GNU OCTAL
0X_API Developer’s Guide

David T. O’Toole (dto@Qgnu.org)

April 10, 2001

Contents

0.1 Introduction.

0.1.1 Obtaining GNU Octal
0.2 Copyright and License Information
0.3 Recent APIChanges

1 Using 0X_API
1.1 Terminology
1.2 Including the machine interface
1.3 Describing your parameters and controls
1.4 Creating a machine type and telling the host about yourself . . .
1.5 Maintaining state (raw Conly)
1.6 Setting up your callbacks
1.6.1 ox.nit: one-time startup. L.
1.6.2 ox_create: manufacturing new machines
1.6.3 ox_destroy: destroying machines
1.6.4 ox_work: processing and generating
1.6.5 ox_event: when parameter values change
1.6.6 ox_desc: giving text feedback
1.7 Writing a Generator
1.7.1 ox_channel: preparing voices for use in polyphony
1.7.2 Standard parameter positions
1.8 0X_API Package: Access tothe Core
1.8.1 Musical Utility L.
1.8.2 Environment L.
1.8.3 Memory allocation
1.9 Being flattened o oo
1.10 Compiling with GCC.
1.11 Distributing Machines in a Standard Way
1.12 Wavetable Extension and Wavemaps
1.13 Interface Layout Extension

2 Using ox_wrappers
2.1 Overview e
2.2 class OXMachine
2.3 Setting thingsup L

CONTENTS 2

3 Frequently Asked Questions and Troubleshooting 15
4 0X_API Reference 16
41 Typedefs. e 16
41.1 samp (octalh) o 16

41.2 param (octalh) L Lo 16

4.2 Structures L 16
4.2.1 struct machinetype 17

4.2.2 struct machine oL oL 17

4.2.3 struct param-specol oo 17

4.3 Catalog of parameter types and widgets 17
4.4 Required Prototypes for C Callbacks 17
4.5 Package Functions L. 17

0.1 Introduction

This manual shows how to create audio plugins for GNU Octal in C or C++.

OCTAL is a GNU project (started in 1999) to create a free music system
based on unit generator synthesis, sampling, and audio-plugin technology. It
consists of:

1. A music-systems plugin API, used to define sound processing objects called
”machines” that users may download from the web to use as instruments
or effects in their compositions.

2. A core component to load these machines, communicate with them, route
and mix audio signals between them, and produce output on an audio
device.

3. A graphical user interface (using the Gimp Toolkit) to interactively create,
compose, and perform music using the core as a backend.

4. An open file format for saving these compositions and the associated re-
sources (sound samples, plugin machines) that comprise them.

The DCTAL project homepage (URL below) includes a more detailed overview,
as well as current release code and documentation. There is also a mailing list
called octal-dev.

Visit the OCTAL home page at http://www.gnu.org/software/octal

0.1.1 Obtaining GNU Octal

Tarball releases are periodically placed in ftp://ftp.gnu.org/gnu/octal. The
latest development versions are available via CVS. The following commands will
do an anonymous checkout:

CONTENTS 3

cvs -d:pserver:anoncvs@subversions.gnu.org:/cvsroot/octal login

cvs -z3 -d:pserver:anoncvs@subversions.gnu.org:/cvsroot/octal co octal

0.2 Copyright and License Information

Copyright © 2000, 2001 by David O’Toole (dto@gnu.org). Permission is
granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections.
The included file DOC_COPYING contains the text of the license. If for some
reason this file is missing, a copy of the license is available online at
http://www.gnu.org/copyleft/fdl.html

0.3 Recent API Changes

Sample Rate Requestor. The new package function core->get _sr () should
be used instead of any macros.

C++ Wrapper Tweak. The pkg member has been renamed “core”, so that
both C and C++ machines can access package functions as core->name ().
C machines need no changes, but will have to declare a local handle if they
wish to use the above convention, which is simpler than m->pkg->name ().
See 1.8.)

Chapter 1

Using 0X_API

This chapter presents a quick run-through of how to set up communication
between OCTAL and your plugin using the C programming language.

1.1 Terminology

This section defines most of the important terms used in the rest of the docu-
ment, focusing on those associated with new unit-generator based music systems
like OCTAL.

Machine. A machine is an object which processes or generates audio signals.
These are the basic building blocks of a signal network, in which machines
that generate signals route their audio through other machines, and so
on. Generators are machines that primarily create sound and send it for
further processing; effects typically process an input stream.

