
Das kursive sollten immer Links werden und selber nicht-kursiv da stehen

ORDER INTERFACE 7.3
Realizing SAP DB requires the exchange of messages between an application and SAP DB
tasks. These messages are database requests and the corresponding results.

A log for the interactions between an application process and a SAP DB task is defined in this
publication--i.e., defining message formats, message types and message sequences.

Introduction
For the communication between an application process and the corresponding SAP DB task
there is the strict rule: the application process has to wait for the answer of the SAP DB task
before the next request may be send to this SAP DB task.
An application process may communicate with more than one SAP DB task, but each
SAP DB task may have not more than one request at any time.

For communication between an application process and a SAP DB task a message block is
used.
The maximum length of this message block must be specified during configuration of each
database. The configuration parameter_PACKET_SIZE defines the maximum length of the
message block. Usually an application process will provide as much space for the message
block as specified with this maximum length. Shorter message blocks are possible if they
consist of at least 16 KB.

To avoid copying of the requests and to give the application process the chance to reuse part
of one request to build the next one, the request in the message block is not overwritten with
the answer send by the SAP DB task. This answer is written behind the request into the same
message block. Therefore not the whole message block can be filled with the request. Per
default the number of bytes resevered as minimum space for the answer is set to 4 KB. If the
request is shorter than _PACKET_SIZE – 4 KB minus some overhead, then the answer may
be longer.

The term message is used in this document to describe the requests or the answers send to or
from the SAP DB task. When returning the answer, the message block consists of two
messages. The starting position of the return message will be different for each request and is
returned by the communication routine.

MESSAGE FORMAT
The message format used for the communication between application processes and SAP DB
tasks consists of a fixed part, a message header, and a variable part.

MESSAGE HEADER
The same header is used for both directions; i.e., from application process to SAP DB task
and vice versa.

The message header (32 bytes) looks like this :

 1 byte 1 byte 2 bytes

| message | swap | filler | ...
| code | kind | |

 5 bytes 3 bytes 4 bytes 4 bytes

| application | application | varpart | varpart | ...
| version | id | size | len |

 2 bytes 2 bytes 8 bytes

| filler | no of | for future use |
| | segments | |

MESSAGE CODE

The field MESSAGE CODE distinguishes various types of code in the application process,
shown here as decimal values:

00 = ASCII
01 = EBCDIC
02 = unused
03 <= 18

used if a termchar set is used for this session; see explanation of the CONNECT
statement

19 = swapped UCS2
20 = UCS2

A specification in this field is used for interpreting the requests, as well as for returning
database contents. The application process sends and receives every information in its own
code set which will be internally converted by the SAP DB task according to its needs.

The MESSAGE CODEs 19 and 20 can only be used if the database has the configuration
parameter _UNICODE (see …) set to YES.

SWAP KIND

The representation of integer values (byte swapping) is declared in the field SWAP KIND.

 01 = no swapping
 (int2: hi-lo,
 int4: hi4-hi3-lo2-lo1)
 02 = full swapping
 (int2: lo-hi,
 int4: lo1-lo2-hi3-hi4)

The SAP DB task and not the application process will be responsible for the swapping if the
swap kind of the application process and that of the SAP DB task differ from each other. The
integers in the requests must be given and the results will be returned with the swap kind of
the application process.

APPLICATION VERSION and APPLICATION ID

APPLICATION VERSION

The version of the application must be given, e.g., '70301'.

With this the SAP DB task is able to return the order interface as the application process
expects it even if minor changes were defined for the order interface between two versions.
Sometimes older application versions have to work with a newer version of SAP DB tasks.
For their communication it is necessary.

APPLICATION ID

A short name of the component calling a SAP DB task must be given.

This is used to have some checks for SAP DB components.

VARPART SIZE and VARPARTLEN

VARPART SIZE

The variable part has a variable length which depends on the configuration of the database the
message block will be send to and it depends on the application process (see Introduction).
 .
The length of the existing variable part of the message block must be given in VARPART
SIZE. This is NOT the used length of the variable part of the message block. The used length
of the variable part is given in VARPARTLEN.

VARPART LEN

VARPART LEN specifies the filled no of bytes in the variable part of the message.

NO OF SEGMENTS

Commands are written to the variable part of the message block. A segment represents either
a request to the SAP DB task or its result. NO OF SEGMENTS gives the number of
segments, i.e. requests or results.

If one message send to a SAP DB task consists of n segments, the corresponding message
send back to the application process will consist of the same number n of segments.

In the message block all requests are one after the other, all results are one after the other.
The first result belongs to the first request, the second result to the second request and so on.
The first result is written behind the last request.

Several independant segments can be specified in one message. If for building the input one
command (one segment) needs the output of another command (segment), these both
commands cannot be together in one message.

The segments will be handled one after the other in the given sequence. All subsequent
segments will be handled no matter of errors found in the segments handled before. No
control flow is available for handling segments.

VARIABLE PART OF A MESSAGE BLOCK
The variable part with its length of VARPART SIZE is (partly) filled with segments, i.e.
commands.

Each segment consists of one segment header and 0-n different parts. Parts are those
components of a segment in which the info concerning this request or result is given, for
example the text of the SQL command or the data.

SEGMENT HEADER
Two different types of segment header exist: one for requests from an application process to a
SAP DB task and one for the results. Both have the same length, i.e. 40 bytes.
Both of them look alike in the first 13 bytes and differ in the last 27 bytes.

SEGMENT HEADER, common part
The first 13 bytes of the segment header look like this:

 4 bytes 4 bytes 2 bytes 2 bytes 1 byte

| segment | segment | no of | segment | segment | ...
| length | offset | parts | number | kind |

SEGMENT LENGTH

SEGMENT LENGTH specifies the length of the segment, i.e the number of used bytes.
SEGMENT LENGTH MOD 8 = 0 must be true.

SEGMENT OFFSET

This segment starts at the (SEGMENT OFFSET + 1)-th byte in the variable part.

NO OF PARTS

NO OF PARTS specifies the number of parts belonging to this segment, i.e. to this request or
result.

SEGMENT NUMBER

SEGMENT NUMBER specifies the number of the current segment, the first segment has
number 1. Segments given in a result use the same numbers starting with 1.

