{&i? class MongoDB::Client }

Class to define connections to servers

Table of Contents

1 Synopsis

2 Description

3 Readonly attributes
3.1 read-concern

3.2 found-master
4 Methods

41 new

411 read-concern
41.2 uri

4.2 nbr-servers
4.3 server-status
4.4 client-topology
4.5 select-server
4.6 database

47 collection

package MongoDB { class Client { ... } }

Synopsis

my MongoDB::Client $client .= new(:uri< mongodb://>);
if $client.nbr-servers {
my MongoDB::Database $d1 = $client.database('my db1');

my MongoDB::Collection $c1 = $d1.collection(my_cli1’);
my MongoDB::Collection $c2 = $client.collection('my_db2.my_cll2");

}

Description

This class is your most often used class. It maintains the connection to the servers specified in
the given uri. In the background it herds a set of MongoDB::Server objects.

Readonly attributes

read-concern

has BSON::Document $.read-concern;

The read-concern is a structure to have some control over the read operations to which server the
operations are directed to. Default is an empty structure. The structure will be explained
elsewhere.

found-master

has Bool $.found-master = False;

While the client is processing the given uri it will set this flag when a master server is detected.

Methods

new

submethod BUILD (

Str:D :$uri, BSON::Document :$read-concern, Int :$loop-time =

)

read-concern

Read concern will overwrite the default concern.

uri

Uri defines the servers and control options. The string is like a normal uri with mongodb as a
protocol name. The difference however lies in the fact that more that one server can be defined.
The uri definition states that at least a servername must be stated in the uri. Here in this package
the absence of any name defaults to localhost. See also the MongoDB page to look for options
and definition.

https://docs.mongodb.org/v3.0/reference/connection-string/

Example uri Explanation
mongodb:// most simple specification,
localhost using port 27017
mongodb://:65000 localhost on port 65000
mongodb://:56,:876 two servers localhost on port 56
and 876
mongodb://example.com server example.com on port
27017
mongodb://pete:mypasswd@ server localhost:27017 on which

pete must login using mypasswd

mongodb://pete:mypasswd@/mydb same as above but login on
database mydb

mongodb:///?replicaSet=myreplset localhost:27017 must belong to a
replica set named myreplset

mongodb://ul:pw1@nsa.us:666,my.datacenter.gov/nsa/? User u1 with password pw1

replicaSet=foryoureyesonly logging in on database nsa on
server nsa.us:666 and
my.datacenter.gov:27017 which
must both be member of a replica
set named foryoureyesonly.

-

Note that the servers named in the uri must have something in common such as a replica set.
Servers are refused when there is some problem between them e.g. both are master servers. In
such situations another Client should be created for the other server. See table below.

Next a table where some processing results are shown for uri. In the table there are short names
use like n#(=digit): for normal server, r#: a replica server, R# for replica names, riR1 server is
server for replicaset R1, i# are replicaset servers which must be initialized before they become
real servers, a# are arbiters and s# mongos servers. An uninitialized replicaserver (i) is neither
master nor secondary. Port numbers are irrelevant here. When two servers in a replica set R1 are
used, the table shows 'r1R1, r2R1, R1' and the uri could be something like 'mongodb://r1,r2/?
replicaSet=R1".

(2\

Ser‘:ﬁ:s in Result of processing in client
ni The server n1 will be found and accepted
ni,n2 Only one of two servers can be accepted because both might be master.
Which server is accepted depends on who is fastest.
n1,R1 The server n1 will not be accepted because its not in a replicaset.
n1,r1R1 Only server n1 is accepted because no replicaset is mentioned in uri.

n1,r1R1,R1 Only serverr1 is accepted.

i1R1 Server i1 accepted.

i1R1,R1 Server i1 is not accepted because its not a real replica server yet.

riR1,r2R1,R1 Servers r1 and r2 are both accepted. There is a master and the other should
be a secondary. In this case it should be possible to leave out one of the two

servers because the server monitoring process would find the other servers
in the replicaset.

- W

The options which can be used in the uri are in the following tables. See also this information for
more details.

e)
Replica set
P) mpl Use
options
replicaSet x Specifies the name of the replica set, if the mongod is a member of
L a replica set.)
(~ 2\
Connection
. mpl Use
options
ssl 0 or 1. 1 Initiate the connection with TLS/SSL. The default value
is false.
connectTimeoutMS The time in milliseconds to attempt a connection before timing
out.
socketTimeoutMS The time in milliseconds to attempt a send or receive on a socket
before the attempt times out.