Parameter. Parameters are data items that can be recieved by machines to
control their generation/processing of audio. Things like “note”, ”cut-
off frequency”, and ”waveform” might be parameters in your machine.
Anything about your machine that can be controlled can be a parameter.

Event. In general, an event is a change in the value of a parameter on a par-
ticular channel.

Channel. An 0X_API channel is the main method of implementing polyphonic
generator machines. A channel is a distinct voice in your machine. A
synth may wish to play multiple notes at the same time, while still being
able to control generation parameters for each note individually. Thus
each note goes into its own channel.

Pattern. A pattern is a sequence of events for a machine. Patterns may in-
clude melodies, volume changes, or any other kind of event the machine
supports.

CHAPTER 1. USING 0X_API)

Control widget. A control widget is anything that lets you interactively change
the value of a parameter on a given machine. For instance, a graphical
slider is a control widget.

Block. The continous audio output of OCTAL is generated in small blocks of a
few hundred samples at a time. The block size changes dynamically.

1.2 Including the machine interface
#include "machine.h"

This file defines the structures and constants you’ll need to interface with
Octal.

1.3 Describing your parameters and controls

Indexing. Each of your machine’s parameters is identified by a numeric index,
starting at zero. First, let’s set up some symbolic constants to make these indices
easier to remember.

This can be done very easily with C’s enumerated type facility:

enum {ix_first_param, ix_second_param, ... }

The ix_ stands for “index.” It’s just a convention that makes the meaning
of the name more clear. You should name the constants in accordance with the
parameter’s use; for instance, the example delay machine uses ix_length and
ix_feedback.

Parameter info. Octal needs some information about each of your machine’s
parameters. In particular, we need a name; what type of parameter it is; what
kind of widget to use when opening a control box; a short description of the pa-
rameter that can be displayed to the user; and information about the acceptable
ranges and default values for the parameter.

We can pack this information into a string with the following format:

name |description|type|widget |minvalue|maxvalue|defaultvalue|

Create a null-terminated array of strings, one for each parameter:

char *my_params[] = {
"|note|Which note to play|note|slider|0|128]0",
"|vol|Volume 0.0-1.0|generic|slider|0[1.0]0.6",
NULL

CHAPTER 1. USING 0X_API 6

Be sure to put the strings in the same order as the enumeration constants
you set up earlier. Also remember that the array must be allocated statically,
since OCTAL will not read it until you return.

By describing your controls abstractly instead of in terms of graphics calls
and windows, your machine can remain independent of GUI specifics.

For a catalog of parameter types and widgets you can choose from, consult
4.3 (p. 17).

1.4 Creating a machine type and telling the host
about yourself

OCTAL’s machine_type structure holds information about the kind of machine
you’re making. As a machine developer, you’ll need to fill in some of its fields.
You’ll need a long name (including the author’s name), a short name (like
“delay” or “sampler”), the maximum number of channels (if any), and the
address of the string array that describes your parameters.

You’ll also need to tell Octal about your input and output channels. One
and two are mono and stereo, respectively. Zero input channels would mean
that your machine is a “pure generator” which does not accept any audio input.

Section 1.6.1 shows an example.

1.5 Maintaining state (raw C only)

Your machine library will be called upon to do the processing for many machine
instances. After all, the musician may want to create more than one delay
machine, or more than one sampler machine, each doing its own thing and
playing its own sequences.

OCTAL uses the machine structure to represent each machine instance, re-
gardless of type. (The system keeps track of which type each machine instance
has.) Since each machine type will need to store different kinds of data, we’ll
need to define a new structure type that is unique to the new machine type.

OCTAL calls these state objects. Each machine can have a state object
associated with it. Struct machine has a void* member called state which you
can use to store the address of a state object.

Some of this bookkeeping can be hidden using the included ox_wrappers.
This is a C++ wrapper for the 0X_API. Class and member function facilities
hide the management of state objects completely. See this document’s chapter
Ol OX_Wrappers.

1.6 Setting up your callbacks

Each octal machine library must export seven specially named callback func-
tions. This section details when and how these functions are called by the host,

CHAPTER 1. USING 0X_API 7

as well as what to do (and what not to do) when this happens.