SEGMENT KIND

SEGMENT KIND specifies whether a request to the SAP DB task (value 01) or a result
(value 02) is involved.

01 = request
02 = result

REQUEST SEGMENT HEADER
In the case of a segment belonging to a request, the 13 bytes specified in SEGMENT
HEADER, common part, are followed by 27 bytes that look like this:

 1 byte 1 byte 1 byte 1 byte
--
| message | sqlmode | producer | commit | ...
| type | | | immediately |
--

 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 17 bytes
--
| ignore | prepare | with | mass | parse | options | for |
| costwarning | | info | cmd | again | | future use |
--

MESSAGE TYPE

MESSAGE TYPE tells the SAP DB task what kind of request is in the message. The
MESSAGE TYPE is shown here as decimal value:

 01 = unused
 02 = DBS
 03 = PARSE

 05 = SYNTAX

 13 = EXECUTE

 15 = PUTVAL
 16 = GETVAL
 17 = LOAD
 18 = UNLOAD

 25 = HELLO

 27 = UTILITY
 28 = INCOPY

 30 = OUTCOPY
 31 = DIAG_OUTCOPY

 39 = SWITCH
 40 = SWITCHLIMIT
 41 = BUFLENGTH
 42 = MINBUF
 43 = MAXBUF
 44 = STATE_UTILITY

 50 = WAIT_FOR_EVENT

All other numbers are for future use.

The meanings of the MESSAGE TYPEs 02 – 05, 13 – 16 and 25 are explained in the
following chapters. The other MESSAGE TYPEs are used internally, e.g. for utilities like
backup and recovery. They are not described in this manual.

SQLMODE

The database system can execute correct database applications and applications that are
written in accordance with one of the following definitions:

INTERNAL (internal database definition)
ANSI Standard (ANSI X3.135-1992, Entry SQL)
Definition DB2 Version 4
Definition ORACLE7

The database system is able to check whether new applications comply with one of the above
definitions. This means, in particular, that any extension above and beyond the selected
definition is considered incorrect. Support for DDL statements in other SQL modes, however,
is limited.
When connecting to the database system, one of the above-mentioned definitions or the
INTERNAL SQL mode can be selected.

 01 = SESSION_SQLMODE
 02 = SAP DB / INTERNAL
 03 = ANSI
 04 = DB2
 05 = ORACLE

If nothing special is specified during the CONNECT statement, the SAP DB task will check
the given SQL statements against the SAP DB Reference Manual, which describes the
functionality of SAP DB in its own SQLMODE (SQLMODE SAP DB). If a user or an
application wants to use another SQLMODE, this should be specified during the CONNECT
with the option SQLMODE followed by one of the terms ANSI, DB2, ORACLE or
(superfluous) SAP DB. The commands will then not be checked against the usual SAP DB
syntax but against the syntax as it is the SQL standard or implemented by the systems DB2 or
ORACLE.

For some reasons, sometimes users need another SQLMODE for a single statement in a
program. Then the SQLMODE for this single statement can be changed using the field
SQLMODE. Such a change can be done for the MESSAGE TYPEs DBS, PARSE and
SYNTAX, not for the MESSAGE TYPE EXECUTE. The statements will be executed using
the SQLMODE specified during the corresponding PARSE.

Usually, SQLMODE will have the value 01 (SESSION_SQLMODE) to indicate that the
SQLMODE given during the CONNECT will be used. All the other values change the syntax
check for the given statement to the specified SQLMODE.

PRODUCER

PRODUCER must be set to 01 to show that an application process sent this statement.
Only SAP DB components are allowed to use the values 02 and 04.

COMMIT IMMEDIATELY

If an application wants to commit (or, if an error occurred, to rollback) immediately after
executing the statement, this field must have the value 01. If no immediate commit is wanted,
COMMIT IMMEDIATELY must have the value 0.

Independent of the value in COMMIT IMMEDIATELY, a COMMIT or ROLLBACK
statement can be specified as the statement to be executed.

This field is useful for applications that usually commit after every SQL statement
(Autocommit) and want to avoid additional communication between the application process
and the SAP DB task.

IGNORE COSTWARNING

In case, a costwarning was specified for the current user and the execution of a statement
would exceed the cost value, the error -4 (COSTWARNING value exceeded) is output.

If the COSTLIMIT values will not be exceeded, the user can force the SAP DB task to
suppress the error message and execute the statement by setting IGNORE COSTWARNING
to 01 when repeating the statement. Usually, this field should have the value 00.

For future versions of SAP DB it cannot be assured that this value will be considered.

PREPARE

When parsing a SQL statement, the SAP DB task usually does not store the SQL statement,
but an internal representation of it, because this will be enough for the execution of the
statement.

If the SQL statement must be reparsed, for some reason, it must be given again to the
SAP DB task by the application process.

If the SQL statement had been built dynamically, the application process might be unable to
know or rebuild the original statement.
In cases in which the application process has no chance to rebuild the statement, PREPARE
should be set to 01, thus enabling the SAP DB task to store the SQL statement itself.

As storing the SQL statement needs time and memory, PREPARE should usually be set to 00.
(see also the MESSAGE TYPEs PARSE and EXECUTE)

WITH INFO

Usually, the field WITH INFO should have the value 00.

The value 01 for the field WITH INFO is only allowed together with the MESSAGE TYPE
DBS or PARSE.

The field WITH INFO is useful for SQL statements producing an output like SELECT,
DECLARE CURSOR, FETCH, RFETCH, and EXPLAIN. Then the SAP DB task will not
only return the result of the statement, but also a specification of how to interpret the result.
This means, for each output parameter, a description of the name, the data type, the length,
and the position where to find the value for this output parameter in the result will be
returned. For a full explanation of this description, see the PART KINDs shortinfo and
columnnames.

MASS CMD

Sometimes a statement has to be executed for a whole bunch of values, for example insert
hundred of rows. It is possible but time consuming to send a message block for each row. It is
better to send as much segments in one message block as will fit to handle several rows with
one communication. The best way is to send one segment with as many rows as will fit. With
this method more rows will be handled with one communication than can be handled if one
segment consists of one row. The data-packets will be handled in the given sequence.

