Documentation for the Combine (focused) crawling system

Anders Ardo

December 7, 2006

Contents

I

Overview
Introduction

Open Source distribution, Installation

2.1 Imstallation e
2.1.1 Installation from source for the impatient
2.1.2 Porting to not supported operating systems - dependencies
2.1.3 Automated Debian/Ubuntu installation
2.1.4 Manual installationo 0 oL
2.1.5 Imstallation test

2.2 Getting started

2.3 Detailed documentation L Lo

2.4 UsesCenarioso i i e
2.4.1 General crawling without restrictions
2.4.2 Focused crawling - domain restrictions
2.4.3 Focused crawling - topic specific 0oL

Configuration
3.1 Configuration files L o

Crawler operation
4.1 URL selection criteria L e
4.2 Document parsing Lo
4.3 URLfiltering
4.4 Link selection/scheduling policy L.
4.5 Built in topic filter - automated subject classification
4.5.1 Topic definition Lo
4.5.2 Topic definition (term triplets) BNF grammar
4.5.3 Term triplet examples oo L.
4.5.4 Algorithm 1: plain matching
4.5.5 Algorithm 2: position weighted matching
4.6 Topic filter Plug-In API
4.7 Analysis
4.8 URLrecycling oo . i e
4.9 Complete application - SearchEngineinaBox

Evaluation of automated subject classification
Performance

System components

7.1 combineINIT e
7.2 combineCtrl
7.3 combineUtil e
7.4 combineExport e

12
12

14
15
16
16
17
17
18
19
19
20
21
21
21
22
22

22

23

7.5 Internal executables and Library modules

7.5.1

Library o

IT Gory details

8 Frequently asked questions

9 Configuration variables
9.1 Name/value configuration variables

9.1.1

9.1.2

9.1.3

9.14

9.1.5

9.1.6

9.1.7

9.1.8

9.1.9

9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.1.15
9.1.16
9.1.17
9.1.18
9.1.19
9.1.20
9.1.21
9.1.22
9.1.23
9.1.24
9.1.25
9.1.26
9.1.27
9.1.28
9.1.29
9.1.30
9.1.31
9.1.32
9.1.33
9.1.34
9.1.35
9.1.36
9.1.37

AutoRecycleLinkso
baseConfigDir L
classifyPlugln
configDir L e
doAnalyse
doCheckRecord
doOAT
extractLinksFromText
HarvesterMaxMissions
HarvestRetries
httpProxy o
LogHandle. o
Loglev L e
maxUrlLength o o o oL
MySQLdatabase
MySQLhandle L
Operator-Emailo 0 o oo
Password
saveHTML e
SdqRetries oL
SummaryLengtho oo o
UAtimeout
UserAgentFollowRedirects
UserAgentGetIfModifiedSince
useTidy L
WaitIntervalExpirationGuaranteed
WaitIntervalHarvesterLockNotFound
WaitIntervalHarvesterLockNotModified
WaitIntervalHarvesterLockRobotRules
WaitIntervalHarvesterLockSuccess
WaitIntervalHarvesterLockUnavailable
WaitIntervalHost
WaitIntervalRrdLockDefault
WaitIntervalRrdLockNotFound
WaitIntervalRrdLockSuccess
WaitIntervalSchedulerGetJef
ZebraHost oo

9.2 Complex configuration variables

9.2.1 allow e 35

9.2.2 binext 36
9.2.3 converters 36
924 exclude 36
9.25 serveralias L. 36
9.2.6 sessionids Ll 36
9.2.7 url 37

10 Module dependences 37
10.1 Programs o i it e e e e e e e e e e 37
10.1.1 combineo 37
10.1.2 combineCtrl 37
10.1.3 combineExporto 37
10.1.4 combineINIT 37
10.1.5 combineUtilo 37
10.2 Library modules 37
10.2.1 Check record.pm e 37
10.2.2 CleanXML2CanDoc.pm 37
10.2.3 Configpm e 38
10.24 DataBase.pm 38
10.2.5 FromHTML.pm o o 38
10.2.6 FromImage.pm L 38
10.2.7 HTMLExtractor.pm 38
10.2.8 LoadTermList.pm 38
10.2.9 LogSQL.pm 38
10.2.10Matcher.pmo 38
10.2.11MySQLhdb.pm 39
10.2.12PosCheck _record.pmol 39
10.2.13PosMatcher.pm 39
10.2.14 RobotRules.pmo 39
10.2.15S8D_SQL.pm Lo e 39
10.216 UA.pm o 39
10.2.17XWILpm o L 39
10218 XWI2XML.pm oo e 39
10.2.197Zebra.pm L 39
10.2.20selurl.pmo 40

10.3 External moduleso 40
A APPENDIX 41
A.1 Simple installation test L L 41
A.1.1 InstallationTest.pl 41
A2 Example topic filter plugin L 43
A2.1 classifyPluglnTemplatepm 43
A.3 Default configuration files L oL, 45
A3.1 Global e 45
A3.2 Jobspecific 49

A4 SQLdatabase 50
AA41 Createdatabase 50

A5

A42 Creating MySQL tables, 50
A4.3 Datatables 51
A.4.4 Administrative tables 52
A.4.5 Create user dbuser with required priviligies 55
Manual pages 55
A5.1 combineCtrl 55
Ab5.2 combine 57
A5.3 combineExport 58
Ab54 combineRun 60
Ab55 combineUtil 60
A5.6 Combine:FromHTML 62
A.5.7 Combine:FromTeX 62
A.5.8 Combine:HTMLExtractor 62
A.5.9 Combine:LoadTermList 62
A.5.10 Combine:Matcher 63
A.5.11 Combine::PosMatcher 64
A.5.12 Combine::RobotRules 65
A5.13 Combine::SD _SQL oL 65
A.5.14 Combine::XWI 66
A.5.15 Combine:selurl L. 67

Part 1
Overview

1 Introduction

The Combine system is an open, free, and highly configurable system for focused crawling
of Internet resources.

!

Get URL

Database s -

Fetch
Web page
pRE AT
N ocus |’
Web - Not

pages . in | focus A filter List of
Repository .. focus L X unvisited
of visited S [Links \ pages
pages o \\
within the Save Seed
focus URLs

Figure 1: Overview of Combine focused crawler.

Main features include

part of the SearchEngine-in-a-Box! system
extensive configuration possibilities
integrated topic filter (automated topic classifier) for focused crawling mode

possibility to use any topic filter (if provided as a Perl Plug-In module?) in focused
crawling mode

crawl limitations based on regular expression on URLs both include and exclude
(URL focus filter)

character set detection/normalization
language detection
HTML cleaning

metadata extraction

"http://combine.it.lth.se/SearchEngineBox/
http://combine.it.lth.se/Pluglns/

e structured records for each crawled page

e supports many document types (text, HTML, PDF, PostScript, MsWord, Power-
Point, Excel, RTF, TeX, images)

e SQL database for data storage and administration

Naturally it obeys the Robots Exclusion Protocol® and behaves nice to Web-servers.
Besides focused crawls (generating topic specific databases) Combine supports configurable
rules on what’s crawled based on regular expressions on URLs (URL focus filter). The
crawler is designed to run continuously in order to keep the topic-specific database as up
to date as possible.

The operation of Combine (overview in figure 1) as a focused crawler is based on a
combination of a general Web crawler and an automated subject classifier. The topic focus
is provided by a focus filter using a topic definition implemented as a thesaurus, where
each term is connected to a topic class.

Crawled data are stored as a structured records in a local relational database.

Section 2 outlines how to download, install and test the Combine system and includes
use scenarios.

Section 3 discuss configuration structure and highlights a few important configuration
variables.

Section 4 describes policies and methods used by the crawler.

The system has a number of components (see section 7), the main user visible ones
being combineCtrl which is used to start and stop crawling, and view crawler status and
combineExport that extracts crawled data from the internal database and exports it as
XML records.

Further details (lots and lots of them) can be found in part II ’Gory details’ and in
Appendix A.

2 Open Source distribution, Installation

The focused crawler have been restructured and packaged as a Debian package in order to
ease distribution and installation. The package contains dependency information to make
sure that all software that is needed to run the crawler is installed at the same time. In
connection with this we have also packaged a number of necessary Perl-modules as Debian
packages.

All software and packages are available from a number of places

e the Combine focused crawler Web-site?
e Comprehensive Perl Archive Network - CPAN®
e SourceForge project “Combine focused crawler”®

In addition to the distribution sites there is a public discussion list at SourceForge’.

3http://www.robotstxt.org/wc/exclusion.html
“http://combine.it.lth.se/

Shttp://search.cpan.org/ aardo/Combine/
Shttp://sourceforge.net /projects/focused-crawler
Thttp://lists.sourceforge.net /lists/listinfo/focused-crawler-general

2.1 Installation

This distribution is developed and tested on Linux systems. It is implemented entirely in
Perl and uses the MySQL® database system, both of which are supported on many other
operating systems. Porting to other UNIX dialects should be easy.

The system is distributed either as source or as a Debian package.

2.1.1 Installation from source for the impatient

Unless you are on a system supporting Debian packages (in which case look at Automated
installation (section 2.1.3)) you should download and unpack the source. The following
command sequence will then install Combine:

perl Makefile.PL

make

make test

make install

mkdir /etc/combine

cp conf/* /etc/combine/
mkdir /var/run/combine

Test that it all works (run as root)
./doc/InstallationTest.pl

2.1.2 Porting to not supported operating systems - dependencies

In order to port the system to another platform, you have to verify the availability, for this
platform, of the two main systems:

o Perl?
e MySQL version > 4.1%0

If they are supported you stand a good chance to port the system.

Furthermore the external Perl modules (listed in 10.3) should be verified to work on
the new platform.

Per]l modules are most easily installed using the Perl CPAN automated system
(perl -MCPAN -e shell).

Optionally these external programs will be used if they are installed on your system.

e antiword (parsing MSWord files)

detex (parsing TeX files)

pdftohtml (parsing PDF files)

pstotext (parsing PS and PDF files, needs ghostview)

xlhtml! (parsing MSExcel files)

Shttp://www.mysql.com/
http://www.cpan.org/ports/index.html
Ohttp://dev.mysql.com/downloads/

ppthtml (parsing PowerPoint files)

unrtf (parsing RTF files)

tth (parsing TeX files)

e untex (parsing TeX files)

2.1.3 Automated Debian/Ubuntu installation

e add the following lines to your /etc/apt/sources.list
deb http://combine.it.lth.se/ debian/

e give the commands
apt-get update
apt-get install combine

This also installs all dependencies such as MySQL and a lot of necessary Perl modules.

2.1.4 Manual installation

Download the latest distribution!!.

Install all software that Combine depends on (see above).

Unpack the archive with tar zxf
This will create a directory named combine-XX with a number of subdirectories including
bin, Combine, doc, and conf.

bin’ contains the executable programs.

’Combine’ contains needed Perl modules. Should be copied to somewhere Perl will find
them, typically /usr/share/perl5/Combine/.

"conf’ contains the default configuration files. Combine looks for them in /etc/combine/
so they need to be copied there.

’doc’ contains documentation.

The following command sequence will install Combine:

perl Makefile.PL

make

make test

make install

mkdir /etc/combine

cp conf/* /etc/combine/
mkdir /var/run/combine

2.1.5 Installation test
Harvest 1 URL by doing:

sudo combineINIT --jobname aatest --topic /etc/combine/Topic_carnivor.txt
combine --jobname aatest --harvest http://combine.it.lth.se/CombineTests/InstallationTest.htm
combineExport --jobname aatest --profile dc

""http://combine.it.lth.se/#downloads

and verify that the output, except for dates and order, looks like

<?xml version="1.0" encoding="UTF-8"7>

<documentCollection version="1.1" xmlns:dc="http://purl.org/dc/elements/1.1/">
<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:format>text/html</dc:format>

<dc:format>text/html; charset=iso-8859-1</dc:format>

<dc:subject>Carnivorous plants</dc:subject>

<dc:subject>Drosera</dc:subject>

<dc:subject>Nepenthes</dc:subject>

<dc:title transl="yes">Installation test for Combine</dc:title>
<dc:description></dc:description>

<dc:date>2006-05-19 9:57:03</dc:date>
<dc:identifier>http://combine.it.lth.se/CombineTests/InstallationTest.html</dc:identifier>
<dc:language>en</dc:language>

</metadata>

Or run - as root - the script ./doc/InstallationTest.pl (see Appendix A.1) which
essentially does the same thing.
2.2 Getting started

A simple example work-flow for a trivial crawl job name ’aatest’ might look like:

1. Initialize database and configuration (needs root privileges)
sudo combineINIT --jobname aatest

2. Load some seed URLs like (you can repeat this command with different URLs as
many times as you wish)
echo ’http://combine.it.lth.se/’ | combineCtrl load --jobname aatest

3. Start 2 harvesting processes
combineCtrl start --jobname aatest --harvesters 2

4. Let it run for some time. Status and progress can be checked using the program
‘combineCtrl --jobname aatest’ with various parameters.