1.6.1 ox_init: one-time startup
int ox_init(machine_type* t)

This function is called when your shared library is first loaded. OCTAL will
pass you the address of a machine_type structure. You must fill in several
fields with the appropriate data!. You may also perform any other one-time
initialization tasks here, such as precomputing a large lookup table, loading a
special configuration file, etcetera.

Here is a quick example of how to fill in the structure, taken from the example
square wave generator machine included in the OCTAL distribution:

t->long_name = "David’s Simple Squarewave Machine";
t->short_name = "dtosquare";

t->max_channels = 1;

t->input_channels = 1;

t->output_channels = 1;

// give it the array of strings we declared above
t->param_info = my_params;

1.6.2 ox_create: manufacturing new machines

void ox_create(machine* m)

When the user creates a new machine instance of your type, the host will
call this function with the address of the new machine struct.

Your job during ox_create() is as follows is to set up the machine instance
and get it ready to run.

e Allocate a new state object using package::alloc()?

e Associate the new state object with the machine by assigning its address
to m->state

e Don’t worry about setting param defaults or creating a default channel—
the host will do this after you return.

If you’re not using state objects, you can skip most of those steps. Your
class constructor will be called by ox_wrappers.
Here’s an example:

my_state *s;

do_something with(s);
m->state = (voidx)s;

IDon’t fill in fields besides those listed.
2See 1.8.3 for more information on these functions.

CHAPTER 1. USING 0X_API 8

1.6.3 ox_destroy: destroying machines

The opposite of ox_create() . If you normally create a state object or allocate
any memory buffers for a machine, now is the time to free that memory, and
then free the state object itself. Be sure to use package: :free(), the memory
deallocation wrapper.

1.6.4 ox_work: processing and generating

int ox_work(machine* m, int block_size)

This is where the actual work happens; hence the name. First, grab your
state object by casting m->state to whatever pointer type you are using for
your state objects.

my_state *s = (my_state*) m->state;

Your parameters will have been set during the host’s call to ox_event ().
The number of samples you should generate for this block is held in the block_size
argument. Begin processing. Your input buffers will be arrays of type samp.
m->1in and m->rin are the left and right input buffers®, while m->1lout and
m->rout are the output buffers.

There will also be an auxiliary input signal set, labeled x1in/xrin, for use
in vocoding and other modulation tasks.

Return TRUE if you generated any sound; FALSE otherwise.

1.6.5 ox_event: when parameter values change

void ox_event(machine* m, int channel,
int which_param, param value)

Use this callback to respond to note events and parameter changes, altering
the state of your machine as needed so that the next time your work function
is called, the changes will have taken effect.

When a parameter’s value changes, you’ll be called with the channel number,
parameter number, and new parameter value. Your channels are numbered from
0 to m->num_channels - 1. The parameter indices will match up with the ix_*
constants you set up earlier. The value is a floating-point number in the range
you specified for that parameter.

An effect machine can usually ignore the channel number. It is primarily
meant to match up control changes in a pattern with the voice that should
recieve them.

The value 0X_NOTE_OFF is a special case for the note parameter type; it
means that the note should stop playing on that channel.

3If your machine only accepts a mono input, they’ll both point to the same buffer.

CHAPTER 1. USING 0X_API 9

Great. But now what do I do with the data? You might want to change
the state of your machine. For instance, when you recieve a 0X_NOTE_OFF value
for the note, you may need to update a variable somewhere that says “I'm no
longer playing any notes on channel z.”*

Here is the ox_event () function taken from the example square-wave plugin:

void ox_event(machine* m, int channel,
int param_index, param value)

{
my_state *s = (my_state*)m->state;
package *core = m->pkg;
switch(param_index) {
case ix_note:
s->pitch = core->note2freq(value);
if (value = 0X_NOTE_OFF) s->play = 0;
else s->play = 1;
break;
case ix_vol:
s->vol = ((float)value) / 255.0; /* scale to 1.0 x/
break;
}
}

1.6.6 ox_desc: giving text feedback

void ox_desc(char* dest, int which param, param value)

The user needs to know something about how a machine interprets it param-
eter values. So, in addition to the simple naming and description of parameters
discussed in 1.3, the 0X_API supports “live” parameter feedback from the ma-
chines. When the musician tweaks a slider or spin button on your machine,
Octal calls ox_desc()® with the location of the buffer where you should write
the string, the index number of the parameter being tweaked, and the new
value. Your job is to make up a string describing the “interpreted version” of
the new value; for instance, if the range (0.0,1.0) is interpreted as a percentage,
the following code will write a string describing the new value into the location
pointed to by dest. OCTAL might then display this string onscreen.

float x;
int percent;

4This can be used for optimization; if your machine is not currently playing any notes, it
can free up processor time by doing nothing during ox_work() and returning 0.