Statements like INSERT (no INSERT ... SELECT), UPDATE, DELETE, SELECT (no
SELECT DIRECT/FIRST/LAST/NEXT/PREV, which are not available with versions >= 7.4
in any case) and DECLARE can be combined with the field MASS CMD set to 01. Usually,
this field will have the value 00.

MASS CMD set to 01 is only allowed together with MESSAGE TYPEs PARSE and
EXECUTE, not with DBS.
If MASS CMD is set to 01, several rows can be inserted, updated, deleted or selected by
specifying several data-packets and not only one during execution.

In case of a SELECT or DECLARE combined with MASS CMD, all result rows will be in
one result table, no matter how many data-packets have been specified. That is different to
specifying just one data-packet for the SELECT. If MASS CMD is not set to 01, each
SELECT with one data-packet will result in a result table. If the same result tablename is used
for these data-packets, each SELECT will overwrite the result table created before and store
only its own result rows in this recreated result table. With MASS CMD set to 01, the result
rows are appended.

During the PARSE of a statement, a check will be made as to whether the usage of this
statement as a mass-command is correct. If this is the case, application info1 in the parse ID
will be set to 70 (see the chapter PART KIND parseid) for INSERT, UPDATE and DELETE,
and to 114, 115, 116 or 117 for SELECT and DECLARE. Any other value in application
info1 indicates that only one data-packet may be given.
If the application process wants to use only one data-packet although the command was
parsed with MASS CMD set to value 01, it is allowed to change the application info1 from
70/114/115/116/117 to 0/44/45/46/47. It is not allowed to change the values the other way
round.

If MASS CMD was set during PARSE, it is possible, that not all of the data-packets will fit in
one EXECUTE message. In this case more than one message can be sent. In the last (even if it
it the only one) message in PART ATTRIBUTES in the data part last_packet has to be set. If
more than one message will be sent, the first one has to set first_packet, the next ones have to
set next_packet and the last one has to set last_packet in PART ATTRIBUTES in its data part.

MASS CMD, error handling

For each segment, only one error number (see SQLCODE) can be set. For a segment with
several data-packets more than one error may occur. Therefore a special behaviour has to be
specified.

If for all data-packets no error is found, SQLCODE is set to 0.

If for one data-packet any error except error 100 ROW NOT FOUND is found, the execution
stops at this data-packet. The SQLCODE is set to the found error, ERRORPOS indicates the
number of the data-packet that caused the error.
The changes done beforehand usually will not be rollbacked. Only if
COMMIT IMMEDIATELY was specified, an implicit rollback will be made.
The subsequent data-packets are not handled in any case and have to be sent again to the
SAP DB task if further work shall be done even if an error occurred.

If error 100 occurs with an UPDATE or DELETE statement, usually it is ignored. Only if all
data-packets return error 100, SQLCODE is set to 100.

If error 100 occurs with a SELECT (no SELECT … INTO) statement, usually it is ignored.
Only if all data-packets return error 100, SQLCODE is handled as usual with SELECTs.

If MASS CMD is set to 01 together with a SELECT … INTO, for each data-packet one result
row is returned. For each data-packet returning error 100, a result row filled with ‘FF’ is
returned.

PARSE AGAIN

Usually, the field PARSED AGAIN should have the value 00. The value 01 should be used
when a statement has to be parsed again after receiving the SQLCODE -8 during execution of
a statement.

The value 01 will result in locks concerning the catalog information needed for this statement.
This assures the correctness of the catalog information used even if another application
changes some catalog information of one of the used tables. On the other hand these locks can
hide other applications from the chance to work with these tables unless the locks are released
by the statement COMMIT or ROLLBACK.

Options

OPTIONS is a set built out up to 8 values. By now only one is used::

bit 0 : no SELECT with implicit FETCH

These bits are stored in the byte used for OPTIONS as follows:

 | 7 6 5 4 3 2 1 0 |

If a SELECT meets some conditions, the SAP DB task performs a FETCH for the first result
rows implicitly. If for some reason the application task does not want this (perhaps because of
errors in the code handling this situation), bit 0 can be set. Usually it is 0.

RESULT SEGMENT HEADER
In the case of a segment belonging to a result, the 13 bytes specified above are followed by 27
bytes that look like this:

 5 bytes 2 bytes 4 bytes 2 bytes

| sqlstate | sqlcode | errorpos | warningset1 | ...
| | | | |

 2 bytes 2 bytes 1 byte 9 bytes

| warningset2 | functioncode | trace | for future use |
| | | level | |

SQLSTATE

SQLSTATE is returned independent of the SQLMODE. It holds the values that are
standardized in SQL2 (ANSI X3.135-1992).

SQLCODE

Each execution of a request sets the SQLCODE. If SQLCODE = 0, then the execution
worked correctly. If SQLCODE <> 0, normally a description of the cause of the error is
returned. For a description of the possible SQLCODEs, see the manual Messages and Codes.

ERRORPOS

If SQLCODE <> 0, ERRORPOS indicates the position of that part of the SQL statement that
caused the error.
If SQLCODE = 0, ERRORPOS is of no use.
For SELECT, DECLARE, INSERT, UPDATE, DELETE with MASS CMD set to 01 (see
there), ERRORPOS indicates the number of the data-packet that caused the error.

WARNINGSET1

See special chapter.

WARNINGSET2

Unused by now.

FUNCTIONCODE

See special chapter.

TRACELEVEL

Usually the field TRACELEVEL has the value 00. If for some reason a user wants some
tracing for a running application, he can specify the level of tracing wanted for this
application within another session. The application to be traced has not to be interrupted. To
inform the application about the trace level wanted, its value is given in the field
TRACELEVEL.
It depends on the application (precompiler or component) which trace level will result in what
kind of tracing.

