

Peripheral Input/Output
Services

 A
D

D
O

N
.M

I_
N

D

Re lease 670

SAP Online Help 20.12.2005

Copyright

© Copyright 2004 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be
changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary
software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400,
OS/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner,
WebSphere, Netfinity, Tivoli, and Informix are trademarks or registered trademarks of IBM
Corporation in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World
Wide Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and
services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their respective companies.
Data contained in this document serves informational purposes only. National product
specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP
AG and its affiliated companies ("SAP Group") for informational purposes only, without
representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

Peripheral Input/Output Services 670 2

SAP Online Help 20.12.2005

Icons in Body Text

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Additional icons are used in SAP Library documentation to help you identify different types of
information at a glance. For more information, see Help on Help → General Information
Classes and Information Classes for Business Information Warehouse on the first page of any
version of SAP Library.

Typographic Conventions

Type Style Description

Example text Words or characters quoted from the screen. These include field
names, screen titles, pushbuttons labels, menu names, menu paths,
and menu options.

Cross-references to other documentation.
Example text Emphasized words or phrases in body text, graphic titles, and table

titles.

EXAMPLE TEXT Technical names of system objects. These include report names,
program names, transaction codes, table names, and key concepts of a
programming language when they are surrounded by body text, for
example, SELECT and INCLUDE.

Example text Output on the screen. This includes file and directory names and their
paths, messages, names of variables and parameters, source text, and
names of installation, upgrade and database tools.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Angle brackets indicate that you replace these
words and characters with appropriate entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for example, F2 or ENTER.

Peripheral Input/Output Services 670 3

SAP Online Help 20.12.2005

Peripheral Input/Output Services... 7
PIOS Release Notes.. 7

Peripheral Input/Output Services (New)... 7

Document Generator (new).. 7

Emulator (new) ... 8

Driver Selection Tool (new) .. 8

Support Package Stack 12 .. 9
Scanner API (New)... 9

Document Generator (Changed).. 9

Peripheral Input/Output Emulator (Changed)... 10

Support Package Stack 14 .. 10
RFID API (New).. 10

Document Generator (Changed).. 11

Peripheral Input/Output Emulator (Changed)... 11

Peripheral Input/Output Services Architecture... 12
PIOS Getting Started ... 14
PIOS API Core... 17
Printer API.. 18

PIOS Printer API Features Description .. 18

PIOS Printer API Guidelines .. 21

Printer API Examples ... 23

Print Text on the Left Paper.. 23

Print Text Center Alignment in Line Mode.. 24

Print Text on the Right Side.. 25

Text Drawn on the Left Side of the Page.. 26

Draw Text in the Center of the Page in Graphic Mode... 27

Text Drawn on the Right Side of the Page ... 28

Two Page Report.. 29

Image Printing with Printer in Line Mode.. 30

Printing a Barcode with Printer in Line Mode ... 32

Text Rotation .. 34

Rotate an Image ... 35

Rotating a Barcode ... 37

Configure the Printer Parameters... 39

Adding/Remove a Font Using the Client API.. 41

Scanner API ... 43
PIOS Scanner API Features Description ... 44

PIOS Scanner API Guidelines.. 47

Scanner API Examples .. 49

Peripheral Input/Output Services 670 4

SAP Online Help 20.12.2005

Add / Remove Symbologies ... 49

Beep Options .. 52

Determine Symbology .. 55

Preamble and Postamble ... 58

Soft Trigger ... 61

Wedge Mode .. 64

Using the Scanner Attributes.. 66

RFID API .. 71
PIOS RFID API Features Description .. 72

PIOS RFID API Guidelines... 73

RFID API Examples ... 75

Identify All ... 75

Identify by Tag Type ... 77

Read ... 79

Write.. 81

List Tag Types .. 84

Tag Configuration Manager .. 86

Program and Lock a Tag ID.. 87

Reset a Tag ID.. 88

PIOS Add-on Drivers ... 90
Installing a Driver Add-on ... 90

Driver Configuration ... 91

MDK Peripheral Support Actions ... 92
Driver Requirements Document Editor .. 93

Using the Driver Requirements Document Editor... 94

MDK Peripheral Support Actions Toolbar .. 95

Creating a Driver Requirements Document.. 96

Modifying the Driver Requirements Document... 97

Launching the Peripheral I/O Emulator .. 98

Set MDK Peripheral Emulation Mode... 99

Peripheral Input/Output Emulator .. 100
PIOS Emulator Menu Options .. 102

File Menu .. 102

Edit Menu.. 103

View Menu .. 103

Peripheral Options Menu.. 104

Help Menu... 104

Printer Peripheral Panel ... 104

Edit Menu for Printer Peripheral Type .. 106

Peripheral Options Menu for Printer Peripheral Type .. 106

Peripheral Input/Output Services 670 5

SAP Online Help 20.12.2005

Emulator Configuration ... 110

Property Files for Printer Peripheral Type... 110

Installing a Font in the Emulator Printer.. 111

Uninstalling a Font from the Emulator Printer ... 115

Installing New Media to the Emulator Printer.. 116

Uninstalling Media from the Emulator Printer ... 121

Installing a Font Configuration .. 122

Uninstalling a Font Configuration.. 125

Using the PIOS Emulator for the Printer Peripheral Type .. 126

Using the Measuring String... 127

Scanner Peripheral Panel .. 128

Edit Menu for Scanner Peripheral Type ... 130

Peripheral Options Menu for Scanner Peripheral Type.. 131

Using the PIOS Emulator for the Scanner Peripheral Type 134

Creating Barcode Data.. 136

Scanning Existing Barcode Data .. 139

RFID Peripheral Panel ... 140

Edit Menu for the RFID Peripheral Type .. 141

Peripheral Options Menu for RFID Peripheral Type... 142

Using the RFID Emulator.. 144

Adding RFID Tag Types.. 145

Editing RFID Tag Types.. 146

Deleting RFID Tag Types.. 147

Creating RFID Tags .. 147

Editing RFID Tags... 149

Deleting RFID Tags... 149

Cloning RFID Tags.. 150

Driver Selection Tool.. 150
Using the Driver Selection Tool.. 151

Peripheral Input/Output Services 670 6

SAP Online Help 20.12.2005

 Peripheral Input/Output Services

 PIOS Release Notes
Purpose
Release Notes only contain a summary of the new features or changes. The corresponding
documentation contains detailed information.

Peripheral Input/Output Services (New)
Technical Data

Function is New

Release Software Component

● Component: SAP_ME_SERVER_COMPONENT

● Release: MI 2.5 SP09

Assignment to Application
Component

CA-ME-SER Server-side

Country Setting Valid for all countries

Use
PIOS provides an abstraction layer between the application and the peripheral.

Document Generator (new)
This is a new component of the SAP NetWeaver Development Studio.

Technical Data

Function is New

Release Software Component

● Component: SAP_ME_SERVER_COMPONENT

● Release: MI 2.5 SP09

Assignment to Application
Component

CA-ME-NTV Native / OS specific drivers

Country Setting Valid for all countries

Use
The Document Generator is a new MDK component that enables MI developers to specify
peripheral requirements within a mobile application project. These requirements are stored
on a file called Driver Requirements Document (DRD). The DRD identifies the peripheral
types, as well as, the attributes within those peripheral types required by the application. In
this first release, the Document Generator supports the printer peripheral type.

Peripheral Input/Output Services 670 7

SAP Online Help 20.12.2005

Emulator (new)
This is a new component of the SAP NetWeaver Developer Studio.

Technical Data

Function is New

Release Software Component

● Component: SAP_ME_SERVER_COMPONENT

● Release: MI 2.5 SP09

Assignment to Application
Component

CA-ME-SER Server-side

Country Setting Valid for all countries

Use
The Peripheral I/O Emulator enables the developer to simulate the usage and functionality of
peripheral types supported under the PIOS architecture. In this first release, it provides
emulation for the printer peripheral type.

Driver Selection Tool (new)
Technical Data

Function is New

Release Software Component

● Component: SAP_ME_SERVER_COMPONENT

● Release: MI 2.5 SP09

Assignment to Application
Component

CA-ME-SER Server-side

Country Setting Valid for all countries

Use
With release MI 2.5 SP09 the Driver Selection Tool (DST) is a new technical component of
the SAP MI Web Console. Administrators need to deploy the appropriate peripheral add-on
for mobile applications. The selection process can be very complex due to multiple factors,
such as peripheral attributes, operating system, virtual machine, processor, and available
transports. These must be taken into consideration when selecting the appropriate driver.

The DST allows the system administrator to easily identify the available peripheral add-ons
that match all these requirements.

For more information, see Driver Selection Tool [Page 150] (SAP Mobile Engine → SAP ME
for Administrators → SAP MI Web Console → Driver Selection Tool).

Effects on System Administration
A button that launches the DST is enabled in the Mobile Component page of the SAP MI Web
Console.

Peripheral Input/Output Services 670 8

SAP Online Help 20.12.2005

 Support Package Stack 12

Scanner API (New)
Technical Data

Function is New

Release Software Component

● Component: SAP_ME_SERVER_COMPONENT

● Release: MI 2.5 Support Package Stack 12

Assignment to Application
Component

BC-MJC-CLN-API Mobile Public Interface

Country Setting Valid for all countries

Use
With release MI 2.5 Support Package Stack 12 the Scanner API is a new technical
component of the SAP MI Client API. It provides an abstraction layer between the application
and the scanner peripheral type. The developer can access the scanner features provided by
PIOS through the MI Client API.

For more information, see PIOS Scanner API Features Description [Page 44].

Document Generator (Changed)
Technical Data

Function is Changed

Release Software Component

● Component: SAP_ME_SERVER_COMPONENT

● Release: MI 2.5 Support Package Stack 12

Assignment to Application
Component

BC-MJC-CLN-NTV Mobile Native / OS specific drivers

Country Setting Valid for all countries

Use
With Release MI 2.5 Support Package Stack 12 support for the scanner peripheral type has
been added to the Document Generator.

For more information about the scanner peripheral type see PIOS Scanner API Features
Description [Page 44].

Peripheral Input/Output Services 670 9

SAP Online Help 20.12.2005

Peripheral Input/Output Emulator (Changed)
Technical Data

Function is Changed

Release Software Component

● Component: SAP_ME_SERVER_COMPONENT

● Release: MI 2.5 Support Package Stack 12

Assignment to Application
Component

BC-MJC-SER Mobile Server-side

Country Setting Valid for all countries

Use
With Release MI 2.5 Support Package Stack 12 the ability to emulate the scanner peripheral
type has been added to the Emulator.

For more information about the scanner peripheral type see PIOS Scanner API Features
Description [Page 44].

Support Package Stack 14

RFID API (New)
Technical Data

Function is New

Release Software Component

● Component: MI_MDK

● Release: MI 2.5 Support Package Stack 14

Assignment to Application
Component

BC-MOB-CLN-NTV-RFI Mobile RFID

Country Setting Valid for all countries

Use
With release MI 2.5 Support Package Stack 14 the RFID API is a new technical component of
the SAP MI Client API. It provides an abstraction layer between the application and the RFID
peripheral type. The developer can access the RFID features provided by PIOS through the
MI Client API.

For more information, see PIOS RFID API Features Description [Page 72].

Peripheral Input/Output Services 670 10

SAP Online Help 20.12.2005

Document Generator (Changed)
Technical Data

Function is Changed

Release Software Component

● Component: MI_MDK

● Release: MI 2.5 Support Package Stack 14

Assignment to Application
Component

BC-MOB-IDE-MDK Mobile Applications Development Kit

Country Setting Valid for all countries

Use
With Release MI 2.5 Support Package Stack 14 support for the RFID peripheral type has
been added to the Document Generator.

For more information about the RFID peripheral type, see PIOS RFID API Features
Description [Page 72].

Peripheral Input/Output Emulator (Changed)
Technical Data

Function is Changed

Release Software Component

● Component: MI_MDK

● Release: MI 2.5 Support Package Stack 14

Assignment to Application
Component

BC-MOB-IDE-MDK Mobile Applications Development Kit

Country Setting Valid for all

Use
With release MI 2.5 Support Package Stack 14 the ability to emulate the RFID peripheral type
has been added to the Emulator.

For more information about the RFID peripheral type, see PIOS RFID API Features
Description [Page 72].

Peripheral Input/Output Services 670 11

SAP Online Help 20.12.2005

 Peripheral Input/Output Services Architecture
Purpose
Services provided by the SAP Mobile Infrastructure to provide peripheral access to mobile
applications. PIOS provides an abstraction layer between the application and the peripheral.
A developer using PIOS does not have to be concerned about the implementation details of
each peripheral model supported. Instead the developer will target abstracted functionality
provided by the peripheral and required by the application.

Integration
The PIOS architecture has design components, runtime components and an administration
component. The design time components are integrated in the SAP NetWeaver Developer
Studio. Runtime components and the administration component are integrated in the SAP
Mobile Client and the SAP Web Console respectively.

Design-time components:

MDK Peripheral Support Actions - SAP NetWeaver Developer Studio toolbar
components used to define and emulate the peripheral features required by an MI
application.

● Create/Modify Driver Requirements Document - Launches a wizard to specify the
mobile application peripheral requirements.

● Set MDK Peripheral Emulation Mode - Configures the SAP NetWeaver Developer
Studio to run the application peripheral actions/requests in emulation mode.

● Launch the Peripheral I/O Emulator - Launches the Peripheral I/O Emulator
(described below).

Peripheral Emulator - Emulates peripheral functionality according to settings determined
by the developer.

Run-time components:

PIOS Classes in the SAP MI Client - Used to discover, connect, and use functionality
available in supported peripheral types.

Driver Add-on - Component containing the software modules required to make use of a
specific peripheral model on a client device.

Administrative component:

Driver Selection Tool in the SAP Web Console - Identifies available peripheral drivers that
match the peripheral requirements of a mobile application (as specified in the Driver
Requirements Document).

Peripheral Input/Output Services 670 12

SAP Online Help 20.12.2005

Example
The following diagram provides an overview of the PIOS architecture:

Developer

Define peripheral
requirements for the
mobile application

SAP Netweaver Developer Studio
SAP Web Console

Develop Application

Test application

MDK Peripheral
Support Actions

Peripheral I/O
Emulator

MI Client API

System
Administrator

MI Application

Driver Req.
Doc

Driver Selection
Tool

List of
recommended

peripheral models
and drivers that

satisfy the
application

requirements

See Also
For more information about the Peripheral Input/Output Services Architecture and answers to
frequently asked questions, refer to SAP Note 853397.

Peripheral Input/Output Services 670 13

SAP Online Help 20.12.2005

 PIOS Getting Started
Use
The procedure explained below provides a quick walkthrough of the PIOS Architecture. The
process will start by using the Client API to do a simple example, setting the development
environment to test the application in the emulator, and finally the application will run in the
emulator and the printer.

Prerequisites
● SAP Mobile Infrastructure installed.

● SAP NetWeaver Developer Studio installed and configured.

○ Complete MDK configuration.

■ MI login user name

■ MI login password

● MI Client installed and successfully synchronized.

Procedure
1. Open the SAP NetWeaver Developer Studio.

2. Create a new MI Project by pressing the MDK: Create a new MI project button.
Select the JSP Project radio button and fill out all the required fields (Project Name,
Project root folder, and so on). Leave the JSP name field with the dafult value
(initial.jsp). Press Finish.

If a browser windows with the XML shows up, close it.

3. Select the project you just created on the MI Projects list and then click on
Create/Modify Driver Requirements Document.

4. Select Printer and then click Add → Finish. This will open the Driver Requirements
Document Editor.

5. On the Driver Requirements Document Editor check the boxes for Bitmapped fonts and

Scalable fonts. Click on Save.

6. Completely replace the code in the initial.jsp, whose tab is at the top of the DRD Editor,
file with the code below:

Peripheral Input/Output Services 670 14

SAP Online Help 20.12.2005

<%@ page import="com.sap.ip.me.api.pios.connection.*" %>
<%@ page import="com.sap.ip.me.api.pios.printer.*" %>

<html>
<head>

<!-- You can place a image here to return to ME home page: 127.0.0.1
= localhost on the Desktop and also works on the PDA

 <img src="mimes/myGIF.gif"
alt="ME Home" >
 -->

</head>
<body>

 <jsp:useBean id="servletToJSPBean" scope="session"
 class="miProjectPackage.bean.dataBean" />

<!-- For event handling we need a HTML "form" command -->
 <form method="post" action="start" id="myForm1" name="form">

<!-- Display title of the example -->
 <h4>Hello World Example</h4>

 Look at the Emulator.

 </form>

<%
 GraphicPrinter gP = null;
 try{

 Connector conn = Connector.getInstance();

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);

 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);

 gP = (GraphicPrinter) conn.open(params);

 String[] sFonts =
 gP.getFontConfigurationManager().listFontNames();

 PrinterFont pF = gP.getFont(sFonts[0]);

 gP.drawText(pF, 10, 10, "Hello World!", 0);

 gP.doPrint(1);

 gP.close();

 }
 catch (Throwable error){
 error.printStackTrace();
 }
 finally {
 try {
 gP.close();
 }
 catch (Exception ex){
 }
 }
%>
</body>
</html>

Peripheral Input/Output Services 670 15

SAP Online Help 20.12.2005

7. Save the file by clicking on Save.

8. Export the project by pressing the MDK: Export a project into a MI archive
(.war/.jar). Select the project from the MI Projects list and hit the Next button. Write
/initial.jsp on URL pattern.

9. Upload the newly created .war file to the SAP Web Console. Be sure to assign the
same name to the application as the name of the .war file itself.

10. Assign the .war file to your MI Client.

11. Start the MI Client and log on to it. Synchronize the MI Client to download the
application (.war file). Restart the MI Client.

12. Set on the emulation mode by clicking on Set MDK Peripheral Emulation Mode.

13. Launch the Emulator by clicking on Launch the Peripheral I/O Emulator.

14. Set the emulator Offline by clicking On/Offline, and then click on
Capability… In the General tab, make sure that Page Measurements is not checked
Select the Media tab and on Type select Continuous. When the Setup Reminder d
box comes up, select Y

.
ialog

es.

If the Setup Reminder dialog box does not come up, click on Setup...

15. In the Printer Setup window, under the Media tab, select Continuous_4 and click OK.

16. Run the application by clicking on MDK: Export a project into a MI archive
(.war/.jar). Then click on Next and select the checkboxes for Run the mobile application
and Uppercase for MI archive name, in the URL pattern field write /initial.jsp.

To run the application again, choose Run → Run… Select the project under
Configurations and click on Run. (The Package Explorer tab must be selected.)

17. Click on Finish. The message “Hello World!” is displayed in the Emulator.

Alternate scenario: printing using the Windows driver:
...

1. Install the connector and piprmswin32 driver add-ons to the SAP Web Console.

● For Windows 2000, the files are

○ connector_w2k_x86_jvm_1_1_0

○ piprmswin32_w2k_x86_jvm_1_1_0

● For Windows XP, the files are

○ connector_wxp_x86_jvm_1_1_0

○ piprmswin32_wxp_x86_jvm_1_1_0

Peripheral Input/Output Services 670 16

SAP Online Help 20.12.2005

2. Perform a synchronization to install the Driver Add-Ons.

3. Set the emulation mode off by clicking on Set MDK Peripheral Emulation Mode.

4. Run the application by clicking on MDK: Export a project into a MI archive
(.war/.jar). Then click on Next and select the checkboxes for Run the mobile application
and Uppercase for MI archive name, in the URL pattern field write /initial.jsp.

5. Click on Finish. “Hello Word” is printed in the default printer configured.

 PIOS API Core
Purpose
The PIOS API Core includes classes used to discover, connect and use functionality
available across different peripheral types. It provides an abstraction layer between the
application and the peripheral. A developer using PIOS does not have to be concerned about
the implementation details of each peripheral model supported. Instead the developer will
target abstracted functionality provided by the peripheral and required by the application.

Implementation Considerations
The abstraction provided by the PIOS API also extends to provide peripheral support across
several platforms (OS, JVMs, processors).

Integration
The PIOS API Core is part of the MI Client API.

Features
The PIOS API Core contains common functionality available across peripheral types. For
example, it includes methods to:

● discover peripheral drivers installed on the device

● open a connection to a peripheral

● configure the driver

Refer to the MI Client API javadocs for detailed method description.

Constraints
● Peripheral models may offer additional functionality not supported by the PIOS API.

Peripheral Input/Output Services 670 17

SAP Online Help 20.12.2005

 Printer API
Purpose
Printer support in the SAP Mobile Infrastructure is offered as part of the Peripheral
Input/Output Services (PIOS). The Printer API provides an abstraction layer between the
intricacies of different printer drivers and the application.

Integration
The Printer API is part of the MI Client API.

Features

● Refer to the Printer API javadocs for detailed method description.

● Refer to Features Description [Page 18].

Constraints
● Printer models may offer additional features not supported by this API.

● Supported functionality varies according to printer make and model.

 PIOS Printer API Features Description
Definition
PIOS Printer API provides support for several features. These features vary depending on the
printer make and model. The table below provides a description for these features:

Printable Objects

Printable Object Description

Bitmap Image Images in bitmap format.

PCX Image Images in PCX format.

Scalable Fonts Fonts based on Vector graphics and scale without degradation.

Bitmap Fonts Fonts made of character images and may present some degradation
when scaled up.

Barcode Barcode printing.

Peripheral Input/Output Services 670 18

SAP Online Help 20.12.2005

Printer Features

Printer Feature Description

Clear Error Clear error condition from the printer.

Advance Forward Advances the paper forward.

Advance Backward Retracts the paper.

Dispose Dispose of the commands sent to the printer. (No information is
printed.)

Get Status Queries the printer status.

Page measurements Page length and width given in points.

Printer Head width Obtain the printer head width (in points).

Text metrics Obtain the text dimension (in points) based on the font.

Barcode metrics Obtain the barcode dimension (in points).

Image metrics Obtain the image dimension (in points).

Load Image Upload an image into the printer’s memory.

Delete Image Delete an image from the printer’s memory.

Get DPI (Dot per inch) Returns the printer’s resolution.

Transport Configuration Modify and set the default transport (i.e. Serial, Bluetooth) options.

Font Configuration Configure (add, delete, change) font information.

Send Raw Data Sends raw bytes to the printer. This option sends the bytes
(information) submitted directly to the printer, without any intervention
from the API.

This feature should be used with caution. The printer
may exhibit unexpected behavior if invalid data is sent to
it.

Graphic Mode Printing

Graphic Mode Feature Description

Barcode Rotation Barcode rotation in 90º increments. Barcodes can be rotated to 90º,
180º, and 270º.

Image Rotation Image rotation in 90º increments. Images can be rotated to 90º, 180º,
and 270º.

Text Rotation Text rotation in 90º increments. Text can be rotated to 90º, 180º, and
270º.

Line thickness Set the line thickness. (in points)

Draw Text Print text.

Page measurements Page length and width given in points (for non-continues paper).

Draw Barcode Print barcodes.

Draw Line Print lines.

Draw Rectangle Print rectangles.

Draw Image Print images.

Peripheral Input/Output Services 670 19

SAP Online Help 20.12.2005

Line Mode Printing

Line Mode Feature Description

Barcode Alignment Align a barcode in a line (center, right, left).

Image Alignment Align an image in a line (center, right, left).

Text Alignment Align text in a line (center, right, left).

Print Text Print text in a line.

Print Barcode Print barcodes in a line.

Print Image Print images in a line.

Set Line Spacing Defines the space in points between two lines (in points).

Symbology

Symbology Description

Codabar Support for Codabar barcode symbology.

Code 39 Support for Code 39 barcode symbology.

Code 128 Support for Code 128 barcode symbology.