5Note that this function is not called in reference to any particular machine instance. Tt is
“library-wide.”

CHAPTER 1. USING 0X_API 10

switch(which_param) {

case ix_feedback:
percent = (int) (param_value*100.0);
sprintf (dest, "%d%%", percent);
break;

case ix_vol:
// describe volume

Note: It isn’t safe to assume that the host’s calls to ox_desc() will “pair
up” with parameter changes. While this will often be true, sometimes there
will be no connection between calls. For instance, to fill an option control with
five or six options, OCTAL will query ox_desc() for each choice and retrieve a
string to display for each item in the box.

You can use C’s enum facility to create a set of unique indices, and then
switch® on the value passed to you during ox_desc(), in each case returning
the string you would like to have appear in the interface. This indexing strategy
is like the one used for parameters themselves.

1.7 Writing a Generator

[This section is not yet finished.]

1.7.1 ox_channel: preparing voices for use in polyphony
void ox_channel(machine* m, int creating, int

channel number)

1.7.2 Standard parameter positions

1.8 O0X_API Package: Access to the Core

The 0X_APT package is a set of callback API functions that you can use to request
information or services from O0CTAL. Make a local handle to the core package by
doing this:

package *core = m->pkg;

Then you may call any package function through this handle. For instance,
to convert a note value to a frequency in the current system tuning, use

6Because param is defined as a floating-point data type, you will have to cast it to (int)
when using it in any switch statement or array subscript expressions.

CHAPTER 1. USING 0X_API 11

float f = core->note2freq();

The following sections give the prototypes of other functions.

1.8.1 Musical Utility

float note2freq (param n);

float text2freq (const char *text);
param text2note (const char *text);
const char *note2text (param note);

1.8.2 Environment

Sometimes you will need configuration information from the host, like the cur-
rent sampling rate, tempo, song position, etcetera. You can use these functions
to retrieve the data:

int get_sr(void); // sampling rate

1.8.3 Memory allocation

There are special restrictions on memory allocation for OCTAL machines. First,
you may only allocate memory during ox_create and ox_channel. Second,
you must use the provided wrappers for allocating memory rather than calling
malloc and free directly. They wrappers reside in the 0X_API package along
with other utility functions:

void *alloc(size);
void free(ptr);

As in the other examples, m is the pointer to your machine structure.

1.9 Being flattened

When the user saves his/her song, your machine will need to be saved to disk.
Since OCTAL has stored all the patterns of your machine, as well as kept track
of current parameter values, it can save all this data without your needing to
worry about it.

1.10 Compiling with GCC.

Using the -shared option to GCC, you can compile your C source file into a
self-contained shared library (with the suffix *.so0). Once this is done, OCTAL
will be able to load and use your machine. Here’s an example of a GNU make
command that will properly compile your machine:

CHAPTER 1. USING 0X_API 12

squaregen.so: squaregen.c machine.h
gcc -03 -g -Wall -shared squaregen.c -o squaregen.so

1.11 Distributing Machines in a Standard Way
1.12 Wavetable Extension and Wavemaps

1.13 Interface Layout Extension

Chapter 2

Using ox_wrappers

2.1 Overview

OCTAL includes a package called ox_wrappers, which is designed to simplify
OCTAL machine programming through the use of syntactic features of C++.
This section only explains the differences between raw 0X_API programming
and ox_wrappers, so it will help to have read the chapter on 0X_APT first.

In a nutshell, your machine type is now a class; individual machines are now
instances of that class. This lets you have data members, utility classes, and all
the interesting features of C++ at your disposal to create machines.

