- 1
-
Documentation - Methods for examining documents, determining their subjects,
and selecting index terms.
International Organization for Standardization, Standard 5963-1985.
- 2
-
Lifeboat for knowledge organization: indexing theory.
http://www.db.dk/bh/Lifeboat_KO/CONCEPTS/indexing_theor y.htm.
- 3
-
A. Ardö and T. Koch.
Automatic classification applied to the full-text Internet
documents in a robot-generated subject index.
In Online Information 99, Proceedings, pages 239-246, Dec.
1999.
http://www.it.lth.se/anders/online99/.
- 4
-
S. L. Bang, J. D. Yang, and H. J. Yang.
Hierarchical document categorization with k-nn and concept-based
thesauri.
Information Processing and Management, (42):387-406, 2006.
- 5
-
H. Chen and S. T. Dumais.
Bringing order to the web: automatically categorizing search results.
In Proc. of CHI-00, ACM International Conference on Human
Factors in Computing Systems, pages 145-152, 2000.
- 6
-
P. J. Garcés, J. A. Olivas, and F. P. Romero.
Concept-matching ir systems versus word-matching information
retrieval systems: Considering fuzzy interrelations for indexing web pages.
JASIS&T, 57(4):564-576, 2006.
- 7
-
K. Golub.
Automated subject classification of textual Web documents.
Journal of Documentation, 62(3):350-371, 2006.
- 8
-
K. Golub.
Automated subject classification of textual web pages, based on a
controlled vocabulary: challenges and recommendations.
New review of hypermedia and multimedia, 12(1):11-27, June
2006.
Special issue on knowledge organization systems and services.
- 9
-
K. Golub.
The role of different thesauri terms in automated subject
classification of text.
In IEEE/WIC/ACM International Conference on Web Intelligence,
Dec. 2006.
- 10
-
K. Golub and A. Ardö.
Importance of HTML Structural Elements in Automated
Subject Classification.
In A. Rauber, S. Christodoulakis, and A. M. Tjoa, editors, 9th
European Conference on Research and Advanced Technology for Digital Libraries
- ECDL 2005, volume 3652 of Lecture Notes in Computer Science, pages
368 - 378. Springer, Sept. 2005.
Manuscript at:
http://www.it.lth.se/knowlib/publ/ECDL2005.pdf.
- 11
-
K. Golub, A. Ardö, D. Mladenic, and M. Grobelnik.
Comparing and Combining Two Approaches to Automated Subject
Classification of Text.
In J. Gonzalo, C. Thanos, M. F. Verdejo, and R. C. Carrasco, editors,
10th European Conference on Research and Advanced Technology for Digital
Libraries - ECDL 2006, volume 4172 of Lecture Notes in Computer
Science, pages 467-470. Springer, Sept. 2006.
- 12
-
P. Ingwersen and K. Järvelin.
The turn: integration of information seeking and retrieval in
context.
Springer, Dordrecht, The Netherlands, 2005.
- 13
-
F. W. Lancaster.
Indexing and abstracting in theory and practice.
Facet, London, 2003.
3rd ed.
- 14
-
D. D. Lewis, Y. Yang, T. Rose, and F. Li.
Rcv1: A new benchmark collection for text categorization research.
The Journal of Machine Learning Research, (5):361-397, 2004.
- 15
-
O. Medelyan and I. Witten.
Thesaurus based automatic keyphrase indexing.
In Proceedings of the Sixth ACM/IEEE Joint Conference on Digital
Libraries, JCDL 06, pages 296-297, 2006.
- 16
-
H. A. Olson and J. J. Boll.
Subject analysis in online catalogs.
Englewood, CO: Libraries Unlimited, 2001.
2nd ed.
- 17
-
F. Sebastiani.
Machine learning in automated text categorization.
ACM Computing Surveys, 34(1):1-47, 2002.
- 18
-
E. Svenonius.
The intellectual foundations of information organization.
MIT Press, Cambridge, MA, USA, 2000.
- 19
-
R. R. Trujilo.
Simulation tool to study focused web crawling strategies.
Master's thesis, Dept. of Information Technology, Lund University,
P.O. Box 118, S-221 00 Lund, Sweden, Mar. 2006.
http://combine.it.lth.se/CrawlSim/CrawlSim.pdf.
- 20
-
Y. Yang.
An evaluation of statistical approaches to text categorization.
Journal of Information Retrieval, (1):67-88, 1999.
root
2007-09-27