5. When satisfied kill the crawlers
combineCtrl kill --jobname aatest

6. Export data records in the ALVIS XML format
combineExport --jobname aatest --profile alvis

7. If you want to schedule a recheck for all the crawled pages stored in the database
combineCtrl reharvest --jobname aatest

8. go back to 3 for continuous operation.

Once a job is initialized it is controlled using combineCtrl. Crawled data is exported
using combineExport.

10

2.3 Detailed documentation

The latest, updated, detailed documentation is always available online'?.

2.4 Use scenarios
2.4.1 General crawling without restrictions

Same procedure as in section 2.2. This way of crawling is not recommended for the Combine
system since it will generate really huge databases without any focus.

2.4.2 Focused crawling - domain restrictions

Create a focused database with all pages from a Web-site. In this use scenario we will
crawl the Combine site and the ALVIS site. The database is to be continuously updated,
ie all pages have to be regularly tested for changes, deleted pages should be removed from
the database, and newly created pages added.

1. Initialize database and configuration
sudo combineINIT --jobname focustest

2. Edit the configuration to provide the desired focus
Change the <allow> part in /etc/combine/focustest/combine.cfg from

#use either URL or HOST: (obs ’:’) to match regular expressions to either the
#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions
HOST: .*$

</allow>

to

#use either URL or HOST: (obs ’:’) to match regular expressions to either the
#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions
HOST: www\.alvis\.info$

HOST: combine\.it\.1lth\.se$

</allow>

The escaping of '.” by writing ’\.’ is necessary since the patterns actually are Perl
regular expressions. Similarly the ending ’$’ indicates that the host string should end
here, so for example a Web server on www.alvis.info.com (if such a one exists) will
not be crawled.

12http://combine.it.Ith.se/documentation /

11

3. Load seed URLs

echo ’http://combine.it.lth.se/’ | combineCtrl load --jobname focustest
echo ’http://www.alvis.info/’ | combineCtrl load --jobname focustest

. Start 1 harvesting process

combineCtrl start --jobname focustest

. Daily export all data records in the ALVIS XML format

combineExport --jobname focustest --profile alvis
and schedule all pages for re-harvesting
combineCtrl reharvest --jobname focustest

2.4.3 Focused crawling - topic specific

Create and maintain a topic specific crawled database for the topic ’Carnivorous plants’.

1.

Create a topic definition (see section 4.5.1) in a local file named cpTopic.txt. (Can
be done by copying /etc/combine/Topic_carnivor.txt since it happens to be just
that.)

. Create a file named cpSeedURLs.txt with seed URLs for this topic, containing the

URLs:

http://www.sarracenia.com/faq.html
http://dmoz.org/Home/Gardening/Plants/Carnivorous_Plants/
http://www.omnisterra.com/bot/cp_home.cgi
http://www.vcps.au.com/

http://www.murevarn.se/links.html

. Initialization

sudo combineINIT --jobname cptest --topic cpTopic.txt

This enables topic checking and focused crawl mode by setting configuration variable
doCheckRecord = 1 and copying a topic definition file (cpTopic.txt) to
/etc/combine/cptest/topicdefinition.txt.

. Load seed URLs

combineCtrl load --jobname cptest < cpSeedURLs.txt

. Start 3 harvesting process

combineCtrl start --jobname cptest --harvesters 3

. Regularly export all data records in the ALVIS XML format

combineExport --jobname cptest --profile alvis
and schedule all pages for re-harvesting
combineCtrl reharvest --jobname cptest

3 Configuration

3.1

Configuration files

All configuration files are stored in the /etc/combine/ directory tree. All configuration
variables have reasonable defaults (section 9).

12

job _default.cfg is job specific defaults. It is copied to a subdirectory named after the
job by combineINIT.

SQLstruct.sql Structure of the internal SQL database used both for administration and
to hold data records. Details in section A.4.

Topic_* contains various contributed topic definitions.
Global configuration files These files are used for global parameters for all crawler jobs.

default.cfg is the global defaults. It is loaded first. Consult section 9 and appendix
A 3 for details. Values can be overridden from the job-specific configuration file
combine.cfg.

tidy.cfg configuration for Tidy cleaning of HTML code

Files in job specific sub-directories The program combineINIT creates a job specific
subdirectory in /etc/combine and populates it with some files including combine.cfg
initialized with a copy of job_default.cfg. The job-name have to be given to all
programs when started using the --jobname switch.

combine.cfg the job specific configuration. It is loaded secondly and overrides the
global defaults. Consult section 9 and appendix A.3 for details.

topicdefinition.txt contains the topic definition for focused crawl if the --topic
switch is given to combineINIT. The format of this file is described in section
4.5.1.

stopwords.txt a file with words to be excluded from the automatic topic classifica-
tion processing. One word per line. Can be empty but must be present.

config exclude contains more exclude patterns. Optional, automatically included
by combine.cfg. Updated by combineUtil.

config _serveralias contains patterns for resolving Web server aliases. Optional,
automatically included by combine.cfg. Updated by combineUtil.

sitesOK.txt optionally used by the built in automated classification algorithms
(section 4.5) to bypass the topic filter for certain sites.

Configuration files use a simple format consisting of either name/value pairs or com-
plex variables in sections. Name/value pairs are encoded as single lines formated like
'name = value’. Complex variables are encoded as multiple lines in named sections de-
limited as in XML, using '<name> ... </name>’. Sections may be nested for related
configuration variables. Empty lines and lines starting with #’ (comments) are ignored.

The most important configuration variables are the complex variables <url><allow>
(allows certain URLs to be harvested) and <url><exclude> (excludes certain URLs from
harvesting) which are used to limit your crawl to just a section of the Web, based on the
URL. Loading of URLs to be crawled into the system checks each URL first against the
Perl regular expressions of <url><allow> and if it matches goes on to match it against
<url><exclude> where it’s discarded if it matches, otherwise it’s scheduled for crawling.
(See section 4.3 "URL filtering’).

You should always change the value of the variable Operator-Email in the file
/etc/combine/aatest/combine.cfg and set it to something reasonable. It is used by
Combine to identify you to the crawled Web-servers.

Further details are found in section 9 ’Configuration variables’.

13

4 Crawler operation

The system is designed for continuous operation.
several steps as is detailed in figure 2. As a start-up initialization the frontier has to be
seeded with some relevant URLs. All URLs are normalized before they are entered in the
database. Data can be exported in various formats including the ALVIS XML document

format!® as well as Dublin Core!* records.

Figure 2: Architecture for the Combine focused crawler.

Relational database Exporting

URL scheduling
S ——

Harvester \L

Main loop

Get URL

—

* Database cleaning
— Server alias detection

* Topic PageRank calculation

Configuration
Cached rules
- RobotRules
Administration | Q/
Synchronization| Fetch Page
Normalize HTML
Data records \L
Characterset
Frontier convert to UTF8
DATABASE UTILITIES

External parser

{

* Recheck documents

URL normalization

Internal parser

{

MetaData
extraction

{

Topic filter

L

!

Further analysis

{

URL filter

Update database

{

URL load/\\\'\

Update linkbase

Seed URLs 4\

The steps taken during crawling (numbers refer to figure 2):

1. The next URL is fetched from the scheduler.

2. Combine obeys the the Robots Exclusion Protocol'®. Rules are cached locally.

3http:/ /www.alvis.info/alvis/architecture

“http://dublincore.org/

Shttp:/ /www.robotstxt.org/wc/exclusion.html

14

The harvester processes an URL in

SCICRC

O

OO Ol

W

. The page is retrieved using a GET, GET-IF-MODIFIED, or HEAD HTTP request.
4. The HTML code is cleaned and normalized.
5. The character-set is detected and normalized to UTF-8.

6. (a) The page (in any of the formats PDF, PostScript, MS Word, MSExcel, Pow-
erPoint, RTF and TeX/LaTeX) is converted to HTML (or plain text) by an
external program.

(b) Internal parsers handles HTML, plain text and images. This step extracts
structured information like metadata (title, keywords, description, ...), HTML
links, and text without markup.

7. The document is sent to the topic filter, (see section 4.5). If the Web-page is relevant
with respect to the focus topic, processing continues with:

(a) Heuristics like score propagation
(

(c) Update the record database

(d) Update the frontier database with HTML links and URLs extracted from plain
text.

)

b) Further analysis, like genre and language identification.
)
)

Depending on several factors like configuration, hardware, network, workload, etc, the
crawler normally processes between 50 and 250 URLs per minute. In general focused
crawling using 'reasonable’ topic definitions can do 100 - 150 URLs per minute.

4.1 URL selection criteria

In order to successfully select and crawl one URL the following conditions have to be meet:

1. The URL have to be selected by the scheduling algorithm (section 4.4).

Relevant configuration variables: WaitIntervalHost (section 9.1.32), WaitIntervalHar-
vesterLockRobotRules (section 9.1.29), WaitIntervalHarvesterLockSuccess (section
9.1.30)

2. The URL have to pass the allow test

Relevant configuration variables: allow (section 9.2.1)

3. The URL is not be excluded by the exclude test (see section 4.3).

Relevant configuration variables: exclude (section 9.2.4)
4. The Robot Exclusion Protocol have to allow crawling of the URL

5. Optionally the document at the URL location have to pass the topic filter (section
4.5).

Relevant configuration variables: classifyPlugln (section 9.1.3), doCheckRecord (sec-
tion 9.1.6).

15

4.2 Document parsing

The system selects a document parser based on the Mime-Type together with available
parsers and converter programs

1. For some mime-types an external program is called in order to convert the document
to a format handled internally (HTML or plain text).

Relevant configuration variables: converters (section 9.2.3)

2. Internal parsers handle HTML, plain text, TeX, and Image.
Relevant configuration variables: converters (section 9.2.3)
Supporting a new document format is as easy as providing a program that can convert
a document in this format to HTML or plain text. Configuration of the mapping between

document format (Mime-Type) and converter program is done in the complex configuration
variable ’converters’ (section 9.2.3).

4.3 URL filtering

Before an URL is accepted for scheduling (either by manual loading or recycling) it is
normalized and validated. This process comprises a number of steps:

e Normalization
— General practice: host-name lowercasing, port-number substitution, canonical
URL
— Remove fragments (ie '#’ and everything after that)
— Clean CGI repetitions of parameters
— Collapse dots (’./’, ’../’) in the path

— Remove CGI parameters that are session ids, as identified by patterns in the
configuration variable sessionids (section 9.2.6)

Normalize WWW-server names by resolving aliases. Identified by patterns in
the configuration variable serveralias (section 9.2.5). These patterns can be
generated by using the program combineUtil to analyze a crawled corpus.

e Validation: A URL have to pass all three validation steps outlined below.
— URL length have to be less than configuration variable maxUrlLength (section
9.1.14)

— Allow test: one of the Perl regular expressions in the configuration variable
allow (section 9.2.1) must match the URL

— Exclude test: none of the Perl regular expressions in the configuration variable
exclude (section 9.2.4) must match the URL

Both allow and exclude can contain two types of regular expressions identified by
either "HOST:’ or 'URL’ in front of the regular expression. The 'HOST:’ regular expres-
sions are matched only against the WWW-server part of the URL while the "URL’
regular expressions are matched against the entire URL.

16

4.4 Link selection/scheduling policy

All links from a relevant document are extracted, normalized and stored in the structured
record. Those links that pass the selection/validation criteria outlined below are marked
for crawling.

To mark a URL for crawling requires

e The URL should be from a page that is relevant (ie pass the focus filter)
e The URL scheme must be one of HT'TP, HTTPS, or FTP

The URL must not exceed the maximum length (configurable, default 250 characters)

It should pass the ’allow’ test (configurable, default all URLs passes)

It should pass the ’exclude’ test (configurable, default excludes malformed URLs,
some CGI pages, and URLSs with file-extensions for binary formats)

At each scheduling point one URL from each available (unlocked) host is selected to
generate a ready queue, which is then processed completely before a new scheduling is
done. Each selected URL in the ready queue thus fulfills these requirements:

e URL must be marked for crawling (see above)

e URL must be unlocked (each successful access to a URL lock it for a configurable
time WaitIntervalHarvesterLockSuccess (section 9.1.30))

e Host of the URL must be unlocked (each access to a host locks it for a configurable
time WaitIntervalHost (section 9.1.32))

4.5 Built in topic filter - automated subject classification

The built in topic filter is a library science approach to automated classification, using
a topic definition with a pre-defined controlled vocabulary of topical terms, to determine
relevance judgement. Thus it does not rely on a particular set of seed pages, or a collection
of pre-classified example pages to learn from. It does require that some of the seed pages
are relevant and contain links into the topical area. One simple way of creating a set of
seed pages would be to use terms from the controlled vocabulary as queries for a general
purpose search engine and take the result as seed pages.

The system for automated topic classification (overview in figure 3), that determines
topical relevance in the topical filter, is based on matching subject terms from a controlled
vocabulary in a topic definition with the text of the document to be classified [1]. The
topic definition uses subject classes in a hierarchical classification system (corresponding to
topics) and terms associated with each subject class. Terms can be single words, phrases,
or boolean AND-expressions connecting terms. Boolean OR-expressions are implicitly
handled by having several different terms associated with the same subject class (see section
45.1).