EAN-8 Support for EAN-8 barcode symbology.

EAN-13 Support for EAN-13 barcode symbology.

Interleaved 2 of 5 Support for Interleaved 2 of 5 barcode symbology.

PDF417 Support for PDF-417 (Portable Data Format) 2D barcode symbology.

UCC/EAN-128 Support for UCC/EAN barcode symbology.

UPC-A Support for Universal Product Code (UPC) barcode symbology.

Peripheral Input/Output Services 670 20

SAP Online Help 20.12.2005

 PIOS Printer API Guidelines
Definition
This document explains several guidelines for the PIOS Printer API of the SAP NetWeaver
Developer Studio. Each of the guidelines is discussed below.

Use
These guidelines are intended for all the developers working on the SAP NetWeaver
Developer Studio in a mobile application with printer peripheral requirements. It helps the
developer get the most out of the PIOS infrastructure. The developer can access these
features provided by PIOS through the MI Client API.

1. Printer Connection

Since multiple applications can be running in a mobile device at a given time it is
recommended that mobile applications should open the connection to the printer when they
are ready to send data to the printer and close the connection when they have finished. This
prevents other applications from having to wait for the first one to close before they can open
a connection. Otherwise if a mobile application opens the printer connection when it starts
and does not close it until it finishes, no other application may use the printer until the first one
finishes. Any other mobile application, that tries to open a connection to the scanner, will
receive an error message.

2. DPI Awareness

DPI stands for “Dots Per Inch”, and it is the standard unit of measure used for printer
resolution. Different printer models may have different resolutions. A developer should be
aware of this fact while writing an application that works with more than one printer model. If
the application prints an image, the size of the printed image may vary depending on the
printer resolution. For instance, an image printed with a resolution of 300 dpi may be twice as
large as an image printed with a 600 dpi resolution. Developers should write applications
handling possible DPIs.

3. Printer Head Width

Printer head width information, returned in points, should be used by MI developers to avoid
hard-coding this information into mobile applications. Doing so will limit the capabilities to run
the application on multiple printer models.

4. Page Size Awareness

If an application is written for a printer that uses the Page measurements attribute (only
supported for non-continuous paper printers), it can take advantage of this feature and
position the fields to be printed according to the paper size. The term “fields” as used in this
paragraph refers to text, lines, images, and barcodes.

5. Use of Field Metrics

Given the fact that printers vary in size, developers should make use of the field and page
metrics to position images, barcodes, and graphics on the printed page.

Peripheral Input/Output Services 670 21

SAP Online Help 20.12.2005

6. Image Handling

Since loading images is time consuming, images should be loaded during the application
installation cycle. In other words, the loading and deletion of images should not occur
continuously throughout the execution of the mobile application.

7. Font Mapping

The API has virtual fonts that map to physical fonts in the printer. Virtual fonts can be added,
removed, or modified. It is important to remember that if a font (virtual) is added in the API,
then its counterpart, the physical font, must be added to the printer as well. Also a new virtual
font can be set to be a copy of an existing font with modified attributes. The font name
parameter must exist in the printer.

8. Scalable and Bitmapped Fonts

It is recommended to use scalable fonts over bitmapped fonts whenever possible (not all
printers support both font types). Scalable fonts make better use of higher resolutions
because they are based on vector graphics, and are more easily scaled than bitmapped.
Bitmapped fonts may make their pixels evident when their size is enlarged.

9. Printing Copies

Printing several copies of the same data should be done by providing the desired number of
copies to the doPrint() method. There is no need to go through another print cycle, sending
the same data for a copy.

10. Un-buffered Methods

These are methods that are directly sent to the printer. They do not pass through the printer
buffer and therefore cannot be cancelled. The un-buffered methods are clearError(),
getStatus(), and advance().

The advance method must be used only to position the print head to a specific
position on the paper. To move forward in line mode developers should use the
printText() method using an empty string.

11. Raw Bytes

A send raw bytes method exists but its use is not encouraged as it ties applications to specific
printer models. The resulting behavior, for other printer models, cannot be predicted.

Peripheral Input/Output Services 670 22

SAP Online Help 20.12.2005

 Printer API Examples
This section contains Printer API examples.

 Print Text on the Left Paper
In this example the Printer is in Line mode and a line is printed with left alignment. The
program performs the following steps:
...

1. Opens the connection to the printer.

2. Prints the sample text with left alignment.

3. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class TextLeftLineMode {

 public static void main(String[] args) {

 LinePrinter lP = null;

 try{

 Connector conn = Connector.getInstance();

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);
 params.setPrinterMode(PrinterParameters.LINE_MODE);

 //----------------------(1)--------------------

 lP = (LinePrinter) conn.open(params);

 String[] sFonts =
 lP.getFontConfigurationManager().listFontNames();

 PrinterFont pF = lP.getFont(sFonts[0]);

 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 //----------------------(2)--------------------

 lP.printText(pF,"Left side of the line.",
 LinePrinter.ALIGN_LEFT);

 lP.doPrint(1);

 }

 catch (Throwable error){
 error.printStackTrace();
 } finally {
 //----------------------(3)--------------------
 try {
 lP.close();
 } catch (Exception ex) {}
 }
 return;
 }
}

Peripheral Input/Output Services 670 23

SAP Online Help 20.12.2005

 Print Text Center Alignment in Line Mode
This example demonstrates text aligned in the center of the line with the printer in Line mode.
The program does the following:
...

1. Opens the connection to the printer.

2. Prints the text with center alignment.

3. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class TextCenterLineMode {

 public static void main(String[] args) {

 LinePrinter lP = null;

 try{

 Connector conn = Connector.getInstance();

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);

 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.LINE_MODE);

 //----------------------(1)--------------------

 lP = (LinePrinter) conn.open(params);
 String[] sFonts =
 lP.getFontConfigurationManager().listFontNames();
 PrinterFont pF = lP.getFont(sFonts[0]);
 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 //----------------------(2)--------------------

 lP.printText(pF, "Center of the line.",
 LinePrinter.ALIGN_CENTER);
 lP.doPrint(1);

 }

 catch (Throwable error){
 error.printStackTrace();
 } finally {

 //----------------------(3)--------------------

 try {

 lP.close();

 } catch (Exception ex) {}

 }

 return;

 }

}

Peripheral Input/Output Services 670 24

SAP Online Help 20.12.2005

 Print Text on the Right Side
In this example the printer is in Line mode and the text is printed on the right side of the page.
This program follows the steps below:
...

1. Opens the connection to the printer.

2. Prints the text with right alignment.

3. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class TextRightLineMode {

 public static void main(String[] args) {

 LinePrinter lP = null;

 try{

 Connector conn = Connector.getInstance();

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);

 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.LINE_MODE);

 //----------------------(1)--------------------

 lP = (LinePrinter) conn.open(params);

 String[] sFonts =
 lP.getFontConfigurationManager().listFontNames();

 PrinterFont pF = lP.getFont(sFonts[0]);

 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 //----------------------(2)--------------------

 lP.printText(pF, "Right side of the line. ",
 LinePrinter.ALIGN_RIGHT);

 lP.doPrint(1);

 }
 catch (Throwable error){

 error.printStackTrace();

 } finally {

 //----------------------(3)--------------------

 try {
 lP.close();

 } catch (Exception ex) {}
 }
 return;
 }

}

Peripheral Input/Output Services 670 25

SAP Online Help 20.12.2005

 Text Drawn on the Left Side of the Page
This example draws the text on the left of the page. The printer is in Graphic mode. This
program follows the steps below:
...

1. Opens the connection to the printer.

2. Calculates the bottom of the page using the page and font metrics.

3. Draws the text on the bottom left corner of the page.

4. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class TextLeftGraphicMode {

 public static void main(String[] args) {

 float xLeft = 0, yBottom = 0;
 String sText="Text in the left bottom corner of the page.";
 GraphicPrinter gP = null;

 try{

 Connector conn = Connector.getInstance();
 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);
 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);
 //----------------------(1)--------------------

 gP = (GraphicPrinter) conn.open(params);
 String[] sFonts =
 gP.getFontConfigurationManager().listFontNames();
 PrinterFont pF = gP.getFont(sFonts[0]);

 //----------------------(2)--------------------

 yBottom = gP.getPageMetrics().getHeight() -
 pF.getMetrics(sText).getHeight() - 10;

 //----------------------(3)--------------------

 gP.drawText(pF, xLeft, yBottom, sText,
 GraphicPrinter.NO_ROTATION);
 gP.doPrint(1);

 }
 catch (Throwable error){
 error.printStackTrace();

 } finally {

 //----------------------(4)--------------------
 try {

 gP.close();

 } catch (Exception ex) {}
 }
 return;
 }
}

Peripheral Input/Output Services 670 26

SAP Online Help 20.12.2005

 Draw Text in the Center of the Page in Graphic
Mode
This example demonstrates a line printed in the center of the page with the printer in Graphic
mode. The program does as explained below:
...

1. Opens connection to the printer

2. Using the page and font metrics, calculates the coordinates for the text to be in the
center of the page.

3. Draws the text on the center of the page.

4. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class TextCenterGraphicMode {

 public static void main(String[] args) {

 float xCenter=0, yCenter=0;
 String sText="This text is on the center.";
 GraphicPrinter gP = null;
 try{

 Connector conn = Connector.getInstance();
 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);
 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);
 //----------------------(1)--------------------

 gP = (GraphicPrinter) conn.open(params);
 String[] sFonts =
 gP.getFontConfigurationManager().listFontNames();
 //----------------------(2)--------------------

 PrinterFont pF = gP.getFont(sFonts[0]);
 yCenter = (gP.getPageMetrics().getHeight()/2) -
 pF.getMetrics(sText).getHeight()/2);
 Metrics metrics = pF.getMetrics(sText);
 float pageWidth = gP.getPageMetrics().getWidth();
 xCenter = (pageWidth/2) - (metrics.getWidth()/2);
 //----------------------(3)--------------------

 gP.drawText(pF, xCenter, yCenter, sText,
 GraphicPrinter.NO_ROTATION);
 gP.doPrint(1);
 }
 catch (Throwable error){
 error.printStackTrace();
 } finally {
 //----------------------(4)--------------------
 try {
 gP.close();
 } catch (Exception ex) {}

 }
 return;
 }
}

Peripheral Input/Output Services 670 27

SAP Online Help 20.12.2005

 Text Drawn on the Right Side of the Page
In this example the code draws text on the right side of the page. The printer is in Graphic
mode. The program does as follows:
...

1. Opens the connection to the printer.

2. Uses page and font metrics to calculate the coordinates for the text to print on the right.

3. Draws the text at the calculated coordinates.

4. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class TextRightGraphicMode {

 public static void main(String[] args) {

 float xRight=0, y=15;
 String sText="This text is on the right.";

 GraphicPrinter gP = null;

 try{
 Connector conn = Connector.getInstance();
 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);

 //----------------------(1)--------------------

 gP = (GraphicPrinter) conn.open(params);
 String[] sFonts =
 gP.getFontConfigurationManager().listFontNames();
 PrinterFont pF = gP.getFont(sFonts[0]);
 //----------------------(2)--------------------

 xRight = gP.getPageMetrics().getWidth() -
 pF.getMetrics(sText).getWidth() - 10;
 //----------------------(3)--------------------

 gP.drawText(pF, xRight, y, sText,
 GraphicPrinter.NO_ROTATION);

 gP.doPrint(1);
 }
 catch (Throwable error){
 error.printStackTrace();
 } finally {
 //----------------------(4)--------------------
 try {
 gP.close();
 } catch (Exception ex) {}
 }

 return;

 }

}

Peripheral Input/Output Services 670 28

SAP Online Help 20.12.2005

 Two Page Report
This small program prints a two page report. The printer is in Graphic mode. This program
does the following:
...

1. Opens connection to the printer.

2. Draws the first page with a sample text.

3. Draws the second page with another sample text.

4. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class TwoPageReport {

 public static void main(String[] args) {

 int x=15, y=17;
 GraphicPrinter gP = null;

 try{

 Connector conn = Connector.getInstance();

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);

 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);

 //----------------------(1)--------------------

 gP = (GraphicPrinter) conn.open(params);

 String[] sFonts =
 gP.getFontConfigurationManager().listFontNames();

 PrinterFont pF = gP.getFont(sFonts[0]);

 //----------------------(2)--------------------

 gP.drawText(pF, x, y, "First Page", 0);
 gP.doPrint(1);

 //----------------------(3)--------------------

 gP.drawText(pF, x, y, "Second Page", 0);
 gP.doPrint(1);

 }
 catch (Throwable error){
 error.printStackTrace();
 } finally {

 //----------------------(4)--------------------

 try {

 gP.close();

 } catch (Exception ex) {}
 }
 return;
 }
}

Peripheral Input/Output Services 670 29

SAP Online Help 20.12.2005

 Image Printing with Printer in Line Mode
This example demonstrates how to print an image with the printer in Line mode. In this case
there is a bitmap image file called “test.bmp”, which is stored in “C:\TEMP\”. This program
does as explained below:
...

1. Lists the drivers.

2. Opens the image file.

3. Opens connection to the printer.

4. Loads the image into the printer.

5. Prints the image.

6. Closes connection to the printer.

package test;

import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class ImageLineMode {

 public static void main(String[] args) {

 LinePrinter lP = null;
 PrinterImage image = null;

 try {

 Connector conn = Connector.getInstance();

 //----------------------(1)--------------------

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);
 params.setPrinterMode(PrinterParameters.LINE_MODE);
 try {

 //-------------------(2)--------------------

 File testImage = new File("C:\\TEMP\\test.bmp");
 if (testImage.exists()) {
 BufferedInputStream bfis = null;
 try {
 bfis = new BufferedInputStream(
 new FileInputStream(testImage));
 int bufferSize = (int)testImage.length();
 byte[] imageBytes = new byte[bufferSize];
 int i = bfis.read(imageBytes, 0, bufferSize);

 //-------------(3)--------------------

 lP = (LinePrinter) conn.open(params);

 if (i > 0) {

 image = lP.createImage("test",
 PrinterImage.IMAGE_BMP, imageBytes);

Peripheral Input/Output Services 670 30

SAP Online Help 20.12.2005

 //----------(4)--------------------

 lP.loadImage(image);

 }

 }

 finally {

 if (bfis != null) bfis.close();

 }

 }

 }

 catch (Throwable tFile) {

 tFile.printStackTrace();

 }

 String[] sFonts =
 lP.getFontConfigurationManager().listFontNames();

 PrinterFont pF = lP.getFont(sFonts[0]);

 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 //----------------------(5)--------------------

 lP.printImage(image.getName(), LinePrinter.ALIGN_CENTER);

 lP.doPrint(1);

 }

 catch (Throwable error){

 error.printStackTrace();

 } finally {

 //----------------------(6)--------------------

 try {

 lP.close();

 } catch (Exception ex) {}

 }

 return;

 }

}

Peripheral Input/Output Services 670 31

SAP Online Help 20.12.2005

 Printing a Barcode with Printer in Line Mode
In this code a barcode is printed using Code 39 symbology. The "Full ASCII" and "Check Digit
mod43" options are set for the symbology. This code performs the following:
...

1. Opens connection to the printer.

2. Creates a barcode with Human Readable Below.

3. Sets the density for the barcode to the default.

4. Sets the height of the barcode to 10.

5. Sets the Scale of the barcode to Double.

6. Encodes the data used, 10101, using ASCII.

7. Sends barcode to the printer.

8. Closes connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;
import com.sap.ip.me.api.pios.symbology.*;

public class BarcodeLineMode {

 public static void main(String[] args) {

 LinePrinter lP = null;

 try{

 Connector conn = Connector.getInstance();
 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.LINE_MODE);

 Symbology symbology = new Code39();

 symbology.setOptions(Code39.FULLASCII |
 Code39.CHECK_DIGIT_MOD43);

 //----------------------(1)--------------------

 lP = (LinePrinter) conn.open(params);

 String[] sFonts =
 lP.getFontConfigurationManager().listFontNames();

 PrinterFont pF = lP.getFont(sFonts[0]);

 //----------------------(2)--------------------

 PrinterBarcode barcode = lP.createBarcode(symbology,
 PrinterBarcode.HUMAN_READABLE_BELOW);

 //----------------------(3)--------------------

 barcode.setDensity(PrinterBarcode.DENSITY_DEFAULT);

 //----------------------(4)--------------------

 barcode.setHeight(10);

Peripheral Input/Output Services 670 32

SAP Online Help 20.12.2005

 //----------------------(5)--------------------

 barcode.setScaleFactor(PrinterBarcode.SCALE_DOUBLE);

 //----------------------(6)--------------------

 byte[] data = "10101".getBytes("ASCII");

 //----------------------(7)--------------------

 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 lP.printBarcode(barcode, data, LinePrinter.ALIGN_CENTER);

 lP.doPrint(1);

 }

 catch (Throwable error){

 error.printStackTrace();

 } finally {

 //----------------------(8)--------------------

 try {

 lP.close();

 } catch (Exception ex) {}

 }

 return;

 }

}

Peripheral Input/Output Services 670 33

SAP Online Help 20.12.2005

 Text Rotation
This example demonstrates text rotation. The printer is in Graphic mode. This program
follows the steps below:
...

1. Opens the connection to the printer.

2. Gets the text metrics, width and height.

3. Draws the text with a rotation of 180 degrees.

4. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class RotateText {

 public static void main(String[] args) {

 float x=0, y=0;
 String sText="This is a line of text.";
 GraphicPrinter gP = null;

 try{

 Connector conn = Connector.getInstance();
 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);
 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);

 //----------------------(1)--------------------

 gP = (GraphicPrinter) conn.open(params);
 String[] sFonts =
 gP.getFontConfigurationManager().listFontNames();
 PrinterFont pF = gP.getFont(sFonts[0]);

 //----------------------(2)--------------------

 x = pF.getMetrics(sText).getWidth() + 10;
 y = pF.getHeight() + 15;

 //----------------------(3)--------------------

 gP.drawText(pF, x, y,
 sText,GraphicPrinter.ROTATE_180_DEGREES);

 gP.doPrint(1);

 }
 catch (Throwable error){
 error.printStackTrace();
 } finally {
 //----------------------(4)--------------------
 try {
 gP.close();
 } catch (Exception ex) {}
 }
 return;
 }
}

Peripheral Input/Output Services 670 34

SAP Online Help 20.12.2005

 Rotate an Image
This example below shows demonstrates rotating an image using the PIOS Client API. In this
case there is a bitmap image file called “test.bmp”, which is stored in “C:\TEMP\”. The printer
is Graphic mode. This program follows the steps below:
...

1. Opens the image file.

2. Opens the connection to the printer.

3. Loads the image to the printer's memory.

4. Gets the image height.

5. Draws the image with a 90 degree rotation.

6. Closes the connection to the printer.

package test;

import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;

public class RotateImage {

 public static void main(String[] args) {

 GraphicPrinter gP = null;
 PrinterImage image = null;
 float x = 0, y = 15;

 try {

 Connector conn = Connector.getInstance();
 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);
 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);

 try {

 //-------------------(1)--------------------
 File testImage = new File("C:\\TEMP\\test.bmp");
 if (testImage.exists()) {
 BufferedInputStream bfis = null;

 try {
 bfis = new BufferedInputStream
 (new FileInputStream(testImage));
 int bufferSize = (int)testImage.length();
 byte[] imageBytes = new byte[bufferSize];
 int i = bfis.read(imageBytes, 0, bufferSize);

 //-------------(2)--------------------

 gP = (GraphicPrinter) conn.open(params);

 if (i > 0) {
 image = gP.createImage("test",
 PrinterImage.IMAGE_BMP, imageBytes);

Peripheral Input/Output Services 670 35

SAP Online Help 20.12.2005

 //----------(3)--------------------

 gP.loadImage(image);

 }

 }

 finally {

 if (bfis != null) bfis.close();

 }

 }

 }

 catch (Throwable tFile) {

 tFile.printStackTrace();

 }

 //----------------------(4)--------------------

 x = image.getMetrics().getHeight() + 10;

 //----------------------(5)--------------------

 gP.drawImage(image.getName(), x, y,
 GraphicPrinter.ROTATE_90_DEGREES);

 gP.doPrint(1);

 }

 catch (Throwable e){

 e.printStackTrace();

 } finally {

 //----------------------(6)--------------------

 try {

 gP.close();

 } catch (Exception ex) {}

 }

 return;

 }

}

Peripheral Input/Output Services 670 36

SAP Online Help 20.12.2005

 Rotating a Barcode
This example demonstrates how to rotate a barcode. Rotation of a barcode is only possible
with the printer in Graphic mode. This program does the following:
...

1. Sets the symbology options for Full ASCII and Check Digit Mod43.

2. Opens the connection to the printer.

3. Sets for the barcode: Human Readable Below, Default Density, Double Scale.

4. Encodes the data, 32123, using ASCII.

5. Gets the metrics for the barcode.

6. Draws the barcode rotating it 270 degrees.

7. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;
import com.sap.ip.me.api.pios.symbology.*;

public class RotateBarcode {

 public static void main(String[] args) {

 float x=0, y=0;
 GraphicPrinter gP = null;
 try{

 Connector conn = Connector.getInstance();
 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);

 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.GRAPHIC_MODE);

 Symbology symbology = new Code39();

 //----------------------(1)--------------------

 symbology.setOptions(Code39.FULLASCII |
 Code39.CHECK_DIGIT_MOD43);

 //----------------------(2)--------------------

 gP = (GraphicPrinter) conn.open(params);

 //----------------------(3)--------------------

 PrinterBarcode barcode = gP.createBarcode(symbology,
 PrinterBarcode.HUMAN_READABLE_BELOW);

 barcode.setDensity(PrinterBarcode.DENSITY_DEFAULT);
 barcode.setHeight(10);
 barcode.setScaleFactor(PrinterBarcode.SCALE_DOUBLE);

 //----------------------(4)--------------------

 byte[] data = "32123".getBytes("ASCII");

Peripheral Input/Output Services 670 37

SAP Online Help 20.12.2005

 //----------------------(5)--------------------

 x = barcode.getHeight() + 10;
 y = barcode.getMetrics(data).getWidth() + 15;

 //----------------------(6)--------------------

 gP.drawBarcode(barcode, x, y,
 data,GraphicPrinter.ROTATE_270_DEGREES);

 gP.doPrint(1);

 }

 catch (Throwable error){

 error.printStackTrace();

 } finally {

 //----------------------(7)--------------------

 try {

 gP.close();

 } catch (Exception ex) {}

 }

 return;

 }

}

Peripheral Input/Output Services 670 38

SAP Online Help 20.12.2005

 Configure the Printer Parameters
This example demonstrates how to configure a printer parameter in the piprmswin32 driver.
The parameter to display a printer selection pop-up window is set to true, used, and then set
to false. The printer is in Line mode. This program follows the steps mentioned below:
...

