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1 Introduction

When dealing with three dimensional geometry, one often needs to draw some
sketch with circles or arcs seen from an arbitrary point of view. They appear as
ellipses and arcs of ellipses when displayed on a two dimensions plane such as
paper or screen. The classical graphical languages or libraries provide primitives
for drawing several objects like rectangles or circles. Lot of them can also handle
ellipses, but only when their axes are aligned with the device axes, and sometimes
only for complete ellipses (with the notable exception of SVG which has two com-
mands,A anda, to add a general ellipse arc to the current path)

Hence, drawing these objects involve dealing with low level graphics. An al-
gorithm based on Bresenham’s principles has been published in the Foley and Van
Dam book, it has been implemented by Andrew W. Fitzgibbon in C++ and is avail-
able with the PC Games Programmers Encyclopedia library (pcgpe) version 1.01,
in the conic.cc file. The same file can be viewed online2. Unfortunately, one
needs both good starting and ending points, i.e. exactly the same pixels the algo-
rithm would have chosen by itself. Failing to do this result in strange spiral-like
shapes. Another problem with such an algorithm is that it is at pixel level only and
do not handle dashes or line width.

Another method is to use intermediate level objects like polylines or Bézier
curves to approximate the ellipse. In this paper, we will describe how this can be
done, depending on the available primitives and for any user defined accuracy.

Using these intermediate level curves has several advantages. The first one
is that the user can often use his own coordinate system and use floating point
numbers, he does not consider pixels at all. Another advantage is that the graphical
packages handles high level features with such objects, like filling closed shapes,
drawing with various pens (both pen shape and pen size can be customized) and
drawing with various line styles (continuous lines, dashed lines with several dash
patterns). Since each object can contain a lot of individual pixels, the description
of the elliptical arc is also much shorter than specifying each pixel individually. Of
course, for a given accuracy, polylines are less efficient than cubic Bézier curves
for example, so the description size will depend on the available features of the
underlying graphical package.

Three cases will be considered: lines (all graphical packages can handle them),
quadratic B́ezier curves (available for example in LATEX 2ε) and cubic B́ezier curves
(available in LATEX 2ε when thebez123 extension is loaded,METAFONT, PDF,
PostScript, JavaAPI, SVG ...).

The last version of this document is always available in the spaceroots down-
loads pagehttp://www.spaceroots.org/downloads.html . It can be
browsed on-line or retrieved as a PDF, compressed PostScript or LaTeX source file.

1ftp://x2ftp.oulu.fi/pub/msdos/programming/gpe/pcgpe10.zip
2http://www.flashdaddee.com/Books-Technical/win/Conics.htm
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2 Definitions

2.1 parametric curves

A parametric curve is a curve which is defined by a two dimensional equationP of
one parametert. The two coordinates of the vectorP(t) are thex andy coordinates
of the point of the curve corresponding to a particular value of the parameter.

One curve can be defined by several different parametric equations likeP1 and
P2. This means that for eacht1 in the range of the first equation, another valuet2
in the range of the second equation can be found such thatP1(t1) = P2(t2). The
relationship betweent1 andt2 can be either simple or very complex depending on
the equations. Thef function that transformst1 into t2, t2 = f (t1), is monotonic.
If t2 increases whent1 increases, the two equations define the same orientation for
the curve, otherwise they define opposite orientations.

2.1.1 tangent

The unit tangent vector can be computed from the first derivative of the parametric
equation:~T = P′(t)/||P′(t)||, which means its coordinates are:

~T


x′√

x′2 +y′2

y′√
x′2 +y′2

This unit tangent vector is an intrinsic property of the curve, it is independant
of the parametric equations used as long as they define the same orientation. If two
different orientations are used, they will define opposite unit tangent vectors.

