
XORP BGP Test Harness

Version 0.4

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

August 28, 2003

1 Introduction

This document describes a test harness that was built primarily to test the XORP
BGP implementation. It may be possible to augment the harness to use it for testing
other protocols.

A single BGP process is placed in the harness and tests are performed on it.
The tests can range from testing the decision process to verifying that a session is
dropped when the hold timer expires.

Not all of the features mentioned below have been implemented yet. Section 6
has a list of these features.

2 Requirements

A major requirement was to allow the testing of any BGP process, not just our own.
In the case of our own BGP process it was essential that regression tests could be
run and results verified totally from within scripts, without the need for any man-
ual configuration. The XORP BGP regression tests can be run directly from the
“Makefiles”.

The test harness supports testing at various levels:

• Decision process.

The BGP decision process can be tested by sending update packets to BGP,
then verifying that the correct update packets are sent by the BGP process

1

TCP
BGPPeer

Test
Peer
Test

Coordinator

Test Script

XRL

XRLXRL

TCP

Figure 1: Test harness processes.

to the other BGP peers. The actual packets sent by the BGP process can be
compared to expected packets.

Another way that the BGP decision process can be tested is by testing the
routing tables held at the peers.

• Low level testing.

Testing responses to deliberately corrupted packets.

• Load testing.

Testing reaction to introducing a large number of routes back to back.

• Timer testing.

Correct operation of timers such as the HOLD TIME timer.

3 Usage

Figure 1 shows a BGP process under test that is connected to two test peers. The
test harness has been split into a number of separate processes. The main reason

2

reset
target xorp 179
initialise attach peer1
initialise attach peer2
peer1 establish active true AS 1 keepalive true holdtime 0 id 10.10.10.10
peer1 assert established
peer2 establish active true AS 2 keepalive true holdtime 0 id 20.20.20.20
peer2 assert established

Figure 2: Establish BGP Sessions

for using multiple processes is that a third party BGP processes may not be able to
accept multiple connections from the same host (IP address). The harness was also
simpler to implement by splitting functionality into separate processes.

The test harness consists of acoordinator process through which all interac-
tions with the harness are mediated. There are also one or more test peers. Each
test peer is capable of forming one BGP session with the BGP process under test.
The coordinator process communicates with thetest peers using XRLs [1]. The
coordinator process accepts commands via XRLs from test scripts. Currently our
test scripts are written in the shell programming language,but they could be writ-
ten in almost any language. The full set of commands acceptedby thecoordinator
can be found in 4.1.

Figure 2 shows an example of a simple program that might be sent from a
test script to acoordinator. It is assumed that before the script is sent that all
the processes are already running. One important point to note is that due to the
asynchronous nature of XRLs a command returning does not necessarily mean that
it has completed successfully. In the XORP test scripts there are delays between
certain operations. This example show thecoordinator beingreset, then its given
the hostname and port number of the BGP process under test. Then thecoordinator
attaches to the twotest peers peer1 and peer2, these are the XRL target names by
which the test peers are known. The majority of the commands are sent to the
test peers themselves. In order to send a command to atest peer the command is
preceded by thetest peer name. In our example eachtest peer forms a session with
the BGP process and then theassert command is used to assert that a session is still
established. As noted above theestablish command completing does not mean that
a session was established. Of course attempting to send apacket on a session that
has not yet been established will generate an error.

Theexpect packet . . . command is used to create a queue of expected packets.
Whenever a packet arrives on a peer it is checked against the queue of expected
packets. If there are no expected packets on the queue then noaction is taken. If

3

there is a packet on the expect queue it is compared against the incoming packet. If
the incoming packet matches, all is fine and the packet is removed from the queue.
If the incoming packet does not match the packet at the head ofthe queue, then an
error is flagged and the non matching packet is saved. At the end of a set of tests the
assert queue command can be used to verify that queue is at the expected length.
If an error has occurred, this is the point at which the non matching packet and the
expected packet are returned, along with an error status. Figure 3 is a example of
a code fragment that is waiting for a notify packet on peer1. Anotify packet is
added to the queue of expected packets, then an update packetwithout an origin is
sent to the BGP process. An update packet without an origin isan error and should
generate the notify packet that is expected. Note that it is the responsibility of test
script to add a delay between sending theupdate packet and theassert.

...
Update error, missing well known attribute.
peer1 expect packet notify 3 3
An update packet without an origin
peer1 send packet update aspath 1 nexthop 20.20.20.20 nlri 10.10.10.0/24
Delay
peer1 assert queue 0
...

Figure 3: Wait for a notify packet

Eachpeer has two tries associated with it, a sent and a received trie. Each
update packet that is sent to, or received from, the BGP process is passed to the ap-
propriate trie. The update packet is processed and saved if it contains any NLRI’s.
Update packets containing only WITHDRAWs are not saved at this time. At this
time two types oflookups can be performed on a trie (Figure 4). If alookup fails
then an error is returned. A test might therefore involve sending many update
packets from different peers and then verifying that the routing tables at the vari-
ous peers are correct. Saving the update packets in the triesmakes it possible to
dump the routing tables for post processing.

...
peer1 trie recv lookup 212.174.196.0/24
peer1 trie recv lookup 212.174.196.0/24 aspath 1
...

Figure 4: Performing lookup in trie

4

4 Commands

4.1 COORD XRLs

• Command(”command string”)

Accept commands via XRLs.