1. Opens connection to the printer.

2. Gets the configuration manager for the driver.

3. Using the configuration manager gets the parameter of the driver.

4. Sets the value of the parameter to true.

5. Closes and reopens connection to the printer for the change to the parameter value to
take effect.

6. Prints some sample text.

7. Finally, sets the parameter back to false.

8. Closes the connection to the printer.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;
import com.sap.ip.me.api.pios.configuration.*;

public class ConfigurePrinterParameters {

 public static void main(String[] args) {

 LinePrinter lP = null;

 try {

 //----------------------(1)--------------------

 Connector conn = Connector.getInstance();

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);

 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.LINE_MODE);

 lP = (LinePrinter) conn.open(params);

 //----------------------(2)--------------------

 DriverConfigurationManager manager =
 lP.getParameters().getDriver().getConfigurationManager();

 //----------------------(3)--------------------

 Configuration config1 =
 manager.getConfiguration("DriverParameters");

 //----------------------(4)--------------------

 String promptUser = config1.getParameters()[0];

 config1.setParameterValue(promptUser, "true");

 manager.save();

Peripheral Input/Output Services 670 39

SAP Online Help 20.12.2005

 //----------------------(5)--------------------

 lP.close();

 lP = (LinePrinter) conn.open(params);

 //-------------------(6)--------------------

 String[] sFonts =
 lP.getFontConfigurationManager().listFontNames();

 PrinterFont pF = null;

 if (sFonts != null) {

 pF = lP.getFont(sFonts[0]);

 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 lP.printText(pF, " This is a test string.",
 LinePrinter.NO_ALIGNMENT);

 pF = lP.getFont(sFonts[1]);

 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 lP.printText(pF, " This is a test string.",
 LinePrinter.NO_ALIGNMENT);

 lP.doPrint(1);

 }

 //----------------------(7)--------------------

 manager =
 lP.getParameters().getDriver().getConfigurationManager();

 config1 = manager.getConfiguration("DriverParameters");

 promptUser = config1.getParameters()[0];

 config1.setParameterValue(promptUser, "false");

 manager.save();

 }

 catch (Throwable error){

 error.printStackTrace();

 }

 finally {

 //----------------------(8)--------------------

 try {

 lP.close();

 } catch (Exception ex) {}

 }

 return;

 }

}

Peripheral Input/Output Services 670 40

SAP Online Help 20.12.2005

 Adding/Remove a Font Using the Client API
This example shows how to add and remove a font configuration to the PIOS infrastructure
using the Client API. In this example the “Batang” font configuration is added, some text is
printed with this font configuration, and then it is deleted. The font configuration added must
map to an existing font in the printer. The printer is in Line mode. This code does is as
described below:
...

1. Opens connection to the printer.

2. Adds the font configuration.

3. Sets the parameters for the font configuration and saves the changes.

4. Closes and reopens the connection to the printer for the font configuration to take
effect.

5. Prints a sample text.

6. Deletes the font configuration and saves the changes.

7. Closes the connection to the printer.

Remember to configure the Emulator [Page 111] or printer accordingly.

package test;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.printer.*;
import com.sap.ip.me.api.pios.configuration.*;

public class AddFont {

 public static void main(String[] args) {

 LinePrinter lP = null;

 try{

 Connector conn = Connector.getInstance();

 DriverInfo[] driverInfo =
 conn.listDrivers(ConnectionType.PRINTER);
 PrinterParameters params =
 new PrinterParameters(driverInfo[0]);

 params.setPrinterMode(PrinterParameters.LINE_MODE);

 //----------------------(1)--------------------

 lP = (LinePrinter) conn.open(params);

 //----------------------(2)--------------------

 String sFont = "Batang";

 FontConfigurationManager fCM =
 lP.getFontConfigurationManager();

 fCM.addFontConfiguration(sFont);

 Configuration conf = fCM.getFontConfiguration(sFont);

 //----------------------(3)--------------------

Peripheral Input/Output Services 670 41

SAP Online Help 20.12.2005

 conf.setParameterValue("Size", "14");
 conf.setParameterValue("Options", "0");
 conf.setParameterValue("Name", "Batang");
 conf.setParameterValue("Description", "customfont");
 conf.setParameterValue("FontType", "2");
 fCM.save();

 //----------------------(4)--------------------

 lP.close();
 lP = (LinePrinter) conn.open(params);

 String[] sFonts =
 lP.getFontConfigurationManager().listFontNames();

 //----------------------(5)--------------------

 PrinterFont pF = lP.getFont(sFont);
 lP.printText(pF, "", LinePrinter.NO_ALIGNMENT);

 lP.printText(pF, " This is a Batang test string.",
 LinePrinter.NO_ALIGNMENT);

 pF = lP.getFont(sFonts[1]);

 lP.printText(pF, " This is a regular test string.",
 LinePrinter.NO_ALIGNMENT);

 lP.doPrint(1);

 //----------------------(6)--------------------

 fCM.deleteFontConfiguration(sFont);

 fCM.save();

 } catch (Throwable error){

 error.printStackTrace();

 } finally {

 //----------------------(7)--------------------

 try {

 lP.close();

 } catch (Exception ex) {}

 }

 return;

 }

}

Peripheral Input/Output Services 670 42

SAP Online Help 20.12.2005

 Scanner API
Purpose
Scanner support in the SAP Mobile Infrastructure is offered as part of the Peripheral
Input/Output Services (PIOS). The Scanner API provides an abstraction layer between the
intricacies of different scanner drivers and the application.

Integration
The Scanner API is part of the MI Client API.

Features

● Refer to the Scanner API javadocs for detailed method
description.

● Refer to Features Description [Page 44].

Constraints
● Scanner models may offer additional features not supported by this API.

● Supported functionality varies according to scanner make and model.

Peripheral Input/Output Services 670 43

SAP Online Help 20.12.2005

PIOS Scanner API Features Description

Definition

PIOS Scanner API provides support for several features. These features vary depending on
the scanner make and model. The table below provides a description for these features:

Scannable Objects

Scannable Object Description

Linear Barcode An automatic identification technology that encodes information
into a linear array of adjacent varying width parallel rectangular
bars and spaces.

Two-Dimensional Barcode An automatic identification technology that encodes information
in two dimensions. Small geometric shapes represent the data
in these barcodes. Two-dimensional barcodes store more
information than linear barcodes in the same space.

Scanner Features

Scanner Feature Description

Soft Trigger Allows the scan engine laser beam to be triggered from
software. It is one shot mode, the laser turns off when a
barcode is scanned.

Beep on Fail Hardware beeps on failed scanning.

Beep on Read Hardware beeps on successful scan.

Beep off Turns off the scanner’s hardware beep.

Scan Aware Mode The application handles the scanned data through events. The
scanning process generates events on data received and on
error.

Wedge Mode When using this mode, scanned data is sent as if it was typed
from the keyboard. It is sent to the window that has the focus.

Peripheral Input/Output Services 670 44

SAP Online Help 20.12.2005

Symbologies and Supported Options

Symbology / Option Description

Codabar Enables the Codabar barcode symbology.

 CLSI Optional If a CLSI barcode is scanned, the CLSI formatting is applied to
the returned data. Otherwise, the API uses any other options
selected on the scanned data.

 CLSI Required Scanned barcode must be CLSI compliant.

No other option can be selected.

 NOTIS NOTIS formatting is applied to the scanned data.

 Check Digit MOD16 Enables check digit validation in the scanner engine. The check
digit is not transmitted.

 Check Digit Transmit Sends the check digit in a barcode as part of the data. Requires
the check digit MOD16 to be enabled.

Code 39 Enables the Code 39 barcode symbology.

 Standard The scanner engine interprets the barcode as standard data.
This is the default character set, if no character set is specified.

Only one character set can be enabled at
any given time. The character set can be
either the standard or the full ASCII, but not
both.

 Full ASCII Support for the whole ASCII character set.

Only one character set can be enabled at
any given time. The character set can be
either the standard or the full ASCII, but not
both.

 Check Digit MOD43 Support for Module 43 check digit. The check digit is not
transmitted.

Only one check digit option can be
enabled. The check digit option can be
either MOD43 or the French CIP, but not
both.

Peripheral Input/Output Services 670 45

SAP Online Help 20.12.2005

 Check Digit French CIP Support for French CIP (Club Inter Pharmaceutique) check
digit. The check digit is not transmitted.

Only one check digit option can be
enabled. The check digit option can be
either MOD43 or the French CIP, but not
both.

 Check Digit Transmit Sends the check digit in a barcode as part of the data. Requires
a check digit option to be enabled.

Code 128 Enables the Code 128 barcode symbology.

EAN-8 Enables the EAN-8 barcode symbology.

 Check Digit Transmit Sends the check digit in a barcode as part of the data.

EAN-13 Enables the EAN-13 barcode symbology.

 Check Digit Transmit Sends the check digit in a barcode as part of the data.

Interleaved 2 of 5 Enables the Interleaved 2 of 5 barcode symbology.

 Check Digit MOD10 USS Support for Module 10 USS (Uniform Symbology Specification)
check digit. The check digit is not transmitted.

Only one check digit option can be
enabled. The check digit option can be
either MOD10 USS or MOD10 OPCC, but
not both.

 Check Digit MOD10 OPCC Support for Module 10 OPCC (Optical Product Code Council)
check digit. The check digit is not transmitted.

Only one check digit option can be
enabled. The check digit option can be
either MOD10 USS or MOD10 OPCC, but
not both.

 Check Digit Transmit Sends the check digit in a barcode as part of the data. Requires
a check digit option to be enabled.

PDF417 Enables the PDF-417 (Portable Data Format) 2D barcode
symbology.

UCC/EAN-128 Enables the UCC/EAN barcode symbology.

UPC-A Enables the Universal Product Code (UPC) barcode
symbology.

 Check Digit Transmit Sends the check digit in a barcode as part of the data.

Peripheral Input/Output Services 670 46

SAP Online Help 20.12.2005

Global Options for Symbologies

Option Description

UPC/EAN Five Digit Add-On Transmits the two digit add-on as part of the data, if the add-on
is present in the barcode. This parameter affects UPC-A, EAN-
8, and EAN-13 symbologies.

UPC/EAN Two Digit Add-On Transmits the five digit add-on as part of the data, if the add-on
is present in the barcode. This parameter affects UPC-A, EAN-
8, and EAN-13 symbologies.

UPC/EAN Add-On Digits
Required

Forces the add-on digits to be present in the barcode. If an add-
on is not present, the barcode will not be read. One or both of
the add-on options have to be enabled.

PIOS Scanner API Guidelines

Definition

This document explains several guidelines for the PIOS Scanner API, part of the MI Client
API. Each of the guidelines is discussed below.

Use

These guidelines are intended for all the developers working on the SAP NetWeaver
Developer Studio in a mobile application with scanner peripheral requirements. It helps the
developer get the most out of the PIOS infrastructure. The developer can access these
features provided by PIOS through the MI Client API.

8. Establishing a connection to the scanner

Since multiple applications can be running in a mobile device at a given time, it is
recommended that mobile applications should open the connection to the scanner when they
are ready to scan data and close the connection when they have finished receiving the data.
This prevents other applications from having to wait for the first one to close before they can
open a connection. Otherwise if a mobile application opens the scanner connection when it
starts and does not close it until it finishes, no other application may use the scanner until the
first one finishes. Any other mobile application that tries to open a connection to the scanner
will receive an error message.

9. Start Read and End Read

Use Start Read method only when you need to scan a barcode, and use End Read as soon
as the scanning is done. The Start Read method starts the scanner engine thus consuming
more processor time and battery power, as opposed to when the engine is stopped.

10. When to use the Scanner Connection, Start Read, and End Read

If an application has several windows (that require scanner support), it is recommended to
establish one connection (one open and one close) to the scanner per window. After the
connection has been opened, the application may call as many Start/End Reads as
necessary.

Peripheral Input/Output Services 670 47

SAP Online Help 20.12.2005

Any modification (set or remove options) to the Scanner Connection must
be made before the start read. If the application tries to set an option
after the start read, an error will be generated.

11. Scan Aware Mode and Wedge Mode

It is recommended to use scan aware mode whenever is possible. This mode is more flexible
than its counterpart because it allows data manipulation and does not restrict the incoming
data to the screen with the focus on it. If a developer is creating an application from scratch, it
is recommended that he/she uses the scan aware mode.

Wedge mode should be limited to a situation where an application has already been
developed and scanning functionality must be added to the application. Wedge mode requires
the least amount of changes to the existing application because it returns data as if it was
entered from the keyboard.

12. Symbologies

Use as few symbologies as possible. Limit the active symbologies to the ones that are going
to be used by the application. The more active symbologies the scanner has, the longer it
takes to initialize.

13. Soft Trigger

The Scanner API provides the ability to activate the laser beam from the application. This
feature is particularly important when the only way to activate the laser beam is from the
application because there is no physical trigger button. This may be the case with a scanner
that attaches to device, for instance.

14. Preamble and Postamble

These two methods allow you to add data before and after the scanned data respectively.
This could prove useful when using a tab, or something similar, as postamble.

An application could scan several barcodes and send the scanned data
to a spreadsheet. If a tab is set as the postamble, the data is sent to a
cell and the focus will skip to the next cell, ready to receive the next
barcode.

Peripheral Input/Output Services 670 48

SAP Online Help 20.12.2005

 Scanner API Examples
This section contains Scanner API examples.

Add / Remove Symbologies
In this example the scanner uses Scanner Aware Mode and three barcodes are scanned after
Code 39, Code 128, and Codabar symbologies are added to the scanner. The program
performs the following steps:

This example assumes that at least one driver has been installed. It also
assumes this driver supports all the attributes that are being used.

...

1. Implements the constructor for the class. It opens a connection to the scanner in scan
aware mode and sets an event listener.

2. Implements the onError method from ScannerListener.

3. Implements the onDataReceived method from ScannerListener.

4. Declares and implements a method called scanBarcode. This method starts the
scanning engine, waits for the application to read a barcode, and stops the scanning
engine.

5. Declares and implements the openScanAwareConnection method.

6. Declares and implements the method called activateSymbologies. This method adds
Code 39, Code 128, and Codabar symbologies to the scanner.

7. Declares and implements the method called deactivateSymbologies. This method
removes Code 39 and Code 128 symbologies from the scanner.

8. Declares and implements the close method. It closes the connection to the scanner.

9. Creates an instance of the class and calls the activateSymbologies method.

10. Scans three barcodes. The scanned barcodes must have their symbology activated;
otherwise the scanner will not read them.

11. Calls the deactivateSymbologies method. Then scans one barcode and closes the
connection to the scanner.

package scanner_api_examples;

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.scanner.*;
import com.sap.ip.me.api.pios.symbology.*;

public class AddingSymbologies implements ScannerListener {

 private ScannerConnection scannerConnection = null;
 private boolean barcodeScanned = false;
 private Exception lastException = null;

 //-----------------------(1)-----------------------

 public AddingSymbologies() throws PIOSException {

 openScanAwareConnection();
 scannerConnection.setEventListener(this);

 }

Peripheral Input/Output Services 670 49

SAP Online Help 20.12.2005

 //-----------------------(2)-----------------------

 public void onError(ScannerException e) {

 lastException = e;

 barcodeScanned = true;

 }

 //-----------------------(3)-----------------------

 public void onDataReceived(ScannerData scannerData) {

 try {

 System.out.println(

 "Data = " + new String(scannerData.toByteArray(),
 "ASCII"));

 } catch (Exception ex) {

 lastException = ex;

 }

 barcodeScanned = true;

 }

 //-----------------------(4)-----------------------

 public void scanBarcode() throws Exception {

 scannerConnection.startRead();

 while (!barcodeScanned) {

 Thread.sleep(500);

 }

 if (lastException != null) {

 throw lastException;

 }

 scannerConnection.endRead();

 barcodeScanned = false;

 }

 //-----------------------(5)-----------------------

 private void openScanAwareConnection() throws PIOSException {

 Connector connector = Connector.getInstance();

 DriverInfo[] scanners =
 connector.listDrivers(ConnectionType.SCANNER);

 ScannerParameters parameters =
 new ScannerParameters(scanners[0]);

 parameters.setMode(ScannerParameters.SCAN_AWARE);

 scannerConnection =
 (ScannerConnection) connector.open(parameters);

 }

Peripheral Input/Output Services 670 50

SAP Online Help 20.12.2005

 //-----------------------(6)-----------------------

 public void activateSymbologies() throws PIOSException {

 scannerConnection.addSymbology(new Code39(Code39.FULLASCII));
 scannerConnection.addSymbology(new Code128());
 scannerConnection.addSymbology(
 new Codabar(
 Codabar.CHECK_DIGIT_MOD16
 | Codabar.CHECK_DIGIT_TRANSMIT));
 }

 //-----------------------(7)-----------------------

 public void deactivateSymbologies() throws PIOSException {

 scannerConnection.removeSymbology(SymbologyType.CODE128);
 scannerConnection.removeSymbology(SymbologyType.CODE39);

 }

 //-----------------------(8)-----------------------

 public void close() {

 try {
 scannerConnection.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public static void main(String[] args) {

 AddingSymbologies addSymbologiesExample = null;

 try {
 //-----------------------(9)-----------------------

 addSymbologiesExample = new AddingSymbologies();
 addSymbologiesExample.activateSymbologies();

 //-----------------------(10)-----------------------

 for (int i = 0; i < 3; i++) {
 addSymbologiesExample.scanBarcode();
 }

 //-----------------------(11)-----------------------

 addSymbologiesExample.deactivateSymbologies();
 addSymbologiesExample.scanBarcode();

 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {

 addSymbologiesExample.close();

 }

 }

}

Peripheral Input/Output Services 670 51

SAP Online Help 20.12.2005

Beep Options
This example deals with the scanner's beep options. It shows how to turn on beeping
scanning, for both successful reading and a failed scan. The program executes as explained
below:

This example assumes that at least one driver has been installed. It also
assumes this driver supports all the attributes that are being used.

...

1. Implements the constructor for the class. It opens a connection to the scanner in scan
aware mode, activates the Code 39 symbology, and sets an event listener.

2. Implements the onError method from ScannerListener.

3. Implements the onDataReceived method from ScannerListener.

4. Declares and implements a method called scanBarcode. This method starts the
scanning engine, waits for the application to read a barcode, and stops the scanning
engine.

5. Declares and implements the openScanAwareConnection.

6. Declares and implements the setBeepOptions method. This method receives and sets
the beep options for the scanner.

7. Declares and implements the close method. It closes the connection to the scanner.

8. Opens a connection to the scanner. Turns on the "Beep on Read" and the "Beep on
Fail" options for the scanner. Then scans a barcode.

9. Turns off the beeping options for the scanner. Then scans a barcode.

10. Closes the connection to the scanner.

package scanner_api_examples;

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.scanner.*;
import com.sap.ip.me.api.pios.symbology.*;

public class BeepOptions implements ScannerListener {

 private ScannerConnection scannerConnection = null;

 private boolean barcodeScanned = false;

 private Exception lastException = null;

 //-----------------------(1)-----------------------

 public BeepOptions() throws PIOSException {

 openScanAwareConnection();

 scannerConnection.addSymbology(new Code39(Code39.FULLASCII));

 scannerConnection.setEventListener(this);

 }

 //-----------------------(2)-----------------------

Peripheral Input/Output Services 670 52

SAP Online Help 20.12.2005

 public void onError(ScannerException e) {

 lastException = e;

 barcodeScanned = true;

 }

 //-----------------------(3)-----------------------

 public void onDataReceived(ScannerData scannerData) {

 try {

 System.out.println(

 "Data = " + new String(scannerData.toByteArray(),
 "ASCII"));

 } catch (Exception ex) {

 lastException = ex;

 }

 barcodeScanned = true;

 }

 //-----------------------(4)-----------------------

 public void scanBarcode() throws Exception {

 scannerConnection.startRead();

 while (!barcodeScanned) {

 Thread.sleep(500);

 }

 if (lastException != null) {

 throw lastException;

 }

 scannerConnection.endRead();

 barcodeScanned = false;

 }

 //-----------------------(5)-----------------------

 private void openScanAwareConnection() throws PIOSException {

 Connector connector = Connector.getInstance();
 DriverInfo[] scanners =
 connector.listDrivers(ConnectionType.SCANNE R);
 ScannerParameters parameters =
 new ScannerParameters(scanners[0]);
 parameters.setMode(ScannerParameters.SCAN_AWARE);
 scannerConnection =
 (ScannerConnection) connector.open(parameters);
 }

 //-----------------------(6)-----------------------

Peripheral Input/Output Services 670 53

SAP Online Help 20.12.2005

 public void setBeepOptions(long options) throws PIOSException {

 scannerConnection.setOptions(options);

 }

 //-----------------------(7)-----------------------

 public void close() {

 try {

 scannerConnection.close();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 public static void main(String[] args) {

 BeepOptions beepOptionsExample = null;

 try {

 beepOptionsExample = new BeepOptions();

 //-----------------------(8)-----------------------

 beepOptionsExample.setBeepOptions(

 ScannerConnection.BEEP_ON_FAIL

 | ScannerConnection.BEEP_ON_READ);

 beepOptionsExample.scanBarcode();

 //-----------------------(9)-----------------------

 beepOptionsExample.setBeepOptions(ScannerConnection.BEEP_OFF);

 beepOptionsExample.scanBarcode();

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 //-----------------------(10)-----------------------

 beepOptionsExample.close();

 }

 }

}

Peripheral Input/Output Services 670 54

SAP Online Help 20.12.2005

Determine Symbology
This example shows how to determine the symbology of a scanned barcode.

● This feature is available only if the scanner supports it. Some
scanners makes and models may not provide this functionality.

● This example assumes that at least one driver has been
installed. It also assumes this driver supports all the attributes
that are being used.

...

1. Implements the constructor for the class. It opens a connection to the scanner in scan
aware mode and sets an event listener.

2. Implements the onError method from ScannerListener.

3. Implements the onDataReceived method from ScannerListener.

4. Declares and implements a method called scanBarcode. This method starts the
scanning engine, waits for the application to read a barcode, and stops the scanning
engine.

5. Declares and implements the method called activateSymbologies. This method adds
Code 39, Code 128, and Codabar symbologies to the scanner.

6. Declares and implements the getSymbologyName method. It returns the symbology
name determined during the onDataReceived event.

7. Declares and implements the close method. It closes the connection to the scanner.

8. Creates a new instance of the class and activates symbologies for the scanner.

9. Scans a barcode and displays the symbology of the barcode.

10. Closes the connection to the scanner.

package scanner_api_examples;

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.scanner.*;
import com.sap.ip.me.api.pios.symbology.*;

public class DetermineSymbology implements ScannerListener {

 private ScannerConnection scannerConnection = null;
 private boolean barcodeScanned = false;
 private String symbologyName = null;
 private Exception lastException = null;

 //-----------------------(1)-----------------------

 public DetermineSymbology() throws PIOSException {

 Connector connector = Connector.getInstance();

 DriverInfo[] scanners =
 connector.listDrivers(ConnectionType.SCANNER);

 ScannerParameters parameters =
 new ScannerParameters(scanners[0]);

 parameters.setMode(ScannerParameters.SCAN_AWARE);

Peripheral Input/Output Services 670 55

SAP Online Help 20.12.2005

 scannerConnection =
 (ScannerConnection) connector.open(parameters);

 scannerConnection.setEventListener(this);

 }

 //-----------------------(2)-----------------------

 public void onError(ScannerException e) {

 lastException = e;

 barcodeScanned = true;

 }

 //-----------------------(3)-----------------------

 public void onDataReceived(ScannerData scannerData) {

 symbologyName = scannerData.getSymbology().getName();

 barcodeScanned = true;

 }

 //-----------------------(4)-----------------------

 public void scanBarcode() throws Exception {

 scannerConnection.startRead();

 while (!barcodeScanned) {

 Thread.sleep(500);

 }

 if (lastException != null) {

 throw lastException;

 }

 scannerConnection.endRead();

 barcodeScanned = false;

 }

 //-----------------------(5)-----------------------

 public void activateSymbologies() throws PIOSException {

 scannerConnection.addSymbology(new Code39(Code39.FULLASCII));

 scannerConnection.addSymbology(new Code128());

 scannerConnection.addSymbology(

 new Codabar(

 Codabar.CHECK_DIGIT_MOD16

 | Codabar.CHECK_DIGIT_TRANSMIT));

 }

Peripheral Input/Output Services 670 56

SAP Online Help 20.12.2005

 //-----------------------(6)-----------------------

 public String getSymbologyName() {

 return this.symbologyName;

 }

 //-----------------------(7)-----------------------

 public void close() {

 try {

 scannerConnection.close();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 public static void main(String[] args) {

 DetermineSymbology determineSymbologyExample = null;

 try {

 //-----------------------(8)-----------------------

 determineSymbologyExample = new DetermineSymbology();

 determineSymbologyExample.activateSymbologies();

 //-----------------------(9)-----------------------

 determineSymbologyExample.scanBarcode();

 System.out.println("Symbology = " +
determineSymbologyExample.getSymbologyName());

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 //-----------------------(10)-----------------------

 determineSymbologyExample.close();

 }

 }

}

Peripheral Input/Output Services 670 57

SAP Online Help 20.12.2005

Preamble and Postamble
This example shows how to set a preamble and a postamble to scan data. The program
performs the following steps:

This example assumes that at least one driver has been installed. It also
assumes this driver supports all the attributes that are being used.