The algorithm works by string-to-string matching of terms and text in documents. Each
time a match is found the document is awarded points based on which term is matched
and in which structural part of the document (location) the match is found [5]. The points
are summed to make the final relevance score of the document. If the score is above

17

Document text 3 Topic Definition
Configuration \L .| Term triplets
Stop—words /
Stemming Match . term (word, phrase, boolean)
Relevant sites

Score propagation Topic—class
Cut—off values " |hierarchy

$ | ; 3
' relevance weight, ‘
\ \L . list of topic—classes |

List of topic—classes,
relevance,
(matched terms)

Figure 3: Overview of the automated topic classification algorithm

a cut-off value the document is saved in the database together with a (list of) subject
classification(s) and term(s).

By providing a list of known relevant sites in the configuration file sites0OK.txt (located
in the job specific configuration directory) the above test can be bypassed. It works by
checking the host part of the URL against the list of known relevant sites and if a match
is found the page is validated and saved in the database regardless of the outcome of the
algorithm.

4.5.1 Topic definition

Located in /etc/combine/<jobname>/topicdefinition.txt. Topic definitions use triplets
(term, relevance weight, topic-classes) as its basic entities. Weights are signed integers and
indicate the relevance of the term with respect to the topic-classes. Higher values indicate
more relevant terms. A large negative value can be used to exclude documents containing
that term.

Terms can be:

e single words
e a phrase (ie all words in exact order)

e a boolean AND-expression connecting terms (ie all terms must be present but in any
order). The boolean AND operator is encoded as '@and’

A boolean OR-expression has to be entered as separate term triplets. The boolean ex-
pression “polymer AND (atactic OR syndiotactic)” thus have to be translated into two
separate triplets, one containing the term “polymer Qand atactic”, and another with
“polymer Q@and syndiotactic”.

Terms can include (Perl) regular expressions like:

18

e 3 ’'?’ makes the character immediately preceding optional, ie the term “coins?” will

match both “coin” and “coins”

e a “["\s]#” is truncation (matches all character sequences except space ’),
7 W 77 W 7«

“glass art[~\s]#” will match “glass art”,“glass arts”, “glass artists”, “glass
articles”, and so on.

It is important to understand that each triplet in the topic definition is considered by
itself without any context, so they must each be topic or sub-class specific in order to
be useful. Subject neutral terms like “use”, “test”, “history” should not be used. If really
needed they have to be qualified so that they become topic specific (see examples below).

Simple guidelines for creating the triplets and assigning weights

e Phrases or unique, topic specific terms, should be used if possible, and assigned the
highest weights, since they normally are most discriminatory.

Boolean AND-expressions is the next best.

Single words can be to general and/or have several meanings or uses that make them
less specific and those should thus be assigned a small weights.

e Acronyms can be used as terms if they are unique

Negative weights should be used in order to exclude concepts.

4.5.2 Topic definition (term triplets) BNF grammar

TERM-LIST :== TERM-ROW ’<cr>’ || '#’ <char>+ '<cr>’ || '<ecr >’
TERM-ROW :== WEIGHT ’: * TERMS ’'=" CLASS-LIST

WEIGHT :== [-’]<integer>

TERMS :== TERM |’ @and ’* TERMS|*

TERM :== WORD ’’ [WORDJ*

WORD :== <char>+| | <char>-+<perl-reg-exp>

CLASS-LIST :== CLASSID [’,” CLASS-LIST]

CLASSID :== <char>+

A line that starts with '#’ is ignored as are empty lines.

<perl-reg-exp> is only supported by the plain matching algorithm described in sec-
tion 4.5.4.

“CLASSID” is a topic (sub-)class specifier, often from a hierarchical classification system
like Engineering Index'®.

4.5.3 Term triplet examples

50: optical glass=A.14.5, D.2.2

30: glass Qand fiberoptics=D.2.2.8

50: glass @and technical @and history=D.2
50: ceramic materials Qand glass=D.2.1.7
-10000: glass @and art=A

Shttp:/ /www.ei.org/

19

The first line says that a document containing the term “optical glass” should be
awarded 50 points for each of the two classes A.14.5 and D.2.2.

“glass” as a single term is probably too general, qualify it with more terms like:
“glass Qand fiberoptics”, or “glass Qand technical Qand history” or use a phrase
like “glass fiber” or “optical glass”.

In order to exclude documents about artistic use of glass the term “glass @and art”
can be used with a (high) negative score.

An example from the topic definition for 'Carnivorous Plants’ using regular expressions.

#This is a comment

75: D\.?\s*californica=CP.Drosophyllum
10: pitcher[~\s]*=CP

-10: pitcher[~\s]* Qand baseball=CP

The term “D\ . ?\s*californica” will match D californica, D. californica, D.californica
etc.

The last two lines assures that a document containing “pitcher” gets 10 points but if
the document also contains “baseball” the points are removed.

4.5.4 Algorithm 1: plain matching

Selected by setting the configuration parameter classifyPlugIn = Combine: :Check_record
The algorithm produces a list of suggested topic-classes (subject classifications) and
corresponding relevance scores using the algorithm:

Relevance score =

Z (hits[location;|[term ;] % weight[term;] * weight[location;])
all locations \all terms

term weight (weight[term;]) is taken from the topic definition triplets.

location weight (weight[location;]) are defined ad hoc for locations like title, metadata,
HTML headings, and plain text. However the exact values for these weights does
not seem to play a large role in the precision of the algorithm [5].

hits (hits[location;][term;]) is the number of times term; occur in the text of location;

The summed relevance score might, for certain applications, have to be normalized
with respect to text size of the document.

One problem with this algorithm is that a term that is found in the beginning of the
text contributes as much as a term that is found at the end of a large document. Another
problem is the distance and thus the coupling between two terms in a Boolean expression
might be very large in a big document and this is not taken into account by the above
algorithm.

20

4.5.5 Algorithm 2: position weighted matching

Selected by setting the configuration parameter classifyPlugIn = Combine: :PosCheck_record
In response to the problems cited above we developed a modified version of the algo-
rithm that takes into account word position in the text and proximity for boolean terms.
It also eliminates the need to assign ad hoc weights to locations. The new algorithm works
as follows.
First all text from all locations are concatenated (in the natural importance order title,
metadata, text) into one chunk of text. Matching of terms is done against this chunk.
Relevance score is calculated as

Relevance score =

Z (Z weight[term;])
all torms \all matches log(k * position[term;][match;]) * proximity[term;|[match;]

term weight (weight[term;]) is taken from the topic definition triplets

position (position[term;][match;]) is the position in the text (starting from 1) for match;
of term;. The constant factor k is normally 0.5

proximity (proximity[term;|[match;]) is

1 for non boolean terms
log(distance _between _components) for boolean terms

In this algorithm a matched term close to the start of text contribute more to the
relevance score than a match towards the end of the text. And for Boolean terms the
closer the components are the higher the contribution to the relevance score.

4.6 Topic filter Plug-In API

The configuration variable classifyPlugln (section 9.1.3) is used to find the Perl module
that implements the desired topic filter. The value should be formatted as a valid Perl
module identifier (ie the module must be somewhere in the Perl module search path).
Combine will call a subroutine named ’classify’ in this module, providing a XWI-object as
in parameter. The subroutine must return either 0 or 1, where
0: means record fails to meet the classification criteria, ie ignore this record
1: means record is OK and should be stored in the database, and links followed by the
crawler
A XWTI-object is a structured object holding all information from parsing a Web-page.
More details on how to write a Plug-In can be found in the example Plug-In classify-
PlugInTemplate.pm (see Appendix A.2).

4.7 Analysis

Extra analysis is enabled by the configuration variable doAnalyse (section 9.1.5). Among
other things analysis tries to determine the language of the text in the page. The URL is
used to extract an indication of the category (University, Education, Research, Publication,
Product, Top page, Personal page) of a page.

21

4.8 URL recycling
URLSs for recycling comes from 3 sources:
e Links extracted during HTML parsing

e Redirects (unless configuration variable UserAgentFollowRedirects (section 9.1.23) is
set)

e URLs extracted from plain text (enabled by the configuration variable extractLinks-
FromText (section 9.1.8)).

Automatic recycling of URLs is enabled by the configuration variable AutoRecycleLinks
(section 9.1.1). It can also be done manually with the command
combineCtrl -jobname XXXX recyclelinks

The command combineCtrl -jobname XXXX reharvest marks all pages in the database
for harvesting again.

4.9 Complete application - SearchEngine in a Box

The SearchEngine-in-a-Box!” system is based on the two systems Combine Focused Crawler
and Zebra text indexing and retrieval engine!®. This system allows you build a vertical
search engine for your favorite topic in a few easy steps.

The SearchEngine-in-a-Box web-site contains instructions and downloads to make this
happen. Basically it makes use of the ZebraHost (see section 9.1.37) configuration variable
which enables direct communication between the crawler and the database system and
thus indexes records as soon as they are crawled. Which also means that they are directly
searchable.

5 Evaluation of automated subject classification

Automated classification approach used for evaluation was string-matching of terms (sec-
tion 4.5) from an engineering-specific controlled vocabulary Engineering Index, used in
Elsevier’s Compendex database. One reason for choosing this approach is that it does not
require training documents that are often not available especially on the World Wide Web.
For a discussion on different approaches to automated subject classification, see [2].

In [6] a machine-learning and a string-matching approach to automated subject classi-
fication of text were compared as to their performance on a test collection of six classes. It
was shown that SVM on average outperforms the string-matching approach: our hypothe-
sis that SVM yields better recall and string-matching better precision was confirmed only
on one of the classes. The two approaches being complementary, we investigated different
combinations of the two based on combining their vocabularies. SVM performs best using
the original set of terms, and string-matching approach also has best precision when using
the original set of terms. Best recall for string-matching is achieved when using descrip-
tive terms. Reasons for these results need further investigation, including a larger data
collection and combining the two using predictions.

Another reason for choosing the string-matching approach is that Engineering Index
is a well-developed vocabulary with an average of 88 manually selected terms designating

'"http://combine.it.lth.se/SearchEngineBox/
8http:/ /www.indexdata.dk/zebra/

22

one class [4]. In this study, it has been explored to what degree different types of terms
in Engineering Index influence automated subject classification performance. Preferred
terms, their synonyms, broader, narrower, related terms, and captions were examined in
combination with a stemmer and a stop-word list. The results showed that preferred terms
perform best, whereas captions perform worst. Stemming in most cases showed to improve
performance, whereas the stop-word list did not have a significant impact. The majority
of classes is found when using all the terms and stemming: micro-averaged recall is 73

In [5] the was to determine how significance indicators assigned to different Web page
elements (internal metadata, title, headings, and main text) influence automated classi-
fication. The data collection that was used comprised 1000 Web pages in engineering,
to which Engineering Information classes had been manually assigned. The significance
indicators were derived using several different methods: (total and partial) precision and
recall, semantic distance and multiple regression. It was shown that for best results all the
elements have to be included in the classification process. The exact way of combining the
significance indicators turned out not to be overly important: using the F1 measure, the
best combination of significance indicators yielded no more than 3

Other issues specific to Web pages were identified and discussed in [3]. The focus of
the study was a collection of Web pages in the field of engineering. Web pages present a
special challenge: because of their heterogeneity, one principle (e.g. words from headings
are more important than main text) is not applicable to all the Web pages of a collection.
For example, utilizing information from headings on all Web pages might not give improved
results, since headings are sometimes used simply instead of using bold or a bigger font
size. A number of weaknesses of the described approach were identified, and ways to deal
with those were proposed for further research. These include enriching the term list with
synonyms and different word forms, adjusting the term weights and cut-off values and
word-sense disambiguation.

6 Performance

Performance evaluation of the automated subject classification component is treated in
section 5. Performance in terms of number of URLs treated per minute is of course highly
dependent on a number of circumstances like network load, capacity of the machine, the
selection of URLs to crawl, configuration details, number of crawlers used, etc. In general,
within rather wide limits, you could expect the Combine system to handle up to 200 URLs
per minute. Handle here means everything from scheduling of URLs, fetching of pages over
the network, parsing the page, automated subject classification, recycling of new links, to
storing the structured record in a relational database. This holds for small simple crawls
starting from scratch to large complicated topic specific crawls with millions of records.

The prime way of increasing performance is to use more than one crawler for a job.
This is handled by the -harvesters switch used together with the combineCtrl start
command (for example
combineCtrl -jobname MyCrawl -harvesters 5 start
will start 5 crawlers working together on the job 'MyCrawl’. The effect of using more than
one crawler on crawling speed is illustrated in figure 4 below.

