009). These methods can be classified as either self-contained or competitive 

based on the definition of the null hypothesis. A self-contained test compares a gene set 

to a fixed standard and is not dependent on genes outside of the set. These methods make 

use of the raw expression data, some of them are based on logistic regression models 

while others utilize Hotelling’s T2-tests or the more general MANOVA (multivariate 

analysis of variance) models. By contrast, a competitive test compares the differential 

expression of a gene set to that of its complement. Majority of the proposed GSEA 

methods belong to this category. They start with a differentially expressed gene list and 



test whether a gene set is overrepresented in the list. This is usually achieved by a test of 

independence in a two by two contingency table, where the test statistic can be 

constructed based on χ2, hypergeometric, or binomial distribution (Khatri and Draghici, 

2005). Since a strict cutoff is needed to obtain the differentially expressed gene list, what 

criterion constitutes a ‘good’ cutoff is often debated. Alternative methods have been 

proposed that make use of the whole vector of P values or fold changes. For example, the 

PAGE (Parametric Analysis of Gene Set Enrichment) method is based on well grounded 

statistical theory (i.e. the Central Limit Theorem), fully parametric, and computationally 

efficient as no permutation is needed to derive the gene set P value (Kim and Volsky, 

2005). 

2 DESCRIPTION OF METHOD AND IMPLEMENTATION

We have devised and implemented a new GSEA method, FDR-FET, which belongs to 

the competitive test category. The key difference between FDR-FET and other 

competitive methods is that it employs a False Discovery Rate (FDR) procedure to select 

the differentially expressed gene list. This FDR correction uses the Simes procedure, 

which employs a series of linearly increasing critical values (Simes, 1986) and has been 

shown to control the FDR at pre-specified levels for independent test statistics 

(Benjamini and Hochberg, 1995). Since a single FDR criterion also represents an 

arbitrary limitation of analysis, we calculate a series of differentially expressed gene lists 

corresponding to FDRs from 1% to 35% (default; or per user specified). The employment 

of the FDR procedure and multiple cutoffs provides statistical rigor with additional 

flexibility to the method.



The overrepresentation of a gene set in a differentially expressed gene list is examined 

using a Fisher’s exact test (FET). We utilize the right test that evaluates the significance 

of the intersection between two lists for positive association, i.e. an enrichment of 

elements of list A in list B or vice versa (Agresti, 1992). By default there are as many as 

35 distinct differentially expressed gene lists and thus up to 35 FETs may be performed 

for every gene set. The most significant P value (i.e. lowest) from these tests is retained 

as the significance value for the gene set. 

Like all other tests based on the two by two contingency table, FDR-FET also relies on 

the assumption that the observations for every gene are independent and identically 

distributed (Goeman and Buhlmann, 2007). While it is unrealistic to assume complete 

independence among genes from the same gene set, it is at minimal desirable to 

consolidate values for probes representing the same gene. For example, in the case of 

Affymetrix microarrays, probesets need to be consolidated to the locus level where every 

locus can be associated with the most significant P value among all probesets mapped to 

the single locus. This consolidation should be performed prior to the FDR-FET analysis.

Background noise is known to have strong impact on the FDR result and needs to be 

minimized before applying the FDR-FET method. There are many ways to achieve this 

depending on sample, microarray type and normalization method. One possibility is to 

sort probesets based on their maximal expression values across all samples, then remove 

probesets from the bottom using a pre-specified percentile (e.g. 15%). Typically for 



expression data generated from the MAS 5.0 algorithm, up to 50% of the probesets on the 

HG-U133A array are flagged as ‘absent’ and may be removed. 

We implemented FDR-FET as a Pperl module (FdrFet) with C inline codes. The module 

expects two sets of data: a set of genes consisting of gene names and their associated P 

values from a study of interest and a set of pathways each of which references a subset of 

the genes. We have also provided an executable program that uses this module which The 

program expects two input files containing these sets. One of them contains genes with 

corresponding P values from a study of interest; the other file is the gene set file. It is 

expected that the gene ID is unique for every gene and matches in the two input files. The 

Perl module will calculate the gene sets  Two output files will be generated by FDR-FET. 

One of them contains the gene sets and their respective P values, while the other contains 

with detailed information of the analysis such as best P value, odd ratio and the 

corresponding FDR cutoff, numbers in the two by two contingency table, and genes in 

the overlapping set (between the regulated gene list and the gene set being tested), etc. 

The Perl module has options controlling the size of “gene universe”, i.e. how many total 

genes are used for “N” in the Fisher Exact Test, as well as control over whether pathway 

genes whose expression is unknown are counted as being part of the pathway. The Fisher 

Exact Test implementation in R (R Development Core Team 2009) was used, and this 

implementation is based on an elegant computation of binomial coefficients (Loader, 

2000). The test data in the module contains the GO pathways and gene P values used in 

the example in the next section.



(Bob, please fill in any performance details and platform issues)

3 RESULTS AND DISCUSSION

We tested the FDR-FET method using microarray data from a published study on the 

cellular effects of three HIV protease inhibitors (Parker et al., 2005). It is well known that 

patients taking protease inhibitor drugs to treat HIV-AIDS often develop a lipodystrophy-

like syndrome such as hyperlipidermia, peripheral lipoatrophy and central fat 

accumulation (Calza et al., 2004). Parker et al. have shown that protease inhibitors could 

induce gene expression changes indicative of dysregulation of lipid metabolism, 

endoplasmic reticulum stress, and metabolic disturbance. These results are consistent 

with clinical observations and provide basis for a molecular mechanism for the 

pathphysiology of protease inhibitor-induced lipodystrophy.

The probeset level expression data was generated using the MAS 5.0 algorithm with 

quantile normalization (Bolstad et al., 2003) and 20% lowest expressed probesets were 

removed as described above. A one-way ANOVA with “drug treatment” as the factor 

was performed to generate the input file that contains genes and their associated P values. 

We utilized gene sets from both the Gene Ontology (Ashburner et al., 2000) and KEGG 

(Kanehisa et al., 2008) and the maximal FDR cutoff was set to 35%. The top 10 gene sets 

by P value are shown in Table 1. It is immediately apparent that this list includes all the 

major targets of the HIV protease inhibitors including lipid metabolism, amino acid 

metabolism, gluconeogenesis, and endoplasmic reticulum. By contrast, when a single 



arbitrary P value cutoff (0.01 or 0.05) is used, the compound effect on gluconeogenesis is 

missed.



Table 1. Top 10 gene sets for the HIV protease inhibitor dataset.

Gene set Description P value

KEGG:hsa00970 Aminoacyl-tRNA biosynthesis 11.12

GO:0005783 endoplasmic reticulum 11.02

GO:0004812 aminoacyl-tRNA ligase activity 10.27

GO:0006418 tRNA aminoacylation for protein translation 9.96

KEGG:hsa00100 Biosynthesis of steroids 9.63

GO:0008610 lipid biosynthetic process 9.03

GO:0005789 endoplasmic reticulum membrane 8.87

KEGG:hsa00010 Glycolysis / Gluconeogenesis 8.52

GO:0016126 sterol biosynthetic process 8.4

GO:0006695 cholesterol biosynthetic process 6.76
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