XORP Router Manager Process (rtrmgr)
Version 1.0

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
feedback@xorp.org

July 8, 2004

1 Introduction

This document provides a high-level technical overviewhs Router Manager (rtrmgr) code structure,
intended to aid anyone needing to understand or modify thie/aee. It is not a user manual.

The XORP software base consists of a number of routing pptso@GP, OSPF, PIM-SM, etc), a
Routing Information Base (RIB) process, a Forwarding Eedibstraction (FEA) process, and a forwarding
path. Other management, monitoring or application prasssay also supplement this set. Figure 1
illustrates these processes and their principle commtioicahannels.

Management Processes

IPC router
finder manager CLl SNMP
BGP4+

/ PIM-SM
OSPF

7 =
RIP IGMP/MLD
/Multicast Routing

I1S-IS FEA

Unicast Routing $ $ $

LK

A B
ém??:ém
l:E‘Iick ements

Forwarding Engine

RIB = routing information base
FEA = forwarding engine abstraction

Figure 1: Overview of XORP processes

For research purposes, these processes may be startedlynanfram scripts, so long as the depen-
dencies between then are satisfied. But when using XORP irr@ operational environment, the network

manager typically does not wish to see the software strechut rather would like to interact with the router
as a whole Minimally, this consists of a configuration file for routeéagup, and a command line interface
to interact with the router during operation. The rtrmgrqass provides this unified view of the router.

The rtrmgr is normally the only process explicitly startedauter startup. The rtrmgr process includes
a built-in XRL finder, so no external finder process is reqlird he following sequence of actions then
occurs:

1.

The rtrmgr reads all the template files in the router’s tewepdirectory. Typically there is one tem-
plate file per XORP process that might be needed. A templ&eldéiscribes the functionality that is
provided by the corresponding process in terms of all of trdiguration parameters that may be set.
It also describes the dependencies that need to be satigfiedk lihe process can be started. After
reading the template files, the rtrmgr knows all the confitjoinaparameters currently supportable on
this router, and it stores this information in tismplate tree After all template files are read, the
template tree is checked for erroesd.,invalid variable names, etc). The rtrmgr will exit if there i
an error.

. The rtrmgr next reads the contents of the XRL directoryisoaler all the XRLs that are supported

by the processes on this router. These XRLs are then chedgatastithe XRLs in the template tree.
As it is normal for the XRLs in the XRL directory to be used tongeate stub code in the XORP
processes, this forms the definitive version of a partic§lRt.. Checking against this version detects
if a template file has somehow become out of sync with the rsutedebase. Doing this check at
startup prevents subtle run time errors later. The rtrmgjrexit if a mismatch is discovered.

. The rtrmgr then reads the router configuration file. All¢bafiguration options in the config file must

correspond to configurable functionality as described bytéimplate files. As it reads the config file,
the rtrmgr stores the intended configuration indtsfiguration tree At this point, the nodes in the
configuration tree are annotatedra existing- that is this part of the configuration has not yet been
communicated to the process that will implement the fumetiidy.

. The rtrmgr next traverses the configuration tree to discthe list of processes that need to be started

to provide the required functionality. Typically not alletavailable software on the router will be
needed for a specific configuration.

. The rtrmgr traverses the template tree again to discaverder for starting the required processes

that satisfies all their dependencies.

. The rtrmgr starts the first process in the list of processég started.

. If no error occurs, the rtrmgr traverses the configuratree to build the list of XRLs that need

to be called to configure the process just started. These XRédhen called, one after another,
with the successful completion of one XRL triggering thdingl of the next. Some processes may
require calling a transaction start XRL before configumratiand a transaction complete XRL after
configuration - the rtrmgr can do this if required.

. If no error occurred during configuration, the next pracissstarted, and configured, and so forth,

until all the required processes are started and configured.

. At this point, the router is up and running. The rtrmgr widiw allow connections from the xorpsh

process to allow interactive operation.