...

1. Implements the constructor for the class. It opens a connection to the scanner in scan
aware mode, activates the Code 39 symbology, and sets an event listener.

2. Implements the onError method from ScannerListener.

3. Implements the onDataReceived method from ScannerListener.

4. Declares and implements a method called scanBarcode. This method starts the
scanning engine, waits for the application to read a barcode, and stops the scanning
engine.

5. Declares and implements the setPreamble method. It sets the preamble for the barcode
data.

6. Declares and implements the setPostamble method. It sets the postamble for the
barcode data.

7. Declares and implements the close method. It closes the connection to the scanner.

8. Creates an instance of the class. Then sets the preamble and postamble.

9. Scans a barcode and displays the scanned data.

10. Closes the connection to the scanner.

package scanner_api_examples;

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.scanner.*;
import com.sap.ip.me.api.pios.symbology.*;

public class PreAmblePostAmble implements ScannerListener {

 private ScannerConnection scannerConnection = null;
 private String barcodeData = null;
 private boolean barcodeScanned = false;
 private Exception lastException = null;

 //-----------------------(1)-----------------------

 public PreAmblePostAmble() throws PIOSException {

 Connector connector = Connector.getInstance();

 DriverInfo[] scanners =
 connector.listDrivers(ConnectionType.SCANNER);

 ScannerParameters parameters =
 new ScannerParameters(scanners[0]);

 parameters.setMode(ScannerParameters.SCAN_AWARE);

 scannerConnection =
 (ScannerConnection) connector.open(parameters);

 scannerConnection.addSymbology(new Code39(Code39.FULLASCII));

Peripheral Input/Output Services 670 58

SAP Online Help 20.12.2005

 scannerConnection.setEventListener(this);

 }

 //-----------------------(2)-----------------------

 public void onError(ScannerException e) {

 lastException = e;

 barcodeScanned = true;

 }

 //-----------------------(3)-----------------------

 public void onDataReceived(ScannerData scannerData) {

 try {

 barcodeData = new String(scannerData.toByteArray(),
 "ASCII");

 } catch (Exception ex) {

 lastException = ex;

 }

 barcodeScanned = true;

 }

 //-----------------------(4)-----------------------

 public void scanBarcode() throws Exception {

 scannerConnection.startRead();

 while (!barcodeScanned) {

 Thread.sleep(500);

 }

 if (lastException != null) {

 throw lastException;

 }

 scannerConnection.endRead();

 barcodeScanned = false;

 }

 //-----------------------(5)-----------------------

 public void setPreamble(String preamble) throws PIOSException {

 scannerConnection.setPreamble(preamble.getBytes());

 }

Peripheral Input/Output Services 670 59

SAP Online Help 20.12.2005

 //-----------------------(6)-----------------------

 public void setPostamble(String postamble) throws PIOSException {

 scannerConnection.setPostamble(postamble.getBytes());

 }

 //-----------------------(7)-----------------------

 public void close() {

 try {

 scannerConnection.close();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 public static void main(String[] args) {

 PreAmblePostAmble preamblePostambleExample = null;

 try {

 //-----------------------(8)-----------------------

 preamblePostambleExample = new PreAmblePostAmble();

 preamblePostambleExample.setPreamble("<-Preamble->");

 preamblePostambleExample.setPostamble("<-Postamble->\t");

 //-----------------------(9)-----------------------

 preamblePostambleExample.scanBarcode();

 System.out.println("The data with preamble and postamble
is:\n" + preamblePostambleExample.barcodeData);

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 //-----------------------(10)-----------------------

 preamblePostambleExample.close();

 }

 }

}

Peripheral Input/Output Services 670 60

SAP Online Help 20.12.2005

Soft Trigger
This example shows how to use and activate the soft trigger. The program does as explained
below:

This example assumes that at least one driver has been installed. It also
assumes this driver supports all the attributes that are being used.

...

1. Implements the constructor for the class. It opens a connection to the scanner in scan
aware mode, activates the Code 39 symbology, and sets an event listener.

2. Implements the onError method from ScannerListener.

3. Implements the onDataReceived method from ScannerListener.

4. Declares and implements a method called scanBarcode. This method starts the
scanning engine, turns on the soft trigger, waits for the application to read a barcode,
and stops the scanning engine.

5. Declares and implements the close method. It closes the connection to the scanner.

6. Creates an instance of the class.

7. Scans a barcode.

8. Closes the connection to the scanner.

package scanner_api_examples;

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.scanner.*;
import com.sap.ip.me.api.pios.symbology.*;

public class SoftTrigger implements ScannerListener {

 private ScannerConnection scannerConnection = null;
 private boolean barcodeScanned = false;
 private Exception lastException = null;
 public static final boolean ON = true;

 //-----------------------(1)-----------------------

 public SoftTrigger() throws PIOSException {

 Connector connector = Connector.getInstance();

 DriverInfo[] scanners =
 connector.listDrivers(ConnectionType.SCANNER);

 ScannerParameters parameters =
 new ScannerParameters(scanners[0]);

 parameters.setMode(ScannerParameters.SCAN_AWARE);

 scannerConnection =
 (ScannerConnection) connector.open(parameters);

 scannerConnection.addSymbology(new Code39(Code39.FULLASCII));

 scannerConnection.setEventListener(this);

 }

Peripheral Input/Output Services 670 61

SAP Online Help 20.12.2005

 //-----------------------(2)-----------------------

 public void onError(ScannerException e) {

 lastException = e;

 barcodeScanned = true;

 }

 //-----------------------(3)-----------------------

 public void onDataReceived(ScannerData scannerData) {

 try {

 System.out.println(

 "Data = " + new String(scannerData.toByteArray(),
 "ASCII"));

 } catch (Exception ex) {

 lastException = ex;

 }

 barcodeScanned = true;

 }

 //-----------------------(4)-----------------------

 public void scanBarcode() throws Exception {

 scannerConnection.startRead();

 scannerConnection.setSoftTrigger(ON);

 while (!barcodeScanned) {

 Thread.sleep(500);

 }

 if (lastException != null) {

 throw lastException;

 }

 scannerConnection.endRead();

 barcodeScanned = false;

 }

 //-----------------------(5)-----------------------

 public void close() {

 try {

 scannerConnection.close();

 } catch (Exception ex) {
 ex.printStackTrace();

 }

 }

Peripheral Input/Output Services 670 62

SAP Online Help 20.12.2005

 public static void main(String[] args) {

 SoftTrigger softTriggerExample = null;

 try {

 //-----------------------(6)-----------------------

 softTriggerExample = new SoftTrigger();

 //-----------------------(7)-----------------------

 softTriggerExample.scanBarcode();

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 //-----------------------(8)-----------------------

 softTriggerExample.close();

 }

 }

}

Peripheral Input/Output Services 670 63

SAP Online Help 20.12.2005

Wedge Mode
This example shows how to use the wedge mode. The program does the following:

This example assumes that at least one driver has been installed. It also
assumes this driver supports all the attributes that are being used.

...

1. Implements the class constructor. It opens a connection to the scanner in wedge mode,
starts the scanning engine, and launches a window that receives the scanned data.

2. Declares and implements the cancel method. It calls the closeConnection method and
closes the window.

3. Declares and implements the closeConnection method. It stops the scanning engine
and closes the connection to the printer.

4. Calls the class constructor and displays the window.

package scanner_api_examples;

import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.scanner.*;
import com.sap.ip.me.api.pios.symbology.*;
import java.awt.*;
import java.awt.event.*;

public class WedgeMode extends Frame {

 private ScannerConnection scannerConnection = null;

 //-----------------------(1)-----------------------

 public WedgeMode() throws Exception {

 Connector connector = Connector.getInstance();

 DriverInfo[] scanners =
 connector.listDrivers(ConnectionType.SCANNER);

 ScannerParameters parameters =
 new ScannerParameters(scanners[0]);

 parameters.setMode(ScannerParameters.WEDGE);

 scannerConnection =
 (ScannerConnection) connector.open(parameters);

 scannerConnection.addSymbology(new Code39(Code39.FULLASCII));
 scannerConnection.setPostamble("\t".getBytes());

 scannerConnection.startRead();

 this.setTitle("Wedge Window");
 this.setLayout(new BorderLayout());
 this.setSize(new Dimension(240, 265));
 this.add(new TextArea());

 Button cancel = new Button("Cancel");

 cancel.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 cancel();

 }

 });

Peripheral Input/Output Services 670 64

SAP Online Help 20.12.2005

 Panel p = new Panel(new FlowLayout());
 p.add(cancel);
 this.add(p, BorderLayout.SOUTH);
 cancel.setBounds(new Rectangle(15, 15));
 cancel.repaint();
 this.pack();

 Dimension screenSize =
 Toolkit.getDefaultToolkit().getScreenSize();

 Dimension frameSize = this.getSize();

 if (frameSize.height > screenSize.height) {

 frameSize.height = screenSize.height;

 }

 if (frameSize.width > screenSize.width) {

 frameSize.width = screenSize.width;

 }

 this.setLocation(
 (screenSize.width - frameSize.width) / 2,
 (screenSize.height - frameSize.height) / 2);
 }

 //-----------------------(2)-----------------------

 public void cancel() {

 this.closeConnection();
 this.dispose();
 }

 //-----------------------(3)-----------------------

 private void closeConnection () {

 try {

 scannerConnection.endRead();
 scannerConnection.close();

 } catch (Exception ex) {
 ex.printStackTrace();

 }

 }

 public static void main(String[] args) {

 try {

 //-----------------------(4)-----------------------

 WedgeMode t = new WedgeMode();
 t.setVisible(true);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

Peripheral Input/Output Services 670 65

SAP Online Help 20.12.2005

Using the Scanner Attributes
In this example the scanner uses Scanner Aware Mode and scans a barcode after adding
(and verifying) all the symbologies supported by the scanner. The program performs the
following steps:

This example assumes that at least one driver has been installed. It also
assumes this driver supports all the attributes that are being used.

...

1. Implements the constructor for the class. It opens a connection to the scanner in scan
aware mode, if this mode is supported, and sets an event listener. If the scan aware
mode is not supported, this method generates an Exception.

2. Implements the onError method from ScannerListener.

3. Implements the onDataReceived method from ScannerListener.

4. Declares and implements a method called scanBarcode. This method starts the
scanning engine, waits for the application to read a barcode, and stops the scanning
engine.

5. Declares and implements the method called activateAllSymbologies. This method tries
to add all the symbologies supported by the API to the scanner. If a symbology cannot
be added to the scanner a message is sent to the default output window.

6. Declares and implements the close method. It closes the connection to the scanner.

7. Creates an instance of the class and calls the activateAllSymbologies method.

8. Scans one barcode. The scanned barcode must have their symbology activated;
otherwise the scanner will not read them.

9. Closes the connection to the scanner.

package scanner_api_examples;

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.scanner.*;
import com.sap.ip.me.api.pios.symbology.*;

public class UsingAttributes implements ScannerListener {

 private ScannerConnection scannerConnection = null;
 private boolean barcodeScanned = false;
 private Exception lastException = null;
 private DriverInfo scanner = null;

 //-----------------------(1)-----------------------

 public UsingAttributes() throws PIOSException {

 Connector connector = Connector.getInstance();

 DriverInfo[] scanners =
 connector.listDrivers(ConnectionType.SCANNER);

 this.scanner = scanners[0];

 if (scanner.isAttributeSupported(

 ScannerConnection.Attributes.SCAN_AWARE_MODE)) {

 ScannerParameters parameters = new ScannerParameters(scanner);

 parameters.setMode(ScannerParameters.SCAN_AWARE);

Peripheral Input/Output Services 670 66

SAP Online Help 20.12.2005

 scannerConnection =
 (ScannerConnection) connector.open(parameters);

 scannerConnection.setEventListener(this);

 } else {

 throw new PIOSException("Unable to open connection to the
scanner because Scan Aware Mode is not supported.");

 }

 }

 //-----------------------(2)-----------------------

 public void onError(ScannerException e) {

 lastException = e;

 barcodeScanned = true;

 }

 //-----------------------(3)-----------------------

 public void onDataReceived(ScannerData scannerData) {

 try {

 System.out.println("************");

 System.out.println(

 "* Data = " + new String(scannerData.toByteArray(), "ASCII"));

 System.out.println("************");

 } catch (Exception ex) {

 lastException = ex;

 }

 barcodeScanned = true;

 }

 //-----------------------(4)-----------------------

 public void scanBarcode() throws Exception {

 scannerConnection.startRead();

 while (!barcodeScanned) {

 Thread.sleep(500);

 }

 if (lastException != null) {

 throw lastException;

 }

 scannerConnection.endRead();

 barcodeScanned = false;

 }

 //-----------------------(5)-----------------------

Peripheral Input/Output Services 670 67

SAP Online Help 20.12.2005

 public void activateAllSymbologies() throws PIOSException {

 if (scanner

 .isAttributeSupported(ScannerConnection.Attributes.CODABAR))
{

 scannerConnection.addSymbology(new Codabar());

 } else {

 System.out.println(

 "Codabar symbology is not supported by the scanner.");

 }

 if (scanner

 .isAttributeSupported(ScannerConnection.Attributes.CODE39))
{

 scannerConnection.addSymbology(new Code39());

 } else {

 System.out.println(

 "Code 39 symbology is not supported by the scanner.");

 }

 if (scanner
 .isAttributeSupported(ScannerConnection.Attributes.CODE128))
 {

 scannerConnection.addSymbology(new Code128());

 } else {

 System.out.println(

 "Code 128 symbology is not supported by the scanner.");

 }

 if (scanner.
 isAttributeSupported(ScannerConnection.Attributes.EAN13)) {

 scannerConnection.addSymbology(new EAN13());

 } else {

 System.out.println(

 "EAN-13 symbology is not supported by the scanner.");

 }

 if (scanner.
 isAttributeSupported(ScannerConnection.Attributes.EAN8)) {

 scannerConnection.addSymbology(new EAN8());

 } else {

 System.out.println(

 "EAN-8 symbology is not supported by the scanner.");

 }

Peripheral Input/Output Services 670 68

SAP Online Help 20.12.2005

 if (scanner.isAttributeSupported
 (ScannerConnection.Attributes.INTERLEAVED2OF5)) {

 scannerConnection.addSymbology(new Interleaved2Of5());

 } else {

 System.out.println(

 "Interleaved 2 of 5 symbology not supported by scanner.");

 }

 if (scanner .isAttributeSupported
 (ScannerConnection.Attributes.PDF417))
 {

 scannerConnection.addSymbology(new PDF417());

 } else {

 System.out.println(

 "PDF-417 symbology is not supported by the scanner.");

 }

 if (scanner.isAttributeSupported
 (ScannerConnection.Attributes.UCCEAN128)) {

 scannerConnection.addSymbology(new UCCEAN128());

 } else {

 System.out.println(

 "UCC/EAN 128 symbology is not supported by the scanner.");

 }

 if (scanner.isAttributeSupported
 (ScannerConnection.Attributes.UPC_A)) {

 scannerConnection.addSymbology(new UPC_A());

 } else {

 System.out.println(

 "UPC-A symbology is not supported by the scanner.");

 }

 }

 //-----------------------(6)-----------------------

 public void close() {

 try {

 scannerConnection.close();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

Peripheral Input/Output Services 670 69

SAP Online Help 20.12.2005

public static void main(String[] args) {

 UsingAttributes usingAttributesExamples = null;

 try {

 //-----------------------(7)-----------------------

 usingAttributesExamples = new UsingAttributes();

 usingAttributesExamples.activateAllSymbologies();

 //-----------------------(8)-----------------------

 usingAttributesExamples.scanBarcode();

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 //-----------------------(9)-----------------------

 usingAttributesExamples.close();

 }

 }

}

Peripheral Input/Output Services 670 70

SAP Online Help 20.12.2005

RFID API
Purpose
Radio Frequency Identification (RFID) support in the SAP Mobile Infrastructure is offered as
part of the Peripheral Input/Output Services (PIOS). The RFID API provides an abstraction
layer between the intricacies of different RFID readers' drivers and the application.

Integration
The RFID API is part of the MI Client API.

Features

● Refer to the RFID API Javadocs for detailed method description.

● Refer to RFID Features Description [Page 72].

Constraints
● RFID readers' models may offer additional features not supported by this API.

● Supported functionality varies according to RFID reader make and model.

Peripheral Input/Output Services 670 71

SAP Online Help 20.12.2005

PIOS RFID API Features Description
Definition
PIOS RFID API provides support for several features. These features vary depending on the
RFID reader make and model. The table below provides a description for these features:

RFID Reader Features

RFID Reader Feature Description

Program Tag ID Assigns a new Tag ID to all the tags inside the RFID range.

To avoid ID duplicates, make sure that only one tag is
in the reader's area of coverage before performing this
operation.

Identify All The RFID reader has the ability to return all the tags available
within its area of coverage. The tag type must have been previously
defined in the tag configuration file.

Identify by Tag Type The RFID reader returns all the available tags, within its area of
coverage, that match the specified tag type. The tag type must be
defined in the tag configuration file and supported by the RFID
reader hardware.

Read a Single Tag The RFID peripheral reads bytes from a specific tag.

Write a Single Tag The RFID peripheral writes bytes to a specific tag.

Lock Tag ID with
Password

This feature locks (with a password) a tag ID so it cannot be
changed. Once locked, the tag must be reset in order to be
reprogrammed with a new the tag ID.

All tags inside the RFID range will be locked.

Reset Tag ID with
Password

Resets a locked tag ID, making it programmable again. This feature
unlocks and erases the tag ID.

To reset the tag ID, you need the password used to
lock the tag ID in the first place.

Peripheral Input/Output Services 670 72

SAP Online Help 20.12.2005

PIOS RFID API Guidelines
Definition
This document explains several guidelines for the PIOS RFID API, part of the MI Client API.
Each of the guidelines is discussed below.

Use
These guidelines are intended for all the developers working on the SAP NetWeaver
Developer Studio in a mobile application with RFID peripheral requirements. It helps the
developer get the most out of the PIOS architecture. The developer can access these
features provided by PIOS through the MI Client API.

...

1. Tag Configuration File

The RFID API programs, reads, and/or writes tag types that have been predefined in the tag
configuration file. The tags can be edited, added to, or removed from the file using the tag
configuration manager, part of the RFID API.

The RFID reader can only work (read, write, and so on) those tag types defined in the tag
configuration file and supported by the hardware. Supported tag types depend on the RFID
reader make and model.

Tags that are not defined in the tag configuration file will be ignored by the API
even if they are supported by the RFID reader.

2. List Tag Types method

This method returns all the tag types that have been configured in the API. An array of tag
types is returned. The configured tag types are returned in an array. This method must be
called before an identify by tag type is called, this assures using a valid tag type when calling
the identify.

3. Tag configuration manager

To receive a list of all the configured tag types for a specific RFID reader, use the
listTagTypes method. To edit the list by adding or removing a tag type, or to edit a particular
tag type use the TagConfigurationManager class.

4. Identify method

To get a list of all the tags (that are defined in the API) inside the RFID reader's range, use
the identify method with no parameters. To get a list of all the tags in range of a specific tag
type, pass the tag type as a parameter to the identify method.

5. Read and write operations

The API can read from or write data to one tag at any given time. The tag to be accessed
must be inside the RFID reader's range. To accomplish this, call the identify method before
invoking either the read or the write. This guarantees the use of a valid (in range) tag.

Peripheral Input/Output Services 670 73

SAP Online Help 20.12.2005

6. Tag structure awareness

An RFID tag may be divided in several areas. These areas can be one the following:

a. Reserved - This data is written by the tag manufacturer. The data in this area
may be used internally by the tag.

b. Read only - A portion of the data that was both written and locked, or was
written in a single-use tag. The information in this area is accessible but cannot
be changed.

c. Writable - This area may be written and read using the API.

It is important to be aware of the different areas and to avoid trying to write to reserved or
read-only areas. Otherwise an exception will be thrown.

7. Writing without exceptions

The following procedure is recommended to write to a tag without raising an exception:

a. Identify the tags in the RFID reader's range, either with a tag type as a
parameter or without a tag type. It depends on what needs to be done. A list of
available tags is returned.

b. Select the tag that will be written to from the list and get its tag type.

c. Use the tag type writable areas for the tag to determine what section or sections
of the tag can be written to.

By doing this, any exception should be avoided.

Peripheral Input/Output Services 670 74

SAP Online Help 20.12.2005

RFID API Examples
This section contains RFID API examples.

Identify All
In this example the RFID reader identifies all the tags, independently of the tag type, in the
reader's range. The program performs the following steps:
...

1. Gets the RFID parameters from the first driver and, using them, opens the connection
to the RFID reader.

2. Checks if the driver supports the "identify all" attribute and displays how many tags are
in range.

3. Displays the tag ID and tag type for each of the detected RFID tags.

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleIdentifyAll {

 public static void main(String[] args) {

 RfidConnection rfidConnection = null;

 try {

 Connector connector = Connector.getInstance();

 //----------------------(1)--------------------

 DriverInfo[] rfidDrivers =

 connector.listDrivers(ConnectionType.RFID);

 if (rfidDrivers.length > 0) {

 RfidParameters rfidParams = new RfidParameters(rfidDrivers[0]);

 rfidConnection = (RfidConnection) connector.open(rfidParams);

 //----------------------(2)--------------------

 if (rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.IDENTIFY_ALL)) {

 RfidTag[] tagList = rfidConnection.identify();

 if (tagList.length <= 0) {

 System.out.println("There are no tags in range.");

 } else {

 System.out.println(

 "Total tags: " + tagList.length + ".");

 }

 //----------------------(3)--------------------

 for (int i = 0; i < tagList.length; i++) {

 System.out.print("TagID: ");

 for (int j = 0;

 j < tagList[i].getTagID().length;

 j++) {

Peripheral Input/Output Services 670 75

SAP Online Help 20.12.2005

 System.out.print(tagList[i].getTagID()[j] + " ");

 }

 System.out.println(

 "\t tag type: "

 + tagList[i].getTagType().getName());

 }

 } else {

 System.out.println(

 "Required driver attribute is not supported.");

 }

 } else {

 System.out.println("There are no RFID drivers.");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 try {

 rfidConnection.close();

 } catch (PIOSException pex) {

 pex.printStackTrace();

 }

 }

 }

}

Peripheral Input/Output Services 670 76

SAP Online Help 20.12.2005

Identify by Tag Type
In this example the RFID reader perform an identify by tag type. The program does as
explained below:

This example assumes that the RFID reader supports and has configured the
"TAGIT_HF_TYPE1" tag type. Supported tag types vary depending on RFID
make and model.

...

1. Gets the RFID parameters from the first driver and opens a connection to it.

2. Checks if the driver supports the "identify by tag type" attribute and checks if the
"TAGIT_HF_TYPE1" tag type is supported.