Configuration also have an effect on performance. In figure 5 performance improve-
ments based on configuration changes are shown. The choice of algorithm for automated
classification turns out to have biggest influence on performance, where algorithm 2 - sec-
tion 4.5.5 - (classifyPlugIn = Combine: :PosCheck_record - Pos in figure 5) is much

23

200000 T S T T T
!y 1 crawler
- 2 crawlers ————-
S 5crawlers ------
S 10 crawlers ----------
S ; 15 crawlers —-—-—
150000 |- S 20 crawlers — - —- - —
/ '/'
I/
" K
& r
oD ’ . _,’
g 100000 |~ ;S —
§ / _’/ PP
= ,l / ,/”~
//'/’ . ’ ==
7 o
// ; ’ /’/
50000 |~ 4 .° 7 =
,/:/,' 4 ! /,/’//
// T
gt
'I::/',/’/
0 o]]]]]]
0 500 1000 1500 2000 2500 3000 3500

Time in minutes

Figure 4: Combine crawler performance.

faster than algorithm 1 - section 4.5.4 - (classifyPlugIn = Combine::Check_record -
Std in figure 5). Tweaking of other configuration variables also have an effect on per-
formance but to a lesser degree. Tweaking consisted of not using Tidy to clean HTML
(useTidy = 0) and not storing the original page in the database (saveHTML = 0).

7 System components

All executables take a mandatory switch -jobname which is used to identify the particular
crawl job you want and as well the job-specific configuration directory.

Briefly combineINIT is used to initialize SQL database and the job specific configu-
ration directory. combineCtrl controls a Combine crawling job (start, stop, etc) as well
as printing some statistics. combineExport export records in various XML formats and
combineUtil provides various utility operations on the Combine database.

Detailed dependency information (section 10) can be found in the 'Gory details’ section.

7.1 combineINIT

Creates a Mysql database, database tables and initializes it. If the database exists it is
dropped and recreated. A job specific configuration directory is created in /etc/combine/
and populated with a default configuration file.

If a topic definition filename is given, focused crawling using this topic defintion is
enabled per default. Otherwise focused crawling is disabled, and Combine works as a
general crawler.

24

20000 I I T I
‘ - s

7

e Pos ———---

Pes”™ +/config tweaking - -----

15000

10000

Treated URLs

5000

]]]
0 50 100 150 200 250
Time in minutes

Figure 5: Effect of configuration changes on focused crawler performance.

7.2 combineCtrl

Implements various control functionality to administer a crawling job, like starting and
stoping crawlers, injecting URLs into the crawl que, scheduling newly found links for
crawling, controlling scheduling, etc.

This is the preferred way of controling a crawl job.

7.3 combineUtil

Does various statistics generation as well as performing sanity checks on the database.

7.4 combineExport

Export is done according to one of three profiles: alvis, dc, or combine. alvis and
combine are very similar XML formats where combine is more compact with less redun-
dancy and alvis contains some more information. dc is XML encoded Dublin Core data.
The alvis profile format is defined by the Alvis Enriched Document XML Schema!®.
For convinience a switch -xsltscript adds the possibility to filter the output using a
XSLT script. The script is feed a record according to the combine profile and the result is
exported.

7.5 Internal executables and Library modules

combine is the main crawling machine in the Combine system and combineRun starts,
monitors and restarts combine crawling processes.

¥http:/ /www.miketaylor.org.uk/tmp/alvis/d3.1/enriched-document.xsd

25

7.5.1 Library

Main, crawler specific, library components are collected in the Combine: : Perl namespace.

References

[1]

[6]

A. Ard6 and T. Koch. Automatic classification applied to the full-text Internet doc-
uments in a robot-generated subject index. In Online Information 99, Proceedings,
pages 239-246, Dec. 1999. http://www.it.Ith.se/anders/online99/.

K. Golub. Automated subject classification of textual Web documents. Journal of
Documentation, 62(3):350-371, 2006.

K. Golub. Automated subject classification of textual web pages, based on a controlled
vocabulary: challenges and recommendations. New review of hypermedia and multi-
media, 12(1):11-27, June 2006. Special issue on knowledge organization systems and
services.

K. Golub. The role of different thesauri terms in automated subject classification of
text. In IEEE/WIC/ACM International Conference on Web Intelligence, Dec. 2006.

K. Golub and A. Ardé. Importance of HTML Structural Elements in Automated Sub-
ject Classification. In A. Rauber, S. Christodoulakis, and A. M. Tjoa, editors, 9th Eu-
ropean Conference on Research and Advanced Technology for Digital Libraries - ECDL
2005, volume 3652 of Lecture Notes in Computer Science, pages 368 — 378. Springer,
Sept. 2005. Manuscript at: http://www.it.1th.se/knowlib/publ/ECDL2005.pdf.

K. Golub, A. Ardo, D. Mladenic, and M. Grobelnik. Comparing and Combining Two
Approaches to Automated Subject Classification of Text. In J. Gonzalo, C. Thanos,
M. F. Verdejo, and R. C. Carrasco, editors, 10th European Conference on Research and
Advanced Technology for Digital Libraries - ECDL 2006, volume 4172 of Lecture Notes
in Computer Science, pages 467-470. Springer, Sept. 2006.

26

Part II
Gory details

8 Frequently asked questions

1.

2.

Y

What does the message "Wide character in subroutine entry ...” mean?

What does the message "Parsing of undecoded UTF-8 will give garbage when decod-
ing entities ...” mean?

. Ican’t figure out how to restrict the crawler to pages below 'http://www.foo.com/bar/’?

Put an appropriate regular expression in the <allow> section of the configuration
file. Appropriate means a Perl regular expression, which means that you have to
escape special characters. Try with

URL http:\/\/www\.foo\.com\/bar\/

. I have a simple configuration variable set, but Combine does not obey it?

Check that there are not 2 instances of the same simple configuartion variable in the
same configuration file. Unfortunately this will break configuration loading.

. If there are multiple <allow> entries, must an URL fit all or any of them?

A match to any of the entries will make that URL allowable for crawling. You can
use any mix of HOST: and URL entries

. It would also be nice to be able to crawl local files.

Presently the crawler only accepts http, https, and ftp as protocols.

. Crawling of a single host is VERY slow. Is there some way for me to speed the

crawler up?

Yes it’s one of the built-in limitations to keep the crawler beeing ’nice’ It will only
access a particular server once every 60 seconds by default. You can change the de-
fault by adjusting the following configuration variables, but pleas keep in mind that
you increase the load on the server.

WaitIntervalSchedulerGetJcf=2

WaitIntervalHost = 5

. How can I crawl a fixed number of link steps from a set of seed pages? (Is it for

example possible to crawl only one single webpage? Or one webpage and all local
links on that webpage (and not any further)?)

Initialize the database and load the seed pages. Turn of automatic recycling of links
by setting the simple configuration variable ’AutoRecycleLinks’ to 0.

Start crawling and stop when ’combineCtrl -jobname XXX howmany’ equals 0.

Handle recycling manually using ’combineCtrl, with action ’recyclelinks’. (Give the
command combineCtrl -jobname XXX recyclelinks’)

Iterate to the depth of your liking.

27

. I run combineINIT but the configuration directory is not created?

You need to run combineINIT as root, due to file protection permissions.

. Where are the logs?
They are stored in the SQL database <jobname> in the table log.

. What are the main differences between Std and PosCheck algorithms for automated
subject classification?

. I don’t understand what this means. Can you explain it to me ? Thank you !

40: sundew[~\s]*=CP.Drosera
40: tropical pitcher plant=CP.Nepenthes

It’s part of the topic definition (term list) for the topic ’Carnivorous plants’. It’s well
described in the documenentation, please see section 4.5.1. The strange characters
are Perl regular expressions mostly used for truncation etc.

. I want to get all pages about "icecream" from "www.yahoo.com". And I don’t have
clear idea about how to write the topic definition file. Can you show me an example?

So for getting all pages about ’icecream’ from 'www.yahoo.com’ you have to:

(a) write a topic definition file according to the format above, eg containing topic
specific terms. The file is essential a list of terms relevant for the topic. Format of
the file is "numeric _importance: term=TopicClass" e.g. "100: icecream=YahooIce"
(Say you call your topic "Yahoolce’). A few terms might be:

100: icecream=YahoolIce
100: ice cone=Yahoolce

and so on stored in a file called say TopicYahoolce.txt
(b) Initialization
sudo combineINIT -jobname cptest -topic TopicYahooIce.txt

(c¢) Edit the configuration to only allow crawling of www.yahoo.com Change the
<allow> part in /etc/combine/focustest/combine.cfg from

#use either URL or HOST: (obs ’:’) to match regular expressions to either the
#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions
HOST: .*$

</allow>

to

#use either URL or HOST: (obs ’:’) to match regular expressions to either the
#full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions
HOST: www\.yahoo\.com$

</allow>

28

(d) Load some good seed URLSs

(e) Start 1 harvesting process

14. Why load some good seeds URLs and what the seeds URLs mean.

This is just a way of telling the crawler where to start.

15. My problem is that the installation there requires root access, which I cannot get. Is
there a way of running Combine without requiring any root access?

The are three things that are problematic

(a) Configurations are stored in /etc/combine/...
(b) Runtime PID files are stored in /var/run/combine

(¢) You have to be able to create MySQL databases accessible by combine Apart
from that nothing else needs root access.

If you take the source and look how the tests (make test) are made you might find a
way to fix 1. Though this probably involves modifying the source - maybe only the
Combine/Config.pm

2. is strictly not necessary and it will run even if /var/run /combine does not exist,
although not the command ’combineCtrl —jobname XXX kill’

3. is necessary and I can’t think of a way around it except making a local installation
of MySQL and use that.

16. What does the following entries from the log table mean?

(a) | 5409 | HARVPARS 1_zltest | 2006-07-14 15:08:52 | M500; SD empty, sleep 20 second..
This means that there are no URLs ready for crawling (SD empty). Also you
can use combineCtrl to see current status of ready queue etc
(b) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:00:59 | M500; urlid=1; netlocid=1; http:/
Crawler process 7352 got a url (http://www.shanghaidaily.com/) to check (1_ wctest
is a just a name non significant) M500 is a sequence number for an individual
crawler starting at 500 and when it reaches 0 this crawler process is killed and
another is created. urlid and netlocid are internal identifiers used in the MySQL
tables.
(c) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:01:10 | M500; RobotRules OK, OK
Crawler process have checked that this url (identified earlier in the log by
pid=7352 and M500) can be crawled according to the Robot Exclusin protocol.
(d) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:01:10 | M500; HTTP(200 = "OK") => 0K
It has fetched the page (identified earlier in the log by pid=7352 and M500) OK
(e) | 7352 | HARVPARS 1_wctest | 2006-07-14 17:01:10 | M500; Doing: text/html;200;0F0610

It is processing the page (in the format text/html) to see if it is of topical interest
0F061033DAF69587170F8E285E950120 is the MD5 checksum of the page

17. In fact , I want to know which crawed urls are corresponding to the certain topic
class such as CP.Aldrovanda . Can you tell me how can I know ?

You have to get into the raw MySQL database and perform a query like

29

18.

19.

SELECT urls.urlstr FROM urls,recordurl,topic WHERE urls.urlid=recordurl.urlid
AND recordurl.recordid=topic.recordid AND topic.notation="CP.Aldrovanda’;

Table urls contain all URLs seen. Table recordurl connect urlid to recordid. recordid
is used in all tables with data from the crawled Web pages.
what is the meaning of the item "ALL" in the notation column of the topic table 7

If you use multiple topics in your topic-defintion (ie the string after '=’) then all the
relevant topic scores for this page is summed and given the topic notation "ALL’.

Just disregard it if you only use one topic-class.

Combine should crawl all pages underneath, but not go outside the domain (i.e. going

to www.yahoo.com) but also not going higher in position (i.e. www.geocities.com /boulevar/atlanta/index.h
Is it possible to set up Combine like this?

Yes, change the <allow>-part of your configuration file combine.cfg to select what
URL’s should be allowed for crawling (by default everything is allowed). See also
section 4.3.

