
NAME
file − determine file type

SYNOPSIS
file [−bciknsvzL] [−f namefile] [−m magicfiles] file ...
file -C [−m magicfile]

DESCRIPTION
This manual page documents version 3.33 of the file command.

File tests each argument in an attempt to classify it. There are three sets of tests, performed in this order:
filesystem tests, magic number tests, and language tests. The first test that succeeds causes the file type to
be printed.

The type printed will usually contain one of the words text (the file contains only printing characters and a
few common control characters and is probably safe to read on an ASCII terminal), executable (the file con-
tains the result of compiling a program in a form understandable to some UNIX kernel or another), or data
meaning anything else (data is usually ‘binary’ or non-printable). Exceptions are well-known file formats
(core files, tar archives) that are known to contain binary data. When modifying the file
/dev/env/DJDIR/share/magic or the program itself, preserve these keywords . People depend on knowing
that all the readable files in a directory have the word ‘‘text’’ printed. Don’t do as Berkeley did and change
‘‘shell commands text’’ to ‘‘shell script’’. Note that the file /dev/env/DJDIR/share/magic is built mechani-
cally from a large number of small files in the subdirectory Magdir in the source distribution of this pro-
gram.

The filesystem tests are based on examining the return from a stat(2) system call. The program checks to
see if the file is empty, or if it’s some sort of special file. Any known file types appropriate to the system
you are running on (sockets, symbolic links, or named pipes (FIFOs) on those systems that implement
them) are intuited if they are defined in the system header file <sys/stat.h>.

The magic number tests are used to check for files with data in particular fixed formats. The canonical ex-
ample of this is a binary executable (compiled program) a.out file, whose format is defined in a.out.h and
possibly exec.h in the standard include directory. These files have a ‘magic number’ stored in a particular
place near the beginning of the file that tells the UNIX operating system that the file is a binary executable,
and which of several types thereof. The concept of ‘magic number’ has been applied by extension to data
files. Any file with some invariant identifier at a small fixed offset into the file can usually be described in
this way. The information identifying these files is read from the compiled magic file
/dev/env/DJDIR/share/magic.mgc , or /dev/env/DJDIR/share/magic if the compile file does not exist.

If a file does not match any of the entries in the magic file, it is examined to see if it seems to be a text file.
ASCII, ISO-8859-x, non-ISO 8-bit extended-ASCII character sets (such as those used on Macintosh and
IBM PC systems), UTF-8-encoded Unicode, UTF-16-encoded Unicode, and EBCDIC character sets can be
distinguished by the different ranges and sequences of bytes that constitute printable text in each set. If a
file passes any of these tests, its character set is reported. ASCII, ISO-8859-x, UTF-8, and extended-ASCII
files are identified as ‘‘text’’ because they will be mostly readable on nearly any terminal; UTF-16 and
EBCDIC are only ‘‘character data’’ because, while they contain text, it is text that will require translation
before it can be read. In addition, file will attempt to determine other characteristics of text-type files. If
the lines of a file are terminated by CR, CRLF, or NEL, instead of the Unix-standard LF, this will be report-
ed. Files that contain embedded escape sequences or overstriking will also be identified.

Once file has determined the character set used in a text-type file, it will attempt to determine in what lan-
guage the file is written. The language tests look for particular strings (cf names.h) that can appear any-
where in the first few blocks of a file. For example, the keyword .br indicates that the file is most likely a
troff(1) input file, just as the keyword struct indicates a C program. These tests are less reliable than the
previous two groups, so they are performed last. The language test routines also test for some miscellany
(such as tar(1) archives).

Any file that cannot be identified as having been written in any of the character sets listed above is simply
said to be ‘‘data’’.

OPTIONS
−b Do not prepend filenames to output lines (brief mode).

−c Cause a checking printout of the parsed form of the magic file. This is usually used in conjunc-
tion with −C Write a magic.mgc output file that contains a pre-parsed version of file. −m to de-
bug a new magic file before installing it.