2.1.2 curvature

The curvature of a curve is the inverse of the curvature radius. It is null for a
straight line (infinite curvature radius). For a parametric curve, it can be computed
from the first and second derivatives of the defining equation:

C =
|x′y′′−y′x′′|
(x′2 +y′2)3/2

In fact, we will be more interested in the signed curvature, which we define as being
positive when the curve turns left and negative when it turns right when following
the curve in the direction of parameter increase:

(1) C̃ =
x′y′′−y′x′′

(x′2 +y′2)3/2

The signed curvature is also an intrinsic geometrical property of the curve at the
point considered, it is independant of the parametric equations used as long as they
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define the same orientation. If two different orientations are used, they will define
opposite signed curvatures.

2.2 ellipse

First, lets introduce some notations. Figure 1 shows an arc and the ellipse it belongs
to. The ellipseE is defined by its center (cx, cy), its semi-major axis (a), its semi-
minor axis (b) and its orientation (θ). The arc is defined by its start and end angles
(λ1 andλ2, assumingλ1 < λ2 ≤ λ1 +2π). If a = b, then the ellipse is a circle and
theθ direction is irrelevant.

Figure 1: notations
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The two pointsF1 andF2 are the focii of the ellipse. The distance between
these points and the center of the ellipse is

√
a2−b2. This means that with our

notation, the coordinates of these points are:

F1

{
cx−

√
a2−b2cosθ

cy−
√

a2−b2sinθ
F2

{
cx +

√
a2−b2cosθ

cy +
√

a2−b2sinθ

If the ellipse is a circle, then the two pointsF1 andF2 are both at the center.
These points have the following interesting property:

(2) d(P,F1)+d(P,F2) = 2a ∀P∈ E

This property is one classical way to define the ellipse.
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2.2.1 parametric equation

The elliptical arc can be seen as a parametric curve, each point is defined as an
explicit vectorial function of one parameterE(η) giving the two coordinatesx and
y of the point. We will use as a parameter theη angle computed such that:{

r cosλ = acosη
r sinλ = bsinη

⇒

η = arctan2

(
sinλ

b
,
cosλ

a

)
λ = arctan2(bsinη,acosη)

whereλ is the geometrical angle considered between one end of the semi-major
axis and the current point, counted from the center of the ellipse (seeλ1 andλ2 in
the figure). Thisη angle is a theoretical angle, it has no representation on the
preceding figure (except if the ellipse is really a circle, of course).

Using this angle, the ellipse parametric equation is:

(3) E(η)

{
cx +acosθcosη−bsinθsinη
cy +asinθcosη+bcosθsinη

The derivatives of the parametric curve are:

(4) E′(η)

{
−acosθsinη−bsinθcosη
−asinθsinη+bcosθcosη

and

(5) E′′(η)

{
−acosθcosη+bsinθsinη
−asinθcosη−bcosθsinη

2.3 Bézier curves

Bézier curves are parametric polynomial3 curves that are widely used in graphical
packages. They are often used to approximate another curve, the match being
perfect at both endpoints. In order to match position, slope and curvature, a third
degree polynomial is needed, these are the classical Bézier curves or cubic B́ezier
curves. If only position and slope need to match, a second degree polynomial is
sufficient, the corresponding curves are quadratic Bézier curves. As an extension,

3it is also possible to define rational Bézier curves, however they are not widely supported by
graphical packages, so they will not be discussed here, despite they allow to representexactlyellip-
tical arcs
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we will also consider line segments to be linear Bézier curves defined by a first
degree polynomial and matching only position of endpoints.

The polynomials underlying B́ezier curves are very simple when their constants
are defined in terms of control points. These polynomials are called Bernshteı̆n
polynomials. The range of thet parameter is between 0 and 1. Whent = 0, we
are at the start point of the Bézier curve which should match the start point of the
approximated curve. Whent = 1, we are at the end point of the Bézier curve which
should match the end point of the approximated curve. All graphical packages
that support B́ezier curves define them by the control points only, the Bernshteı̆n
polynomials are used internally and are not available at user level.