2 Template Files

The router manager reads a directory of template files tamdiscahe configuration options that the router
supports. A fragment of such a configuration file might loddeli

protocols {
ospf {
router-id: ipv4;
mospf. toggle = false;
flood_rate: i32;
area @: ipv4 {
stub: toggle = false;
interface @: txt {
disable: toggle = false;
hello-interval: u32 = 30;
dead-interval: u32 = 95;
}
}
}
}

This defines a subset of the configuration options for OSP&cbhfiguration options form a tree, with
three types of nodes:

e Structural nodes such asotocol andospf that exist merely to provide scope.

e Named interior nodes such aarta @” and “interface @ ", where there can be multiple in-
stances of the node. Symb@indicates that a name is required; in the case of “area @ rémgrfent
above specifies that the name must be an IPv4 address.

e Leafnodes such dbod _rate andhello-interval . These nodes are also typed, and may op-
tionally specify a default value. In the example abdwel]o-interval is of typeu32 (unsigned
32 hit integer), and takes the default value of 30.

Thus the template tree created from this template file wandd like:

ROOT | protocols || ospf router—id |

larea @ stub |
interface @ disable |

hello-interval
dead-interval

The same node may occur multiple times in the template filés fitiight happen because the node can
take more than one type (for example, it might have an IPvhdP&a6 address), or it might happen because
the second definition adds information to the existing diedini

In addition to specifying the configurable options, the téatgfile should also specify what the rtrmgr
should do when an option is modified. These commands anngtée template file begin with &3. Thus
the template file above might also contain the following dateal version of the template tree:

3

protocols ospf {
%modinfo: provides ospf;
%modinfo: depends rib;
%modinfo: path "ospfd/xorp/ospfd";
%modinfo: default_targethame "ospf";
%mandatory: targetname router-id;
targetname {

%set:;
}
router-id {
%set: xrl "$(ospf.targetname)/ospf/0.1/set_router_id? id:u32=$(@)";
%get: xrl "$(ospf.targetname)/ospf/0.1/get_router_id- >id:u32";
}
area @ {
%create: xrl "$(ospf.targetname)/ospf/0.1/add_or_conf igure_area?area_id:u32=%(a
%delete: xrl "$(ospf.targethname)/ospf/0.1/delete_area ?area_id:u32=%(area.@)";
}
mospf {
%set: xrl "$(ospf.targetname)/ospf/0.1/set_mospf?enab led:bool=$(@)";
%delete: xrl "$(ospf.targetname)/ospf/0.1/set_mospf?e nabled:bool=$(DEFAULT)";
%get: xrl "$(ospf.targetname)/ospf/0.1/get_mospf->ena bled:bool=$(@)";
}

}

The first four annotations apply to the “protocols ospf” noded specify the “%omodinfo” command,
which provides information about the module providing thiactionality. In this case they specify the
following:

e This functionality is provided by the module calledpf .
e This module depends on the module callidgd .
e The program irospfd/xorp/ospfd should be run run to provide this module.

¢ XRL target nameospf should be used by default when validating an XRL specificatimt uses a
variable inside the@spf module €.g.$(ospf.targetname)) to specify the XRL target.

The "% mandatory” annotation contains the list of child nede variables that must be configured in
the user configuration file or that must have a default valnehé above example, this applies to variables
“targetname ”and “router-id "

The “protocols ospf targetname " node carries an annotation to specify the existence of vari
able name targetname " that can be used to specify the XRL target name of an OSPRrinst The
specific value of targetname " can be configured elsewhere.

The “protocols ospf router-id ” node carries annotations to set the value of the router ID in
the ospf process, and to get the value back. The set command is

%set: xrl "$(ospf.targetname)/ospf/0.1/set_router_id? id:u32=$(@)";
This specifies that to set this value, the rtrmgr must calktiexified XRL. In this case it specifies a variable

expansion of variable$(ospf.targetname) and$(@) . All variables take the forn$(...) .

4

”

The variableb(ospf.targetname) means the value of noderotocols ospf targetname
The variableés(@) means the value of the current node. Hence, if the targetime®t in the configuration
tree to (or had a default value in the template treé'o$pf” , and the router ID node in the configuration
tree had the value 1.2.3.4, then the XRL to call would be:

ospflospf/0.1/set_router_id?id:u32=1.2.3.4

The%set command only applies to leaf nodes.