3. If the tag type is supported, it performs an identify for this tag type and displays how
many tags were found in the reader's range.

4. Displays the RFID tags found, their ID, and their type.

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleIdentifyTagType {

 public static void main(String[] args) {

 RfidConnection rfidConnection = null;

 try {

 //----------------------(1)--------------------

 Connector connector = Connector.getInstance();

 DriverInfo[] rfidDrivers =

 connector.listDrivers(ConnectionType.RFID);

 if (rfidDrivers.length > 0) {

 RfidParameters rfidParams = new RfidParameters(rfidDrivers[0]);

 rfidConnection = (RfidConnection) connector.open(rfidParams);

 //----------------------(2)--------------------

 if (rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.IDENTIFY_BY_TAG_TYPE)) {

 RfidTagType[] supportedTags = rfidConnection.listTagTypes();

 RfidTagType particularTagType = null;

 for (int i = 0; i < supportedTags.length; i++) {

 if ("TAGIT_HF_TYPE1".equals(supportedTags[i].getName()))
 {

 particularTagType = supportedTags[i];

 }

 }

Peripheral Input/Output Services 670 77

SAP Online Help 20.12.2005

 //----------------------(3)--------------------

 if (particularTagType != null) {
 RfidTag[] tagList =
 rfidConnection.identify(particularTagType);

 if (tagList.length <= 0) {
 System.out.println("There are no tags in range.");

 } else {

 System.out.println(
 "Total tags: " + tagList.length + ".");

 }

 //----------------------(4)--------------------

 for (int j = 0; j < tagList.length; j++) {

 System.out.print("TagID: ");

 for (int k = 0;

 k < tagList[j].getTagID().length;

 k++) {

 System.out.print(
 tagList[j].getTagID()[k] + " ");

 }

 System.out.println(
 "\t tag type: "
 + tagList[j].getTagType().getName());

 }

 } else {

 System.out.println(
 "The tag type \"TAGIT_HF_TYPE1\" is not supported.");

 }

 } else {

 System.out.println(

 "Required driver attribute is not supported.");

 }

 } else {

 System.out.println("There are no RFID drivers.");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 try {

 rfidConnection.close();

 } catch (PIOSException pex) {

 pex.printStackTrace();

 }

 }

 }

}

Peripheral Input/Output Services 670 78

SAP Online Help 20.12.2005

Read
In this example the RFID reader reads data from a tag. The program does as described
below:
...

1. Gets the RFID parameters from the first driver and, using them, opens the connection
to the RFID reader.

2. Checks if the "identify all" and the "read single" attributes are supported by the driver.

3. Checks if there are RFID tags within range and for the first of those tags that has
readable areas.

4. Reads the tag readable areas and displays the read data.

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleReadTag {

 public static void main(String[] args) {

 RfidConnection rfidConnection = null;

 try {

 //----------------------(1)--------------------

 Connector connector = Connector.getInstance();

 DriverInfo[] rfidDrivers =
 connector.listDrivers(ConnectionType.RFID);

 if (rfidDrivers.length > 0) {
 RfidParameters rfidParams = new RfidParameters(rfidDrivers[0]);
 rfidConnection = (RfidConnection) connector.open(rfidParams);
 //----------------------(2)--------------------

 if (rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.IDENTIFY_ALL)
 && rfidDrivers[0].isAttributeSupported(
 RfidConnection.Attributes.READ_SINGLE)) {

 //----------------------(3)--------------------

 RfidTag[] tagList = rfidConnection.identify();
 if (tagList.length > 0) {
 boolean readableAreas = false;
 RfidTag sampleTag = null;
 for (int i = 0;
 (i < tagList.length) && !readableAreas; i++) {
 RfidTagUserArea[] areas =
 tagList[i].getTagType().getUserReadableAreas();

 if (areas.length > 0) {
 readableAreas = true;
 sampleTag = tagList[i];

 }
 }
 //----------------------(4)--------------------
 if (sampleTag != null) {
 RfidTagUserArea[] areas =
 sampleTag.getTagType().getUserReadableAreas();
 for (int j = 0; j < areas.length; j++) {
 int readableAreaLength =
 areas[j].getEndPos()- areas[j].getStartPos() + 1;

Peripheral Input/Output Services 670 79

SAP Online Help 20.12.2005

 RfidTagData data =
 rfidConnection.read(
 sampleTag,
 areas[j].getStartPos(),
 readableAreaLength);

 if (data != null) {
 System.out.println(
 "Tag data for area #" + (j + 1) + " is: ");

 for (int k = 0;
 k < data.getTagData().length; k++) {

 System.out.print(
 " " + data.getTagData()[k]);
 if (((k % 20) == 0) && (k > 0)) {
 System.out.println();

 }
 }
 }
 }
 } else {
 System.out.println("No readable tags in range.");

 }

 } else {

 System.out.println("No tags in range.");

 }

 } else {

 System.out.println(

 "The required attributes are not supported by this driver.");

 }

 } else {

 System.out.println("There are no RFID drivers.");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 try {

 rfidConnection.close();

 } catch (PIOSException pex) {

 pex.printStackTrace();

 }

 }

 }

}

Peripheral Input/Output Services 670 80

SAP Online Help 20.12.2005

Write
In this example the RFID reader writes data to a tag. The program does the following:
...

1. Gets the RFID parameters from the first driver and, using them, opens the connection
to the RFID reader.

2. Checks if the driver supports the "identify all", the "write single", and the "read single"
attributes.

3. Looks for the first tag with writable areas.

4. Creates a byte array, with random values, of the size of each of the writable area.

5. Writes the data above to the tag and reads the data back for corroboration.

6. Checks, byte per byte, if the written and read data are the same.

import java.util.*;

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleWriteTag {

 public static void main(String[] args) {

 RfidConnection rfidConnection = null;

 try {

 //----------------------(1)--------------------

 Connector connector = Connector.getInstance();

 DriverInfo[] rfidDrivers =
 connector.listDrivers(ConnectionType.RFID);

 if (rfidDrivers.length > 0) {

 RfidParameters rfidParams = new RfidParameters(rfidDrivers[0]);

 rfidConnection = (RfidConnection) connector.open(rfidParams);

 //----------------------(2)--------------------

 if (rfidDrivers[0].isAttributeSupported(
 RfidConnection.Attributes.IDENTIFY_ALL)
 && rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.WRITE_SINGLE)
 && rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.READ_SINGLE)) {

 RfidTag[] tagList = rfidConnection.identify();

 if (tagList.length > 0) {

 boolean writableAreas = false;
 RfidTag sampleTag = null;

 //----------------------(3)--------------------

 for (int i = 0;

 (i < tagList.length) && !writableAreas; i++) {

 RfidTagUserArea[] areas =

 tagList[i].getTagType().getUserWritableAreas();

Peripheral Input/Output Services 670 81

SAP Online Help 20.12.2005

 if (areas.length > 0) {

 writableAreas = true;

 sampleTag = tagList[i];

 }

 }

 if (sampleTag != null) {

 RfidTagUserArea[] areas =

 sampleTag.getTagType().getUserWritableAreas();

 //----------------------(4)--------------------

 for (int j = 0; j < areas.length; j++) {

 int writableSize =

 areas[j].getEndPos()-areas[j].getStartPos()+1;

 byte[] dataBytes = new byte[writableSize];

 new Random().nextBytes(dataBytes);

 //----------------------(5)--------------------

 rfidConnection.write(

 sampleTag,

 areas[j].getStartPos(),

 dataBytes);

 RfidTagData data =

 rfidConnection.read(
 sampleTag,
 areas[j].getStartPos(),
 writableSize);

 //----------------------(6)--------------------

 if (data != null) {

 System.out.println
 ("Check tag data #" + (j + 1) + ": ");

 if (isEqual(data.getTagData(),

 dataBytes)) {
 System.out.println(

 "The written and read data are the same.");

 } else {

 System.out.println(

 "The written and read data are different.");

 }
 }
 }
 } else {

 System.out.println("No writable tags in range.");
 }
 } else {

 System.out.println("No tags in range.");

 }

Peripheral Input/Output Services 670 82

SAP Online Help 20.12.2005

 } else {

 System.out.println(

 "The required attributes are not supported by this driver.");

 }

 } else {

 System.out.println("There are no RFID drivers.");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 try {

 rfidConnection.close();

 } catch (PIOSException pex) {

 pex.printStackTrace();

 }

 }

 }

 public static boolean isEqual(byte[] a, byte[] b) {

 if (a.length != b.length) {

 return false;

 }

 for (int i = 0; i < a.length; i++) {

 if (a[i] != b[i]) {

 return false;

 }

 }

 return true;

 }

}

Peripheral Input/Output Services 670 83

SAP Online Help 20.12.2005

List Tag Types
In this example the program gets a list of supported tag types and the RFID identifies the tags
that are within its range for supported tag types. The program does the following:
...

1. Gets the RFID parameters from the first driver and, using them, opens the connection
to the RFID reader.

2. Identifies RFID tags by tag type and displays the list of tags, inside the reader's range,
for each tag type.

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleListTagType {

 public static void main(String[] args) {

 RfidConnection rfidConnection = null;

 try {

 //----------------------(1)--------------------

 Connector connector = Connector.getInstance();

 DriverInfo[] rfidDrivers =
 connector.listDrivers(ConnectionType.RFID);

 if (rfidDrivers.length > 0) {

 RfidParameters rfidParams = new RfidParameters(rfidDrivers[0]);
 rfidConnection = (RfidConnection) connector.open(rfidParams);
 RfidTagType[] tagTypeList = rfidConnection.listTagTypes();

 //----------------------(2)--------------------

 for (int pos = 0; pos < tagTypeList.length; pos++) {

 System.out.println(

 "****** Identify Tags: " + tagTypeList[pos].getName());

 RfidTag[] tags = rfidConnection.identify(tagTypeList[pos]);

 if (tags.length > 0) {

 for (int count = 0; count < tags.length; count++) {

 System.out.print(
 "Type : " + tagTypeList[pos].getName()+ " ID: ");
 byte[] tagID = tags[0].getTagID();
 for (int i = 0; i < tagID.length; i++) {
 System.out.print(tagID[i] + " ");

 }
 System.out.println();

 }

 System.out.println("Total: " + tags.length + "\n");

 } else {
 System.out.println(
 "No tags in range for type "
 + tagTypeList[pos].getName());

 }

 }

Peripheral Input/Output Services 670 84

SAP Online Help 20.12.2005

 } else {

 System.out.println("There are no RFID drivers.");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 try {

 rfidConnection.close();

 } catch (PIOSException pex) {

 pex.printStackTrace();

 }

 }

 }

}

Peripheral Input/Output Services 670 85

SAP Online Help 20.12.2005

Tag Configuration Manager
In this example a new tag type configuration is added. The program performs the following
steps:
...

1. Gets the RFID parameters from the first driver and, using them, opens the connection
to the RFID reader.

2. Adds the "NewTagType" configuration and sets all the tag parameters to "NEW
VALUE". Displays each of the modified tag parameters.

3. Saves the configuration.

The value, "NEW VALUE", is used to illustrate the use of the tag configuration
manager and not intended to be used in reality.

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.configuration.Configuration;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleTagConfigurationManager {

 public static void main(String[] args) {
 RfidConnection rfid = null;
 try {
 //----------------------(1)--------------------
 Connector connector = Connector.getInstance();
 DriverInfo[] rfidDrivers =
 connector.listDrivers(ConnectionType.RFID);
 if (rfidDrivers.length > 0) {
 RfidParameters parameters = new RfidParameters(rfidDrivers[0]);
 rfid = (RfidConnection) connector.open(parameters);
 TagConfigurationManager manager =
 rfid.getTagConfigurationManager();
 //----------------------(2)--------------------
 Configuration tagConfiguration =
 manager.addTagConfiguration("NewTagType");

 String[] tagParameters = tagConfiguration.getParameters();

 for (int i = 0; i < tagParameters.length; i++) {
 tagConfiguration.setParameterValue(
 tagParameters[i], "NEW VALUE");
 System.out.println(tagParameters[i]);

 }
 //----------------------(3)--------------------
 manager.save();
 } else {
 System.out.println("There are no RFID drivers.");
 }
 } catch (Exception ex) {
 ex.printStackTrace();

 } finally {
 try {
 rfid.close();

 } catch (PIOSException pex) {
 pex.printStackTrace();
 }
 }
 }
}

Peripheral Input/Output Services 670 86

SAP Online Help 20.12.2005

Program and Lock a Tag ID
In this example the RFID reader assigns a new tag ID to any programmable tag inside its
range and locks the tag with a password. The program does as explained below:

For this example, it is assumed that tag ID is 12-bytes long and the password
has a length of one character.

...

1. Gets the RFID parameters from the first driver and, using them, opens the connection
to the RFID reader.

2. Checks if the driver supports the "program tag ID" and "lock tag ID with password"
attributes.

3. Assigns the new tag ID to any tag inside the reader's range and locks it.

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleProgramTagID {

 public static void main(String[] args) {

 RfidConnection rfidConnection = null;
 try {
 //----------------------(1)--------------------
 Connector connector = Connector.getInstance();
 DriverInfo[] rfidDrivers =
 connector.listDrivers(ConnectionType.RFID);

 if (rfidDrivers.length > 0) {
 RfidParameters rfidParams = new RfidParameters(rfidDrivers[0]);

 rfidConnection = (RfidConnection) connector.open(rfidParams);

 //----------------------(2)--------------------

 if (rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.PROGRAM_TAG_ID)
 && rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.LOCK_TAG_ID_WITH_PSWD)) {
 //----------------------(3)--------------------
 rfidConnection.programTagID(
 new byte[] { -1,2,-3,4,15,26,47,-88,9,10,11,-50 });
 byte[] pwd = "z".getBytes();
 rfidConnection.lockTagID(pwd);
 rfidConnection.close();
 } else {
 System.out.println(
 "The required attributes are not supported by this driver.");
 }
 } else {
 System.out.println("There are no RFID drivers."); }
 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 try {
 rfidConnection.close();
 } catch (PIOSException pex) {
 pex.printStackTrace();
 }
 }
 }
}

Peripheral Input/Output Services 670 87

SAP Online Help 20.12.2005

Reset a Tag ID
In this example the RFID reader resets the tag ID of each tag inside its range, using the
password used to lock the tags (see Program and Lock a Tag ID [Page 87]). The program
does the following:

For this example, it is assumed that tag ID is 12-bytes long and the password
has a length of one character.

...

1. Gets the RFID parameters from the first driver and, using them, opens the connection
to the RFID reader.

2. Checks if the driver supports the "identify all" and the "reset tag ID with password"
attributes.

3. Identifies all the tags within the reader's range and tries to reset each of them.

import com.sap.ip.me.api.pios.PIOSException;
import com.sap.ip.me.api.pios.connection.*;
import com.sap.ip.me.api.pios.rfid.*;

public class ExampleResetTagID {

 public static void main(String[] args) {

 RfidConnection rfidConnection = null;

 try {

 //----------------------(1)--------------------

 Connector connector = Connector.getInstance();

 DriverInfo[] rfidDrivers =
 connector.listDrivers(ConnectionType.RFID);

 if (rfidDrivers.length > 0) {
 RfidParameters rfidParams = new RfidParameters(rfidDrivers[0]);
 rfidConnection = (RfidConnection) connector.open(rfidParams);

 //----------------------(2)--------------------

 if (rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.IDENTIFY_ALL)
 && rfidDrivers[0].isAttributeSupported
 (RfidConnection.Attributes.RESET_TAG_ID_WITH_PSWD)) {

 RfidTag[] tagList = rfidConnection.identify();

 if (tagList.length > 0) {
 byte[] pwd = "z".getBytes();

 //----------------------(3)--------------------

 for (int i = 0; i < tagList.length; i++) {
 try {
 rfidConnection.resetTagID(tagList[i], pwd);
 } catch (Exception exReset) {
 System.out.println(
 "There was an error resetting tag #"
 + i + " (tag type: "
 + tagList[i].getTagType().getName() + ").");
 }
 }
 }
 } else {

Peripheral Input/Output Services 670 88

SAP Online Help 20.12.2005

 System.out.println(

 "The required attributes are not supported by this driver.");

 }

 } else {

 System.out.println("There are no RFID drivers.");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 try {

 rfidConnection.close();

 } catch (PIOSException pex) {

 pex.printStackTrace();

 }

 }

 }

}

Peripheral Input/Output Services 670 89

SAP Online Help 20.12.2005

PIOS Add-on Drivers
The following chapter provides information about the PIOS add-on drivers.

For more information about driver known issues and limitations, driver attributes
and configuration options refer to SAP Note 761833.

 Installing a Driver Add-on
Purpose
This process is intended for system administrators deploying a mobile application with
peripheral requirements. The system administrator deploys drivers and connector add-ons
that meet the requirements of the mobile application.

Prerequisites
There is a connector add-on (it can be deployed when the driver is deployed).

Process Flow
...

1. A mobile application with peripheral requirements is uploaded to the SAP MI Web
Console.

2. The system administrator uses the driver selection tool [Page 150] to find the driver
add-on that matches the target platform.

3. The administrator checks if the connector add-on for the target platform is uploaded to
the SAP MI Web Console. If the matching driver and/or connector are not loaded to the
SAP MI Web Console, they can be obtained from the SAP Service Marketplace.

4. After the connector and driver add-ons have been uploaded to the SAP MI Web
Console, the administrator deploys them.

If the connector is not installed on the target device, both the connector and the driver
add-ons can be deployed at the same time as the application. If there is a connector in
the target mobile device, only the driver and application need to be deployed.

Result
The mobile application and the required driver add-on are deployed to the target mobile
device.

Peripheral Input/Output Services 670 90

SAP Online Help 20.12.2005

 Driver Configuration
Purpose
Peripheral input output services (PIOS) drivers can be configured by modifying several
parameters. Parameters are defined for different configurations, and configurations are
divided into configuration types. The system administrator can modify configuration
parameters with the Mobile Infrastructure configuration system.

Implementation Considerations
Parameters of driver add-ons are formed with four tokens. The first token is the driver name.
The second token is the configuration type. The third and fourth tokens are configuration
name and parameter respectively. Modification of driver parameters should follow the naming
convention presented below:

<driver name>.<configuration type>.<configuration name>.<parameter>=value

Tokens and values are case-sensitive. The correct name must be entered in the
MI configuration system to change a parameter value.

Integration
● Driver configurations are handled by the MI configuration system.

● Drivers and driver configurations are assigned using the SAP MI Web Console.

Features
Drivers have several parameters that can be used to change options for a driver. These
parameters are defined for configurations that are separated into configuration types. PIOS
drivers use the driver configuration type (cfg) to store parameters that modify how drivers
connect to peripherals. This configuration type is also used to store parameters that are
specific from driver to driver. A different configuration type is used to store the font
configuration parameters (fntcfg) for peripheral type “Printer”. This configuration type (fntcfg)
is used to configure fonts supported by the driver.

System administrators can modify driver configuration and font configuration parameters with
the MI configuration system.

Constraints
● Adding a font with the font configuration parameters does not install the font on the

physical printer. Printer fonts must be installed manually on the printer and should
match the configured parameters.

● Configuration values are applied to drivers without validation. Unexpected behavior
may be detected if a driver is not configured properly.

Example
Examples for parameter configuration and font configuration parameters are given below:

● In this example, a driver configuration parameter for the piprsymmf4t (Symbol
microFlash 4t) printer driver is configured. This line sets the serial port baud rate to
9600 bits per second:
piprsymmf4t.cfg.Serial.BaudRate=9600

Peripheral Input/Output Services 670 91

SAP Online Help 20.12.2005

● This example modifies a font configuration parameter for the piprmswin32 (Microsoft
Windows 32-bit) printer driver. This line sets the “bitmapped bold italic” font options to
bold and italic:
piprmswin32.fntcfg.BitmappedBoldItalic.Options=bold,italic

See Also

You can find a list of all available parameters in a SAP note that is created for each driver. For
a list of available drivers see the collective SAP Note 761833.

 MDK Peripheral Support Actions
Purpose
The MDK Peripheral Support Actions is part of the SAP Mobile Infrastructure perspective of
the SAP NetWeaver Developer Studio. It enables the developer to:

1. Create/Edit Driver Requirements Document (DRD)

2. Set MDK Peripheral Emulation Mode

3. Launch the Peripheral I/O Emulator.

Implementation Considerations
The DRD is required for those mobile applications that require some peripheral support. It
identifies the peripheral types as well as the attributes within those peripheral types required
by an MI application. It is used by both the developer and the system administrator. The
developer specifies the peripheral requirements. The system administrator later uses it in the
Driver Selection Tool (DST) of the Web Console to find drivers that match those peripheral
requirements.

An option to set the MDK in peripheral emulation mode is also provided and enables the
developer to automatically switch the output destination from the peripheral to the Emulator
and vice versa. Launching the Peripheral Input/Output Emulator from SAP Mobile
Infrastructure perspective is also possible.

Integration
The MDK Peripheral Support Actions is part of the Mobile Infrastructure perspective of the
SAP NetWeaver Developer Studio.

Features
The MDK Peripheral Support Actions has functions to:

● Add a new DRD to an SAP MI project.

● Edit an existing DRD.

○ Add/Remove peripheral types from an existing DRD.

○ Select/Unselect required attributes for each peripheral type.

● Set MDK Peripheral Emulation Mode.

● Launch the Peripheral I/O Emulator.

Peripheral Input/Output Services 670 92

SAP Online Help 20.12.2005

 Driver Requirements Document Editor
Definition
The Driver Requirements Document Editor allows the developer to select the peripheral types
and their respective options required for the mobile application.

Use
The Driver Requirements Document Editor is displayed:

● After adding a new DRD to an MI project.

● By double clicking an existing DRD in the project.

● After adding or removing peripheral types from the current DRD.

●

Structure
The DRD Editor has three components:
...

1. The attributes tree window. Displays all available attributes of a peripheral type. It is
used to select the required attributes.

○ Attribute: Refers to the parent node. When checked, it implies support for all
corresponding options under the parent node.

○ Options: Refers to each node under an attribute.

Attributes and options available are those supported by the:

● Printer API [Page 18]

● Scanner API [Page 44]

● RFID API [Page 72]

2. The Description Panel: displays a short description of the selected attribute. It is the
panel located at the bottom of the Driver Requirements Document Editor.

3. Peripheral Type tab: Used to select the peripheral attribute tree window from the
available peripheral types.

Peripheral Input/Output Services 670 93

SAP Online Help 20.12.2005

 Using the Driver Requirements Document Editor
Use
The editor presents the developer with the attributes tree window. It is important to select all
peripheral attributes and options required by the application in order for the Driver Selection
Tool to accurately select peripheral model drivers that match those requirements. Attributes
and options that are not selected may or may not be supported by the selected peripheral
model.

Features
Two scenarios are supported to select attributes and options in the attributes tree:
...

1. Select only the parent - When checked, all corresponding attributes options under the
root parent node are also checked.

2. Select one or more options - It means required support for all the selected attributes
options under the root parent node. They follow a logical AND behavior, each selected
option becomes a requirement that must be met during the peripheral add-on selection
process.

Printer head width in the Printer peripheral type is the exception to this
rule. In this case, when more than one option is selected at least one of
them will be matched. In other words, the Printer head width attribute
follows a logical OR behavior, where the requirement is met when at
least one of the selected options is met.

Activities
The developer must check every peripheral option required by the mobile application. Any
option that has not been selected is ignored by the Driver Selection Tool. In other words,
peripheral drivers displayed in the Driver Selection Tool as matched drivers, may or may not
provide support for unchecked options.