WARNINGSET1

In some cases independent of the SQLCODE, WARNINGSET1 is not empty having the
following meanings:

bit 0 SQLWARN (at least one warning exists)
bit 1 SQLWARN1 (value of a string column was truncated when assigning it to a host

variable; NOT set in the SAP DB kernel)
bit 2 SQLWARN2 (NULL values were eliminated from the argument of a function)
bit 3 SQLWARN3 (the number of output columns and the number of host variables is not

equal)
bit 4 SQLWARN4 (an UPDATE or DELETE statement does not include a WHERE clause)
bit 5 SQLWARN5 (NOT used)
bit 6 SQLWARN6 (a DATE or TIMESTAMP value was adjusted to correct an invalid date

resulting from an arithmetic operation)
bit 7 SQLWARN7 (NOT used)
bit 8 SQLWARN8 (one of two time-consuming functions was used: a sequential search was

performed or an ordering was performed while physically building a(n internal) result
table)

bit 9 SQLWARN9 (NOT used)
bit A SQLWARNA (NOT used)
bit B SQLWARNB (a TIME value was greater than 99 (or 23 in USA format). The value is

corrected modulo 100 (24)).
bit C SQLWARNC (because of the ROWNO specification, no more SELECT result rows

are searched, although possibly available)
bit D SQLWARND (in an ordered select statement, INDEX is specified for an optional

column)
bit E SQLWARNE (in an ordered select statement INDEX(NAME) is specified and at least

one index column of the found row has another value than the specified one)
bit F SQLWARNF (NOT used)

In this field, bit 0 is defined as the right-most bit of the left byte. If it is set, then at least one
other bit is set. If it is not set, then there are no warnings.
The warnings are stored in the two bytes of the warningset in the following way:

 left byte right byte

warn | 7 6 5 4 3 2 1 0 | F E D C B A 9 8 |

FUNCTIONCODE

The FUNCTIONCODE tells the application process what kind of SQL statement was
executed. The values below 200 refer to the definition in the ORACLE Call Interface V 7.1.
Values 200 and above are only used in the SAP DB system.
Values 1000 and above are used if ORACLE-like array commands (see the field MASS CMD)
are specified.
Not all of the values below 200 are used by now, but they may be used in future.

 1 = create_table
 2 = set_role
 3 = insert
 4 = select
 5 = update
 6 = drop_role
 7 = drop_view
 8 = drop_table
 9 = delete
 10 = create_view
 11 = drop_user
 12 = create_role
 13 = create_sequence
 14 = alter_sequence
 15 = unused1
 16 = drop_sequence
 17 = create_schema
 18 = create_cluster
 19 = create_user
 20 = create_index
 21 = drop_index
 22 = drop_cluster
 23 = validate_index
 24 = create_procedure
 25 = alter_procedure
 26 = alter_table
 27 = explain
 28 = grant
 29 = revoke
 30 = create_synonym
 31 = drop_synonym
 32 = alter_system_swith_log
 33 = set_transaction
 34 = pl_sql_execute
 35 = lock_table
 36 = unused2
 37 = rename
 38 = comment
 39 = audit
 40 = noaudit
 41 = alter_index
 42 = create_external_database
 43 = drop_external_database
 44 = create_database
 45 = alter_database
 46 = create_rollback_segment
 47 = alter_rollback_segment
 48 = drop_rollback_segment
 49 = create_tablespace
 50 = alter_tablespace

 51 = drop_tablespace
 52 = alter_session
 53 = alter_user
 54 = commit
 55 = rollback
 56 = savepoint
 57 = create_control_file
 58 = alter_tracing
 59 = create_trigger
 60 = alter_trigger
 61 = drop_trigger
 62 = analyze_table/update_statistics
 63 = analyze_index
 64 = analyze_cluster
 65 = create_profile
 66 = drop_profile
 67 = alter_profile
 68 = drop_procedure
 69 = unused3
 70 = alter_resource_cost
 71 = create_snapshot_log
 72 = alter_snapshot_log
 73 = drop_snapshot_log
 74 = create_snapshot
 75 = alter_snapshot
 76 = drop_snapshot

 201 = select_direct
 202 = select_first
 203 = select_last
 204 = select_next
 205 = select_prev
 206 = fetch_first
 207 = fetch_last
 208 = fetch_next
 209 = fetch_prev
 210 = fetch_pos
 211 = fetch_same
 212 = unused
 213 = connect
 214 = drop_parseid
 215 = close
 216 = unused
 217 = usage
 218 = serverdb
 219 = monitor
 220 = set
 221 = unused
 222 = create_domain
 223 = drop_domain
 224 = describe
 225 = alter_password

 233 = putval
 234 = getval
 235 = diagnose
 236 = unlock
 237 = refresh
 238 = clear_snapshot_log
 239 = next_stamp
 240 = exists_table
 241 = commit_release_fc
 242 = rollback_release_fc

 243 = drda_native_ddl_fc
 244 = select_into_fc
 245 = create_database_link_fc
 246 = drop_database_link_fc
 247 = fetch_relative

 1003 = insert with MASS CMD set to 01
 1004 = select with MASS CMD set to 01
 1005 = update with MASS CMD set to 01
 1009 = delete with MASS CMD set to 01
 1035 = lock_objects with MASS CMD set to 01
 1206 = fetch_first with MASS CMD set to 01
 1207 = fetch_last with MASS CMD set to 01
 1208 = fetch_next with MASS CMD set to 01
 1209 = fetch_prev with MASS CMD set to 01
 1210 = fetch_pos with MASS CMD set to 01
 1211 = fetch_same with MASS CMD set to 01
 1244 = select_into with MASS CMD set to 01
 1247 = fetch_relative with MASS CMD set to 01

VARIABLE PART OF A SEGMENT
Each segment has 0-n parts in its variable part. A part consists of a header and a variable part.
In one segment only one part of a special PART KIND (see below) will be allowed for a
request and be returned.
There is no given sequence for the parts belonging to a segment, and the application process,
too, should work with different sequences of parts when checking the result. Only for
PART KINDs command and parsid it is necessary to use them as the first part in a request
segment.

PART HEADER
A PART HEADER has a length of 16 bytes. It looks as follows:

 1 byte 1 byte 2 bytes 4 bytes 4 bytes 4 bytes

| part | part | argument | segment | buf | buf |
| kind | attributes | count | offset | len | size |

PART KIND

See special chapter.

PART ATTRIBUTES

See special chapter.

ARGUMENT COUNT

See special chapter.

SEGMENT OFFSET

The segment to which this part belongs starts at the (SEGMENT OFFSET + 1)-th byte in the
variable part of the message.

BUF LEN

See special chapter.

BUF SIZE

See special chapter.