Internal nodes would typically use tBécreate command to create a new instance of the node, as
shown with the protocols ospf area @ " node. In the example above, tiécreate command
involves two variable expansion$(area.@) and$(@.stub) . The form$(area.@) means “this
area”, and so in this case it is directly equivalen${@) meaning “this node”. The variab®@.stub)
means the value of the leaf node calkdb that is a child node of “this node”.

Default template value of a variable can be specified by theried DEFAULT For example$(DEFAULT)
or $(@.DEFAULT) would refer to the default template value of “this” node, lelfi(foo.bar. DEFAULT)
would refer to the default template value of ndfleo.bar”

Thus, the template tree specifies the following information

e The nodes of the tree specify all the configuration optiorssitde on the router.

e Some of the nodes are annotated with information to indieditieh software to run to provide the
functionality rooted at that node, to indicate which othevdules this software depends on being
running, and to provide additional information about thigdule.

e Most of the nodes are annotated with commands to be run wigevatbe of the node changes in the
configuration tree, when a new instance of the node is cremtad instance of the node is deleted in
the configuration tree, or to get the current value of a node fthe running processes providing the
functionality.

Note that for verification purpuse all variable names mutrréo valid nodes in the template tree.
Hence, the template tree may contain dummy nodes that stidwednsed for configuration purpose. For
example, the internal variablTED that can be used to store the transient transaction 1D sheusghecified
as:

interfaces {
%modinfo: ...

TID {
Obcreate:;

}

2.1 Template Tree Node Types

The following types are currently supported for templagetnodes:

u32

Unsigned 32 bit integer
132

Signed 32 bit integer

bool
Boolean - valid values arteue andfalse

toggle
Similar to boolean, but requires a default value. Displayhef config tree node is suppressed if the
value is the default.
ipv4
An IPv4 address in dotted decimal format.
ipv4net
An IPv4 address and prefix length in the conventional forrgeag.: 1.2.3.4/24
ipv6
An IPv6 address in the canonical colon-separated humataiéa format.

ipvénet
An IPv6 address and prefix in the conventional format. Hef30::1/64

macaddr
An MAC address in the conventional colon-separated hexdbria.g.:00:c0:4f:68:8¢:58

It is likely that additional types will be added in the futuees they are found to be needed.

2.2 Template Tree Commands

This section provides a complete listing of all the temptede commands that the rtrmgr supports.

2.2.1 The%modinfo Command.

The sub-commands to t8émodinfo command are:

%modinfo: provides ModuleName
Theprovides subcommand takes one additional parameter, which givesaime of the module
providing the functionality rooted at this node.

%modinfo: depends list of modules
Thedepends subcommand takes at least one additional parameter, gidiagjof the other modules
that must be running and configured before this module mayaboted.

%modinfo: path ProgramPath
The path subcommand takes one additional parameter giving the gatérof the software to be
run to provide this functionality. The pathname may be alisobr relative to the root of the XORP
tree. The ordering in computing the root of the tree is: (&) shell environment XORROOT
(if exists); (b) the parent directory the rtrmgr is run froonly if it contains the etc/templates and
the xrl/targets directories); (c) the XORROOT value as defined in config.h (currently this is the
installation directory, and defaults to “/usr/local/xrp

%modinfo: default _targetname TargetName
Thedefault _targethame subcommand takes one additional parameter giving the ltiee
XRL target name that should be used by default when valigedim XRL specification€.g.,if the
specification uses a variable inside that module to spelndy<RL target name).

%modinfo: start _commit method argument
Thestart _commit subcommand takes two or more additional parameters, thatsad to specify
the mechanism to be call before performing any change todhgguration of the module. The only
method currently supportedxsl which takes an XRL specification as an argument.

%modinfo: end _commit method argument
Theend _commit subcommand takes two or more additional parameters, thais@d to specify the
mechanism to be called to complete any change to the coniguiaf the module. The only method
currently supported isrl which takes an XRL specification as an argument. Btdéint _commit
andend _commit are optional. They provide a way to make batch changes to almodnfiguration
as an atomic operation.