2.3.1 linear B́ezier curves

For linear B́ezier curves, there are only two control points which are the endpoints
of the curve,P1 andP2. The Bernshtĕın polynomial and its first derivatives are:

(6)


B1(t) = (1− t)P1 + tP2

B′1(t) = P2−P1

B′′1(t) = 0

Figure 2: linear B́ezier curve
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2.3.2 quadratic B́ezier curves

For quadratic B́ezier curves, there are three control points. The first two control
points are the two endpoints of the curve,P1 and P2. The last control point is
an intermediate pointQ which controls the direction of the tangents of the curve
at both ends. This point is generally away from the curve itself. The Bernshteı̆n
polynomial and its first derivatives are:

(7)


B2(t) = (1− t)2P1 +2t(1− t)Q+ t2P2

B′2(t) =−2[(1− t)P1− (1−2t)Q− tP2]
B′′2(t) = 2[P1−2Q+P2]
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Figure 3: quadratic B́ezier curve
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2.3.3 cubic B́ezier curves

Cubic B́ezier curves are theclassicalBézier curves, the lower degree curves pre-
sented before should be seen as extensions of classical Bézier curves to low de-
grees.

For cubic B́ezier curves, there are four control points. The first two are the two
endpoints of the curve,P1 andP2. The two remaining ones are intermediate points
Q1 andQ2. These intermediate points control the tangent and the curvature at both
ends. The Bernshteı̆n polynomial and its first derivatives are:

(8)


B3(t) = (1− t)3P1 +3t(1− t)2Q1 +3t2(1− t)Q2 + t3P2

B′3(t) =−3
[
(1− t)2P1− (1− t)(1−3t)Q1− t(2−3t)Q2− t2P2

]
B′′3(t) = 6[(1− t)P1− (2−3t)Q1 +(1−3t)Q2 + tP2]

Figure 4: cubic B́ezier curve
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3 Approximation

3.1 principles

The approximation principle is very simple: replace the real elliptical arc by a set
of connected B́ezier curves. The degree of the curves (linear, quadratic or cubic)
is chosen according to the underlying graphical package and the number of curves
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and connecting points are chosen according to the required accuracy. Each curve
will begin and end exactly on the elliptical arc.

We will describe algorithms to build B́ezier curves matching an elliptical arc at
both ends, and algorithms to compute quickly an upper bound of the approximation
error for these curves. The approximation error estimation algorithms will allow to
compute the error directly from the sub-arcs characteristics, without building the
Bézier curve beforehand. In the linear case also, the exact error will be computed
rather than an upper bound.

A simple iterative process can be used to build the appropriate curves set. Sim-
ply compute the error which would result from splitting the arc into 1, 2, 4. . . 2n

equal lengths parts in terms of the curve parameterη, and stop the loop when this
error drops below the user-defined threshold. Then, build the corresponding 2n

Bézier curves.
This process is not optimal in the sense that it can split the arc in more parts

than strictly needed. However it is very simple to implement and very fast. Also
since the error decreases a lot as the arc length decreases, very few iterations will
be needed in practical cases.

3.2 linear Bézier curve

3.2.1 control points choice

Finding the two control points of the quadratic Bézier curve is trivial, since we
want the B́ezier curve endpoints to match the elliptical arc endpoints:

B1(0) = E(η1)⇒ P1 = E(η1)
B1(1) = E(η2)⇒ P2 = E(η2)

The control pointsP1 andP2 of a linear B́ezier curve approximating
an elliptical arc should be chosen as follows:

P1 = E(η1)
P2 = E(η2)

3.2.2 error estimation

Since the ellipse curve always has a positive curvature and since the linear Bézier
curve is a straight line, the distance between the ellipse and its approximation is
null at both arc ends and reaches its maximal value for one pointE(η) between the
endpoints. At this point, the tangent to the ellipse is parallel to the line, as depicted
in figure 5.
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Figure 5: error of a linear approximation
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Using the ellipse parametric equation (3) and its derivative (4), we can findη:

det
(
E′(η),E(η2)−E(η1)