Peripheral Input/Output Services 670 94

SAP Online Help 20.12.2005

 MDK Peripheral Support Actions Toolbar
Use
The MDK Peripheral Support Actions Toolbar provides quick access to the Peripheral Support
Actions available in the Mobile Infrastructure perspective:

Each of the buttons is further explained below.

Prerequisites
● The SAP NetWeaver Developer Studio is installed.

● An Eclipse project is available and selected.

● The Mobile Infrastructure perspective is selected.

Features
Toolbar Functions

Button Function Name Meaning

Create/Modify Driver Requirements
Document

Opens the wizard to create a new
Driver Requirements Document.

If a DRD is present in the project,
opens the wizard to modify it.

Set MDK Peripheral Emulation Mode Toggles the Emulation Mode On/Off.

Configures the MI Client to use the
Peripheral Input / Output emulator
instead of the physical peripheral.

Launch Peripheral I/O Emulator Launches the Peripheral Input / Output

Emulator.

Peripheral Input/Output Services 670 95

SAP Online Help 20.12.2005

 Creating a Driver Requirements Document
Use
This procedure describes the steps required to create a Driver Requirements Document.

Prerequisites
● Eclipse must be in the Mobile Infrastructure perspective.

● An existing project has been selected and the project does not have an existing Driver
Requirements Document.

Procedure

3. Click on the Create/Modify Driver Requirements Document button. The New Driver
Requirements Document wizard opens.

4.
5. You can also access the wizard by choosing New → Other... → MDK Development

Tools on the File menu and selecting Driver Requirements Document.

6. Select the peripherals required by the mobile application from the Peripherals Available
list. Click Add >.

7. After all the required peripheral types have been selected, click Finish. The Driver
Requirements Document Editor appears as part of the selected project.

Result
A Driver Requirements Document is created.

Peripheral Input/Output Services 670 96

SAP Online Help 20.12.2005

 Modifying the Driver Requirements Document
Use
Modify an existing Driver Requirements Document (DRD). It allows additions or deletions of
peripheral types from an existing DRD.

Prerequisites
● The Mobile Infrastructure perspective is selected.

● A project containing a Driver Requirements Document is selected.

Procedure
...

1. Click on the Create/Modify Driver Requirements Document button. The Modify
existing Driver Requirements Document wizard opens.

2.
3. You can also access the wizard by choosing New → Other... → MDK Development

Tools on the File menu and selecting the Driver Requirements Document. If a DRD is
present in the project, the Modify existing Driver Requirements Document wizard will
open.

4. Add or remove peripheral types as desired.

5. Click Finish. The Driver Requirements Document Editor opens.

6. Select the peripheral attributes required by the application.
...

a. Unselect those that are not required.

Result
The Driver Requirements Document is modified.

Peripheral Input/Output Services 670 97

SAP Online Help 20.12.2005

 Launching the Peripheral I/O Emulator
Use
Launch the Peripheral Input/Output Emulator from the Mobile Infrastructure perspective.

Prerequisites
● Eclipse must be in the Mobile Infrastructure perspective.

Procedure
...

1. Click on the Launch the Peripheral I/O Emulator button. The Emulator is
launched.

You can also launch the Emulator by select

●

● ing Launch the
Peripheral I/O Emulator on the Edit menu.

Refer to the Peripheral Input/Output Emula

●

● tor [Page 100] for
further details on the use of the Emulator.

he Emulator is launched.

Result
T

Peripheral Input/Output Services 670 98

SAP Online Help 20.12.2005

 Set MDK Peripheral Emulation Mode
Use
This mode enables the developer to automatically switch use of the peripheral to the emulator
and vice versa. When the developer turns on the Emulation Mode, the application, while
running inside the MI Client, uses peripheral emulation.

Prerequisites
● The SAP NetWeaver Developer Studio is in the Mobile Infrastructure perspective.

Procedure
1. Turn on the Emulation Mode by clicking on the Set MDK Peripheral Emulation Mode

 button.

You can also set the MDK in emulation mode by selecting Set MDK Peripheral
Emulation Mode from the Edit menu.

2. Restart the MI Client for the settings to take effect.

3. Run your application.

Result
Your application will use the Peripheral I/O emulator.

Peripheral Input/Output Services 670 99

SAP Online Help 20.12.2005

 Peripheral Input/Output Emulator
Purpose
The Peripheral Input/Output Emulator emulates peripheral types supported by PIOS. It helps
a developer to test and/or debug a mobile application that requires peripheral support without
using the physical peripheral.

Implementation Considerations
• You can test your application without having to connect any peripheral to the system

you are working on.

• The Emulator is supported in the Windows XP and 2000 platforms.

Integration
The Peripheral I/O Emulator is part of the Mobile Infrastructure perspective of the SAP
NetWeaver Developer Studio.

Components
The emulator main window has several areas:

● Hierarchical menus - Group related program functions within each menu category.
The categories are:

○ File - Related to project’s data. It saves, opens, and creates a new project.

○ Edit - This menu option is peripheral specific. Refer to the appropriate peripheral
type for the menu description.

○ View - Sets the focus of the application to the project tree or peripheral panel. It
also allows the user to hide or show the project tree.

○ Peripheral Options - This menu option is peripheral specific. Refer to the
appropriate peripheral type for the menu description.

○ Help - Displays version information of the Emulator.

● Toolbars - Each toolbar provides access to frequently used functions in the menus.
The toolbars are:

○ Project Toolbar -Provides shortcuts to functions inside the File menu.

○ Peripheral Data Toolbar - Provides shortcuts to functions in the Edit menu. (It is
disabled for the printer.)

○ Peripheral Toolbar - This toolbar is peripheral specific. Refer to the appropriate
peripheral type for the menu description.

● Project Tree - Contains an entry for each installed Peripheral Type. It is located on the
left side of the screen, below the toolbars.

● Peripheral Panel - Information on this panel depends on the selected peripheral type.
It is located on the right side of the screen, to the right of the Project Tree.

Accelerators have been provided for some menu items. Accelerators are key combinations
(Ctrl + AnyKey) which substitute a mouse command.

Each selectable menu item and prompt has a mnemonic. These mnemonics are shown by
pressing the ALT key.

Peripheral Input/Output Services 670 100

SAP Online Help 20.12.2005

If you are using Microsoft Windows XP or Windows 2000 you can enable the
mnemonics by going to Control Panel - Display settings and un-checking, in
Windows XP, “Hide underlined letters for keyboard navigation until I press the
Alt key” or, in Windows 2000, “Hide keyboard navigation indicators until I use the
Alt key”.

Constraints
● The Emulator restricts emulated functions to those supported by the PIOS Client API.

Actual peripheral hardware may have more functions not included in the Emulator.

● Settings in the Emulator are stored by user. If a developer makes changes in the
Emulator for a project, the changes are in effect the next time the Emulator runs, even
if it is in a different project.

● Image sizes vary according to the printer resolution. As the resolution goes higher the
image size reduces.

● Differences in the screen resolution and the resolution being emulated of the emulator
may result in skew appearance of text, barcode and images.

Peripheral Input/Output Services 670 101

SAP Online Help 20.12.2005

 PIOS Emulator Menu Options
This section describes the PIOS Emulator Menu options.

 File Menu
Definition
The File menu is used to create, open, and save a project. It also has the Exit function to
close the Emulator.

The Project Toolbar also provides access to these functions:

Use
File Menu Functions

Function Accelerator Description

New Project Creates a new project.

Open Project CTRL + O Opens an existing project file.

Save Project CTRL + S Saves the current project to a file named as the
project.

Save Project As... Saves the current project to a file under a
name defined by the user.

Exit Closes and exits the emulator.

Peripheral Input/Output Services 670 102

SAP Online Help 20.12.2005

 Edit Menu
Definition
The Edit menu depends on the selected peripheral type. Refer to the appropriate peripheral:

● Edit Menu for Printer Peripheral Type [Page 106]

● Edit Menu for Scanner Peripheral Type [Page 130]

● Edit Menu for the RFID Peripheral Type [Page 141]

 View Menu
Definition
The view menu allows setting the focus to the different panels of the Peripheral I/O Emulator.
The focus can be changed quickly to the project tree, the peripheral panel, or you can select a
different peripheral type from the available peripheral types, thus changing the peripheral
panel and options.

Use
View Menu functions

Function Accelerator Description

Hide Project Tree Hides the project tree.

Show Project Tree If hidden, it shows the project tree.

Go to Project Tree CTRL + T Sets the focus on the Project Tree.

Go to Peripherals Panel CTRL + L Sets the focus on the Peripherals Panel.

Go to Peripheral Sets the focus on the Peripherals Panel and
changes the current peripheral to the selected
one.

Peripheral Input/Output Services 670 103

SAP Online Help 20.12.2005

 Peripheral Options Menu
Definition
The Peripheral Options menu depends on the selected peripheral type. Refer to the
appropriate peripheral:

● Peripheral Options Menu for Printer Peripheral Type [Page 106]

● Peripheral Options Menu for Scanner Peripheral Type [Page 131]

● Peripheral Options Menu for RFID Peripheral Type [Page 142]

 Help Menu
Definition
The Help menu provides version information of the Emulator.

Use
Help Menu functions

Function Description

About Displays version information about the Emulator and available
peripheral types.

 Printer Peripheral Panel
Definition
The printer peripheral panel contains the virtual printout area, printer buffer, image buffer and
the state buffer. These are further discussed below.

Structure
● Virtual Printout Area - Emulates the virtual media. It displays images, text, and/or

barcodes that are printed. This area is located on the left side of the Print Buffer, the
Image Buffer, and the State Buffer.

○ Measuring String - used to measure the distance between two points inside the
Virtual Printout Area. (Refer to Using the Measuring String [Page 127] for
details)

Peripheral Input/Output Services 670 104

SAP Online Help 20.12.2005

○ Unit button - used to toggle the reference rulers found on the top and left-hand
side of the virtual printout area from inches, points and centimeters. It is located
at the top left corner of the printer peripheral panel.

Any barcode● s displayed in the virtual printout are for visual
code

● Barcode size and font size are an approximation.

e

nds already printed. This buffer is located at the top right corner of the

● Displays images loaded in the emulated image buffer. Located below
the Print Buffer.

● State Buffer - Displays current emulated printer settings and status: Located below the
Im

.

○

○ een lines in points. This field is only
relevant in Line Mode.

○ nt for non-continuous media. For
continuous media this field is blank.

 Paper Length - Displays the paper length for continuous media. For non-

○ Media - Displays the media type in use by the emulator.

○ Default Font - Displays the default font type, and size.

representation purposes only and are not valid bar
representation. Only barcode dimensions and position are
emulated

● Images are displayed as black boxes which approximate imag
size.

● Print buffer - Displays the queue of commands sent to the printer. It also keeps a
history of comma
printer peripheral panel.

Image buffer -

age Buffer.

○ Status - Online or Offline

○ Connection - Open or Closed.

○ Mode - Line or Graphic

○ Resolution - Current emulated resolution in dot per inch (DPI).

Print Head - Displays the current position of the printer head.

Line Space - Displays the space betw

Paper Count - Displays the paper cou

○
continuous media this field is blank.

Peripheral Input/Output Services 670 105

SAP Online Help 20.12.2005

 Edit Menu for Printer Peripheral Type
Definition
The Edit menu option is not available for the printer peripheral type.

 Peripheral Options Menu for Printer Peripheral
Type
Definition
This menu provides access to functions that set and modify the printer emulation behavior.
Each function is explained below.

There is also a toolbar, the Peripheral Options Toolbar, which relates directly to this menu:

The relationship between each button and the menu item is further explained in the next
table.

Use
There are two buttons that are status indicators. These indicate if the printer:

● is Online or Offline

● returns a Busy or Ready status

The status indicators are explained below and then the function each of the buttons perform.

Status Indicators

Icon Status Description

The printer is online. It is equivalent to having a printer turned on, and
connected to the device.

The printer is offline. It emulates a printer that is turned off or/and disconnected
from the device.

If queried, the printer will return a "ready" status after a print job. Another job
can be sent to the printer.

If queried, the printer will return a "busy" status after a print job. If another job is
sent to the printer, an exception will be thrown.

Peripheral Input/Output Services 670 106

SAP Online Help 20.12.2005

Peripheral Options menu functions for the printer

Menu option Button Description

Unit Toggles the ruler unit of measure in the
peripheral panel from points to centimeters, to
inches, to points again.

Online

Turns the printer status to Online. After clicking
the button, its icon will change to the icon in the
next line.

Offline

Turns the printer status to Offline. After clicking
the button, its icon will change to the icon in the
previous line.

Linefeed

Moves the printer cursor forward by one line (10
points).

This function is only
available for the continuous
media type.

Reset

Resets the printer. Clears the printer buffer,
image buffer, virtual printout area, and closes the
connection. Sets the Print Head property value in
the State Buffer to (0.0,0.0).

Capability...

This function is only available while the printer is
Offline. It provides access to printer configuration
attributes in each of the available categories.
These categories are explained in the structure
section below.

The PIOS Emulator emulates
attributes supported by the Printer
API [Page 18].

Setup...

This function is only available while the printer is
Offline. It allows set up of the media, font, and
printer resolution.

Busy After Printing

Turns on the "Busy" status after the next print
job. The button icon will change to the icon in the
next line.

If an application requests the printer status after
this button has been pressed, it will receive a
busy status. If a print job is sent to the printer, an
exception will be thrown.

Recover From Being
Busy

Turns off the "Busy" status after the next print
job; meaning the printer will recover and return a
"ready" status. The button icon will change to the
icon in the previous line.

If an application requests the printer status after
this button has been pressed, it will receive a
"printer ready" message.

Peripheral Input/Output Services 670 107

SAP Online Help 20.12.2005

Structure
When you click on Capability… a window with several tabs is displayed. Each tab is explained
in the next table:

Capability... Categories

Category Description

General Contains general printer attributes. The state of each attribute can be
modified by clicking on the attribute node selection checkbox or
selecting the node and pressing the space bar.

Barcode Contains a list of the printer barcodes capabilities and barcode
attributes. The state of each attribute can be modified by either clicking
on the attribute node selection checkbox or selecting the node and
pressing the space bar.

Font Displays the available fonts for emulation. Emulation support for
bitmapped, scalable fonts, or both can be selected.

Media Displays the list of supported paper media. Selection of the type of
media, Continuous or Non-Continuous, and the Print Head Width is
possible. This automatically selects the media that match these two
settings.

● Some attributes displayed in the General and Barcode tabs are grouped in folders. The
first entry inside these folders is referred to as the base attribute. This base attribute is
automatically selected if any of the other options within the folder is selected. If the
base attribute is unselected any other selected entries within the folder are cleared as
well.

Under the Barcode tab, the Code 39 symbology allows to uncheck Standard.
However, this is not a real case because whenever a printer supports Code 39,
the Standard codeset is supported.

● Selecting a folder will select all attributes in that folder.

Setup... Options

When you click on Setup… in the peripheral options menu or toolbar a window with several
tabs is displayed, each tab is explained below:

Peripheral Input/Output Services 670 108

SAP Online Help 20.12.2005

Option Description

Media Select the media (paper size) that the virtual printer will use. Only the
ones selected in the Capability Media category will be available for
selection in this window.

Paper Length / Count - For continuous media, the paper length can be
specified in either inches or centimeters.

For non-continuous media, the paper count can be specified.

Size - Displays the size (width and length) of the media in inches. Note:
For continuous paper, the length is represented as a tilde (~).

Margin - Displays the top, left, bottom and right margins in inches.

Pre-print - Displays the width, length, horizontal, and vertical
separation of pre-printed media. This is often used to represent labels
on a paper backing.

Margin and Pre-print fields are only showed when there are pre-defined
areas in the media.

Default Font Select default font type, style, and size for the virtual printer.

Type - Displays the type (Bitmapped, Scalable) of the default font
selected.

Style - Select the default font style (PLAIN, BOLD, ITALIC,
BOLD+ITALIC)

Size - Select the default font size from the list of available sizes.

Resolution Select the desired resolution for the virtual printer from the list.

Integration
The peripheral options menu contains options specific to an individual peripheral type. Menu
options will vary per peripheral type.

Peripheral Input/Output Services 670 109

SAP Online Help 20.12.2005

 Emulator Configuration
This section describes the PIOS Emulator configuration options.

 Property Files for Printer Peripheral Type
Purpose
The emulator property files offer the option to add or remove available fonts and media from
the emulator.

Each property file may have two versions, a default and a user specific version. The default
file has a DFT extension, for example "filename.dft". The second file has an extension of
".username", that is “filename.username”. The extension "username" refers to the logon name
of the user.

The default versions are created the first time the Emulator runs. The user specific versions
are created when the property files are modified through the Capability… and/or Setup…
windows.

Features
All property files follow the Java Property file format:

• The line starting with “#” is a comment line.

• Other lines follow the “Key=Value” format.

If a Key has a space as part of the name, for example “Courier New”, a
backslash (\) must be inserted before the space. The Key in the file will
look like:

Courier\ New

● When a list is assigned to a Key the values are separated by a coma and no spaces
are allowed between the coma and the value. For example,
Key1=value1,value2,value3, and so on.

The property files are located in:

ECLIPSE_HOME\plugins\com.sap.ip.me.mdk.pios.docgen_X.Y.Z\emulator\inst\Printer

Where ECLIPSE_HOME refers to the location in the hard disk where Eclipse is installed and
X.Y.Z refers to the current version, for example 1.1.0.

Constraints
• The system does not validate for appropriate parameters values. It is strongly

recommended to make a backup before modifying a property file.

• Invalid key values may cause unexpected behavior in the emulator. For example, if in
InstalledFontFamilies a font is added with a space between the coma and the font
name, that is “, font”, the emulator will start the JVM but no window is displayed.

Peripheral Input/Output Services 670 110

SAP Online Help 20.12.2005

• The Emulator loads the configuration files when it is started. The Emulator must be
restarted whenever a file is modified for the changes to take effect. Otherwise,
changes to the files will take effect the next time the Emulator is started.

• Fonts and their respective styles and sizes must be available (installed) in the OS.

• An MI application can only use an installed font if its configuration can be found in the
font configuration file. A font can be installed in the Emulator only if it is available in
the operating system and its added to the InstalledFont file. The font configuration
must be added separately in the pipremulator.fntcfg file to be available for use from
the mobile application.

 Installing a Font in the Emulator Printer
Use
To add a font to the available fonts you should modify the file named InstalledFont.username.

This file stores the following information:
• Font capabilities of the emulated printer.
• Installed fonts and their details.
• The default font of the emulated printer - This font is only used for displaying the

barcode human readable.

The structure of the file is as follows:

Parameter Description

DefaultFont.Size The size of the default font. It is specified in unit of measure
“point”. It must be listed in the available sizes of the font.

bitmappedFont Supports bitmapped fonts:

1 - yes

0 - no

DefaultFont.Family The font family name of the default font.

It must be in the list of installed font families.

Note: it also must conform to the font types that the emulated
printer supports, bitmapped or scalable.

scalableFont Supports scalable fonts:

1 - yes

0 - no

InstalledFontFamilies The list of installed font family names. The name must be a
valid font family name installed in the Operating System
where the Printer Emulator is running.

DefaultFont.Style The style of the default font. It must be included in the
available styles of the font.

Peripheral Input/Output Services 670 111

SAP Online Help 20.12.2005

Font Details: (for a font named fontname)

Key Description

fontname.Sizes A list of available sizes of the font family, with values separated by
comma.

The unit of measure for each size is “point”.

fontname.Styles A list of available styles of the font family separated by comma.

Possible values are:

0 : plain

1 : bold

2 : italic

3 : bold and italic

fontname.Type Font type possible values are:

1: bitmapped font type

2: scalable font type

Adding a font to this file is the equivalent of loading a font into the
printer’s memory (in the physical printer). The client API will not be able
to use the added font unless it is added to the available font
configurations. (Refer to Installing a Font Configuration [Page 122] for
more information.)

Prerequisites
• The new font must be a valid font installed in the Operating System on which the

Printer Emulator is running.

Procedure

Read Property Files for Printer Peripheral Type [Page 110].

1. Make a backup copy of the file named InstalledFont.username, where username
refers to the logon name of the user.

The developer can also modify the default configuration by editing the file
named InstalledFont.dft. For the changes to take effect in the developer’s
emulator, delete the file named InstalledFont.username. The next time
the Emulator opens, it will be configured based on the default file.

Changes made to the default file affect any user who launches the
Emulator for the first time after these changes are done.

Peripheral Input/Output Services 670 112

SAP Online Help 20.12.2005

2. Open the file named InstalledFont.username in a text editor.

3. Add the font family name to list of supported font family names. (Refer to before and
after example below.)

4. Add all three font detail lines: Sizes, Styles, and Type. (Refer to before and after
example below.)

Result
The new font is installed in the Emulator.

Example
The following is an example of the file. The sequence of the lines has been adjusted and
blank lines have been added for ease of reading.

#Wed Jun 23 11:29:33 EDT 2004

bitmappedFont=1

scalableFont=1

InstalledFontFamilies=SansSerif,Arial

SansSerif.Sizes=8.0,10.0,12.0,14.0,16.0,18.0,20.0,22.0,24.0

SansSerif.Styles=0,1,2,3

SansSerif.Type=2

Arial.Sizes=8.0,12.0,16.0

Arial.Styles=0,1

Arial.Type=1

DefaultFont.Family=Arial

DefaultFont.Style=0

DefaultFont.Size=8.0

Below is an example of the same file after a new font, Batang, was added. For visualization
purposes the added font lines have been colored red.

Remember to verify that the font is installed in the Operating System.

Peripheral Input/Output Services 670 113

SAP Online Help 20.12.2005

#Wed Jun 23 11:29:33 EDT 2004

bitmappedFont=1

scalableFont=1

InstalledFontFamilies=SansSerif,Arial,Batang

SansSerif.Sizes=8.0,10.0,12.0,14.0,16.0,18.0,20.0,22.0,24.0

SansSerif.Styles=0,1,2,3

SansSerif.Type=2

Arial.Sizes=8.0,12.0,16.0

Arial.Styles=0,1

Arial.Type=1

Batang.Sizes=8.0,10.0,12.0,14.0,16.0,18.0,20.0,22.0,24.0

Batang.Styles=0,1,2,3

Batang.Type=2

DefaultFont.Family=Arial

DefaultFont.Style=0

DefaultFont.Size=8.0

Peripheral Input/Output Services 670 114

SAP Online Help 20.12.2005

 Uninstalling a Font from the Emulator Printer
Use
To uninstall a font from the Emulator you must manually edit the file called
InstalledFont.username.

Refer to the section called Installing a font in the Emulator Printer [Page 111] for
the overall file structure.

Procedure
1. Make a backup copy of the file named InstalledFont.username, where username

refers to the logon name of the user.

The developer can change the default file by selecting the
InstalledFont.dft instead of InstalledFont.username. Delete the file named
InstalledFont.username for these changes to be reflected in the
configuration of the developer.

Changes made to the default file affect any user who launches the
Emulator for the first time after these changes are done.

2. Open the file named InstalledFont.username in a text editor.

3. Remove the font family name from the list of supported font family names and delete
all the applicable font detail lines.

If the default font family is the one to be deleted, modify the default font to
an available font family.

The Printer Emulator will not perform properly if all fonts are uninstalled.

Result
The font is uninstalled.

Peripheral Input/Output Services 670 115

SAP Online Help 20.12.2005

 Installing New Media to the Emulator Printer
Use
To add media to the Emulator you must edit the file named SupportedMedia.username.

This file stores the following information:

• Media capabilities of the emulated printer.

• Installed media and its details.

• Current default media settings.

A description of the file is given below:

Key Value Description

CurrentPrintHeadWidth It is set to the value of the selected print head width. This
value must be listed in SupportedPrintHeadWidth.