%modinfo: status _method method argument
Thestatus _method subcommand takes two or more additional parameters, thatsad to specify
the mechanism to be used to discover the status of the motlueonly method current supported is
xrl which takes an XRL specification as an argument.

%modinfo: startup _method method argument
Thestartup _method subcommand takes two or more additional parameters, thaisad to spec-
ify the mechanism to be used to gracefully startup the modihe only method current supported is
xrl - which takes an XRL specification as an argument. Beforstidup _method subcommand
is called, it is expected that the process iPRROCSTARTURstate; after the subcommand is called

7

the process should transition to RROCREAD Ystate. Note that this subcommand is optional and if
it is not specified, then it is expected that the process watigition on its own to th€ROCREADY
state.

%modinfo: shutdown _method method argument
The shutdown _method subcommand takes two or more additional parameters, thatised to
specify the mechanism to be used to gracefully shutdown thdule. The only method current
supported ixrl which takes an XRL specification as an argument. If the psdegs not then
transition toPROCSHUTDOWSate, the rtrmgr will then kill the process.

2.2.2 The%mandatory Command.

%mandatory is used to specify the list of child nodes or variables thasttoe configured in the user
configuration file or that must have a default value. This camdncan appear multiple times anywhere in
the template tree. If it appears multiple times within thenedemplate node, then all listed child nodes are
mandatory.

2.2.3 The%create Command.
%create is used to create a hew instance of an interior node in thegroafion tree.

e The first parameter indicates the form of action to take tdgper this action - typically it isxrl
which indicates an XRL should be called.

e If the action isxrl , then the second parameter gives the XRL to call to creataaheconfiguration
tree instance of this template tree node.

Note that if a node has bcreate command, then thésset command (if exists) for that node is
used instead (see below).

2.2.4 The%activate Command.

%activate is used to activate a new instance of an interior node in tmdiguration tree. It is typi-
cally paired with%create - the%create command is executed before the relevant configuration of the
node’s children has been performed, whef#axtivate is executed after the node’s children have been
configured. A particular interior node might have eitB&ereate , %activate or both.

e The first parameter indicates the form of action to take tdgper this action - typically it isxrl
which indicates an XRL should be called.

e Ifthe action isxrl , then the second parameter gives the XRL to call to active@éw configuration
tree instance of this template tree node.

For example, if the template tree held the following:

address @: ipv4d {
%create: xrl XRL1
%activate: xrl XRL2
netmask: ipv4d {
%set: xrl XRL3

Then when an instance of address and netmask are createordigued, the execution order of the
XRLs will be: XRL1, XRL3, XRL2
2.25 The%list Command.

%list is called to obtain a list of all the configuration tree instas of a particular template tree node. For
example, a particular template tree node might represeninthrfaces on a router. The configuration tree
would then contain an instance of this node for each interéagrently configured. Th#list command
on this node would then return the list of interfaces.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called.

e If the action isxrl , then the second parameter gives the XRL to call to returfighe

2.2.6 The%delete Command.

%delete is called to delete a configuration tree node and all its obild A node that has #create or
%activate command should also havé/edelete command.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called.

e If the action isxrl , then the second parameter gives the XRL to call to deleteah&guration tree
instance of this template tree node.

2.2.7 The%set Command.

%set is called to set the value of a leaf node in the configuratiea.tr

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called.

e If the action isxrl , then the second parameter gives the XRL to call to set theev@fl configuration
tree instance of this template tree node.

Note that when a new instance of a node in the configuratieridrereated, if that node has #irreate
command, then th&set command (if exists) for that node is used instead.
2.2.8 The%unset Command.

%unset is called to unset the value of a leaf node in the configuratiea. The value will return to its
default value if a default value is specified.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called.

e Ifthe actionisxrl ,then the second parameter gives the XRL to call to unsetdue wf configuration
tree instance of this template tree node.