)
= 0

⇔x′η
(
y2−y1

)
−y′η

(
x2−x1

)
= 0

⇔−ab
(

cosη(cosη2−cosη1)+sinη(sinη2−sinη1)
)

= 0

⇔cos(η2−η) = cos(η−η1)

⇔η1 = η2 or η =
η1 +η2

2

wherex′η andy′η are the coordinates ofE′(η) andxi andyi are the coordinates of
E(ηi).

Obviously, the second solution is the one we were looking for. Given this value
of η, we compute the errorε as the distance betweenE(η) (coordinatesxη andyη)
and the line passing throughE(η1) andE(η2).

The error resulting from the approximation of an ellipse arc
by a linear B́ezier curve is:

ε1 =
|xη(y2−y1)−yη(x2−x1)+x2y1−x1y2|√

(x2−x1)2 +(y2−y1)2

where

η =
η1 +η2

2
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3.3 quadratic Bézier curve

3.3.1 control points choice

Since we want the B́ezier curve endpoints to match the elliptical arc endpoints,
finding the first two control points of the quadratic Bézier curve is done as for
linear B́ezier curves, :

B2(0) = E(η1)⇒ P1 = E(η1)
B2(1) = E(η2)⇒ P2 = E(η2)

Matching of the B́ezier curve and elliptical arc slopes at start point allows us to
define the remaining control point using one scalar parameter:

B′2(0) = kE′(η1)⇒ 2(Q−P1) = kE′(η1)

In order to have the same orientation for the elliptical arc and its approximation,k
should be positive. Replacingk by α = k/2 leads to the simple definition ofQ:

Q = P1 +αE′(η1) α > 0

We findα by stating the B́ezier curve slope should also match the arc slope at
end point:

B′2(1) = k̃E′(η2)
⇒2(P2−Q) = k̃E′(η2)
⇒det

(
P2−P1−αE′(η1),E′(η2)

)
= 0

⇒(x2−x1−αx′1)y
′
2− (y2−y1−αy′1)x

′
2 = 0

⇒α =
(x2−x1)y′2− (y2−y1)x′2

x′1y′2−y′1x′2

⇒α =
1−cos(η2−η1)

sin(η2−η1)

⇒α = tan

(
η2−η1

2

)
wherex′ηi

andy′ηi
are the coordinates ofE′(ηi). It is easy to verify that this also

implies the symmetrical expression:

Q = P2− tan

(
η2−η1

2

)
E′(η2)

If we have preprocessed our arcs to ensureη1 < η2 ≤ η1 +π/2, we know that
0 <= α <= 1. This implies that the orientation is right at both endpoints and also
thatα can be computed without loss of accuracy. Equations (3) and (4) show that
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bothE(η) andE′(η) are bounded bya, so this preprocessing also ensuresQ does
not escape far away from pointsP1 andP2 (this could generate numerical overflows
in some graphical packages).

The control pointsP1, Q andP2 of a quadratic B́ezier curve
approximating an elliptical arc should be chosen as follows:

P1 = E(η1)
P2 = E(η2)

Q = P1 + tan

(
η2−η1

2

)
E′(η1)

which is equivalent to

Q = P2− tan

(
η2−η1

2

)
E′(η2)

3.3.2 error estimation

Since both the arc and the approximation can be described by parametric equations
B2(t) andE(η), we could try to find for each pointB2(t) the closest pointE(ηt)
such thatd(B2(t),E(ηt)) = minη{d(B2(t),E(η))} and to use thist ↔ ηt mapping
to find the maximal error along the elliptical arcε2 = maxt{d(B2(t),E(ηt))}. This
method is accurate, but involves lots of computation. A more practical method con-
sist in building once and for all an analytical modelε̃2(a,b,η1,η2) approximating
ε2 and use it.