1

FILE(1) FILE(1)

−f namefile
Read the names of the files to be examined from namefile (one per line) before the argument list.
Either namefile or at least one filename argument must be present; to test the standard input, use
‘‘−’’ as a filename argument.

−i Causes the file command to output mime type strings rather than the more traditional human
readable ones. Thus it may say ‘‘text/plain; charset=us-ascii’’ rather than ‘‘ASCII text’’. In order
for this option to work, file changes the way it handles files recognised by the command itself
(such as many of the text file types, directories etc), and makes use of an alternative ‘‘magic’’ file.
(See ‘‘FILES’’ section, below).

−k Don’t stop at the first match, keep going.

−m list Specify an alternate list of files containing magic numbers. This can be a single file, or a colon-
separated list of files.

−n Force stdout to be flushed after checking each file. This is only useful if checking a list of files. It
is intended to be used by programs that want filetype output from a pipe.

−v Print the version of the program and exit.

−z Try to look inside compressed files.

−L option causes symlinks to be followed, as the like-named option in ls(1). (on systems that sup-
port symbolic links).

−s Normally, file only attempts to read and determine the type of argument files which stat(2) re-
ports are ordinary files. This prevents problems, because reading special files may have peculiar
consequences. Specifying the −s option causes file to also read argument files which are block or
character special files. This is useful for determining the filesystem types of the data in raw disk
partitions, which are block special files. This option also causes file to disregard the file size as
reported by stat(2) since on some systems it reports a zero size for raw disk partitions.

FILES
/dev/env/DJDIR/share/magic.mgc − defaults compiled list of magic numbers

/dev/env/DJDIR/share/magic − default list of magic numbers

/dev/env/DJDIR/share/magic.mime − default list of magic numbers, used to output mime types when the -i
option is specified.

ENVIRONMENT
The environment variable MAGIC can be used to set the default magic number files.

SEE ALSO
magic(4) − description of magic file format.
strings(1), od(1), hexdump(1) − tools for examining non-textfiles.

STANDARDS CONFORMANCE
This program is believed to exceed the System V Interface Definition of FILE(CMD), as near as one can
determine from the vague language contained therein. Its behaviour is mostly compatible with the System
V program of the same name. This version knows more magic, however, so it will produce different (albeit
more accurate) output in many cases.

The one significant difference between this version and System V is that this version treats any white space
as a delimiter, so that spaces in pattern strings must be escaped. For example,
>10 string language impress (imPRESS data)
in an existing magic file would have to be changed to
>10 string language\ impress (imPRESS data)
In addition, in this version, if a pattern string contains a backslash, it must be escaped. For example
0 string \begindata Andrew Toolkit document
in an existing magic file would have to be changed to

Copyright but distributable 2

FILE(1) FILE(1)

0 string \\begindata Andrew Toolkit document

SunOS releases 3.2 and later from Sun Microsystems include a file(1) command derived from the System V
one, but with some extensions. My version differs from Sun’s only in minor ways. It includes the exten-
sion of the ‘&’ operator, used as, for example,
>16 long&0x7fffffff >0 not stripped

MAGIC DIRECTORY
The magic file entries have been collected from various sources, mainly USENET, and contributed by vari-
ous authors. Christos Zoulas (address below) will collect additional or corrected magic file entries. A con-
solidation of magic file entries will be distributed periodically.

The order of entries in the magic file is significant. Depending on what system you are using, the order that
they are put together may be incorrect. If your old file command uses a magic file, keep the old magic file
around for comparison purposes (rename it to /dev/env/DJDIR/share/magic.orig).