2.2.9 The%get Command.

%get is called to get the value of a leaf node in the configuratiee.tNormally the rtrmgr will know the
value if there is no external means to change the value, b@bget command provides a way for the rtrmgr
to re-sync if the value has changed.

e The first parameter indicates the form of action to take tdoper this action - typically it isxrl
which indicates an XRL should be called.

e If the action isxrl , then the second parameter gives the XRL to call to get theevafl configuration
tree instance of this template tree node.

2.2.10 The%allow Command.

The%allow command provides a way to restrict the value of certain ntalspecific values.

e The first parameter gives the name of the variable to be ceedri

e The remaining parameters are a list of possible allowedegalor this variable.

For example, a node might specify an address family, whiéhténded to be one of “inet” or “inet6”.
The type of the node it , which would allow any value, so the allow command mightwlthe rtrmgr
to restrict the legal values without having to communicaii the process providing this functionality.

A more subtle use might be to allow certain nodes to exist rdyparent node was of a certain value.

For example:

family @: txt {
%allow: $(@) "inet" "inet6";
address @: ipv4 {
%allow: $(family.@) "inet";
broadcast: ipv4;
}
address @: ipv6 {
%allow: $(family.@) "inet6";
}
}

In this case, there are two different typed versions of tiddtess @ " node, once for IPv4 and one
for IPv6. Only one of them has a leaf node call@dadcast . The allow command permits the rtrmgr to
do type-checking to ensure that only the permitted comiginatare allowed.

2.2.11 The%allow-range Command.

The %allow-range command restricts the range of values an integer configur&em may take. The
syntax is:

%allow-range: varName lowValue highValue
where the first parameterarName gives the name of the variable to be restricted. This i<l "$(@)" .
ThelowValueandhighVal parameters specify the lower and upper bound of the alloaeger of values.

10

An example of use appears in the interface address prefi¥fispéon:

address @: ipv4 {
prefix-length: u32;
}

address @: ipv4 {
prefix-length {
%allow-range: $(@) "1" "32"
%set: xrl "...";
%get: xrl "...";
}
}

11

3 The Configuration File

Whereas the template files inform the rtrmgr aspibssibleconfiguration of the router, the configuration file

provides the specific startup configuration to be used bysghesific router. The syntax is similar to, but not

the same as, that of template files - the differences aretioteh - template files are intended to be written

by software developers, whereas configuration files aradee to be written by network managers. Hence
the syntax of configuration files is simpler and more inteitibut less powerful. However, both specify

the same sort of tree structure, and the nodes in the conffiguitaee must correspond to the nodes in the
template tree.

An example fragment of a configuration file might be:

protocols {
ospf {
router-id: 1.2.3.4
mospf
area 1.2.3.27 {
stub
interface fxpl {
hello-interval: 10
}
interface fxp2
}
}
}

Note that unlike in the template tree, semicolons are naidesén the configuration tree, and that line-
breaks are significant.

The example fragment of a configuration file above will camstthe following configuration tree from
the template tree example given earlier:

ROOT I protocols || ospf router—id=1.2.3.4 |
area 1.2:3:27 stub=true
interface fxpl hello-interval=10 |
dead-inteval=90
[interface fxp2 hello-interval=30 |

dead-interval=90

Note that configuration tree nodes have been createddad-interval and (in the case of fxp1)
for hello-interval even though this was not mentioned in the configuration fildés s because the
template tree contains a default value for this leaf nodesoAh case of configuring a boolean variatdey(,
of typebool ortoggle) such asmospf, typing the variable name itselé(g.,mospf) is equivalent to
assigning it value ofrue (e.g.,mospf: true).

12

4 Command Line Interface: xorpsh

The rtrmgr process is the core of a XORP router - it starts aopssprocesses and keeps track of the
configuration. To do its task, it must run as root, whereast wiher XORP processes don't need privileged
operation and so can be sandboxed. This makes the rtrmgegwadle single most critical point from a
security point of view. Thus we would like the rtrmgr to be @mse as possibfe and to isolate it from
possibly hostile input as far as is reasonable.