We first compute the true error by embedding two equation solvers. The first
solver is used to computeηt for any givent (in other words it performs the map-
ping), using a specific algorithm described in another paper. The second solver
is used to find the value of thet parameter which leads to the maximal error. It
is necessary to use very robust algorithms for this purpose, because the notion of
closest pointis not continuous, soηt seen as a function oft is not continuous. A
trivial example is given by a pointP(t) traveling along the minor axis. When this
point crosses the ellipse center,ηt jumps from−π/2 to +π/2. Thedistanceto
the closest point, however, is continuous, only its first derivative is discontinuous.
These embedded solvers allow us to compute forε2 for any arc, its value depend
ona, b, η1 andη2.

The next step involves identifying the behaviour of the error when the various
parameters change. Using the semi major axis as a scaling parameter and plotting
some curves, we first identify canonical parameters: the error model will be :

(9) ε̃2 = a× f (b/a,η,∆η)

11



where
η =

η1 +η2

2
and ∆η = η2−η1

For ∆η between 1/20 andπ/2, the error appears to be almost a power of∆η,
so we refine our model:

(10) f (b/a,η,∆η) = ec0(b/a,η)+c1(b/a,η)∆η

This behaviour seems to be valid also outside of the given interval. However, if∆η
gets too small, some numerical problems prevent from computing accurately the
very tiny real errors. This interval should be compliant with classical needs.

For symmetry reasons, it is sufficient to study the behaviour of the origin and
slope functionsc0 andc1 for η between 0 andπ/2. The functions decrease from
a maximum value at 0 to a minimum value atπ/2. The peak near the maximum
can be very sharp for flat ellipses (b� a). This is because the curvature is very
important and changes rapidly near the semi major axis ends. We will use several
functions cos(2kη) to represent this behaviour. Our model becomes:

(11) ci(b/a,η) =
j=3

∑
j=0

r i, j(b/a)cos(2 jη)

Finally, the coefficients functionsrk,i present various asymptotic behaviours
whenb/a varies from 0 to 1. In order to get a good fit, we describe the functions
as rational functions with a quadratic numerator and linear denominator:

(12) r i, j(b/a) =
µi, j,0

(
b
a

)2
+µi, j,1

(
b
a

)
+µi, j,2(

b
a

)
+µi, j,3

In fact, two sets ofµi, j,k coefficients were used, one set forb/a between 0 and
1/4, and one set forb/a between 1/4 and 1. The coefficients are given by tables 1
and 2.

These coefficients were computed by curve fitting means. This imply that for
some points(b/a,η,∆η) this model gives errors larger than the real ones, and at
other points it gives smaller errors (ε2,min ≤ ε̃2 ≤ ε2,max). Multiplying this least
square model by a suitable safety rational fractions(b/a), we obtain an upper
bound of the error:ε2≤ s(b/a)ε̃2.
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The error resulting from the approximation of an ellipse arc by a
quadratic B́ezier curve is bounded as follows:

ε2≤

(
0.02

(
b
a

)2
+2.83

(
b
a

)
+0.125(

b
a

)
+0.01

)
aec0+c1(η2−η1)

where

ci =
j=3

∑
j=0

µi, j,0
(

b
a

)2
+µi, j,1

(
b
a

)
+µi, j,2(

b
a

)
+µi, j,3

cos
(

j(η1 +η2)
)

and theµi, j,k coefficients are given by tables 1 and 2

This bound correctly overestimates the error, but is not too conservative. The
cumulative distribution function ofε2/(s(b/a)ε̃2) is quite smooth and the mean
value of the ratio is 0.538.
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Table 1: error coefficients for quadratic Bézier(0 < b/a < 1/4)

i j µi, j,0 µi, j,1 µi, j,2 µi, j,3

0 0 3.92478 -13.5822 -0.233377 0.0128206
0 1 -1.08814 0.859987 0.000362265 0.000229036
0 2 -0.942512 0.390456 0.0080909 0.00723895
0 3 -0.736228 0.20998 0.0129867 0.0103456
1 0 -0.395018 6.82464 0.0995293 0.0122198
1 1 -0.545608 0.0774863 0.0267327 0.0132482
1 2 0.0534754 -0.0884167 0.012595 0.0343396
1 3 0.209052 -0.0599987 -0.00723897 0.00789976