PART KIND

The PART KIND tells the SAP DB task and the application process what kind of information
follows directly behind the PART HEADER. A segment, i.e. a command, consists of different
pieces of information, i.e. of several parts; therefore the PART KIND is the only means to
separate these parts from each other.

Each segment may not contain more than one part of one PART KIND.

The PART KINDs are shown here with decimal values:

 01 = appl_parameter_description
 02 = columnnames
 03 = command
 04 = conv_tables_returned
 05 = data
 06 = errortext
 07 = (not used any more)
 08 = modulname
 09 = page
 10 = parsid
 11 = parsid_of_select
 12 = resultcount
 13 = resulttablename
 14 = shortinfo
 15 = user_info_returned
 16 = surrogate
 17 = bdinfo
 18 = longdata
 19 = tablename
 20 = session_info_returned
 21 = output_columns_without_parameter
 22 = key
 23 = serial
 24 = relative_pos
 25 = abap_inputstream
 26 = abap_outputstream
 27 = abap_info
 28 = checkpoint_info

PART KINDs and MESSAGE TYPEs

This table describes parts of which PART KINDs have to be / may be used together with the
most common MESSAGE TYPEs.

 MESSAGE TYPE

PART KIND

 DBS

PARSE

EXECUTE

appl_parameter_description – – – a(1) – – –
columnnames s(2) s(2) s(3)
command A A – – –
conv_tables_returned s(4) – – – – – –
data(5) a s – – – a s
errortext(6) s s S
modulname(7) a a – – –
page(8) – – – – – – – – –
parsid a(9) S A s(3)
parsid_of_select – – – s(10) s(3,11)
resultcount a(12) s – – – a s
resulttablename s s a s
shortinfo s(13) s s(3)
user_info_returned s(14) – – – – – –
bdinfo – – – – – – – – –
longdata – – – – – – s(15)
tablename s s – – –
session_info_returned s(14) – – – – – –
output_columns_without_parameter – – – s(13) s(3)
relative_pos(16) s s – – –
abap_inputstream – – – – – – – – –
abap_outputstream – – – – – – – – –
abap_info a a A
checkpoint_info – – – – – – – – –

A mandatory with request from application process to SAP DB task
a optional with request from application process to SAP DB task

S mandatory with result from SAP DB task to application process
s optional with result from SAP DB task to application process

(1) useful only if parameter are used in the command
(2) if output columns are to be described (see WITH INFO); given together with shortinfo

or output_columns_without_parameter
(3) in case of SQLCODE = -9
(4) only with SQL statement CONNECT this will be returned, then it is mandatory
(5) only with special SQL statements, the PART KIND data is used together with a DBS

request. If results are to be returned or input-parameter-values send to the SAP DB
task, , the PART KIND data is used.

(6) in case an error was found

(7) useful only with SQLMODE Oracle
(8) for SAP DB internal use only
(9) for DROP PARSEID
(10) in case of a SQL statement FETCH or CLOSE
(11) for CLOSE
(12) for FETCH with MASS CMD set to 01 / RFETCH
(13) if output columns are to be described (see WITH INFO); given together with a part of

PART KIND columnnames
(14) will only be returned in case of a CONNECT statement
(15) for INSERT or UPDATE if LONG values are to be sent
(16) in case a FETCH RELATIVE was specified

01 appl_parameter_description

This PART KIND may exist in a request segment together with the MESSAGE TYPE
PARSE.

In this part, the application process describes the data types and lengths of all parameters used
in the SQL statement. In cases in which the SAP DB task has no knowledge about the input
parameter's data type and length (for example SELECT cola, :param, colb) or not enough
knowledge about its length (SUBSTR (:param, 12)), this information given by the application
process will help the SAP DB task. In the first case, it is the only chance to make the SQL
statement work; in the second case, it will help to save space in internal structures, because
the SAP DB task will not expect a parameter value of maximum possible character length but
one with the maximum length of the host variable in the application.

Although this information is only useful for input parameters, it must be given for all
parameters in the sequence the parameters are used in the SQL statement.

The description looks like this:

 4 bytes 4 bytes

 | description_1 | ... | description_N |

DESCRIPTION has the following structure:

 1 byte 1 byte 2 bytes

 | type | frac | length |

For a description of type, length and frac, see PART KIND shortinfo.

Length must be filled with the length of the host variable. If the host variable is longer than
32767 bytes, length should be set to 32767.
If the length of the host variable is not known (then it is a pointer), length must be filled with
0.

The field ARGUMENT COUNT in the corresponding part header must have the value N to
indicate the number of given descriptions.

02 columnnames

If in the request the SEGMENT HEADER field WITH INFO was set to 01 and the
MESSAGE TYPE was DBS or PARSE , then a part of PART KIND columnnames will be
returned together with a part of PART KIND shortinfo or output_columns_without_parameter
respectively. Both parts together describe all output parameters of the given SQL statement.

For each output parameter (even if it is not written explicitly), the length (1 byte) of the name
of the output column (not of the name of the output parameter) corresponding to the output
parameter and then the name itself (using length bytes) are given. Trailing blanks are
truncated. Therefore the length of this part is not known beforehand.

03 command

In requests with the MESSAGE TYPEs DBS, PARSE and SYNTAX, this part will contain the
SQL statement.

04 conv_tables_returned

If the request was a CONNECT statement, one part of this PART KIND will be returned.

This part consists of 4 (or if a termchar set is used 6) arrays of 256 bytes each. Each of these
arrays is a conversion table. The arrays have the following meanings:

 FROM UPPER ASCII TO SMALL ASCII BYTE(256)
 FROM SMALL ASCII TO UPPER ASCII BYTE(256)

 FROM ASCII TO EBCDIC BYTE(256)
 FROM EBCDIC TO ASCII BYTE(256)

If a termchar set name was specified (the MESSAGE CODE for this session will be >= 03 and
<= 18), then:

 FROM TERMCHARSET TO STANDARD ASCII (BYTE 256)
 FROM STANDARD ASCII to TERMCHARSET (BYTE 256)

ARGUMENT COUNT will have the value 4 or 6, thus indicating how many conversion tables
belong to this part.

If, for any reason, the application process itself has to convert data, then the application
process should use these conversion tables to ensure that the same conversion is done as in the
SAP DB task (this is not needed for the interaction with the SAP DB task, because this will
do the correct conversions).