For these reasons we do not build a command line interfaeettirinto the rtrmgr, but instead use an
external process calledrpsh to interact with the user, while limiting the rtrmgr’s ingation with xorpsh
to simple authentication mechanisms, and exchanges ofgtwafion tree data. Thus the command line
interface architecture looks like:

xorpsh processes
running from unprivileged
user accounts

Constrained

CLl — interface
interaction
with = rtrmgr
users process
— N XRLs for

onfiguration

‘ RIB H BGP HOSPF H PIM—SM‘

The interface between the rtrmgr and a xorpsh instance stensi XRLs that the xorpsh may call to
query or configure rtrmgr, and a few XRLs that the rtrmgr maynakronously call to alert the xorpsh
process to certain events.

The rtrmgr exports the following XRLs that may be called bypsh:

register _client
This XRL is used by a xorpsh instance to register with thegtrrim response, the rtrmgr provides the
name of a file containing a nonce - the xorpsh must read thiarifereturn the contents to the rtrmgr
to authenticate the user.

authenticate _client
Xorpsh uses this to complete the authentication process.

get _running _config
Xorpsh uses this to request the current running configurditmm the rtrmgr. The response is text in
the same syntax as the rtrmgr configuration file that provikdestrmgr’s view of the configuration.

enter _config _mode
A xorpsh process must be in configuration mode to submit cordtgpn changes to the rtrmgr. This
XRL requests that the rtrmgr allows the xorpsh to enter condion mode. Not all users have
permission to enter configuration mode, and it is also ps#iat a request may be refused because
the configuration is locked.

get _config _users
Xorpsh uses this to request the list of users who are cuyrentonfiguration mode.

tUnfortunately the router manager is not simple as we wol |i

13

apply _config _change
Xorpsh uses this to submit a request to change the runnirfigaoation of the router to the rtrmgr.
The change consists of a set of differences from the curoemtimg configuration.

lock _config
Xorpsh uses this to request an exclusive lock on configuratianges. Typically this is done just
prior to submitting a set of changes.

unlock _config
Unlocks the rtrmgr configuration that was locked by a presicall tolock _config

lock _node
Xorpsh uses this to request a lock on configuration changespecific config tree node. Usually this
will be called because the user has made local changes totfig but not yet committed them, and
wishes to prevent another user making changes that coriftbcking is no substitute for human-to-
human configuration, but it can alert users to potential lprob.

Note: node locking is not yet implemented.

unlock _node
Xorpsh uses this to request a lock on a config tree node be emov

save _config
Xorpsh uses this to request the configuration be saved to. artile actual save is performed by the
rtrmgr rather than by xorpsh, but the resulting file will bermdl by the user running this instance of
xorpsh, and the file cannot overwrite files that this user daalt otherwise be able to overwrite.

load _config
Xorpsh uses this to request the rtrmgr reloads the routdigeoation from the named file. The file
must be readable by the user running this instance of xoerghthe user must be in configuration
mode when the request is made.

leave _config _mode
Xorpsh uses this to inform rtrmgr that it is no longer in coofition mode.

Each xorpsh process exports the following XRLs that thegtroan use to asynchronously communicate
with the xorpsh instance:

new_config _user
Rtrmgr uses this XRL to inform all xorpsh instances that arednfig mode than another user has
entered config mode.

config _change _done
When a xorpsh instance submits a request to the rtrmgr tayehidne running config or to load a con-
fig from a file, the rtrmgr may have to perform a large number Bio€alls to implement the config
change. Due to the single-threaded nature of XORP progeigsestrmgr cannot do this while re-
maining in theapply _config _change XRL, so it only performs local checks on the sanity of the
request before returning success or failure - the configuratill not have actually been changed at
that point. When the rtrmgr finishes making the change, omvaiture occurs part way through mak-
ing the change, the rtrmgr will catlonfig _change _done on the xorpsh instance that requested
the change to inform it of the success or failure.

14

config _changed
When multiple xorpsh processes are connected to the rtamdrone of them submits a successful
change to the configuration, the differences in the conftgurawill then be communicated to the
other xorpsh instances to keep their version of the configuran sync with the rtrmgr’s version.