Table 2: error coefficients for quadratic Bézier(1/4≤ b/a≤ 1)

i j µi, j,0 µi, j,1 µi, j,2 µi, j,3

0 0 0.0863805 -11.5595 -2.68765 0.181224
0 1 0.242856 -1.81073 1.56876 1.68544
0 2 0.233337 -0.455621 0.222856 0.403469
0 3 0.0612978 -0.104879 0.0446799 0.00867312
1 0 0.028973 6.68407 0.171472 0.0211706
1 1 0.0307674 -0.0517815 0.0216803 -0.0749348
1 2 -0.0471179 0.1288 -0.0781702 2.0
1 3 -0.0309683 0.0531557 -0.0227191 0.0434511
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3.4 cubic B́ezier curve

3.4.1 control points choice

Since we want the B́ezier curve endpoints to match the elliptical arc endpoints,
finding the first two control points of the cubic Bézier curve is done as for linear
Bézier curves:

B3(0) = E(η1)⇒ P1 = E(η1)
B3(1) = E(η2)⇒ P2 = E(η2)

Matching of the B́ezier curve and elliptical arc slopes at endpoints allows us to
define the two remaining control points using only two scalar parameters:

B′3(0) = k1E′(η1)⇒ 3(Q1−P1) = k1E′(η1)
B′3(1) = k2E′(η2)⇒ 3(P2−Q2) = k2E′(η2)

In order to have the same orientation for the elliptical arc and its approximation,k1

andk2 should both be positive. Replacing thek1 andk2 scalars byα1 = k1/3 and
α2 = k2/3 leads to the simple definition ofQ1 andQ2:

Q1 = P1 +α1E′(η1) α1 > 0

Q2 = P2−α2E′(η2) α2 > 0

With these definitions of the control points, the first and second derivatives of the
Bézier curves are:

B′3(0) = 3(Q1−P1) = 3α1E′(η1)
B′′3(0) = 6[Q2−2Q1 +P1] = 6[E(η2)−E(η1)−2α1E′(η1)−α2E′(η2)]
B′3(1) = 3(P2−Q2) = 3α2E′(η2)
B′′3(1) = 6[P2−2Q2 +Q1] =−6[E(η2)−E(η1)−α1E′(η1)−2α2E′(η2)]

introducing these derivatives in equation (1) gives the signed curvatures at Bézier
curve endpoints:

(13)


C̃B(0) =

2[x′1(y2−y1)−y′1(x2−x1)]+2α2[x′2y′1−x′1y′2]

3α2
1(x

′
1

2 +y′1
2)3/2

C̃B(1) =
−2[x′2(y2−y1)−y′2(x2−x1)]+2α1[x′2y′1−x′1y′2]

3α2
2(x

′
2

2 +y′2
2)3/2

The curvatures of the elliptical arc at endpoints are computed the same way,
introducing the ellipse parametric equation derivatives (4) and (5) into equation (1):
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(14)


C̃E(η1) =

x′1y′′1−y′1x′′1
(x′1

2 +y′1
2)3/2

C̃E(η2) =
x′2y′′2−y′2x′′2

(x′2
2 +y′2

2)3/2

wherex′′ηi
andy′′ηi

are the coordinates ofE′′(ηi).
In order to find the values ofα1 andα2, we state that the signed curvature of

the B́ezier curve and elliptical arc at endpoints should be the same, so we combine
systems (13) and (14):{