05 data

This PART KIND is used for results and, in two cases, for requests.

If the MESSAGE TYPE is DBS or EXECUTE and a statement returns exactly one result row
(SELECT ... INTO, FETCH ... INTO) or some of them (if MASS CMD is set to 01), this result
will be in a part of PART KIND data. In case of a SELECT whose first results are returned
during the execution of the SELECT, these results will be in a part of PART KIND data, too.

If an SQL statement given with the MESSAGE TYPE PARSE includes parameters, the
corresponding data must be specified during the corresponding EXECUTE in a part of
PART KIND data. The data must be given as described in the part of PART KIND shortinfo
returned with the PARSE.

If the SQL statements ALTER PASSWORD, CONNECT, CREATE USER, SET
LANGUAGE, SET FORMAT, USAGE ... are specified and a SQL statement given with the
MESSAGE TYPE DBS contains parameters, the corresponding data must be given in a part of
PART KIND data in the same segment. The format of the data is described in this manual
together with the corresponding statements.

06 errortext

In the case of SQLCODE <> 0, a part of PART KIND errortext will be returned which
consists of up to 256 bytes, describing the error and (in some cases) giving the name of the
database object causing the problem.

08 modulname

If the MESSAGE TYPEs are DBS and PARSE, the application process can specify the name
of the module, i.e. of that part of the application that causes the SQL statement.

By now, this field is only used in SQLMODE ORACLE. As result table names are module-
local in ORACLE, the SAP DB task uses this information to create, find and destroy the result
table used by the module in order to prevent result tables with same names and different
source modules from being mixed.

Every statement should specify the modulname because even a DELETE or UPDATE
(WHERE CURRENT OF <result table name>) or an INSERT..SELECT FROM <result table
name> uses result table names and must therefore be able to distinguish result tables having
the same name from each other. The modulname given in other SQLMODEs will have no
effect. If no modulname is given, the default-modulname, consisting of blanks, will be used.

09 page

A page is a buffer of 8KB. The layout of pages differs according to their page kinds. This
field is not described here, because this PART KIND is for SAP DB use only.

10 parsid

Every request with the MESSAGE TYPE PARSE and an SQLCODE = 0 returns a part of
PART KIND parsid. The parse ID has a length of 12 bytes.

In a subsequent execution step (see: EXECUTE), the unchanged parse ID respectively the
parse ID with a change in application info1 can be provided again, together with a data part
belonging to the statement. This causes the execution of the statement.

If the SQL statement DROP PARSEID (see there) is specified and the SQL statement is given
with the MESSAGE TYPE DBS, the corresponding parsid must be given in a part of
PART KIND parsid in the same segment.

The parse ID has the following structure:

 4 bytes 6 bytes 1 byte 1 byte

 |session| ––––– | application | ––––– |
 | id | | info1 | |

– – – – – means: of no interest for the application process

SESSION ID

SESSION ID is the identification of that session in which the corresponding SQL statement
was parsed. If several sessions are handled within one application process (because of implicit
or explicit reconnect) only those parsids should be used whose SESSION ID is the one of the
current session as given as the result of the corresponding CONNECT statement (see
PART KIND session_info_returned).
All other parsids are not known any more by the SAP DB task. Therefore they cannot be used
together WITH MESSAGE TYPE EXECUTE and no DROP PARSEID should be specified
for those unknown parsids.

APPLICATION INFO1

See special chapter

Although all SAP DB statements are parsable, some special statements cannot be executed
without being parsed.

If a statement was successfully parsed (SQLCODE = 0), the parse Id consists of binary zeroes
with the APPLICATION INFO1 set to 1. If there is no PARAMETER_INFO, this means that
the statement was completely executed during the parsing, so that no further EXECUTE can
be issued at the time of execution.

APPLICATION INFO1
 0 : none
 1 : statement_executed
 2 : (not used any more)
 10 : release_found
 20 : (not used any more)
 30 : not_allowed_for_program
 40 : close_found
 41 : describe_found
 42 : fetch_found
 43 : fetch with MASS CMD found
 44 : mass_select_found
 45 : select_for_update_found
 46 : reuse_select_found
 47 : reuse_select_for_update_found
 60 : dialog_call
 70 : mass_statement
114 : select with MASS CMD found
115 : for_update_select with MASS CMD found
116 : reuse_select with MASS CMD found
117 : reuse_select_for_update with MASS CMD found

1 APPLICATION INFO1 is set to 1 in case the statement was executed although the

MESSAGE TYPE was PARSE only. This is done with some special diagnose
statements and with DDL.

10 APPLICATION INFO1 is set to 10 when COMMIT [WORK] RELEASE or

ROLLBACK [WORK] RELEASE was found. The SAP DB task will then close the
communication between the application process and the SAP DB task after executing
the statement. Same info is given with FUNCTIONCODE

30 APPLICATION INFO1 is set to 30 when a statement was given to the SAP DB task

that is known but for internal use only. Such a statement is not allowed in a program.

40..43 The values 40-43 mean that the specified statement (CLOSE, DESCRIBE, FETCH or

FETCH with MASS CMD (or RFETCH)) was found.
This information can also be found in the FUNCTIONCODE.

44 Value 44 means that a DECLARE CURSOR or SELECT but no SELECT DIRECT or

ordered SELECT was found.

45 Value 45 means that the statement was a DECLARE CURSOR or SELECT with FOR

UPDATE.

46 Value 46 means that the statement was a DECLARE CURSOR or SELECT for which

the result set will be physically build.

47 Value 47 means that the statement was a DECLARE CURSOR or SELECT with FOR

UPDATE for which the result set will be physically build.

60 The value 60 means that the parse ID belongs to a DB-Procedure.

70 APPLICATION INFO1 is set to 70 when an INSERT, UPDATE or DELETE with
MASS CMD set to 01 was found (see there).
This information can also be found in the FUNCTIONCODE.

114.. APPLICATION INFO1 114 – 117 is the sum of 70 and 44 - 47; i.e., a SELECT or

DECLARE (specified with 44 to 47) with MASS CMD set to 01 (see there) was given.

11 parsid_of_select

When a FETCH is parsed or a CLOSE is executed, an additional part of PART KIND
parsid_of_select will be returned.