4.1 Operational Commands and xorpsh

Up to this point, we have been dealing with changes to theerczdnfiguration. Indeed this is the role
of the rtrmgr process. However a router's command line fateris not only used to change or query the
router configuration, but also to learn about the dynamii sithe router, such as link utilization or routes
learned by a routing protocol. To keep it as simple and roasigtossible, the rtrmgr is not involved in these
operational modeommands. Instead these commands are executed directlydrpsh process itself.

To avoid the xorpsh implementation needing in-built knaige of router commands, the information
about operational mode commands is loaded from anothef sahplate files. A simple example might be:

show interfaces $(interfaces.interface.*) {
%command: "path/to/show_interfaces -i $3" %help: HELP;
%module: fea;
%opt_parameter: "brief* %help: BRIEF;
%opt_parameter: "detail" %help: DETAIL;
%opt_parameter: "extensive" %help: EXTENSIVE;
%tag: HELP "Show network interface information”;
%tag: BRIEF "Show brief network interface information";
%tag: DETAIL "Show detailed network interface information ;

%tag: EXTENSIVE "Show extensive network interface informa tion";
}
show vif $(interfaces.interface.*.vif.*) {
%command: "path/to/show_vif -i $3" %help: "Show vif inform ation";
%module: fea;
%opt_parameter: "brief* %help: "Show brief vif informatio n";
%opt_parameter: "detail” %help: DETAIL;
%opt_parameter: "extensive" %help: EXTENSIVE;
%tag: DETAIL "Show detailed vif information”;
%tag: EXTENSIVE "Show extensive vif information”;
}

”

This template file defines two operational mode commarslsow interfaces "and “show vif

The “show interfaces” command takes one mandatory paraméiese value must be the name of one
of the configuration tree nodes taken from the variable naitdeard expansio(interfaces.interface.*)

Thus if the router had config tree nodes callautérfaces interface xIO " and “interfaces
interface xlI1 ”, then the value of the mandatory parameter must be exi®eror xI1 .

Additional optional parameters might beief ,detail ,orextensive -the set of allowed optional
parameters is specified by ti@opt _parameter commands.

The %commandcommand indicates the program or script (and its arguméotbe executed to im-
plement this command - the script should return human-tdadautput preceded by a MIME content type
indicating whether the text is structured or fotf the command specification contains any positional ar-
guments €.9.50, $1, $2) they are resolved by substituting them with the particslabstring from the

20nly text/plain is currently supported.

15

typed command line comman®&0 is substituted with the complete string from the command, 1 is
substituted with the first token from the command li&, is substituted with the second token from the
command line, The resolved positional arguments along thiglremaining arguments (if any) are passed
to the executable command. For example, if the user typesy'dtterfaces xI0”, the xorpsh might invoke
theshow_interface command using the Unix command line:

path/to/show_interfaces -i xI0

The pathname to a command must be relative to the root of tHeRXtbee. The ordering in computing
the root of the tree is: (a) the shell environment XQROOT (if exists); (b) the parent directory the xorpsh
is run from (only if it contains the etc/templates and thétargets directories); (c) the XORROOT value
as defined in config.h (currently this is the installatiorediory, and defaults to “/usr/local/xorp”).

The commandemodule indicates that this command should only be available thiaghg CLI when
the router configuration has required that the named moaddben started.

The commandohelp is used to specify the CLI help for each CLI command or theooyati parameters.
It must be on the same line as ttcommandr the%opt _parameter commands. If the argument after
the%help command is in quotes, then it contains the help string its&ierwise, the argument is the name
of the tag that contains the help string.

The commandstag is used to specify the help string associated with each tageXxample, statement:

%command: "path/to/show_vif -i $3" %bhelp: HELP;
%tag: HELP "Show vif information”;

is equvalent with:
%command: "path/to/show_vif -i $3" %help: "Show vif inform ation";

Note: currently there is no security mechanism restriciegess to operational mode commands beyond
the restrictions imposed by Unix file permissions. This ismended to be the long-term situation.

16