2[x′1(y2−y1)−y′1(x2−x1)]+2α2[x′2y′1−x′1y′2]−3α2
1[x

′
1y′′1−y′1x′′1] = 0

−2[x′2(y2−y1)−y′2(x2−x1)]+2α1[x′2y′1−x′1y′2]−3α2
2[x

′
2y′′2−y′2x′′2] = 0

This system can be further simplified by using the ellipse parametric equa-
tion (3) and its derivatives (4) and (5) which imply the following relations:

x′1(y2−y1)−y′1(x2−x1) = ab(1−cos(η2−η1))
x′2y′1−x′1y′2 =−absin(η2−η1)
x′1y′′1−y′1x′′1 = ab

x′2(y2−y1)−y′2(x2−x1) =−ab(1−cos(η2−η1))
x′2y′′2−y′2x′′2 = ab

So after simplifying byab, the system becomes:{
2(1−cos(η2−η1))−2α2sin(η2−η1)−3α2

1 = 0

2(1−cos(η2−η1))−2α1sin(η2−η1)−3α2
2 = 0

Introducingτ = tan
(η2−η1

2

)
and multiplying by 1+ τ2 this can be written:{

4τ2−4τα2−3(1+ τ2)α2
1 = 0

4τ2−4τα1−3(1+ τ2)α2
2 = 0

Subtracting one equation from the other, we obtain:

(α2−α1)
(
3(1+ τ2)(α1 +α2)−4τ

)
= 0

This implies the system has two sets of solutions. Since we have preprocessed
our arcs to ensureη1 < η2 ≤ η1 + π/2, we know that 0<= τ <= 1, soτ can
be computed without loss of accuracy andτ2 can be extracted from square roots
without sign change. The first set of solutions is:
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{
α2 = α1

3(1+ τ2)α2
1 +4τα1−4τ2 = 0

⇒


α1 =

(
2τ

1+ τ2

)(
−1±

√
4+3τ2

3

)

α2 =
(

2τ
1+ τ2

)(
−1±

√
4+3τ2

3

)

and the second set is:
α2 =

4τ
3(1+ τ2)

−α1

3(1+ τ2)α2
1−4τα1 +

4τ2(1−3τ2)
3(1+ τ2)

= 0

⇒


α1 =

(
2τ

1+ τ2

)(
1± τ

√
3

3

)

α2 =
(

2τ
1+ τ2

)(
1∓ τ

√
3

3

)

It is obvious that all these solutions are real ones. For the first set of solutions it
is also obvious that one solution is always positive while the other one is always
negative. Remembering we are only interested in positive solutions, we can choose
the positive one. For the second set of solutions, one solution becomes negative or
null whenτ≥ 1/

√
3, i.e. if η2−η1≥ π

3 .
The full set of positive solutions is therefore:

(15)


α1 = sin(η2−η1)

√
4+3tan2

(η2−η1
2

)
−1

3

α2 = sin(η2−η1)

√
4+3tan2

(η2−η1
2

)
−1

3

or (only if η2−η1 < π
3):

(16)


α1 = sin(η2−η1)

1+ tan
(η2−η1

2

)√
3

3

α2 = sin(η2−η1)
1− tan

(η2−η1
2

)√
3

3

or (only if η2−η1 < π
3):
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(17)


α1 = sin(η2−η1)

1− tan
(η2−η1

2

)√
3

3

α2 = sin(η2−η1)
1+ tan

(η2−η1
2

)√
3

3

Some tests show that all these solutions are acceptable, there is not a unique
way to set up a cubic B́ezier curve with the matching criteria we have chosen. Since
the first solution is both the simplest one (α1 = α2) and has the wider applicability
domain, we will use this one only and forget the other solutions.