This part contains the parse Id of the SELECT statement to which the FETCH / CLOSE
statement is connected. This part allows the application process to know which parse Ids
belong together or which result table was closed.

The parsid_of_select has the same structure as the 10 parsid. Only if the SELECT was not
parsed, the 12 bytes are filled with binary zeroes.

12 resultcount

Every INSERT, UPDATE, DELETE, SELECT, DECLARE CURSOR, FETCH, RFETCH
statement will result in at least one part of PART KIND resultcount. This is true for all
MESSAGE TYPEs except for SYNTAX. The resultcount specifies the number of rows
inserted, updated, deleted, found or fetched.

In the cases in which the number of rows is unknown, but at least 1 (for example, if a result
table is not physically build), resultcount has the value -1.

The part contains one UNDEFSIGNAL and a number of the format fixed (10,0). For a
description of how this number is written into the part, see the chapter DATA FORMAT.

If an SQL statement like FETCH with MASS CMD set to 01 or RFETCH is used, the number
of wanted result rows is specified by the application process in one part of PART KIND
resultcount.

During the execution of INSERT, UPDATE, DELETE, SELECT, and DECLARE (all with
MASS CMD set to 01), the application process must specify, how many rows had been
previously handled for this ORACLE-like array command. The SAP DB task does not
remember this value which is returned to the application process during the previous
execution. This value must be a part of PART KIND resultcount.
This given number plus the number of rows handled during this execution will be returned in
a part of PART KIND resultcount. This will happen even in case of an error.

13 resulttablename

For some reasons, the application process often needs to know the name of the result table for
which the parsing or execution was done. To avoid that the SQL statement is checked twice
(once by the application process, once by the SAP DB task; the two checks may differ from
each other), the SAP DB task returns the result table name when the FUNCTIONCODE is
select, select with MASS CMD set to 01, explain, select_direct, select_first, select_last,
select_next, or select_prev.

If the application process uses the MESSAGE TYPE PARSE or SYNTAX, a parameter can
be used instead of a result table name. Then the result table name must be specified when the
statement is being executed (see the MESSAGE TYPEs PARSE and EXECUTE). The result
table name must be specified in a part of PART KIND resulttablename of its own.
In both cases, trailing blanks are truncated. Therefore, there will be an empty part of
PART KIND resulttablename, because all blanks were truncated when an unnamed result
table had been specified.
If the SQL statement was a single select or SELECT DIRECT/FIRST/LAST/NEXT/PREV,
no result table exists. To show this, the result table name is filled with binary zeroes.

14 shortinfo

If the request has the MESSAGE TYPE PARSE, there will be a part of PART KIND shortinfo
when returning. This part contains a description of all input and output parameters used in this
statement.
Even if there is no parameter specified in the SQL statement, such a part will exist, consisting
of the PART HEADER with ARGUMENT COUNT = 0.

If the request has the MESSAGE TYPE DBS and the field WITH INFO has the value 01, a
part of PART KIND shortinfo will be returned together with a part of PART KIND
columnnames describing all the output parameters (even if these parameters are not written
explicitly). In this case at least one parameter will be described).

For the description of one parameter, 12 bytes are needed. The whole description looks like
this:

 12 bytes 12 bytes

 | parameter_info_1 | ... | parameter_info_N |

These PARAMETER_INFOs apply for all input and output parameters in the order of their
occurrence. This means that a record column is described several times, if necessary.

PARAMETER_INFO

PARAMETER_INFO has the following structure:

 1 byte 1 byte 1 byte 1 byte 2 bytes 2 bytes 4 bytes

 |mode| in/out | data | frac |length | in/out | bufpos |
 | | type | type | | | length | |

MODE

MODE indicates whether or not NULL values are accepted as input or output parameters for
this column, whether a default value was specified for this column, or whether this is the input
parameter used as escape character.

MODE is a set built out of the following 4 values:

bit 0 : NULL is not accepted
bit 1 : NULL is accepted
bit 2 : column has the default
bit 3 : input parameter for escape character

These bits are stored in the byte used for MODE as follows:

 | 7 6 5 4 3 2 1 0 |

IN/OUT TYPE

IN/OUT TYPE specifies whether the parameter involved is an input or output parameter or a
parameter used for input and output.

 00 : Input
 01 : Output
 02 : In- and Output; only used in DB-Procedures

DATA TYPE

see special chapter

LENGTH and FRAC

LENGTH and FRAC contain the length and, for fixed number columns, the number of
decimal places. In all other cases, FRAC will have the value 0.

IN/OUT LENGTH

see special chapter

BUFPOS

BUFPOS defines the position where--upon the following EXECUTE statement--either the
UNDEFSIGNAL byte of the corresponding column must start in the data part or where the
output result will be.

DATA TYPE
00 : Fixed number
01 : Float number
02 : Char ASCII
03 : Char EBCDIC
04 : Char BYTE / RAW
05 : future use
06 : LONG ASCII
07 : LONG EBCDIC
08 : LONG BYTE / LONG RAW
09 : unused
10 : DATE
11 : TIME
12 : Float number from virtual column
13 : TIMESTAMP
14 : internal use
15 : internal use
16 : internal use
17 : internal use
18 : unused
19 : LONGFILE ASCII
20 : LONGFILE EBCDIC
21 : LONGFILE BYTE
22 : unused
23 : Boolean
24 : Unicode
25 : future use
26 : future use
27 : future use
28 : future use
29 : Smallint
30 : Integer
31 : Varchar ASCII
32 : Varchar EBCDIC
33 : Varchar Byte / Varchar RAW
34 : LONG Unicode
35 : LONGFILE Unicode
36 : Varchar Unicode
37 : future use
38 : internal use

DATA TYPE specifies the data type that was given during a CREATE TABLE or ALTER
TABLE or that was the result of an expression.

 Usually, character columns will have the code attribute ASCII; i.e., the data type Char ASCII
or Varchar ASCII. If another code attribute has been explicitly specified, this can be changed
to EBCDIC, BYTE or UNICODE.

In tables created in SQLMODE DB2, character columns will have the code attribute EBCDIC
to ensure the same ordering sequence of values in the table as in DB2.
The use of arithmetic in expressions (virtual columns) will produce FLOAT values very soon.
These values are signalled by the special DATA TYPE = 12, which gives the interactive
components the opportunity to still output them as FIXED values.