EXAMPLES
$ file file.c file /dev/hda
file.c: C program text
file: ELF 32-bit LSB executable, Intel 80386, version 1,

dynamically linked, not stripped
/dev/hda: block special

$ file -s /dev/hda{,1,2,3,4,5,6,7,8,9,10}
/dev/hda: x86 boot sector
/dev/hda1: Linux/i386 ext2 filesystem
/dev/hda2: x86 boot sector
/dev/hda3: x86 boot sector, extended partition table
/dev/hda4: Linux/i386 ext2 filesystem
/dev/hda5: Linux/i386 swap file
/dev/hda6: Linux/i386 swap file
/dev/hda7: Linux/i386 swap file
/dev/hda8: Linux/i386 swap file
/dev/hda9: empty
/dev/hda10: empty

$ file -i file.c file /dev/hda
file.c: text/x-c
file: application/x-executable, dynamically linked (uses shared libs), not stripped
/dev/hda: application/x-not-regular-file

HISTORY
There has been a file command in every UNIX since at least Research Version 6 (man page dated January
16, 1975). The System V version introduced one significant major change: the external list of magic num-
ber types. This slowed the program down slightly but made it a lot more flexible.

This program, based on the System V version, was written by Ian Darwin <ian@darwinsys.com> without
looking at anybody else’s source code.

John Gilmore revised the code extensively, making it better than the first version. Geoff Collyer found sev-
eral inadequacies and provided some magic file entries. Contributions by the ‘&’ operator by Rob McMa-
hon, cudcv@warwick.ac.uk, 1989.

Guy Harris, guy@netapp.com, made many changes from 1993 to the present.

Primary development and maintenance from 1990 to the present by Christos Zoulas (christos@astron.com).

Altered by Chris Lowth, chris@lowth.com, 2000: Handle the ‘‘-i’’ option to output mime type strings and
using an alternative magic file and internal logic.

Copyright but distributable 3

FILE(1) FILE(1)

Altered by Eric Fischer (enf@pobox.com), July, 2000, to identify character codes and attempt to identify
the languages of non-ASCII files.

The list of contributors to the "Magdir" directory (source for the /etc/magic file) is too long to include here.
You know who you are; thank you.

LEGAL NOTICE
Copyright (c) Ian F. Darwin, Toronto, Canada, 1986-1999. Covered by the standard Berkeley Software
Distribution copyright; see the file LEGAL.NOTICE in the source distribution.

The files tar.h and is_tar.c were written by John Gilmore from his public-domain tar program, and are not
covered by the above license.

BUGS
There must be a better way to automate the construction of the Magic file from all the glop in Magdir. What
is it? Better yet, the magic file should be compiled into binary (say, ndbm(3) or, better yet, fixed-length
ASCII strings for use in heterogenous network environments) for faster startup. Then the program would
run as fast as the Version 7 program of the same name, with the flexibility of the System V version.

File uses several algorithms that favor speed over accuracy, thus it can be misled about the contents of text
files.

The support for text files (primarily for programming languages) is simplistic, inefficient and requires re-
compilation to update.

There should be an ‘‘else’’ clause to follow a series of continuation lines.

The magic file and keywords should have regular expression support. Their use of ASCII TAB as a field de-
limiter is ugly and makes it hard to edit the files, but is entrenched.

It might be advisable to allow upper-case letters in keywords for e.g., troff(1) commands vs man page
macros. Regular expression support would make this easy.

The program doesn’t grok FORTRAN. It should be able to figure FORTRAN by seeing some keywords which
appear indented at the start of line. Regular expression support would make this easy.

The list of keywords in ascmagic probably belongs in the Magic file. This could be done by using some
keyword like ‘*’ for the offset value.

Another optimisation would be to sort the magic file so that we can just run down all the tests for the first
byte, first word, first long, etc, once we have fetched it. Complain about conflicts in the magic file entries.
Make a rule that the magic entries sort based on file offset rather than position within the magic file?

The program should provide a way to give an estimate of ‘‘how good’’ a guess is. We end up removing
guesses (e.g. ‘‘From ’’ as first 5 chars of file) because they are not as good as other guesses (e.g. ‘‘News-
groups:’’ versus ‘‘Return-Path:’’). Still, if the others don’t pan out, it should be possible to use the first
guess.

This program is slower than some vendors’ file commands. The new support for multiple character codes
makes it even slower.

This manual page, and particularly this section, is too long.

AV AILABILITY
You can obtain the original author’s latest version by anonymous FTP on ftp.astron.com in the directory
/pub/file/file-X.YY.tar.gz

Copyright but distributable 4

	FILE (1)