This value can also be set via the
Printer Capability… window:
Media tab → Print Head Width
dropdown box

Continuous 1: the emulated printer will use continuous paper.
0: the emulated printer will use non-continuous paper.

The emulated printer can only have one type of media
active at any given time.

This value can also be set via the
Printer Capability… window:
Media tab → Type dropdown box

PaperLength This value is used to set the length of the continuous
media. The valid range for this key starts at 163 cm/64
inches and ends at 1626 cm/640 inches.

This value can also be set via the
Printer Setup… window:

Media tab → Paper Length text box

This text box is displayed only if the
continuous media is selected as the
type (in Printer Capability…).

SupportedMedia Lists the media currently supported by the emulator. Any
media that is added to the emulator should be added here.

CurrentMedia It is set to the name of the current media loaded.

This value can also be set via the
Printer Setup… window:

List on the left under the Media tab.

Peripheral Input/Output Services 670 116

SAP Online Help 20.12.2005

SupportedPrintHeadWidth Lists all the print head widths the emulator supports.

PaperCount The number of pages for non-continuous media. This key
supports a minimum value of 1 and goes up to 1000.

This value can also be set via the
Printer Setup… window:

Media tab → Paper Count text box

This text box is displayed only if the
non-continuous media is selected as
the type (in Printer Capability…).

PaperLengthDispalyUnit Sets the unit to be used for the paper length. This can have
one of two values:

0 means that paper length will be given in inches.

1 means that paper length will be given in centimeters.

This value can also be set via the
Printer Capability… window:

Media tab → Unit System dropdown
box

Media details: (for a media named medianame)

Key Value Description

medianame.Size Description: This value contains the media dimensions in
inches.

Required: Yes

Format: The format of this key is “width, height”. The unit of
measure for this value is “inches”.

Further Notes: It is important to know that continuous media has
zero as its length.

medianame.Margin Description: Holds the margin between printable area and the
edge of the media.

Required: No (optional)

Format: It is specified in format of “top, left, bottom, right” and the
unit of measure is “inches”.

Further Notes: Although it is visible on the virtual printout area, it
is not enforced by the emulated printer. It is just a visual help.

This key is only supported for non-continuous media.

medianame.Preprint Description: Used for predefined areas settings in the media,
like labels in the media, for example.

Required: No (optional)

Format: It is specified in format of “columns, rows, horizontal
gap, vertical gap” in the unit of measure of “inches”. The columns
and rows entries must be integer values.

Peripheral Input/Output Services 670 117

SAP Online Help 20.12.2005

Further Notes: Like the margin, it is just another visual help. The
Emulator will calculate the width of the column and the height of
the row.

This key is only supported for non-continuous media.

The use of this key will be discontinued. The
"Label" key should be used in its place.

medianame.Label Description: Used for predefined areas settings in the media,
like labels in the media, for example.

Required: No (optional)

Format: It is specified in format of "label width, label height,
vertical gap, columns" and the unit of measure is "inches". The
columns entry must be an integer value.

Further Notes: Like the margin, it is just another visual help. The
Emulator will calculate the width of the column.

This key should be used instead of the
Preprint key.

Procedure
1. Make a backup copy of the file named SupportedMedia.username, where username

refers to the logon name of the user.

The developer can modify the default configuration by editing the file
named SupportedMedia.dft. For the changes to take effect in the
developer’s emulator, delete the file named SupportedMedia.username.
The next time the Emulator opens it will be configured based on the
default file.

Changes made to the default file affect any user who launches the
emulator for the first time after these changes are done.

2. Open the file named SupportedMedia.username in a text editor.

3. Create a descriptive name for the media.

4. Add the name to list of supported media.

5. Create detail lines for the media. The only media detail line required is Size. If desired
Margin and Preprint may be added for non-continuous paper. (Refer to before and
after example below.)

Result
The media has been added to the emulator printer.

Peripheral Input/Output Services 670 118

SAP Online Help 20.12.2005

Example
The following is a sample of the file. The sequence of lines has been adjusted and blank lines
are added for ease of reading.

#Thu Jul 15 11:33:43 VET 2004

continuous=0

CurrentMedia=A4

CurrentPrintHeadWidth=8.5

PaperCount=100

PaperLength=320

PaperLengthDispalyUnit=0

SupportedMedia=Letter,Legal,A3,A4,B4,B5,Plain11x17,Plain4x8,2x4_in_4x
8,Continuous_1,Continuous_2,Continuous_3,Continuous_4,Continuous_8.5

SupportedPrintHeadWidth=1,2,3,4,8.27,8.5,12

2x4_in_4x8.Margin=0.2,0.2,0.2,0.2

2x4_in_4x8.Preprint=2,4,0.05,0.05

2x4_in_4x8.Size=4,8

A3.Size=11.69,16.54

A4.Size=8.27,11.67

B4.Size=10.12,14.33

B5.Size=7.17,10.12

Continuous_1.Size=1,0

Continuous_2.Size=2,0

Continuous_3.Size=3,0

Continuous_4.Size=4,0

Continuous_8.5.Size=8.5,0

Legal.Size=8.5,14

Letter.Size=8.5,11

Plain11x17.Size=11,17

Plain4x8.Margin=0.2,0.2,0.2,0.2

Plain4x8.Size=4,8

Peripheral Input/Output Services 670 119

SAP Online Help 20.12.2005

Below is the file after the new media has been added. For visualization purposes the changes
are colored red.

#Thu Jul 15 11:33:43 VET 2004

continuous=0

CurrentMedia=A4

CurrentPrintHeadWidth=8.5

PaperCount=100

PaperLength=320

PaperLengthDispalyUnit=0

SupportedMedia=Letter,Legal,A3,A4,B4,B5,Plain11x17,Plain4x8,2x4_in_4x
8,Continuous_1,Continuous_2,Continuous_3,Continuous_4,Continuous_8.5,
New Media

SupportedPrintHeadWidth=1,2,3,4,8.27,8.5,12

2x4_in_4x8.Margin=0.2,0.2,0.2,0.2

2x4_in_4x8.Label=2.0,4.0,0.05,2

2x4_in_4x8.Size=4,8

New\ Media.Margin=0.2,0.2,0.2,0.2

New\ Media.Label=2.0,4.0,0.05,2

New\ Media.Size=8,10

A3.Size=11.69,16.54

A4.Size=8.27,11.67

B4.Size=10.12,14.33

B5.Size=7.17,10.12

Continuous_1.Size=1,0

Continuous_2.Size=2,0

Continuous_3.Size=3,0

Continuous_4.Size=4,0

Continuous_8.5.Size=8.5,0

Legal.Size=8.5,14

Letter.Size=8.5,11

Plain11x17.Size=11,17

Plain4x8.Margin=0.2,0.2,0.2,0.2

Plain4x8.Size=4,8

Peripheral Input/Output Services 670 120

SAP Online Help 20.12.2005

 Uninstalling Media from the Emulator Printer
Use
To uninstall media from the emulator the file SupportedMedia.username must be edited
manually.

Refer to Installing New Media to the Emulator Printer [Page 116] for an overview
of the structure of the file.

Procedure
1. Make a backup copy of the file named SupportedMedia.username, where username

refers to the logon name of the user.

The developer can change the default file by selecting the
SupportedMedia.dft instead of SupportedMedia.username. Delete the file
named SupportedMedia.username for these changes to be reflected in
the configuration of the developer.

Changes made to the default file affect any user who launches the
Emulator for the first time after these changes are done.

2. Open the file named SupportedMedia.username in a text editor.

3. Remove all detail lines for the media to be removed.

4. Remove the media name from the list of supported media.

5. If the current media name is no longer in the list, set it to one that is still available.

6. The Printer Emulator will not perform properly if all media is uninstalled.

Result
The media is uninstalled.

Peripheral Input/Output Services 670 121

SAP Online Help 20.12.2005

 Installing a Font Configuration
Use
The Client API uses on a font configuration file containing a list of all fonts known by the API.
These fonts must be supported by the physical/emulated printer. Installing a new font on the
Emulator (Refer to Installing a Font in the Emulator Printer [Page 111]) is analogous to
installing a font on a physical printer. The font configuration file must be modified before the
Client API recognizes the new font. Configuration changes to the drivers are done via the MI
Configuration Tool. Configuration changes to the emulator are done by manual modification
of the configuration files.

The file named pipremulator.fntcfg must be edited to modify the emulator font configurations.
This file contains the name, description, options, font type, and size. Even though the file can
be edited programmatically, a developer may decide to modify the file manually for the
emulation of one specific printer hardware.

This file is located in:
ECLIPSE_HOME\plugins\com.sap.ip.me.mdk.pios.docgen_X.Y.Z\emulator\pio
s\
config\pipremulator.fntcfg

Where ECLIPSE_HOME refers to the location in the hard disk where Eclipse is installed and
X.Y.Z refers to the plugin version, for example 1.1.0.

This file does not exist the first time the emulator runs. It is created and read
when the Printer API opens the connection to the Emulator.

This file is read during the opening of the connection to the printer. If a change is
made after the connection has been opened and before the connection is
closed, changes will take effect the next time the connection opens.

The file structure is explained below:

File Variables

Variable Description

Configs Lists the font configurations available to the PIOS Client API.

Fonts Parameters

A font configuration called fontcfgname needs the options explained below. Font
configurations must be listed in the Configs variable mentioned above.

Parameter Description

fontcfgname This is left blank, but the line must be included in the file.

fontcfgname._Type This parameter is always set to “Font“.

fontcfgname.Name The name of the font.

fontcfgname.Description Parameter that contains a short description of the font.

Peripheral Input/Output Services 670 122

SAP Online Help 20.12.2005

fontcfgname.Options Specify the options of the font. Possible values are:

0 - Normal

2 - Bold

4 - Italic

6 - Bold and italic

8 - Underline

10 - Bold and underline

12 - Italic and underline

14 - Bold, italic, and underline

fontcfgname.FontType Tells whether the font type is scalable or bitmapped. Possible values
for this parameter are:

1 - bitmapped

2 – scalable

fontcfgname.Size This value tells the size of the font.

Make sure font configurations added to this file match those installed in the
InstalledFont.username. The font configurations included in this file map
installed fonts in the emulator.

Procedure
2. Make a backup copy of the file named pipremulator.fntcfg.

3. Open the file named pipremulator.fntcfg in a text editor.

4. Add the font family name to list of supported configurations (Configs). (Refer to before
and after example below.)

5. Add the font configuration parameter lines: _Type, Name, Description, Options,
FontType, and Size. (Refer to before and after example below.)

Result
Font configuration is added.

Peripheral Input/Output Services 670 123

SAP Online Help 20.12.2005

Example
The following is an example of font configuration file. The sequence of lines has been
adjusted and blank lines are added for ease of reading.

#Fri Jul 16 16:02:53 VET 2004

#Initial Installation

Configs=Bitmapped

Bitmapped=

Bitmapped._Type=Font

Bitmapped.Name=Courier New

Bitmapped.Description=plain bimapped font

Bitmapped.Options=0

Bitmapped.FontType=1

Bitmapped.Size=10

Below is an example of the same file after a new font configuration, ScalableBoldItalic, is
added. For visualization purposes the added font lines have been colored red.

#Fri Jul 16 16:02:53 VET 2004

#Initial Installation

Configs=Bitmapped,ScalableBoldItalic

Bitmapped=

Bitmapped._Type=Font

Bitmapped.Name=Courier New

Bitmapped.Description=plain bimapped font

Bitmapped.Options=0

Bitmapped.FontType=1

Bitmapped.Size=10

ScalableBoldItalic=

ScalableBoldItalic._Type=Font

ScalableBoldItalic.Name=Batang

ScalableBoldItalic.Description=bold&italic scalable font

ScalableBoldItalic.FontType=2

ScalableBoldItalic.Options=6

ScalableBoldItalic.Size=10

Peripheral Input/Output Services 670 124

SAP Online Help 20.12.2005

 Uninstalling a Font Configuration
Use
A font configuration can be uninstalled programmatically but a developer may decide to do it
manually. To uninstall a font configuration manually from the Emulator you must manually edit
the file called pipremulator.fntcfg.

Refer to the section called Installing a Font Configuration [Page 122] for the
overall file structure.

Procedure
...

1. Make a backup copy of the file named pipremulator.fntcfg.

2. Open the file named pipremulator.fntcfg in a text editor.

3. Remove the font family name from the list of supported font family names and delete all
the applicable font configuration parameter lines.

The Printer Emulator will not perform properly if all font configurations are
uninstalled.

Result
The font configuration is uninstalled.

Peripheral Input/Output Services 670 125

SAP Online Help 20.12.2005

 Using the PIOS Emulator for the Printer Peripheral
Type
Use
Provide an overview on how to use the Peripheral I/O Emulator for the printer peripheral type.

Prerequisites
• SAP NetWeaver Developer Studio is installed and configured.

Procedure
...

1. Write code that uses the Printer API of the MI Client API.

2. Once the code is ready for testing, set the SAP NetWeaver Developer Studio in

emulation mode by pressing the Set MDK peripheral emulation mode button on
the MI perspective.

3. Restart the Mobile Infrastructure client.

4. Launch the Emulator by pressing the Launch the Peripheral I/O Emulator button
on the MI perspective.

5. Turn the Emulator offline by clicking on the On/Offline button.

6. Configure desired emulator capabilities by clicking on the Capability… button.

a. Under the general tab, select the desired capabilities to be emulated.

b. Under the barcode tab, select the desired symbology capabilities to be
emulated.

c. Under the font tab, select the desired font capabilities to be emulated.

d. Under the media tab, select the desired media Type and Print Head Width to be
emulated.

7. Configure the appropriate Emulator settings by clicking the Setup… button.

8.

a. Select the media that the printer will emulate in the Virtual Printout Area and set
the Paper Count/Page Length.

b. Set the default font. This is only used for the barcode’s Human Readable
attribute.

c. Set the printing resolution for the emulator printer.

9. Set the emulator Online by clicking on the On/Offline button.

Make sure the Emulator is Online by checking the Status property on the
State Buffer.

10. Run your application.

Peripheral Input/Output Services 670 126

SAP Online Help 20.12.2005

Result
The application print output is displayed on the virtual printout area.

 Using the Measuring String
Use
The Measuring String is used to determine the distance between two points inside the Virtual
Printout Area. This distance is measured in points. It displays two numbers, the horizontal and
vertical spacing.

Prerequisites
• The printer peripheral panel is displayed.

Procedure
1. Move the mouse over the Virtual Printout Area, press and hold the left mouse button

over the first point, drag the mouse to the next point. A line appears between the first
point and actual mouse pointer position.

2. While the mouse button remains depressed, the horizontal and vertical distance
between the two points is displayed.

Result
The Measuring String displays the horizontal and vertical distance between the two points
selected.

Peripheral Input/Output Services 670 127

SAP Online Help 20.12.2005

 Scanner Peripheral Panel

Definition

The scanner peripheral panel can be divided in two areas: an input area and a state area.
The input area contains a barcode record list of the selected data. The data list is under the
scanner node in the project tree, otherwise, if the project tree is hidden, the list is in the input
area above the barcode record list. The state area contains a scan history buffer, an active
symbology list and a state buffer. These are further discussed below.

Structure
● Data List - This list is displayed under the scanner node, in the project tree. A project

may have more than one data (barcode) group for the scanner.

● Input Area - It allows the user to prepare the barcode data that is going to be used in
the scanning emulation. The data and barcodes are listed in this area.

○ Data List - If the project tree is hidden, the list is displayed on top of the
barcodes list.

○ Barcode List - As indicated above, each data (group) has a list of barcodes.
This list contains all barcode records that belong to the selected data. Each
barcode has the following information:

■ Symbology - The symbology used by the barcode

■ Alias - An alias that helps identify each barcode. Since there can be
several barcodes for a given symbology, the user can assign an
appropriate identifier for each barcode.

■ Data - The data for the barcode. Depending on the symbology the data
may include the check digit.

● State Area - It displays several states of the emulated scanner.

○ Scan History - All scanning results are recorded here, both successful and
failed scans.

○ Active Symbologies - It displays every active symbology.

If an active symbology tree is expanded, the window will display all of the
active options under the symbology.

○ State Buffer - It indicates the following settings on the scanner

■ Connection - Open or Closed.

■ Mode - Wedge or Scan Aware.

■ Armed - false or true. Indicates whether the scanner is ready to read or
not.

■ Listener - Ready or Not Ready. Indicates if there is a client listener or not.

■ Trigger - On or Off. Indicates if the scanner’s beam is on or off

Peripheral Input/Output Services 670 128

SAP Online Help 20.12.2005

■ Wedge Window - Default or Application Title. Shows where the wedge
result will go.

■ UPC Addon - Required or Not Required. Indicates whether to scan a
UPC/EAN barcode with or without an add-on.

■ Addon 2 - Active or Inactive. Indicates whether the scanner will read the
two digit add-on when it scans a UPC/EAN barcode.

■ Addon 5 - Active or Inactive. Indicates whether the scanner will read the
five digit add-on when it scans a UPC/EAN barcode.

■ Beep - Describes the beeping behavior of the scanner. The possible
values are:

○ Off

○ On Read

○ On Fail

○ On Scan

■ Pre-amble - This is a string that will be inserted in front of scanned
barcode data.

■ Post-amble - This is a string that will be appended to the scanned
barcode data.

Peripheral Input/Output Services 670 129

SAP Online Help 20.12.2005

 Edit Menu for Scanner Peripheral Type

Definition

The Edit menu is used to prepare input data for input peripherals such as the scanner. It
allows the user to manipulate data groups.

The peripheral data toolbar provides access to the same functions.

Use

Edit menu options for the scanner

Menu option Button Description

New Data

Creates and names a new group of data

Rename Data

Renames an existing data group

Delete Data

Deletes an existing data group.

All barcode data under the group will be lost.

Peripheral Input/Output Services 670 130

SAP Online Help 20.12.2005

 Peripheral Options Menu for Scanner Peripheral
Type

Definition

This menu provides functions to prepare barcode data, set the emulation behavior, and
emulate scanning. Each function is explained below.

There is also a toolbar, the Peripheral Options Toolbar, which relates directly to this menu:

The relationship between each button and a function from the menu is explained in the next
table.

Some of these functions are also available in a popup menu which can be triggered by right
clicking on the input area of the scanner peripheral panel.

Peripheral Input/Output Services 670 131

SAP Online Help 20.12.2005

Use

Peripheral Options menu functions for the scanner

Menu option Button Description

New Barcode

Only available after a Data group has been
selected. Allows the user to create a new
barcode by entering all the necessary
information.

Edit Barcode

Only available after an existing barcode has been
selected. Allows the user to modify the
information of the selected barcode.

Clone Barcode

Only available when an existing barcode is
selected. It duplicates an existing barcode and
triggers the Clone Barcode dialog box that
prompts the user to modify all information of the
duplicated barcode.

Delete Barcode(s)

Only available when at least one barcode is
selected. Deletes all selected barcodes.

●

● This function
supports multiple
selections in the
barcode list.

Move Up

This function is only available when a barcode is
selected and is not in the top row of the barcode
list. The selected barcode moves up one row in
the barcode list each time the button is pressed.

Move Down

This function is only available when a barcode is
selected and is not in the bottom row. The
selected barcode moves down one row in the
barcode list each time the button is pressed.

Scan Barcode

Only available when a barcode is selected. Starts
an emulated scanning process.

The scanning may or may not be successful
based on the barcode itself and the scanner’s
settings.

Scan with Error

Only available when a barcode is selected.
Emulates a scanning process that generates a
hardware scanning error.

When the application is in "Scan Aware Mode",
this function triggers an error event.

Peripheral Input/Output Services 670 132

SAP Online Help 20.12.2005

After barcode scan go
to next barcode

 Toggles a switch in the scanner emulator. When
the switch is on, the next barcode in the list will
be selected after a successful scan of the
barcode currently selected.

Reset

Resets the scanner. It sets the scanner to its
initial states.

Capability...

This function provides access to the scanner
configuration attributes in each of the available
categories. These categories are explained in the
structure section below.

●

● The PIOS Emulator
emulates attributes
supported by the
Scanner API [Page
44].

Wedge Window...

Displays the wedge window selection dialog box.
Here the user may select another application as
the target for the scanning result in wedge mode.

This is an emulated wedge mode; a special
instance of the wedge mode. The data does not
go to the Emulator window, which has the focus.
Instead, the data goes to the application selected
in the wedge window selection dialog box.

●

● If no application is
selected the data is
sent to the
Emulator's default
wedge window.

Structure

When you click on Capability… a window with several tabs is displayed. Each tab is explained
in the next table:

Capability... Categories

Category Description

General Contains general scanner attributes. The state of each attribute can be
modified by clicking on the attribute node selection checkbox or
selecting the node and pressing the space bar.

Symbology Contains a list of the supported symbologies and their supported
attributes. The state of each attribute can be modified by either clicking
on the attribute node selection checkbox or selecting the node and
pressing the space bar.

Peripheral Input/Output Services 670 133

SAP Online Help 20.12.2005

● Some attributes are grouped in folders. The first entry inside these folders is referred to
as the base attribute. This base attribute is automatically selected if any of the other
options within the folder is selected. If the base attribute is unselected any other
selected entries within the folder are cleared as well.

●

●

● Selecting a folder will select all attributes in that folder.

Integration

The peripheral options menu contains options specific to an individual peripheral type. Menu
options will vary per peripheral type.

 Using the PIOS Emulator for the Scanner
Peripheral Type

Use

Provide an overview on how to use the Peripheral I/O Emulator for the scanner peripheral
type.

Prerequisites
● SAP NetWeaver Developer Studio is installed and configured

● Prepared barcode data. (see Creating Barcode Data [Page 136])

Procedure
...

1. Write code that uses the scanner API of the MI Client API.

2. Once the code is ready for testing, set the SAP NetWeaver Developer Studio in

emulation mode by pressing the Set MDK Peripheral Emulation Mode button on
the MI perspective.

3. Restart the Mobile Infrastructure client.

4. Launch the Emulator by pressing the Launch the Peripheral I/O Emulator button
on the MI perspective.

5. Configure desired emulator capabilities by clicking on the Capability… button.

Peripheral Input/Output Services 670 134

SAP Online Help 20.12.2005

In this example, the scanner:

1. Can be opened with either
wedge or scan_aware mode.

2. Can configure all UPC/EAN
add-on options.

1. Codabar can be added as
active symbology with all the
options.

2. Code128 can be added as
active symbology, but its Check
Digit Transmit option is not
configurable.

6. Run application to open the connection, add symbologies and their options, initialize

other settings, arm the scanner and get into an idle state to wait for scanning results.

7. In wedge mode, if user wants to specify a different target wedge application than the

default (emulator itself), user can select it by clicking Wedge Window… button.

The list contains all running
applications with their titles.

A user can go back to the
default setting by selecting the
Emulator itself (“Peripheral I/O
Emulator - ProjectName”).

8. Scan prepared barcodes. (see Scanning Existing Barcode Data [Page 139])

Result

All the scan results are recorded under Scan History.

The formatted scanned results are either in a wedge window or passed to the application for
processing. Formatted results are those that have been processed; for instance, the preamble
and postamble have been added to the barcode data.

Peripheral Input/Output Services 670 135

SAP Online Help 20.12.2005

 Creating Barcode Data

Use
Each project has only one scanner node. The scanner node may have more than one data
node (data group) and each data node may have multiple barcodes, displayed in the input
area under "Barcodes:". Each barcode has information such as symbology, alias, data, and
check digit.

Because the scanner emulator cannot scan real barcodes, all barcode data must be entered
into a project before doing any scanning emulation.

Prerequisites

The scanner peripheral panel is displayed.

Procedure
...