So change

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions
HOST: .*$

</allow>

to something like

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions
URL http:\/\/www\.geocities\.com\/boulevard\/newyork\/

</allow>

(the backslashes are needed since these patterns are in fact Perl regular expressions)

9 Configuration variables

9.1

Name/value configuration variables

9.1.1 AutoRecycleLinks

Default value =1

Description: Enable(1)/disable(0) automatic recycling of new links

Used by: SD SQL.pm

30

9.1.2 baseConfigDir

Default value = /etc/combine
Description: Base directory for configuration files; initialized by Config.pm
Used by: FromHTML.pm; combineExport

Set by: Config.pm

9.1.3 classifyPlugln

Default value = Combine::Check record

Description: Which topic classification PlugIn module algorithm to use
Combine::Check _record and Combine::PosCheck _record included by default
see classifyPlugInTemplate.pm and documentation to write your own

Used by: combine

9.1.4 configDir
Default value — NoDefaultValue

Description: Directory for job specific configuration files; taken from ’jobname’
Used by: Check record.pm; combineUtil; PosCheck record.pm

Set by: Config.pm

9.1.5 doAnalyse

Default value =1
Description: Enable(1)/disable(0) analysis of genre, language

Used by: combine

9.1.6 doCheckRecord

Description: Enable(1)/disable(0) topic classification (focused crawling)
Generated by combineINIT based on —topic parameter

Used by: combine

9.1.7 doOAI

Default value =1
Description: Use(1)/do not use(0) OAI record status keeping in SQL database

Used by: MySQLhdb.pm

31

9.1.8 extractLinksFromText
Default value =1
Description: Extract(1)/do not extract(0) links from plain text

Used by: combine

9.1.9 HarvesterMaxMissions
Default value = 500
Description: Number of pages to process before restarting the harvester

Used by: combine

9.1.10 HarvestRetries
Default value = 5

Used by: combine

9.1.11 httpProxy
Default value = NoDefaultValue
Description: Use a proxy server if this is defined (default no proxy)

Used by: UA.pm

9.1.12 LogHandle
Used by: Check record.pm; FromHTML.pm; PosCheck record.pm

Set by: combine

9.1.13 Loglev
Description: Logging level (0 (least) - 10 (most))
Used by: combine

9.1.14 maxUrlLength
Default value = 250
Description: Maximum length of a URL; longer will be silently discarded

Used by: selurl.pm

9.1.15 MySQLdatabase
Default value = NoDefaultValue
Description: Identifies MySQL database name, user and host

Used by: Config.pm

32

9.1.16 MySQLhandle

Used by: combineUtil; LogSQL.pm; combine; RobotRules.pm; combineExport; SD SQL.pm;
XWI2XML.pm; MySQLhdb.pm

Set by: Config.pm

9.1.17 Operator-Email

Default value = "YourEmailAdress@YourDomain"
Description: Please change

Used by: RobotRules.pm; UA.pm

9.1.18 Password
Default value = "XxXxyYzZ"

Description: Password not used yet. (Please change)

9.1.19 saveHTML

Default value — 1
Description: Store(1)/do not store(0) the raw HTML in the database

Used by: MySQLhdb.pm

9.1.20 SdqgRetries

Default value = 5

9.1.21 SummaryLength

Description: How long the summary should be. Use 0 to disable the summarization code

Used by: FromHTML.pm

9.1.22 UAtimeout
Default value = 30

Description: Time in seconds to wait for a server to respond

Used by: UA.pm

9.1.23 UserAgentFollowRedirects

Description: User agent handles redirects (1) or treat redirects as new links (0)

Used by: UA.pm

33

9.1.24 UserAgentGetIfModifiedSince

Default value =1
Description: If we have seen this page before use Get-If-Modified (1) or not (0)
Used by: UA.pm

9.1.25 useTidy

Default value =1
Description: Use(1)/do not use(0) Tidy to clean the HTML before parsing it

Used by: FromHTML.pm

9.1.26 WaitIntervalExpirationGuaranteed
Default value = 315360000

Used by: UA.pm
9.1.27 WaitIntervalHarvesterLockNotFound

Default value = 2592000

Used by: combine

9.1.28 WaitIntervalHarvesterLockNotModified
Default value — 2592000

Used by: combine

9.1.29 WaitIntervalHarvesterLockRobotRules
Default value — 2592000

Used by: combine

9.1.30 WaitIntervalHarvesterLockSuccess
Default value = 1000000

Description: Time in seconds after succesfull download before allowing a page to be
downloaded again (around 11 days)

Used by: combine

9.1.31 WaitIntervalHarvesterLockUnavailable
Default value = 86400

Used by: combine

34

9.1.32 WaitIntervalHost
Default value = 60

Description: Minimum time between accesses to the same host. Must be positive

Used by: SD_SQL.pm

9.1.33 WaitIntervalRrdLockDefault
Default value = 86400

Used by: RobotRules.pm

9.1.34 WaitIntervalRrdLockNotFound
Default value = 345600

Used by: RobotRules.pm

9.1.35 WaitIntervalRrdLockSuccess
Default value = 345600

Used by: RobotRules.pm

9.1.36 WaitIntervalSchedulerGetJcf
Default value = 20

Description: Time in seconds to wait before making a new reschedule if a reschedule
results in an empty ready que

Used by: combine

9.1.37 ZebraHost
Default value = NoDefaultValue

Description: Direct connection to Zebra indexing - for SearchEngine-in-a-box (default
no connection)

Used by: MySQLhdb.pm

9.2 Complex configuration variables
9.2.1 allow

Description: use either URL or HOST: (obs ’’) to match regular expressions to
either the full URL or the HOST part of a URL.
Allow crawl of URLs or hostnames that matches these regular expressions

Used by: selurl.pm

35

9.2.2 binext

Description: Extensions of binary files

Used by: UA.pm

9.2.3 converters

Description: Configure which converters can be used to produce a XWI object
Format:
1 line per entry
each entry consists of 3 ’;’ separated fields
Entries are processed in order and the first match is executed
external converters have to be found via PATH and executable to be considered a
match
the external converter command should take a filename as parameter and convert
that file
the result should be comming on STDOUT
mime-type ; External converter command ; Internal converter

Used by: UA.pm; combine

9.2.4 exclude

Description: Exclude URLs or hostnames that matches these regular expressions
default: CGI and maps
default: binary files
default: Unparsable documents
default: images
default: other binary formats
more excludes in the file config_exclude (automatically updated by other programs)

Used by: selurl.pm

9.2.5 serveralias

Description: List of servernames that are aliases are in the file ./config_serveralias
(automatically updated by other programs)
use one server per line
example
www.100topwetland.com www.100wetland.com
means that www.l00wetland.com is replaced by www.100topwetland.com during
URL normalization

9.2.6 sessionids

Description: patterns to recognize and remove sessionids in URLs

36

9.2.7 url

Description: url is just a conatiner for all URL related configuration patterns

Used by: Config.pm; selurl.pm

10 Module dependences

10.1 Programs
10.1.1 combine

Uses: Combine::Config; Combine:: XWI; Combine::UA; Combine::RobotRules; Combine::LogSQL;
Combine::FromHTML; Combine::FromImage; Combine::FromTeX; Combine::DataBase;
HTTP::Date; HTTP::Status; URI::URL; Getopt::Long; Combine::SD_SQL; Lin-
gua::Identify;

10.1.2 combineCtrl

Uses: Getopt::Long; Combine::SD_SQL; Combine::Config;

10.1.3 combineExport

Uses: Combine::MySQLhdb; Combine::Config; Combine:: XWI2XML; DBI; HTTP::Date;
Encode; Getopt::Long; Alvis::Pipeline; XML::LibXSLT; XML::LibXML;

10.1.4 combineINIT

Uses: Getopt::Long; Combine::Config; DBI; HTML::Tidy;

10.1.5 combineUtil

Uses: Getopt::Long; Combine::Config; Combine::SD SQL; Combine::MySQLhdb; Com-
bine:MySQLhdb; Net::hostent;

10.2 Library modules
10.2.1 Check record.pm
Uses: Combine:: XWI; Combine::Load TermList; Combine::Matcher; Combine::Config;

Used by:

10.2.2 CleanXML2CanDoc.pm

Uses: Alvis::Canonical,;

Used by: Combine: XWI2XML;

37

10.2.3 Config.pm
Uses: Config::General; DBI;

Used by: combineCtrl; combine; combineExport; combineINIT; combineUtil; Combine::Check record;
Combine::FromHTML; Combine::LogSQL; Combine::MySQLhdb; Combine::PosCheck record;
Combine::RobotRules; Combine::SD _SQL; Combine::UA; Combine:: XWI2XML; Com-
bine::selurl;

10.2.4 DataBase.pm
Uses: Combine::MySQLhdb; Combine::selurl;

Used by: combine;

10.2.5 FromHTML.pm

Uses: Combine::Config; HT'TP::Date; URI; URI::Escape; HTML::Entities; Encode; HTML::Tidys;
Combine::HTMLExtractor;

Used by: combine;

10.2.6 FromImage.pm
Uses: Image::ExifTool;

Used by: combine;

10.2.7 HTMLExtractor.pm
Uses: HTML::TokeParser; URI; Data::Dumper;

Used by: Combine:FromHTML;

10.2.8 LoadTermList.pm
Uses: DBI; Lingua::Stem;

Used by: Combine::Check record; Combine::PosCheck record;

10.2.9 LogSQL.pm

Uses: Combine::Config;

Used by: combine;

10.2.10 Matcher.pm
Uses: HTML::Entities;

Used by: Combine::Check record;

38

10.2.11 MySQLhdb.pm

Uses: Combine::XWI; HTTP::Date; Encode; Combine::Config; Combine::selurl; Com-
bine::Zebra;

Used by: combineExport; combineUtil; combineUtil; Combine::DataBase;

10.2.12 PosCheck record.pm

Uses: Combine::LoadTermList; Combine::PosMatcher; Combine::Config;
Used by:

10.2.13 PosMatcher.pm
Uses: HTML::Entities;
Used by: Combine::PosCheck record;

10.2.14 RobotRules.pm
Uses: Combine::Config; Combine::UA;

Used by: combine;

10.2.15 SD_SQL.pm
Uses: Combine::Config; Combine::selurl; DBI;

Used by: combineCtrl; combine; combineUtil;

10.2.16 UA.pm
Uses: Combine::Config; LWP::UserAgent; HT'TP::Date; Digest::MD5;

Used by: combine; Combine::RobotRules;

10.2.17 XWIL.pm
Uses: HTML::Entities;
Used by: combine; Combine::Check record; Combine::MySQLhdb; Combine: XWI2XML;

10.2.18 XWI2XML.pm

Uses: Combine:: XWI; Encode; Combine::Config; Compress::Zlib; MIME::Base64; Com-
bine::CleanXML2CanDoc;

Used by: combineExport; Combine::Zebra;

10.2.19 Zebra.pm
Uses: Combine: XWI2XML; ZOOM;
Used by: Combine:MySQLhdb;

39

10.2.20 selurl.pm
Uses: URI; Combine::Config;

Used by: Combine::DataBase; Combine::MySQLhdb; Combine::SD_ SQL;

10.3 External modules

These are the (non base) Perl modules Combine depend on. The modules marked with a
"*’ are not critical.

Alvis::Canonical
Alvis::Pipeline *
Compress: :Zlib
Config: :General
DBI

Data: :Dumper *
Digest::MD5
Encode

Getopt: :Long
HTML: :Entities
HTML: :Tidy *
HTML: :TokeParser
HTTP: :Date

HTTP: :Status
Image: :ExifTool
LWP: :UserAgent
Lingua: :Identify
Lingua::Stem
MIME: :Base64
Net: :hostent

URI

URI: :Escape

URI: :URL
XML: : LibXML

XML: :LibXSLT
Z00M *

40

A APPENDIX

A.1 Simple installation test

The following simple script is available in the doc/InstallationTest.pl file. It must be
run as 'root’ and tests that basic functions of the Combine installation works.

Basicly it creates and initializes a new jobname, crawls one specific test page and
exports it as XML. This XML is then compared to a correct XML-record for that page.

A.1.1 InstallationTest.pl

use strict;
if ($> 1=0) {

die("You have to run this test as root");

my $orec=’7;
while (<DATA>) { chop; $orec .= $_; }

$orec =~ s|<checkedDate>.*</checkedDate>]||;
$orec =~ tr/\n\t //4;

my $olen=length($orec);

my $onodes=0;

while ($orec =~ m/</g) { $onodes++; }
print "ORIG Nodes=$onodes; Len=$olen\n";

our $jobname;
require ’./t/defs.pm’;

system("combineINIT --jobname $jobname --topic /etc/combine/Topic_carnivor.txt >& /dev/null")

system("combine --jobname $jobname --harvest http://combine.it.lth.se/CombineTests/Installati
open(REC, "combineExport --jobname $jobname [|");

my $rec=’7;

while (<REC>) { chop; $rec .= $_; }

close(REC);

$rec =" s|<checkedDate>.*</checkedDate>||;

$rec =" tr/\n\t //d;

my $len=length($rec);

my $nodes=0;

while ($rec =~ m/</g) { $nodes++; }
print "NEW Nodes=$%$nodes; Len=$len\n";
my $0K=0;

if ($onodes == $nodes) { print "Number of XML nodes match\n"; }
else { print "Number of XML nodes does NOT match\n"; $0K=1; }

41

if ($olen == $len) {
print "Size of XML match\n";

} else {
$orec =~ s|<originalDocument.*</originalDocument>||s;
$rec =" s|<originalDocument.*</originalDocument>||s;

if (length($orec) == length($rec)) { print "Size of XML match (after removal of ’originalDo
else { print "Size of XML does NOT match\n"; $0K=1; }

if (($0K == 0) && ($orec eq $rec)) { print "All tests OK\n"; }
else { print "There might be some problem with your Combine Installation\n"; }