• Status(”peername”)

Returns the status of the named test peer. Can be used to detect if a peer
is established or not. Plus the number of update messages sent or received
by the peer. This XRL will not return an error if the requestedpeer does
not exist. Can be used in test scripts to wait for established, not established
transitions. As well as waiting for a peering to become quietbecause all the
state is synchronised.

• Pending()

Returns true while there are any uncompleted commands. Can be used to
poll the coordinator to verify that the previous command hascompleted.

4.1.1 Commands currently accepted by coord

• reset

Reset all the state in the coordinating process.

• target <hostname> <port>

Specify the BGP process under test.

• initialise attach/create peername

Form an association with a testpeer. If the second argument is attach then
it is assumed that the testpeer is already running. If the second argument is
create then the testpeer is started (not currently supported).

4.1.2 Peer specific commands

• connect

Connect to the BGP target under test.

• disconnect

Disconnect from the BGP target under test.

5

• listen

Listen for a connection from the BGP test target.

• establish active <true/false> AS <value> keepalive <true/false> hold-
time <value> id <ipv4> ipv6 <true/false>

The active, AS, keepalive, holdtime, id and ipv6 arguments are optional.
Active defaults to being true and actively makes a connection, setting active
to false sets up a listener. The AS value is recommended if a connection is
wanted. The ipv6 argument defaults to false.

• send packet update origin <num> aspath <path> nexthop <ip> lo-
calpref <num> nlri <net> withdraw <net> med <value> pathattr
<num,num,num,...>

Send a BGP update packet to the BGP test target with the specified with-
drawn routes, NLRI, and path attributes. The “pathattr” argument takes a list
of commma separated byte values in decimal or hex. The “patthattr” exists
to test optional path attributes. It should be noted that at this time it is not
possible to create an illegal path attribute.

• send dump mrtd update filename <packet count>

Given a file in mrtd dump format send the update packets in thisfile. Op-
tionally supply a packet count for the number of update packets that should
be sent.

• trie <recv/sent> lookup <net>

Test to see if this net is in the test peer’s send or receive trie.

• trie <recv/sent> lookup <net> not

Test to see if this net is not in the trie.

• trie <recv/sent> lookup <net> aspath <path>

Test to see if this net is in the trie and associated with the provided AS path.

• expect packet notify <error code> <sub error code>

Place a notification packet on the expect queue. The<error code> is manda-
tory. The<sub error code> is optional.

• expect packet update origin <num> aspath <path> nexthop <ip>
localpref <num> nlri <net> withdraw <net>

Place an update packet on the expect queue.

6

• expect packet open asnum <value> bgpid <ipv4> holdtime <value>

Place an open packet on the expect queue. All fields shown are mandatory.

• expect packet notify

Place a notify packet on the expect queue.

• assert queue <queue length>

Check the queue length of the expect queue. Every message that matches
removes an entry from the queue. If an error has previously occurred then
this call will return the error. The length of the queue checkis optional.

• assert established

Verify that a session has actually been established. Some tests can pass with-
out a BGP process being present. These tests require this interface.

• dump <recv/sent> <mtrd/text> <traffic/routeview/current/debug> <filename>

A mechanism for saving conversations or dumping routing tables. The re-
ceived and sent cases can be dealt with independently. Four types of dumps
are supported:

1. Traffic.

The is basically all the traffic which is sent and received. The dump-
ing can be disabled by making a call with the<filename> argument
removed.

2. Routeview.

The current state of the routing table.

3. Current.

Trawls through the routing table and dumps all the update packets that
have caused entries in the routing table. The packets are dumped in the
order in which they arrived. This is only an approximation asupdate
packets containing only withdraws will not be saved.

4. Debug.

Visit all nodes in the trie and dump the update packet that wasresponsi-
ble for this entry. Update packets can have multiple NLRI’s associated
with them so a packet can be in the dump many times.

The save file can be either in mtrd dump format or in xorp text format.

7

4.2 TEST PEER XRLs

Commands that are accepted by the test peer. This interface is used by the coor-
dinating process to control the test peers. It should never be used directly and is
documented here for completeness.

• Register(”coord”)

This is an external registration to the test peer. All packets received by the
test peer are sent to the ”coord”.

• Packetisation(”bgp”)

Tell the test peer to treat incoming packets as BGP packets packetise them
accordingly. Otherwise just packetise the the packets the way they appear
from the connection.

• Connect(”host”, ”port”)

Connect to the named host and port.

• Listen(”address”, ”port”)

Listen for connections on this address and port.

• Send(”Data”)

Send data on the TCP connection.

• Disconnect()

Drop the current TCP connection.

• Terminate()

Terminate the process.

4.3 TEST PEER CLIENT XRLs

This interface is implemented by the coordinator which is a client of the test peer.

• Packet(”peer”, ”status”, ”time”, ”data”)

– ”peer”

The peer that the packet came from.

8

– ”status”

If the remote peer had been asked to perform packetisation. Then if
a bad message is received signify this. Also after a bad is received
packetisation is disabled.

– ”time”

The time when the packet was received in micro seconds since 1970-1-1.

– ”data”

The raw data that was read on the connection.

5 Outstanding Issues

• At the time of writing the harness has only been used against the XORP
BGP process. There is no reason to believe that it could not beused against
implementations.

6 Not yet implemented or TODO list

• Constructing corrupted packets.

• Dumping current and routeviews.

References

[1] XORP Inter-Process Communication Library. XORP technical document.
http://www.xorp.org/.

9