1. Create a new Data group by pressing the button. The New Data dialog box will be
displayed and prompt the user to input the name of this Data group.

2. Create a barcode record for the selected Data group by pressing the button. The
New Barcode dialog box is launched and prompts to input information for the barcode.

...

a. Select the required Symbology.

Each symbology has its own set of rules for data. You can press the

 button to show the data rules.

Below is the rule window for Codabar:

Peripheral Input/Output Services 670 136

SAP Online Help 20.12.2005

b. Input Alias (optional). This will help identify each barcode.

c. Input the barcode data.

The user can press the button to launch the Barcode Data Entry
dialog box and get help entering valid characters. The Barcode Data
Entry displays all of the supported (valid) characters for the selected
symbology. The user can select any character, including non-printable
characters, and press the Enter key to send the character to the Data
field in Barcode dialog. The same result can be accomplished by double
clicking on the desired entry. The target position of the chosen character,

in the data field, is at the last cursor position when the button was
clicked.

By using the button, the user can insert non-printable characters as
part of the barcode data.

Peripheral Input/Output Services 670 137

SAP Online Help 20.12.2005

Any non-printable character will be displayed as “?” in the Data field of
Barcode Dialog. To see complete information behind each character, the

user can press the button to display Barcode Data View.

The barcode data entry panel works with Unicode. If the ALT+CODE
combination (where CODE refers to a number combination) is used, to
input data directly from the keyboard, a 4-digit code (Unicode) is
required. Remember to add a leading zero when entering ASCII
characters. Otherwise, the incorrect character is produced.

The following screenshot is an example for a Code128 barcode.

Peripheral Input/Output Services 670 138

SAP Online Help 20.12.2005

d. Set Check Digit option if it is required. The value of the check digit will be
generated automatically based on the option.

The calculation of French CIP check digit for Code 39 is an
approximation that may differ from the actual check digit.

e. Press OK to save and Cancel to quit.

3. Repeat step 1 and/or 2 until all desired barcodes have been created.

4. Save the project by pressing button.

Result

All data including data list and barcode list are stored in project file.

 Scanning Existing Barcode Data

Use
This procedure explains how to get existing barcode data to either a wedge window or an
application's listener. Depending on the scanner's settings, the scanning may result
successful or in a scanning error. An emulated scanning error emulates an error that happens
at the hardware level.

All scanning actions are recorded under scan history. Each history record contains either the
scanned data or an error message for the failure.

Prerequisites
● The scanner peripheral panel is displayed.

● Some barcode data has been created

● Client application has run properly to arm the scanner.

Procedure
...

1. Select a data from the Data list

2. Select a barcode from the Barcode list

3. Press either the button for a normal scan or the button for an emulated error
scan.

Result
The scanning result is recorded under Scan History.

The formatted result is sent to either wedge window or client application for processing.
Formatted results are those that have been processed; for instance, the preamble and
postamble have been added to the barcode data.

Peripheral Input/Output Services 670 139

SAP Online Help 20.12.2005

RFID Peripheral Panel

Definition

The RFID peripheral panel can be divided in two areas: a tag information area and a state
area. The tag information area contains a tag record list of the selected data. The data list is
under the RFID node in the project tree, otherwise, if the project tree is hidden, the list is in
the tag information area above the tag record list. The state area contains an Operation
History buffer, a Last Operated Tags list and a State Buffer. These are further discussed
below.

Use
● Data List - This list is displayed under the RFID node, in the project tree. A project may

have more than one RFID data (tag) group.

● Tag Information Area - It allows the user to prepare tag data that is going to be used
during the RFID emulation. The data and tags are listed in this area.

○ Data List - If the project tree is hidden, the list is displayed on top of the tag list.

○ Tag List - As indicated above, each data (group) has a list of RFID tags. This
list contains all tag records that belong to the selected data. Each row
represents an RFID tag. Each tag has the following information:

■ Tag Id - This column displays the identifier for each tag on the list. The
tag ID can be from 1 to 16 characters long depending on the tag type.

■ Tag Type - Displays the tag type for the tag.

■ TID Password - Tag ID password. If the tag ID is lockable, this column
displays the password used to lock the tag.

■ TID Locked - This column contains a checkbox. If checked, it means the
tag ID has been locked.

To edit the value of this column, you must select the tag and click on the Edit

Tag button. Once the Edit Tag dialog box opens, click on Tag Id Locked.

■ Valid - This column contains a checkbox. If checked, it means the tag
type is supported by the emulated RFID reader.

The value of this checkbox is affected by either enabling/disabling a tag type
(see Editing RFID Tag Types [Page 146]), or by editing a tag type and rendering
the tag invalid (not fitting the under the redefined tag type description).

■ In Range - This column contains a checkbox. If checked, it means the tag
is inside the range of the RFID reader.

Peripheral Input/Output Services 670 140

SAP Online Help 20.12.2005

The value of this checkbox can be set by clicking on either the Move Away

or the Move Near buttons.

● State Area - It displays several states of the emulated RFID reader.

○ Operation History - All operations (like write and read) are recorded here, both
successful and failed operations.

○ Last Operated Tags - Displays the tag (s) that were accessed last by the RFID
reader. The box clears as soon as the connection is closed.

○ State Buffer - It indicates the following settings on the RFID reader.

■ Connection - Open or closed.

Edit Menu for the RFID Peripheral Type

Definition

The Edit menu is used to prepare data for the RFID reader. It allows the user to manipulate
data groups.

The peripheral data toolbar provides access to the same functions.

Use

Edit Menu options for the RFID peripheral type

Menu option Button Description

New Data

Creates and names a new group of data.

Rename Data

Renames an existing data group.

Delete Data

Deletes an existing data group.
All RFID tag data under the selected group will be
lost.

Peripheral Input/Output Services 670 141

SAP Online Help 20.12.2005

Peripheral Options Menu for RFID Peripheral Type

Definition

This menu provides functions to prepare tags, set the tags either in or out of range, and to
modify the emulated RFID reader's capabilities. Each function is explained below:

There is also a toolbar, the Peripheral Options Toolbar, which relates directly to this menu:

The relationship between each button and a function from the menu is explained in the next
table.

Some of these functions are also available in a popup menu which can be triggered by right
clicking the mouse in the Tags area of the RFID peripheral panel.

Use

Peripheral Options menu functions for the RFID reader

Menu option Button Description

New Tag

It triggers the New Tag dialog to prompt the user to
input all information of a new tag.

This function is only available when a Data group is
selected.

Edit Tag

It triggers the Edit Tag dialog to prompt the user to
modify all information of an existing tag.

This function is available only when an existing tag is
selected.

Peripheral Input/Output Services 670 142

SAP Online Help 20.12.2005

Clone Tag

It duplicates an existing tag and triggers the Clone
Tag dialog to prompt user to modify all information of
the duplicated tag.

This function is available only when an existing tag is
selected.

Delete Tag(s)

It deletes selected tag(s). Please note that it supports
multiple selections in the tag list.

This function is available only when at least one tag
is selected.

Move Away

It takes the selected tags and sets them as out of
range of the RFID reader.

This function is available only when at least one tag
is selected.

Move Near

It takes the selected tags and sets them as in range
of the RFID reader.

This function is available only when at least one tag
is selected.

Reset

It sets the RFID reader to its initial states.

Capability…

It triggers the Rfid Capability dialog to let user
customize the RFID’s attributes.

Structure

When you click on Capability… a window with two tabs is displayed. Each tab is
explained in the next table:

RFID Reader's Capabilities

Category Description

General Contains general RFID reader attributes. The state of each attribute can be
modified by clicking on the attribute node selection checkbox or selecting
the node and pressing the space bar.

Tag Type This tab provides functionality to add, edit, delete, disable, and enable tag
types. The state of each attribute can be modified by selecting the tag type
and pressing either Enable or Disable button.

Integration

The peripheral options menu contains options specific to an individual peripheral type. Menu
options will vary per peripheral type.

Peripheral Input/Output Services 670 143

SAP Online Help 20.12.2005

Using the RFID Emulator

Use
This procedure provides an overview on how to use the Peripheral I/O Emulator for the RFID
peripheral type.

Keep in mind the following when using the RFID emulator:

● Tags should have a unique ID. Only one tag with a particular tag
ID can be in range at any given time. If more than one tag has
the same tag ID the last one to get in range will stay in range.

● Programming several tags with the same tag ID can cause tags
to be set as "out of range".

● Tags can be set in range and out of range while the application is
running.

Prerequisites
● SAP NetWeaver Developer Studio is installed and configured.

● Prepared RFID tag data (see Creating RFID Tags [Page 147]).

Procedure
...

1. Write code that uses the RFID API of the MI Client API.

2. Once the code is ready for testing, set the SAP NetWeaver Developer Studio in

emulation mode by pressing the Set MDK Peripheral Emulation Mode button on
the MI perspective.

3. Restart the Mobile Infrastructure client.

4. Launch the Emulator by pressing the Launch the Peripheral I/O Emulator button on
the MI perspective.

5. Configure desired emulator capabilities by clicking on the Capability… button.

6. Set any tags you want to work with in range by selecting the tags and clicking on Move

Near button.

7. Run the application.

8. Perform operations (like identify, read, write and so on) on the RFID tags.

Result
All the operations are recorded under Operation History, whether it failed or was successful.

Peripheral Input/Output Services 670 144

SAP Online Help 20.12.2005

Adding RFID Tag Types

Use
The RFID emulator comes with a set of predefined RFID tag types. These tag types are but a
fraction of all the tag types that exist today. Also, as RFID technology advances, more RFID
tag types may become available. The RFID emulator provides the user with the ability to add
tag types to the RFID emulator as the need arises.

This procedure explains how to add, edit, and delete tag types from the RFID emulator.

Prerequisites
The RFID peripheral panel is displayed.

Procedure
...

1. Click on the Capability… button. The Rfid Capability window opens.

2. Click on the Tag Type tab.

3. Click the Add button. The New Tag Type window opens.

4. Enter the following information:

a. Type Name - The name that will be given to the tag type being added.

b. Under the Tag Id tab:

i. Total Length - Total length of the tag ID in bytes.

ii. Prefix Length - Prefix length of the tag ID in bytes. These are bytes in the
tag ID that are the same for all the tags that belong to this tag type.

iii. Prefix - Double click on each of the bytes to enter the hex code for each.

When you double click on a byte, the Byte Entry window is displayed. This
window presents three columns: HEX (hexadecimal code), DEC (decimal code),
and CHR (character). Each row is a byte. Rows go from 0 to 255 (DEC).

iv. Programmable - Check this box if the Tag ID is programmable.

v. Lockable - Check this box if the Tag ID can be locked.

vi. Password Length - The length, in bytes, of the password used to lock a
Tag ID.

c. Under the Memory tab:

i. Size - The size of the whole tag including reserved, read only, and/or
writable areas.

By default the size is in addition to the tag ID. To include the Tag ID as part of
the tag type size, click on the desired starting position (Offset) for the tag ID and
click on the Include TID button.

ii. Bytes Per Block - Set by default to 1. If you want to configure the number
of bytes per block, keep in mind that this number must be a factor of the
Size.

5. Click on the OK button.

Peripheral Input/Output Services 670 145

SAP Online Help 20.12.2005

Result

The new tag type has been added to the RFID emulator.

Editing RFID Tag Types

Prerequisites
● The RFID peripheral panel is displayed.

● Tag Types present in the RFID emulator (see Adding RFID Tag Types [Page 145]).

Procedure
...

1. Click on the Capability… button. The Rfid Capability window opens.

2. Click on the Tag Type tab.

3. Select one of the tag types.

4. Click on the Edit button. The Edit Tag Type window opens.

5. Change one or more fields.

6. When you finish making changes, click on the OK button.

Changes done to a tag type may cause existing tags, for that type, to become
invalid.

Result

The Tag Type has been changed.

Peripheral Input/Output Services 670 146

SAP Online Help 20.12.2005

Deleting RFID Tag Types

Prerequisites
● The RFID peripheral panel is displayed.

● Tag Types present in the RFID emulator (see Adding RFID Tag Types [Page 145]).

Procedure
...

1. Click on the Capability… button. The Rfid Capability window opens.

2. Click on the Tag Type tab.

3. Select one or more of the tag types.

4. Click on the Delete button. The Confirm Delete window opens.

5. Click on the Yes button.

6. When you finish making changes, click on the OK button.

Result

The tag type or types are deleted.

Creating RFID Tags

Use

Each project has only one RFID node. The RFID node may have more than one data node
(data group) and each data node may have multiple tags, displayed in the tag information
area under Tags. Each tag has information fields such as Tag Id, Tag Type, TID Password,
TID Locked, Valid, and In Range.

Because the RFID emulator cannot work with physical RFID tags, all tag data must be
entered into a project before doing any RFID emulation.

Prerequisites
● The RFID peripheral panel is displayed.

● At least one tag type is enabled.

Peripheral Input/Output Services 670 147

SAP Online Help 20.12.2005

Procedure
...

1. Create a new Data group by pressing the button. The New Data dialog box will be
displayed and prompt the user to input the name of this Data group.

2. Create a tag record for the selected Data group by pressing the button. The New
Tag dialog box is launched and prompts to input information for the RFID tag:

a. Tag Type - Select the tag type for the new tag.

b. Tag Id - These are the tag ID bytes.

Red colored bytes indicate the tag ID prefix. These bytes cannot be changed.

i. Double click on any of the bytes. The Byte Entry window is display.

ii. Select any value from 1 to 255.

iii. Click on the Enter button.

iv. Repeat the process for each of the remaining tag ID bytes.

If a tag has all the bytes in the tag ID set to "FF", it is treated as a blank tag.

c. Tag Id Locked - Checkbox is enabled if tag ID is lockable. Check to lock the tag
ID.

d. Tag Id Password - If you locked the tag ID, you can set the password to reset
the tag. The procedure is the same as described for the Tag Id.

e. Memory Map - You can set the value of any of the Writable bytes by clicking on
the Value… button and selecting values from the Byte Entry window.

3. Click on the OK button.

Result

A new tag is created.

Peripheral Input/Output Services 670 148

SAP Online Help 20.12.2005

Editing RFID Tags

Prerequisites
● The RFID peripheral panel is displayed.

● A data group under the RFID node is selected.

● The data group has at least one tag.

Procedure
...

1. Select a tag in the tag information area.

2. Click on the Edit Tag button. The Edit Tag window is displayed.

3. Make any necessary changes.

4. Click on the OK button.

Result

The tag has been edited.

Deleting RFID Tags

Prerequisites
● The RFID peripheral panel is displayed.

● A data group under the RFID node is selected.

● The data group has at least one tag.

Procedure
...

1. Select one or more tags in the tag information area.

2. Click on the Delete Tag(s) button. The Confirm Delete dialog window is displayed.

3. Click on the Yes button.

Result
The tag or tags are deleted.

Peripheral Input/Output Services 670 149

SAP Online Help 20.12.2005

Cloning RFID Tags
Prerequisites

● The RFID peripheral panel is displayed.

● A data group under the RFID node is selected.

● The data group has at least one tag.

Procedure
...

1. Select one tag in the tag information area.

2. Click on the Clone Tag button. The Clone Tag dialog window is displayed.

3. Make any changes deemed appropriate to the tag (for example, change the Tag Id).

4. Click on the OK button.

Result
The tag is cloned. That is, a new tag is created which, except for the changes made by the
user in the Clone Tag window, is an exact copy of the original.

Driver Selection Tool
Purpose
The Driver Selection Tool (DST) enables the SAP MI Web Admin administrator to select
peripheral driver(s) that meet the mobile application peripheral requirements. This selection
process also considers the mobile application target device operating system, processor,
virtual machine, and available transports.

Integration
The DST is integrated into the SAP MI Web Admin.

Features
● Display Matched Drivers

Displays available drivers that match the target OS, processor, VM, transport and
application requirements.

● Display Non-Matched Drivers

Displays available drivers that do not match the target OS, processor, VM, transport
and/or application requirements. It also displays the first selection criteria that is not
met.

Peripheral Input/Output Services 670 150

SAP Online Help 20.12.2005

Constraints
● The DST only recommends driver add-ons registered in the DST driver catalog. The

catalog is updated by un-deploying old SDA files and deploying new SDA files.

● The DST only displays the first reason for a mismatch. It may display the operating
system, processor, virtual machine, transports, or attributes in that order. On two
instances more information is presented:

○ Transports - If the reason for a mismatch is the transports, the DST will display
all the transports that did not match.

○ Attributes - If the reason for a mismatch is the attributes, the DST will show all
attributes that were not matched. For each attribute, if more than one option
does not match, the DST will display only the first option that did not match.

Refer to Driver Requirements Document Editor [Page 93] for an example
of attributes and options.

Using the Driver Selection Tool
Use
This section describes the process of launching the Driver Selection Tool and searching for
drivers that match selected requirements.

Prerequisites
● You started the SAP MI Web Admin.

● Mobile application with a Driver Requirements Document is available in the SAP Web
Admin

Procedure
...

1. Identify an application in the SAP Web Admin that requires peripheral support.

2. Choose Select driver on the left side of the mobile application identified.

The Driver Selection Tool (DST) is launched.

3. Select the target operating system, processor, virtual machine, and transports.

○ Transport - In this field you select one or more transports. The transport is part
of the mobile device. It enables you to establish the connection between the
mobile device and the peripheral hardware.

When more than one transport is selected, the DST searches for at least one of
them. In other words, it follows a logical OR behavior. When at least one of the
transports is found to be supported by the driver, the requirement is considered
met.

Result
A list of matching drivers is displayed.

Peripheral Input/Output Services 670 151

	Copyright
	Icons in Body Text
	Typographic Conventions
	Peripheral Input/Output Services
	PIOS Release Notes
	Purpose

	Peripheral Input/Output Services (New)
	Use

	Document Generator (new)
	Use

	Emulator (new)
	Use

	Driver Selection Tool (new)
	Use
	Effects on System Administration

	Support Package Stack 12
	Scanner API (New)
	Use

	Document Generator (Changed)
	Use

	Peripheral Input/Output Emulator (Changed)
	Use

	Support Package Stack 14
	RFID API (New)
	Use

	Document Generator (Changed)
	Use

	Peripheral Input/Output Emulator (Changed)
	Use

	Peripheral Input/Output Services Architecture
	Purpose
	Integration
	Example
	See Also

	PIOS Getting Started
	Use
	Prerequisites
	Procedure

	PIOS API Core
	Purpose
	Implementation Considerations
	Integration
	Features
	Constraints

	Printer API
	Purpose
	Integration
	Features
	Constraints

	PIOS Printer API Features Description
	Definition

	PIOS Printer API Guidelines
	Definition
	Use

	Printer API Examples
	Print Text on the Left Paper
	Print Text Center Alignment in Line Mode
	Print Text on the Right Side
	Text Drawn on the Left Side of the Page
	Draw Text in the Center of the Page in Graphic Mode
	Text Drawn on the Right Side of the Page
	Two Page Report
	Image Printing with Printer in Line Mode
	Printing a Barcode with Printer in Line Mode
	Text Rotation
	Rotate an Image
	Rotating a Barcode
	Configure the Printer Parameters
	Adding/Remove a Font Using the Client API
	Scanner API
	Purpose
	Integration
	Features
	Constraints

	PIOS Scanner API Features Description
	Definition

	PIOS Scanner API Guidelines
	Definition
	Use

	Scanner API Examples
	Add / Remove Symbologies
	Beep Options
	Determine Symbology
	Preamble and Postamble
	Soft Trigger
	Wedge Mode
	Using the Scanner Attributes
	RFID API
	Purpose
	Integration
	Features
	Constraints

	PIOS RFID API Features Description
	Definition

	PIOS RFID API Guidelines
	Definition
	Use

	RFID API Examples
	Identify All
	Identify by Tag Type
	Read
	Write
	List Tag Types
	Tag Configuration Manager
	Program and Lock a Tag ID
	Reset a Tag ID
	PIOS Add-on Drivers
	Installing a Driver Add-on
	Purpose
	Prerequisites
	Process Flow
	Result

	Driver Configuration
	Purpose
	Implementation Considerations
	Integration
	Features
	Constraints
	Example
	See Also

	MDK Peripheral Support Actions
	Purpose
	Implementation Considerations
	Integration
	Features

	Driver Requirements Document Editor
	Definition
	Use
	Structure

	Using the Driver Requirements Document Editor
	Use
	Features
	Activities

	MDK Peripheral Support Actions Toolbar
	Use
	Prerequisites
	Features

	Creating a Driver Requirements Document
	Use
	Prerequisites
	Procedure
	Result

	Modifying the Driver Requirements Document
	Use
	Prerequisites
	Procedure
	Result

	Launching the Peripheral I/O Emulator
	Use
	Prerequisites
	Procedure
	Result

	Set MDK Peripheral Emulation Mode
	Use
	Prerequisites
	Procedure
	Result

	Peripheral Input/Output Emulator
	Purpose
	Implementation Considerations
	Integration
	Components

	Constraints

	PIOS Emulator Menu Options
	File Menu
	Definition
	Use

	Edit Menu
	Definition

	View Menu
	Definition
	Use

	Peripheral Options Menu
	Definition

	Help Menu
	Definition
	Use

	Printer Peripheral Panel
	Definition
	Structure

	Edit Menu for Printer Peripheral Type
	Definition

	Peripheral Options Menu for Printer Peripheral Type
	Definition
	Use
	Structure
	Integration

	Emulator Configuration
	Property Files for Printer Peripheral Type
	Purpose
	Features
	Constraints

	Installing a Font in the Emulator Printer
	Use
	Prerequisites
	Procedure
	Result
	Example

	Uninstalling a Font from the Emulator Printer
	Use
	Procedure
	Result

	Installing New Media to the Emulator Printer
	Use
	Procedure
	Result
	Example

	Uninstalling Media from the Emulator Printer
	Use
	Procedure
	Result

	Installing a Font Configuration
	Use
	Procedure
	Result
	Example

	Uninstalling a Font Configuration
	Use
	Procedure
	Result

	Using the PIOS Emulator for the Printer Peripheral Type
	Use
	Prerequisites
	Procedure
	Result

	Using the Measuring String
	Use
	Prerequisites
	Procedure
	Result

	Scanner Peripheral Panel
	Definition
	Structure

	Edit Menu for Scanner Peripheral Type
	Definition
	Use

	Peripheral Options Menu for Scanner Peripheral Type
	Definition
	Use
	Structure
	Integration

	Using the PIOS Emulator for the Scanner Peripheral Type
	Use
	Prerequisites
	Procedure
	Result

	Creating Barcode Data
	Use
	Prerequisites
	Procedure
	Result

	Scanning Existing Barcode Data
	Use
	Prerequisites
	Procedure
	Result

	RFID Peripheral Panel
	Definition
	Use

	Edit Menu for the RFID Peripheral Type
	Definition
	Use

	Peripheral Options Menu for RFID Peripheral Type
	Definition
	Use
	Structure
	Integration

	Using the RFID Emulator
	Use
	Prerequisites
	Procedure
	Result

	Adding RFID Tag Types
	Use
	Prerequisites
	Procedure
	Result

	Editing RFID Tag Types
	Prerequisites
	Procedure
	Result

	Deleting RFID Tag Types
	Prerequisites
	Procedure
	Result

	Creating RFID Tags
	Use
	Prerequisites
	Procedure
	Result

	Editing RFID Tags
	Prerequisites
	Procedure
	Result

	Deleting RFID Tags
	Prerequisites
	Procedure
	Result

	Cloning RFID Tags
	Prerequisites
	Procedure
	Result

	Driver Selection Tool
	Purpose
	Integration
	Features
	Constraints

	Using the Driver Selection Tool
	Use
	Prerequisites
	Procedure
	Result