2.2 class 0X Machine

ox_wrappers.h declares a base class called 0X_Machine, from which you’ll derive
a new class that implements your machine. Here is its definition:

// class 0X_Machine just defines the interface to keep things
// consistent. none of its member functions will ever be called,
// because calls to the derived class will all be statically bound

class 0X_Machine {
public:
0X_Machine(machine* m) {};
~“0X_Machine() {};

static int initialize(machine_typex t) {};
static void describe(char* dest, int which, param value) {};

void event(int channel, int which, param value) {};

int work(int block_size) {};
int channel(int creating, int channel_number) {};

13

CHAPTER 2. USING 0X_WRAPPERS 14

// you typically won’t need to access this next field from C++
machine* m;

// package functions and i/o buffers
package* core;
samp *lin, *rin, *lout, *rout;

};

It’s not hard to see that the member functions are just like the ox_* callbacks,
but with the “machine*” pointer removed from the argument lists.! ox_create
and ox_destroy are now the constructor? and destructor, respectively.

The frequently-accessed i/o buffer pointers rin, lin, lout, rout aremem-
bers of the class, so they can be accessed in member functions without any
explicit dereferencing.

Instead of state objects, you can simply add data members to your derived
class.

2.3 Setting things up

Now is the slightly weird part. Step one: define the macro 0X_CLASS to be the
name of your new derived class. If your class is called MyCoolDelay, then

#define 0X_CLASS MyCoolDelay

It’s important to do this before you include any ox wrappers header files.
The reason is that new functions, making statically-bound calls to your new
member functions, are going to be created when you compile.

Next, derive your class from 0X Machine and place its declaration in, say,
MyCoolDelay.h Then do the following:

#define O0X_CLASS MyCoolDelay
#include ‘‘ox_wrappers.h’’
#include ¢ ‘MyCoolDelay.h’’
#include ‘‘ox_wrappers.cc’’

Now implement your member functions, and compile as a shared object.
The wrapper will export the required 0X_API functions with C linkage, so that
OCTAL will be able to find them. When OCTAL calls them, ox_wrappers will
forward the relevant info on to your machine.

You’ll still have to use some C structures such as machine type when com-
municating with OCTAL. Your class inherits a data member m, which is a pointer
to the underlying struct machine object that OCTAL is dealing with directly.

ISince “initialize” and “describe” are global functions that don’t have to be associated
with any particular machine, they’re declared static.

2The right constructor takes a struct machinex as an argument; don’t use the default
no-arg constructor at all.

CHAPTER 2. USING 0X_WRAPPERS 15

All the information in 1.3, 1.4, and 1.9 applies to use of ox_wrappers. You
might need to override the new and delete operators so that they call the 0X_API
wrappers.

Chapter 3

Frequently Asked Questions
and Troubleshooting

1. Trying to load my machine library makes it segfault and/or print
garbage instead of my parameter info. This probably happened because
your param_info array wasn’t statically allocated. Allocating the array on the
stack in your ox_init handler is a bad idea, because only when you return will
OCTAL have a chance to examine the structure you filled in—and the array would
get deallocated when you returned!

2. How can I implement multiple voices in a machine?

3. Are there any constraints on filesystem access?

16

Chapter 4

0X_API Reference

[This chapter is not yet complete.]

4.1 Typedefs

4.1.1 samp (octal.h)

A signed floating-point data type for processing samples. OCTAL plugin audio
streams must be in this format. Audio data should be scaled from —1.0 to +1.0.
(The range for control data sent through AUX connections is user-defined.)

4.1.2 param (octal.h)

An floating-point type for storing event data. OCTAL patterns are stored in this
format. See the section on ox_event () for more information.

4.2 Structures

[Not yet finished.]

17

CHAPTER 4. 0X_API REFERENCE 18

4.2.1 struct machine_type
4.2.2 struct machine

4.2.3 struct param_spec

4.3 Catalog of parameter types and widgets

type | meaning example
note a musical note C-4, D#2, B-5
velocity | the pressure on a given note 0-128
trigger | one-off event trigger 0,1
wave a raw sound from the wavetable 3C, 05

widget name | description

slider a small slider bar with a handle

and displayed numeric value

entry a numeric entry box with “enter” button

button a trigger button

spin spin button

option pulldown box with named options

4.4 Required Prototypes for C Callbacks

int ox_init(machine_typex t)
void ox_create(machine* m)
int ox_destroy(machine* m)
void ox_work(machine* m, int block_size)
void ox_event (machine* m, int channel,
int which_param, param newvalue)
void ox_desc(char* dest, int which, param value)
void ox_channel (machine* m, int creating,

int channel_number)

4.5 Package Functions

[This section will cover memory allocators, wavetable functions, and more when
finished.]