END
<?xml version="1.0" encoding="UTF-8"7>
<documentCollection version="1.1" xmlns="http://alvis.info/enriched/">
<documentRecord id="FC75599D54537931B502035C8D8E652C" >
<acquisition>
<acquisitionData>
<modifiedDate>2006-12-05 13:25:38</modifiedDate>
<checkedDate>2006-10-03 9:06:42</checkedDate>
<httpServer>Apache/1.3.29 (Debian GNU/Linux) PHP/4.3.3</httpServer>
<urls>
<url>http://combine.it.lth.se/CombineTests/InstallationTest.html</url>
</urls>
</acquisitionData>
<originalDocument mimeType="text/html" compression="gzip" encoding="base64" charSet="UTF-8">
H4sTAAAAAAAAA4WQSU7DMBCG9zzF4bmpBV2QcDKQVKJSKR2CEKObXBSr jm3sSyFvTOyCQGJIgusG/
//u+E1£1U1GO9HrfwUD3u4fh8vI8VWFLOXzYF52VVzg+b9Q3n2wPLEQFRr+NA2UyDFGnMdyaQ1FqS
sgYIAOFrPRS2PymDgs+hRPRIEozsMWNnHN+tbwKD2hpCQxkrpDfqYr0dAjgtDYUVINAGOHIFB3RT
gMPAvns6Ipfi26Au09e5I61Gh78aCT+IR947qDvpA1I2UJvexgb+CIxsM0ad6/8kpkQiXB5XSWUC
BNsj/GGG4LBWrarhSw+00i0IidZjmzGPeh1BWLEICS7zFUjT/AiuBXeRbwHj870/AeRYaTupAQAA
</originalDocument>
<canonicalDocument>
<section>
<section title="Installation test for Combine'">
<section>Installation test for Combine</section>
<section>Contains some Carnivorous plant specific words like <ulink url="rel.html">Dros
<metaData>
<meta name="title">Installation test for Combine</meta>
<meta name="dc:format">text/html</meta>
<meta name="dc:format">text/html; charset=is0-8859-1</meta>
<meta name="dc:subject">Carnivorous plants</meta>
<meta name="dc:subject">Drosera</meta>
<meta name="dc:subject">Nepenthes</meta>
</metaData>
<links>
<outlinks>
<link type="a">

42

<anchorText>Drosera</anchorText>
<location>http://combine.it.lth.se/CombineTests/rel.html</location>
</link>
</outlinks>
</links>
<analysis>
<property name="topLevelDomain">se</property>
<property name="univ'">1</property>
<property name="language">en</property>
<topic absoluteScore="1000" relativeScore="110526">
<class>ALL</class>
</topic>
<topic absoluteScore="375" relativeScore="41447">
<class>CP.Drosera</class>
<terms>drosera</terms>
</topic>
<topic absoluteScore="375" relativeScore="41447">
<class>CP.Nepenthes</class>
<terms>nepenthe</terms>
</topic>
<topic absoluteScore="250" relativeScore="27632">
<class>CP</class>
<terms>carnivorous plant</terms>
<terms>carnivor</terms>
</topic>
</analysis>
</acquisition>
</documentRecord>

</documentCollection>

A.2 Example topic filter plug in

This example gives more details on how to write a topic filter Plug-In.

A.2.1 classifyPlugInTemplate.pm
#Template for writing a classify Plugln for Combine
#See documentation at http://combine.it.lth.se/documentation/

package classifyPlugInTemplate; #Change to your own module name

use Combine::XWI; #Mandatory
use Combine::Config; #Optional if you want to use the Combine configuration system

#API:

a subroutine named ’classify’ taking a XWI-object as in parameter

return values: 0/1

0: record fails to meet the classification criteria, ie ignore this record

43

1: record is OK and should be stored in the database, and links followed by the craw
sub classify {
my ($self,$xwi) = Q_;

#utility routines to extract information from the XWI-object
#URL (can be several):

$xwi->url_rewind;

my $url_str="";

my $t;

while ($t = $xwi->url_get) { $url_str .= $t . ", "; }

#Metadata:
$xwi->meta_rewind;

my ($name,$content);

while (1) {
($name,$content) = $xwi->meta_get;
last unless $name;
next if ($name eq ’Rsummary’);
next if ($name =~ /~autoclass/);
$meta .= $content . " ";

H OH O B O H B

#Title:
$title = $xwi->title;

#Headings:

$xwi->heading_rewind;

my $this;

while (1) {

$this = $xwi->heading get or last;
$head .= $this . " ";

3}

#Text:

$this = $xwi->text;

if ($this) {

$text = $$this;

}
S R S R
#Apply your classification algorithm here
assign $result a value (0/1)
R R s R

#utility routines for saving detailed results (optional) in the database. These data may ap
in exported XML-records

#Topic takes 4 parameters

44

$xwi->topic_add(topic_class_notation, topic_absolute_score, topic_normalized_score, topic.
topic_class_notation, topic_terms, and algorithm_id are strings

max length topic_class_notation: 50, algorithm_id: 25

topic_absolute_score, and topic_normalized_score are integers

topic_normalized_score and topic_terms are optional and may be replaced with 0, ’’ respe

#Analysis takes 2 parameters
$xwi->robot_add(name,value);
both are strings with max length name: 15, value: 20

return true (1) if you want to keep the record
otherwise return false (0)

return $result;

1

A.3 Default configuration files

A.3.1 Global

#Q#Default configuration values Combine system

#Direct connection to Zebra indexing - for SearchEngine-in-a-box (default no connection)

#Q#ZebraHost = NoDefaultValue
ZebraHost =

#Use a proxy server if this is defined (default no proxy)
#Q#httpProxy = NoDefaultValue
httpProxy =

#Enable(1)/disable(0) automatic recycling of new links
AutoRecyclelinks = 1

#User agent handles redirects (1) or treat redirects as new links (0)
UserAgentFollowRedirects = 0

#Number of pages to process before restarting the harvester
HarvesterMaxMissions = 500

#Logging level (0 (least) - 10 (most))
Loglev = 0

#Enable(1)/disable(0) analysis of genre, language
doAnalyse = 1

#How long the summary should be. Use O to disable the summarization code
SummaryLength =0

45

#Store(1)/do not store(0) the raw HTML in the database
saveHTML = 1

#Use (1) /do not use(0) Tidy to clean the HTML before parsing it
useTidy = 1

#Use (1) /do not use(0) OAI record status keeping in SQL database
doOAT = 1

#Extract(1l)/do not extract(0) links from plain text
extractLinksFromText = 1

#Enable(1)/disable(0) topic classification (focused crawling)
#Generated by combineINIT based on --topic parameter
doCheckRecord = 0

#Which topic classification Plugln module algorithm to use

#Combine: :Check_record and Combine::PosCheck_record included by default
#see classifyPlugInTemplate.pm and documentation to write your own
classifyPlugIn = Combine::Check_record

###Parameters for Std topic classification algorithm
###StdTitleWeight = 10 #

###StdMetaWeight = 4 #

###StdHeadingsWeight = 2 #

###StdCutoffRel = 10 #Class score must be above this % to be counted
###StdCutoffNorm = 0.2 #normalised cutoff for summed normalised score
###StdCutoffTot = 90 #non normalised cutoff for summed total score

###Parameters for Pos topic classification algorithm
###PosCutoffRel = 1 #Class score must be above this % to be counted
###PosCutoffNorm = 0.002 #normalised cutoff for summed normalised score

###PosCutoffTot = 1 #non normalised cutoff for summed total score

HarvestRetries =5
SdqRetries =5

#Maximum length of a URL; longer will be silently discarded
maxUrlLength = 250

#Time in seconds to wait for a server to respond
UAtimeout = 30

#If we have seen this page before use Get-If-Modified (1) or not (0)
UserAgentGetIfModifiedSince = 1

WaitIntervalExpirationGuaranteed = 315360000

46

WaitIntervalHarvesterLockNotFound = 2592000
WaitIntervalHarvesterLockNotModified = 2592000
WaitIntervalHarvesterLockRobotRules = 2592000
WaitIntervalHarvesterLockUnavailable = 86400
WaitIntervalRrdLockDefault = 86400
WaitIntervalRrdLockNotFound = 345600
WaitIntervalRrdLockSuccess = 345600

#Time in seconds after succesfull download before allowing a page to be downloaded again (aro
WaitIntervalHarvesterLockSuccess = 1000000

#Time in seconds to wait before making a new reschedule if a reschedule results in an empty r
WaitIntervalSchedulerGetJcf = 20

#Minimum time between accesses to the same host. Must be positive
WaitIntervalHost = 60

#Identifies MySQL database name, user and host
MySQLdatabase = NoDefaultValue

#Base directory for configuration files; initialized by Config.pm
#0#baseConfigDir = /etc/combine

#Directory for job specific configuration files; taken from ’jobname’
#Q#configDir = NoDefaultValue

<binext>
#Extensions of binary files
ps
jprg
jpeg
pdf
tif
tiff
mpg
mpeg
mov
wav
au
hqgx
gz

zZ
tgz
exe
zip
sdd
doc
rtf

47

shar

mat

raw

jiiVA

arff

rar
</binext>

<converters>

#Configure which converters can be used to produce a XWI object
#Format:

1 line per entry

each entry comnsists of 3 ’;’ separated fields

#

#Entries are processed in order and the first match is executed

external converters have to be found via PATH and executable to be considered a match
the external converter command should take a filename as parameter and convert that file

the result should be comming on STDOUT
#
mime-type 5 External converter command ; Internal converter

text/html ; ; GuessHTML

#Check this

www/unknown ; ; GuessHTML

text/plain ; ; GuessText

text/x-tex ; tth -g -wl -r < ; TeXHTML
application/x-tex ; tth -g -wl -r < ; TeXHTML
text/x-tex ; untex -a -e -giso ; TeXText
application/x-tex ; untex -a -e -giso ; TeXText
text/x-tex ; ; TeX

application/x-tex ; ; TeX

application/pdf ; pdftohtml -i -noframes -nomerge -stdout ; HTML
application/pdf ; pstotext ; Text
application/postscript ; pstotext ; Text
application/msword ; antiword -t ; Text
application/vnd.ms-excel ; xlhtml -fw ; HTML
application/vnd.ms-powerpoint ; ppthtml ; HTML
application/rtf ; unrtf --nopict --html ; HTML
image/gif ; ; Image

image/jpeg ; ; Image

image/tiff ; ; Image

</converters>

<url>
<exclude>
#Exclude URLs or hostnames that matches these regular expressions
#Malformed hostnames
HOST: http:\/\/\.

48

HOST: \@
</exclude>
</url>

A.3.2 Job specific

#Please change
Operator-Email = "YourEmailAdress@YourDomain"

#Password not used yet. (Please change)

Password = "XxXxyYzZ"

<converters>

#Configure which converters can be used to produce a XWI object
#Format:

1 line per entry

each entry consists of 3 ’;’ separated fields

#

#Entries are processed in order and the first match is executed

external converters have to be found via PATH and executable to be considered a match

the external converter command should take a filename as parameter and convert that file
the result should be comming on STDOUT

#

mime-type ; External converter command ; Internal converter

application/pdf ; MYpdftohtml -i -noframes -nomerge -stdout ; HTML
</converters>

<url>

#List of servernames that are aliases are in the file ./config_serveralias

(automatically updated by other programs)

#use one server per line

#example

#www.100topwetland.com www.10Owetland.com

means that www.1OOwetland.com is replaced by www.100topwetland.com during URL normalizatio:
<serveralias>

<<include config_serveralias>>

</serveralias>

#use either URL or HOST: (obs ’:’) to match regular expressions to
either the full URL or the HOST part of a URL.

<allow>

#Allow crawl of URLs or hostnames that matches these regular expressions
HOST: .*$
</allow>

<exclude>
#Exclude URLs or hostnames that matches these regular expressions

49

default: CGI and maps
URL cgi-bin|htbinlcgil\?|\.map$|_vti_

default: binary files

URL \.exe$|\.zip$|\.tar$|\.tgz$|\.gz$|\.hgx$|\.sdd$|\ .mat$|\.raw}
URL \.EXE$|\.ZIP$|\.TAR$|\.TGZ$|\.GZ$ |\ .HQX$|\.SDD$|\ .MAT$|\.RAWS

default: Unparsable documents
URL \.shar$|\.rmx$|\.rmd$|\.mdb$
URL \.SHAR$|\.RMX$|\.RMD$|\.MDB$

default: images
URL \.gif$I\.jpg$!|\.jpeg$|\.xpm$|\.tif$|\.tif£$|\ .mpg$|\ .mpeg$|\.mov$|\.wav$|\.au$|\.pcx$|\.x
URL \.GIF$|\.JPG$I\.JPEG$|\.XPM$|\.TIF$|\.TIFF$|\.MPG$ |\ .MPEG$|\.MOVS|\.WAVS|\.AUS|\.PCX$I\.X

default: other binary formats
URL \.pdb$|\.class$|\.ica$|\.ram$|.wmz$|.arff$|.rar$|\.vo$|\.fig$
URL \.PDB$|\.CLASS$|\.ICA$|\.RAM$|.WMZ$|.ARFF$| .RAR$|\.VO$|\.FIG$

#more excludes in the file config_exclude (automatically updated by other programs)
<<include config_exclude>>

</exclude>

<sessionids>

#patterns to recognize and remove sessionids in URLs

sessionid

lsessionid

jsessionid

SID

PHPSESSID

SessionID

BV_SessionID

</sessionids>

#url is just a conatiner for all URL related configuration patterns
</url>

A.4 SQL database
A.4.1 Create database

DROP DATABASE IF EXISTS $database;
CREATE DATABASE $database DEFAULT CHARACTER SET utf8;
USE $database;

A.4.2 Creating MySQL tables

All tables use UTF-8

Summary tables ’~’=primary key, ’*’=key:

50

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

hdb: recordid~, type, dates, server, title, ip,

links: recordid*, mynetlocid*, urlid*, netlocid*, linktype, anchor
meta: recordid*, name, value

html: recordid~, html

analys: recordid*, name, value

topic: recordid*, notation*, absscore, relscore, terms, algorithm

(TABLE netlocalias: netlocid*, netlocstr™)
(TABLE urlalias: urlid*, urlstr~)