The control pointsP1, Q1, Q2 andP2 of a cubic B́ezier curve ap-
proximating an elliptical arc should be chosen as follows:

P1 = E(η1)
P2 = E(η2)
Q1 = P1 +αE′(η1)
Q2 = P2−αE′(η2)

where

α = sin(η2−η1)

√
4+3tan2

(η2−η1
2

)
−1

3

3.4.2 error estimation

The method used to estimate the error of cubic Bézier is exactly the same as the
one explained in section 3.3.2 for quadratic Bézier curves. The coefficients are
given by tables 3 and 4.

As before, we introduce a safety rational fractions(b/a) to obtain an upper
bound of the error:ε3≤ s(b/a)ε̃3.
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The error resulting from the approximation of an ellipse arc by a cubic
Bézier curve is bounded as follows:

ε3≤

(
0.001

(
b
a

)2
+4.98

(
b
a

)
+0.207(

b
a

)
+0.0067

)
aec0+c1(η2−η1)

where

ci =
j=3

∑
j=0

µi, j,0
(

b
a

)2
+µi, j,1

(
b
a

)
+µi, j,2(

b
a

)
+µi, j,3

cos
(

j(η1 +η2)
)

Where theµi, j,k coefficients are given by tables 3 and 4.

This bound correctly overestimates the error, but is not too conservative, the cu-
mulative distribution function ofε/(s(b/a)ε̃) is quite smooth and the correspond-
ing mean value is 0.623.
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Table 3: error coefficients for cubic Bézier(0 < b/a < 1/4)

i j µi, j,0 µi, j,1 µi, j,2 µi, j,3

0 0 3.85268 -21.229 -0.330434 0.0127842
0 1 -1.61486 0.706564 0.225945 0.263682
0 2 -0.910164 0.388383 0.00551445 0.00671814
0 3 -0.630184 0.192402 0.0098871 0.0102527
1 0 -0.162211 9.94329 0.13723 0.0124084
1 1 -0.253135 0.00187735 0.0230286 0.01264
1 2 -0.0695069 -0.0437594 0.0120636 0.0163087
1 3 -0.0328856 -0.00926032 -0.00173573 0.00527385

Table 4: error coefficients for cubic Bézier(1/4≤ b/a≤ 1)

i j µi, j,0 µi, j,1 µi, j,2 µi, j,3

0 0 0.0899116 -19.2349 -4.11711 0.183362
0 1 0.138148 -1.45804 1.32044 1.38474
0 2 0.230903 -0.450262 0.219963 0.414038
0 3 0.0590565 -0.101062 0.0430592 0.0204699
1 0 0.0164649 9.89394 0.0919496 0.00760802
1 1 0.0191603 -0.0322058 0.0134667 -0.0825018
1 2 0.0156192 -0.017535 0.00326508 -0.228157
1 3 -0.0236752 0.0405821 -0.0173086 0.176187
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4 Implementation

An implementation in the Java language of the algorithms explained in this paper
is available in source form as a stand-alone file athttp://www.spaceroots.
org/documents/ellipse/EllipticalArc.java .

It is designed as an implementation of thejava.awt.Shape interface and
can therefore be drawn easily as any of the more traditional shapes provided by the
standard Java API.

This class differs from thejava.awt.geom.Ellipse2D in the fact it can
handles parts of ellipse in addition to full ellipses and it can handle ellipses which
are not aligned with the x and y reference axes of the plane.

Another improvement is that this class can handle degenerated cases like for
example very flat ellipses (semi-minor axis much smaller than semi-major axis)
and drawing of very small parts of such ellipses at very high magnification scales.
This imply monitoring the drawing approximation error for extremely small values.
Such cases occur for example while drawing orbits of comets near the perihelion.

When the arc does not cover the complete ellipse, the lines joining the center of
the ellipse to the endpoints can optionally be included or not in the outline, hence
allowing to use it for pie-charts rendering. If these lines are not included, the curve
is not naturally closed.
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