- W

https://docs.mongodb.com/manual/reference/connection-string/#connection-string-options

Connect pool
options
maxPoolSize
minPoolSize

maxldleTimeMS

waitQueueMultiple

waitQueueTimeoutMS

Impl Use

The maximum number of connections in the connection pool.
The default value is 100.

The minimum number of connections in the connection pool.
The default value is 0.

The maximum number of milliseconds that a connection can
remain idle in the pool before being removed and closed.

A number that the driver multiples the maxPoolSize value to,
to provide the maximum number of threads allowed to wait for
a connection to become available from the pool.

The maximum time in milliseconds that a thread can wait for a
connection to become available. For default values, see the
MongoDB Drivers and Client Libraries documentation.

Write
concern Impl Use
options
w Corresponds to the write concern w Option. The w option requests
acknowledgement that the write operation has propagated to a specified
number of mongod instances or to mongod instances with specified tags.
You can specify a number, the string majority, or a tag set.
wtimeoutMS Corresponds to the write concern wtimeout. wtimeoutMS specifies a time
limit, in milliseconds, for the write concern. When wtimeoutMS is 0, write
operations will never time out.
journal Corresponds to the write concern j Option option. The journal option
requests acknowledgement from MongoDB that the write operation has
L been written to the journal
(Read concern options Impl Use
\readConcernLeveI The level of isolation. Accepts either "local" or "majority".

Ve

Read preference
options

readPreference

readPreferenceTags

-

mpl

Use

Specifies the replica set read preference for this connection. The
read preference values are the following: primary,
primaryPreferred, secondary, secondaryPreferred, nearest

Specifies a tag set as a comma-separated list of colon-
separated key-value pairs

Ve

Authentication
options

authSource

authMechanism

gssapiServiceName

Impl

part

Use

Specify the database name associated with the user credentials,
if the users collection do not exist in the database where the
clientis connecting. authSource defaults to the database
specified in the connection string.

Specify the authentication mechanism that MongoDB will use to
authenticate the connection. Possible values include: SCRAM-
SHA-1, MONGODB-CR, MONGODB-X509, GSSAPI (Kerberos),
PLAIN (LDAP SASL)

Set the Kerberos service name when connecting to Kerberized
MongoDB instances. This value must match the service name
set on MongoDB instances.

nbr-servers

method nbr-servers (--> Int)

Return number of servers found processing the uri in new(). When called directly after new() it
may not have the proper count yet caused by delays in processing especially when processing

replicasets.

server-status

method server-status (Str:D $server-name --> ServerStatus)

Return the status of some server. See MongoDB for the defined values.

client-topology

method client-topology (--> Topology Type) {

Return the topology of the set of servers represents. See MongoDB for the defined values. For
the moment it must be implemented yet.

select-server

multi method select-server (
BSON::Document:D :$read-concern!
--> MongoDB::Server

)

multi method select-server (
ServerStatus:D :$needed-state!,
Int :$check-cycles is copy = -
--> MongoDB::Server

)

multi method select-server (
Int :$check-cycles is copy = -
--> MongoDB::Server

)

Select a server for operations. It returns a Server object. In single server setups itis always the
server you want to have. When however selecting a server from a replicaset the server is
selected according to several rules such as read-concern, operation type (read or write) and
round trip time to the server. When read-concern is not defined, the data is taken from this Clients
read-concern. This method is used internally and of no concern of the user.

database

method database (
Str:D $name, BSON::Document :$read-concern
--> MongoDB::Database

)

Create a Database object. In mongodb a database and its collections are only created when data
is written in a collection.

The read-concern when defined will overide the one of the Client. If not defined, the structure of
the client is taken.

collection

method collection (
Str:D $full-collection-name, BSON::Document :$read-concern
--> MongoDB::Collection

)

A shortcut to define a database and collection at once. The names for the database and
collection are given in the string full-collection-name. This is a string of two names separated by
adot'..

When the read-concern is defined it overides the one from Client. If not defined, the structure of
the client is taken.

	class MongoDB::Client
	Table of Contents

	Synopsis
	Description
	Readonly attributes
	read-concern
	found-master

	Methods
	new
	read-concern
	uri

	nbr-servers
	server-status
	client-topology
	select-server
	database
	collection