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

A.4.3

topichierarchy: node~, father*, notation*, caption, level
netlocs: netlocid”™, netlocstr”™, retries

urls: netlocid*, urlid~, urlstr”, path

urldb: netlocid*, urlid~, urllock, harvest*, retries, netloclock
newlinks urlid~, netlocid

recordurl: recordid#*, urlid~, lastchecked, mdb*, fingerprint*~
admin: status, queid, schedulealgorithm

log: pid, id, date, message

que: queid”, urlid, netlocid

robotrules: netlocid*, rule, expire

oai: recordid, md5~, date*, status

exports: host, port, last

Data tables

CREATE TABLE hdb (
recordid int(11) NOT NULL default °0°?,
type varchar(50) default NULL,
title text,
mdate timestamp NOT NULL,
expiredate datetime default NULL,
length int(11) default NULL,
server varchar(50) default NULL,
etag varchar(25) default NULL,
nheadings int(11) default NULL,
nlinks int(11) default NULL,
headings mediumtext,
ip mediumblob,
PRIMARY KEY (recordid)

) ENGINE=MyISAM AVG_ROW_LENGTH = 20000 MAX_ROWS

CREATE TABLE html (
recordid int(11) NOT NULL default ’0?,
html mediumblob,
PRIMARY KEY (recordid)

) ENGINE=MyISAM AVG_ROW_LENGTH = 20000 MAX_ROWS

CREATE TABLE links (
recordid int(11) NOT NULL default ’0?,

51

(netlocid for urlid

10000000 DEFAULT CHARACTER SET=utf8;

10000000 DEFAULT CHARACTER SET=utf8;

mynetlocid int(11) default NULL,
urlid int(11) default NULL,
netlocid int(11) default NULL,
anchor text,
linktype varchar(50) default NULL,
KEY recordid (recordid),
KEY urlid (urlid),
KEY mynetlocid (mynetlocid),
KEY netlocid (netlocid)
) ENGINE=MyISAM MAX_ROWS = 1000000000 DEFAULT CHARACTER SET=utf8;

CREATE TABLE meta (
recordid int(11) NOT NULL default ’0?,
name varchar(50) default NULL,
value text,
KEY recordid (recordid)
) ENGINE=MyISAM MAX_ROWS = 1000000000 DEFAULT CHARACTER SET=utf8;

CREATE TABLE analys (
recordid int(11) NOT NULL default ’0°?,
name varchar(15) NOT NULL,
value varchar(20),
KEY recordid (recordid)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8§;

CREATE TABLE topic (
recordid int(11) NOT NULL default ’0?,
notation varchar(50) default NULL,
abscore int(11) default NULL,
relscore int(11) default NULL,
terms text default NULL,
algorithm varchar(25),
KEY notation (notation),
KEY recordid (recordid)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8§;

A.4.4 Administrative tables

CREATE TABLE netlocalias (
netlocid int(11),
netlocstr varchar(150) NOT NULL,
KEY netlocid (netlocid),
PRIMARY KEY netlocstr (metlocstr)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8§;

CREATE TABLE urlalias (
urlid int(11),
urlstr tinytext,
KEY urlid (urlid),

52

PRIMARY KEY urlstr (urlstr(255))
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf$§;

topichierarchy have to initialized manually

CREATE TABLE topichierarchy (
node int(11) NOT NULL DEFAULT °0°?,
father int(11) DEFAULT NULL,
notation varchar(50) NOT NULL DEFAULT ’?,
caption varchar(255) DEFAULT NULL,
level int(11) DEFAULT NULL,
PRIMARY KEY node (node),
KEY father (father),
KEY notation (notation)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE netlocs (
netlocid int(11) NOT NULL auto_increment,
netlocstr varchar(150) NOT NULL,
retries int(11) NOT NULL DEFAULT O,
PRIMARY KEY (netlocstr),
UNIQUE INDEX netlockid (netlocid)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8§;

CREATE TABLE urls (
netlocid int(11) NOT NULL DEFAULT °0°?,
urlid int(11) NOT NULL auto_increment,
urlstr tinytext,
path tinytext,
PRIMARY KEY urlstr (urlstr(255)),
INDEX netlocid (metlocid),
UNIQUE INDEX urlid (urlid)
) ENGINE=MyISAM MAX_ROWS = 1000000000 DEFAULT CHARACTER SET=utf8;

CREATE TABLE urldb (
netlocid int(11) NOT NULL default ’0?’,
netloclock int(11) NOT NULL default °0°,
urlid int(11) NOT NULL default °0°,
urllock int(11) NOT NULL default °0°’,
harvest tinyint(1) NOT NULL default ’0’,
retries int(11) NOT NULL default ’0’,
PRIMARY KEY (urlid),
KEY netlocid (netlocid),
KEY harvest (harvest)

) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE newlinks (
urlid int(11) NOT NULL,

53

netlocid int(11) NOT NULL,
PRIMARY KEY (urlid)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE recordurl (
recordid int(11) NOT NULL auto_increment,
urlid int(11) NOT NULL default °0’,
lastchecked timestamp NOT NULL,
md5 char(32),
fingerprint char(50),
KEY md5 (md5),
KEY fingerprint (fingerprint),
PRIMARY KEY (urlid),
KEY recordid (recordid)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE admin (
status enum(’closed’,’open’,’paused’, ’stopped’) default NULL,
schedulealgorithm enum(’default’,’bigdefault’,’advanced’) default ’default’,
queid int(11) NOT NULL default ’0?

) ENGINE=MEMORY DEFAULT CHARACTER SET=utf8;

Initialise admin to ’open’ status
INSERT INTO admin VALUES (’open’,’default’,0)

CREATE TABLE log (
pid int(11) NOT NULL default °0’,
id varchar(50) default NULL,
date timestamp NOT NULL,
message varchar(255) default NULL
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE que (
netlocid int(11) NOT NULL default ’0?,
urlid int(11) NOT NULL default ’0°,
queid int(11) NOT NULL auto_increment,
PRIMARY KEY (queid)

) ENGINE=MEMORY DEFAULT CHARACTER SET=utf8;

CREATE TABLE robotrules (
netlocid int(11) NOT NULL default ’0°’,
expire int(11) NOT NULL default ’0’,
rule varchar(255) default °?,
KEY netlocid (netlocid)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE oai (
recordid int(11) NOT NULL default ’0?,

54

md5 char(32),
date timestamp,
status enum(’created’, ’updated’, ’deleted’),
PRIMARY KEY (md5),
KEY date (date)
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

CREATE TABLE exports (
host varchar(30),
port int,
last timestamp DEFAULT ’1999-12-31°
) ENGINE=MyISAM DEFAULT CHARACTER SET=utf8;

A.4.5 Create user dbuser with required priviligies

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE TEMPORARY TABLES,
ALTER,LOCK TABLES ON $database.* TO $dbuser;

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE TEMPORARY TABLES,
ALTER,LOCK TABLES ON $database.* TO $dbuser\@localhost;

A.5 Manual pages

A.5.1 combineCtrl

NAME combineCtrl - controls a Combine crawling job
SYNOPSIS combineCtrl <action> —jobname <name>

where action can be one of start, kill, load, recyclelinks, reharvest, stat, howmany,
records, hosts, initMemoryTables, open, stop, pause, continue

OPTIONS AND ARGUMENTS jobname is used to find the appropriate configura-
tion (mandatory)
Actions starting/killing crawlers

start

takes an optional switch -harvesters n where n is the number of crawler processes
to start

kill
kills all active crawlers (and their associated combineRun monitors) for jobnam

Actions loading or recycling URLs for crawling

load
Read a list of URLs from STDIN (one per line) and schedules them for crawling

55

recyclelinks

Schedule all newly found (since last invocation of recyclelinks) links in crawled pages
for crawling

reharvest

Schedules all pages in the database for crawling again (in order to check if they have
changed)

Actions for controlling scheduling of URLs
open
opens database for URL scheduling (maybe after a stop)

stop
stops URL scheduling

pause

pauses URL scheduling

continue

continues URL scheduling after a pause

Misc actions

stat

prints out rudimentary status of the ready queue (ie eligible now) of URLs to be
crawled

howmany

prints out rudimentary status of all URLs to be crawled

records

prints out the number of ercords in the SQL database

hosts

prints out rudimentary status of all hosts that have URLs to be crawled

initMemoryTables

initializes the administrative MySQL tables that are kept in memory

DESCRIPTION Implements various control functionality to administer a crawling job,
like starting and stoping crawlers, injecting URLs into the crawl queue, scheduling newly
found links for crawling, controlling scheduling, etc.

This is the preferred way of controling a crawl job.

56

EXAMPLES

echo ’http://www.yourdomain.com/’> | combineCtrl load -jobname aatest

Seed the crawling job aatest with a URL

combineCtrl start -jobname aatest -harvesters 3

Start 3 crawling processes for job aatest

combineCtrl recyclelinks -jobname aatest

Schedule all new links crawling

combineCtrl stat -jobname aatest

See how many URLs that are eligible for crawling right now.

SEE ALSO combine
Combine configuration documentation in /usr/share/doc/combine/.

AUTHOR Anders Ardd, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardo

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the file LICENCE included in the distribution at http://combine.it.lth.se/

A.5.2 combine

NAME combine - main crawling machine in the Combine system
SYNOPSIS combine —jobname <name> —logname <id>

OPTIONS AND ARGUMENTS jobname is used to find the appropriate configura-
tion (mandatory)
logname is used as identifier in the log (in MySQL table log)

DESCRIPTION Does crawling, parsing, optional topic-check and stores in MySQL
database Normally started with the combineCtrl command. Briefly it get’s an URL from
the MySQL database, which acts as a common coordinator for a Combine job. The Web-
page is fetched, provided it passes the robot exclusion protocoll. The HTML ic cleaned
using Tidy and parsed into metadata, headings, text, links and link achors. Then it is
stored (optionaly provided a topic-check is passed to keep the crawler focused) in the
MySQL database in a structured form.
A simple workflow for a trivial crawl job might look like:

Initialize database and configuration
combineINIT --jobname aatest

Enter some seed URLs from a file with a list of URLs
combineCtrl load --jobname aatest < seedURLs.txt

o7

Start 2 crawl processes
combineCtrl start --jobname aatest --harvesters 2

For some time occasionally schedule new links for crawling
combineCtrl recyclelinks --jobname aatest

or look at the size of the ready queue
combineCtrl stat --jobname aatest

When satisfied kill the crawlers
combineCtrl kill --jobname aatest

Export data records in a highly structured XML format
combineExport --jobname aatest

For more complex jobs you have to edit the job configuration file.

SEE ALSO combineINIT, combineCtrl
Combine configuration documentation in /usr/share/doc/combine/.

AUTHOR Anders Ardo, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardo
This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5

you may have available.
See the file LICENCE included in the distribution at http://combine.it.lth.se/

A.5.3 combineExport
NAME combineExport - export records in XML from Combine database

SYNOPSIS combineExport —jobname <name> [-profile alvis|dc|combine —charset utf8|isolatin
—number <n> -recordid <n>-md5 <MD5> —pipehost <server> —pipeport <n> —incremental

|

OPTIONS AND ARGUMENTS jobname is used to find the appropriate configura-
tion (mandatory)

—profile
Three profiles: alvis, dc, and combine . alvis and combine are similar XML formats.

"alvis’ profile format is defined by the Alvis enriched document format DTD. It uses
charset UTF-8 per default.

combine’ is more compact with less redundancy.
'dc’ is XML encoded Dublin Core data.

—charset

Selects a specific characterset from UTF-8, iso-latin-1 Overrides —profile settings.

58

—pipehost, —pipeport

Specifies the server-name and port to connect to and export data using the Alvis
Pipeline. Exports incrementally, ie all changes since last call to combineExport with
the same pipehost and pipeport.

—number

the max number of records to be exported
—-recordid

Export just the one record with this recordid
—md5

Export just the one record with this MD5 checksum
—incremental

Exports incrementally, ie all changes since last call to combineExport using —incremental

—xsltscript

Generates records in Combine native format and converts them using this XSLT
script before output. See example scripts in /etc/combine/*.xsl

DESCRIPTION

EXAMPLES

Export all records in Alvis XML-format to the file recs.xml
combineExport --jobname atest > recs.xml

Export 10 records to STDOUT
combineExport --jobname atest --number 10

Export all records in UTF-8 using Combine native format
combineExport --jobname atest --profile combine --charset utf8 > Zebrarecs.xml

Incremental export of all changes from last call using localhost at port 6234 using the
default profile (Alvis)
combineExport --jobname atest --pipehost localhost --pipeport 6234

SEE ALSO Combine configuration documentation in /usr/share/doc/combine/.
Alvis XML schema (—profile alvis) at http://project.alvis.info/alvis_ docs/enriched-document.xsd

AUTHOR Anders Ardd, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 - 2006 Anders Ardo

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the file LICENCE included in the distribution at
L<http://combine.it.lth.se/>

59

A.5.4 combineRun

NAME combineRun - starts, monitors and restarts a combine harvesting process
SYNOPSIS combineRun <pidfile> <combine command to run>

DESCRIPTION Starts a program and monitors it in order to make sure there is alsways
a copy running. If the program dies it will be restarted with the same parameters. Used
by combineCtrl when starting combine crawling.

SEE ALSO combineCtrl
AUTHOR Anders Ardo, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardo

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the file LICENCE included in the distribution at http://combine.it.Ith.se/

A.5.5 combineUtil

NAME combineUtil - various operations on the Combine database

SYNOPSIS combineUtil <action> —jobname <name>
where action can be one of stats, termstat, classtat, sanity, all, serveralias, resetOAI,
restoreSanity, deleteNetLoc, deletePath, deleteMD5, deleteRecordid, addAlias

OPTIONS AND ARGUMENTS jobname is used to find the appropriate configura-
tion (mandatory)

Actions listing statistics

stats
Global statistics about the database

termstat

generates statistics about the terms from topic ontology matched in documents (can
be long output)

classtat

generates statistics about the topic classes assigned to documents

60

Actions for sanity controlls
sanity
Performs various sanity checks on the database

restoreSanity

Deletes records which sanity checks finds insane

resetOAI

Removes all history (ie ’deleted’ records) from the OAI table. This is done by re-
moving the OAI table and recreating it from the existing database.

Action all Does the statistics generation actions: stats, sanity, classtat, termstat

Actions for deleting records

deleteNetLoc

Deletes all records matching the ’’-separated list of server net-locations (server-names
optionally with port) in the switch —netlocstr. Net-locations can include SQL wild
cards ('%’).

deletePath

Deletes all records matching the ’,’-separated list of URI paths (excluding net-locations)
in the switch —pathsubstrs. Paths can include SQL wild cards ('%’).

deleteMD5
Delete the record which has the MD5 in switch —mdb

deleteRecordid

Delete the record which has the recordid in switch —recordid

Actions for handling server aliases

serverAlias

Detect server aliases in the current database and do a ’addAlias’ on each detected
alias.

addAlias

Manually add a serveralias to the system. Requires switches —aliases and —preferred

DESCRIPTION Does various statistics generation as well as performing sanity checks
on the database

EXAMPLES

combineUtil termstat -jobname aatest

Generate matched term statistics

61

SEE ALSO combine
Combine configuration documentation in /usr/share/doc/combine/.

AUTHOR Anders Ardd, <anders.ardo@it.Ith.se>

COPYRIGHT AND LICENSE Copyright (C) 2005 Anders Ardé

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the file LICENCE included in the distribution at http://combine.it.lth.se/
A.5.6 Combine::FromHTML
NAME Combine::FromHTML.pm - HTML parser in combine package
AUTHOR Yong Cao <tsao@munin.ub2.lu.se> v0.06 1997-03-19 Anders Ardg 1998-07-
18 added <AREA ... HREF=link ...> fixed <A ... HREF=link ...> regexp to be more
general Anders Ard6 2002-09-20 added ’a’ as a tag not to be replaced with space added
removal of Cntrl-chars and some punctuation marks from IP added <style>...</style> as
something to be removed before processing beefed up compression of sequences of blanks to
include \240 (non-breakable space) changed 'remove head’ before text extraction to handle
multiline matching (which can be introduced by decoding html entities) added compress
blanks and remove CRs to metadata-content Anders Ard6 2004-04 Changed extraction
process dramatically

A.5.7 Combine::FromTeX

NAME Combine::FromTeX.pm - TeX parser in combine package

AUTHOR

Anders Ardg 2000-06-11

A.5.8 Combine::HTMLExtractor
NAME HTMLExtractor

DESCRIPTION Adopted from HTML::LinkExtractor - Extract links from an HTML
document by D.H (PodMaster)

AUTHOR Anders Ardo D.H (PodMaster)

LICENSE Copyright (c) 2003 by D.H. (PodMaster). All rights reserved.
This module is free software; you can redistribute it and/or modify it under the same
terms as Perl itself. The LICENSE file contains the full text of the license.

A.5.9 Combine::LoadTermList
NAME LoadTermList

62

DESCRIPTION This a module in the DESIRE automatic classification system. Copy-
right 1999.

LoadTermList - A class for loading and storing a stoplist with single words a termlist
with classifications and weights

Subroutines:
LoadStopWordList (StopWordListFileName)
loads a list of stopwords, one per line, from
the file StopWordListFileName.

EraseStopWordList
clears the stopword list

Subroutines:
LoadTermList (TermListFileName) - loads TermClass from file
LoadTermListStemmed (TermListFileName) - same plus stems terms

Input: A formatted term-list including weights and classifications

Format: <weight>: <term_reg_exp>=[<classification>,]+

weight can be a positive or negative number

term_reg_exp can be words, phrases, boolean expressions (with Qand
as operator) on term_reg_exp or Perl regular expressions

AUTHOR Anders Ardo <Anders.Ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardo
This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5

you may have available.
See the file LICENCE included in the distribution at http://combine.it.lth.se/

A.5.10 Combine::Matcher
NAME Matcher

DESCRIPTION This a module in the DESIRE automatic classification system. Copy-
right 1999. Modified in the ALVIS project. Copyright 2004

Exported routines: 1. Fetching text: These routines all extract texts from a document
(either a Combine XWI datastructure or a WWW-page identified by a URL. They all
return: $meta, $head, $text, $url, $title, $size $meta: Metadata from document $head:
Important text from document $text: Plain text from document $url: URL of the docu-
ment $title: HTML title of the document $size: The size of the document

Common input parameters:
$DoStem: 1=do stemming; O=no stemming
$stoplist: object pointer to a LoadTermList object with a stoplist loaded
$simple: 1=do simple loading; O=advanced loading (might induce errors)

63

getTextXWI
parameters: $xwi, $DoStem, $stoplist, $simple
$xwi is a Combine XWI datastructure

getTextURL
parameters: $url, $DoStem, $stoplist, $simple
$url is the URL for the page to extract text from

2. Term matcher accepts a text as a (reference) parameter, matches each term in Term
against text Matches are recorded in an associative array with class as key and summed
weight as value. Match parameters: $text, $termlist $text: text to match against the
termlist $termlist: object pointer to a LoadTermList object with a termlist loaded output:
Y%score: an associative array with classifications as keys and scores as values

AUTHOR Anders Ardo <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardo

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the file LICENCE included in the distribution at http://combine.it.Ith.se/

A.5.11 Combine::PosMatcher
NAME PosMatcher

DESCRIPTION This a module in the DESIRE automatic classification system. Copy-
right 1999.

Exported routines: 1. Fetching text: These routines all extract texts from a document
(either a Combine record, a Combine XWI datastructure or a WWW-page identified by
a URL. They all return: $meta, $head, $text, $url, $title, $size $meta: Metadata from
document $head: Important text from document $text: Plain text from document $url:
URL of the document $title: HTML title of the document $size: The size of the document

Common input parameters:
$DoStem: 1=do stemming; O=no stemming

$stoplist: object pointer to a LoadTermList object with a stoplist loaded

$simple: 1=do simple loading; O=advanced loading (might induce errors)

getTextMD5
parameters: $md5, $hdb_top, $DoStem, $stoplist, $simple
$md5 is a key into a Combine hdb-directory
$hdb_top is the path to the top of the Combine hdb-directory

getTextXWI
parameters: $xwi, $DoStem, $stoplist, $simple
$xwi is a Combine XWI datastructure

64

getTextURL
parameters: $url, $DoStem, $stoplist, $simple
$url is the URL for the page to extract text from

2. Term matcher accepts a text as a (reference) parameter, matches each term in Term
against text Matches are recorded in an associative array with class as key and summed
weight as value. Match parameters: $text, $termlist $text: text to match against the
termlist $termlist: object pointer to a LoadTermList object with a termlist loaded output:
Y%score: an associative array with classifications as keys and scores as values

3. Heuristics: sum scores down the classification tree to the leafs cleanEiTree parame-
ters: %res - an associative array from Match output: %res - same array

AUTHOR Anders Ardo, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardo
This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5

you may have available.
See the file LICENCE included in the distribution at http://combine.it.lth.se/

A.5.12 Combine::RobotRules
NAME RobotRules.pm

AUTHOR Anders Ardo version 1.0 2004-02-19

A.5.13 Combine::SD_SQL
NAME SD SQL

DESCRIPTION Reimplementation of sd.pl SD.pm and SDQ.pm using MySQL con-
tains both recyc and guard

Basic idea is to have a table (urldb) that contains most URLs ever inserted into the
system together with a lock (the guard function) and a boolean harvest-flag. Also in this
table is the host part together with its lock. URLs are selected from this table based on
urllock, netloclock and harvest and inserted into a queue (table que). URLs from this
queue are then given out to harvesters. The queue is implemented as: # The admin
table can be used to generate sequence numbers like this: #mysqgl> update admin set
queid=LAST INSERT ID(queid+1); # and used to extract the next URL from the queue
#mysql> select host,url from que where queid=LAST INSERT ID(); # When the queue
is empty it is filled from table urldb. Several different algorithms can be used to fill it
(round-robin, most urls, longest time since harvest, ...). Since the harvest-flag and guard-
lock are not updated until the actual harvest is done it is OK to delete the queue and
regenerate it anytime.

HHHHHHHFHHHHAFHHHAHAHH #7977 #Questions, ideas, TODOs, etc #Split
table urldb into 2 tables - one for urls and one for hosts??? #Less efficient when filling que;
more efficient when updating netloclock #Datastruktur TABLE hosts: create table hosts(
host varchar(50) not null default ”, netloclock int not null, retries int not null default 0,
ant int not null default 0, primary key (host), key (ant), key (netloclock));

65

K4 4 Handle to many retries?

algorithm takes an url from the host that was accessed longest ago
($hostid,$url)=SELECT host,url,id FROM hosts,urls WHERE
hosts.hostlock < UNIX_TIMESTAMP()
hosts.host=urls.host AND
urls.urllock < UNIX_TIMESTAMP() AND
urls.harvest=1 ORDER BY hostlock LIMIT 1;

algorithm takes an url from the host with most URLs
($hostid,$url)=SELECT host,url,id FROM hosts,urls WHERE
hosts.hostlock < UNIX_TIMESTAMP()
hosts.host=urls.host AND
urls.urllock < UNIX_TIMESTAMP() AND
urls.harvest=1 ORDER BY host.ant DESC LIMIT 1;

algorithm takes an url from any available host
($hostid,$url)=SELECT host,url,id FROM hosts,urls WHERE
hosts.hostlock < UNIX_TIMESTAMP()
hosts.host=urls.host AND
urls.urllock < UNIX_TIMESTAMP() AND
urls.harvest=1 LIMIT 1;

AUTHOR Anders Ardo <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardo
This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5

you may have available.
See the file LICENCE included in the distribution at http://combine.it.lth.se/

A.5.14 Combine::XWI

NAME XWIpm - class for interfacing to various web-index format translators

DESCRIPTION

2002-09-30 AAO
added robot section in analogue with meta

AUTHOR Yong Cao <tsao@munin.ub2.lu.se> v0.05 1997-03-13
Anders Ardo, <anders.ardo@it.lth.se>

COPYRIGHT AND LICENSE Copyright (C) 2005,2006 Anders Ardo

This library is free software; you can redistribute it and/or modify it under the same
terms as Perl itself, either Perl version 5.8.4 or, at your option, any later version of Perl 5
you may have available.

See the file LICENCE included in the distribution at http://combine.it.Ith.se/

66

A.5.15 Combine::selurl
NAME selurl - Normalise and validate URIs for harvesting

INTRODUCTION Selurl selects and normalises URIs on basis of both general prac-
tice (hostname lowercasing, portnumber substsitution etc.) and Combine-specific handling
(aplpying config allow, config exclude, config serveralias and other relevant config set-
tings).

The Config settings catered for currently are:

maxUrlLength - the maximum length of an unnormalised URL allow - Perl regular to
identify allowed URLs exclude - Perl regular expressions to exclude URLs from harvesting
serveralias - Aliases of server names sessionids - List sessionid markers to be removed

A selurl object can hold a single URL and has methods to obtain its subparts as defined
in URILpm, plus some methods to normalise and validate it in Combine context.

BUGS Currently, the only schemes supported are http, https and ftp. Others may
or may not work correctly. For one thing, we assume the scheme has an internet host-
name/port.

clone() will only return a copy of the real URI object, not a new selurl.

URI URl-escapes the strings fed into it by new() once. Existing percent signs in the
input are left untouched, which implicates that:

(a) there is no risk of double-encoding; and

(b) if the original contained an inadvertent sequence that could be interpreted as an es-
cape sequence, uri_unescape will not render the original input (e.g. url _with %66 in it
goes whoop) If you know that the original has not yet been escaped and wish to safeguard
potential percent signs, you’ll have to escape them (and only them) once before you offer
it to new().

A problem with URI is, that its object is not a hash we can piggyback our data on, so
I had to resort to AUTOLOAD to emulate inheritance. I find this ugly, but well, this *is*
Perl, so what’d you expect?

67