With the data types 06 – 08, 19 – 21 and 34 - 35 (LONG/LONGFILE), there is no description
of the long column itself. In the PARAMETER_INFO, there is a description of a block in

which the current position, length and so on of the long column are written. The long column
can be found according to the position given in the block, not according to BUFPOS. A
description of how this block looks like can be found in the chapter DATA FORMAT.

IN/OUT LENGTH

IN/OUT LENGTH specifies either how long this value must be or how long it will become (if
necessary, by filling it up).

The filling will be done with blanks for values of types Char ASCII/EBCDIC, Unicode,
Varchar ASCII/EBCDIC/Unicode, DATE, TIME, and TIMESTAMP.
The filling has to use hexadecimal 00 for all kinds of numbers, Char BYTE, Varchar BYTE,
and Boolean.

With the types Char ASCII, Char EBCDIC, Char BYTE, Varchar ASCII, Varchar EBCDIC,
Varchar BYTE and Boolean, the IN/OUT-LENGTH will be = LENGTH+1, because the
UNDEFSIGNAL byte increases the length by one. For a description of UNDEFSIGNAL, see
the chapter DATA FORMAT.

With the types Char UNICODE and Varchar UNICODE the IN/OUT-LENGTH will be
= (2 * LENGTH) + 1, because each character needs two bytes for representation and the
UNDEFSIGNAL byte increases the length by one. For a description of UNDEFSIGNAL, see
the chapter DATA FORMAT.

For numeric values, the IN/OUT LENGTH can be calculated from LENGTH by means of
((LENGTH + 1) DIV 2) + 2. This does not apply for the values output by the SQL functions
SUM and AVG. Here, the result implicitly provided is always of the FLOAT(38) type. By
using the FIXED function, the user can provide an implicitly created FLOAT(38) result
column as a FIXED column with the appropriate LENGTH and FRAC specifications.

15 user_info_returned

With CONNECT statements, one part of PART KIND user_info_returned is returned. This
part contains of several information, each with one byte describing the length of the
information and followed by the information itself with the given number of bytes.
The information will be given in this sequence :
the SYSDBA of the SERVERDB to which the current user is connected (max 64 bytes),
the SYSDBA of the SERVERDB where the current user was created (max 64 bytes),
the user type (RESOURCE, STANDARD, DBA, OPERATOR) of the current user (max 16
bytes),
the name of the usergroup to which the current user belongs (max 64 bytes).

Usually, the lengths of the names of user and usergroups will not exceed 32 bytes. Only in the
case of MESSAGE CODE UCS2 or swapped UCS2, the maximum length will be 64.

No UNDEFSIGNAL is placed in front of each piece of information.

16 surrogate

This PART KIND is for SAP DB use only. It is used together with fast load, i.e. page-wise
inserting of rows. This PART KIND tells the application/the SAP DB kernel how far the
surrogates are used for this table.

17 bdinfo

This PART KIND is for SAP DB use only. It exists together with the PART KIND page and
contains a description of how to interpret the pages in that part.

18 longdata

Any data given in a request or result with the MESSAGE TYPE PUTVAL or GETVAL is
included in one part of PART KIND longdata. This PART KIND is used in the result
segment, too, in case an INSERT or UPDATE was executed and the description blocks for
LONG columns which have to be filled using MESSAGE TYPE PUTVAL are sent to the
application process. For a description, compare the two MESSAGE TYPEs PUTVAL and
GETVAL..

19 tablename

If the SQL statement SELECT or DECLARE CURSOR is given and only one tablename is
specified in the from-clause, then the username (if specified) and the tablename are returned.

This part is returned in the form ["owner".]"tablename" whereas each name is specified with
its current length, not with the maximum length of a name. At least one SAP DB component
needs these names to be able to build up a statement like
UPDATE/DELETE ... WHERE CURRENT OF ...

20 session_info_returned

With CONNECT statements, one part of PART KIND session_info_returned is returned. It is
returned for statements like SET NLS… , too.

This part contains 2208 bytes.

BYTE LEN VALUE
1 1 UNICODE-databaseYES=1/NO=0
2 4 session_id as used in the first 4 bytes of the pars Id
6 1 NLS_DATE_FORMAT length of clear format
7 100 NLS_DATE_FORMAT clear format

107 1 NLS_DATE_FORMAT length of coded format

108 50 NLS_DATE_FORMAT coded format
158 6 NLS_DATE_LANGUAGE clear
164 6 LANGUAGE
170 1 DATE_FORMAT (see tgg_datetimeformat)
171 4 NUMERIC_CHARACTERS

175 2 empty (zero), alignment-filler

177 16 empty (zero)
193 2000 DICTIONARY (without code tables)
2193 5 PAGE SIZE
2198 3 empty (zero), alignment-filler
2201 5 Kernel version
2206 3 empty (zero), alignment-filler

21 output_columns_without_parameter

In special cases of SELECT and DECLARE CURSOR one part with PART KIND
output_columns_without_parameter is returned as result of the parsing. This PART KIND
describes the data types and lengths and so on of the output columns of the select. Because it
is a SQL statement resulting in a result set, no parameters are specified in the SQL statement
for these output columns.

If this part is returned, the SAP DB task will return as many result rows as possible (as exist
or as fit into the message block) during the execution of the SELECT statement. If all results
were returned during the SELECT, no FETCH should be executed. The result table is not
known any more and cannot be specified in another from-clause.
If not all result rows fitted into the message block, the first n ones are returned. The last ones
have to be fetched as usual. In this case the result set is known as long as usual.

The description of the output columns looks like those in parts of PART KIND shortinfo (see
there).

22 key

This PART KIND is for SAP DB use only.

23 serial

This PART KIND is for SAP DB use only.

24 relative_pos

This PART KIND looks like the PART KIND resultcount. It is send back to the application
process in case a 'FETCH RELATIVE' was found with the position specified in the command,
not given via parameter. This is necessary to tell the application process the current position
in the result set. Otherwise the application process had to parse the SQL statement.

25 abap_inputstream and 26 abap_outputstream

These PART KINDs are for SAP DB use only. It is used between a SAP DB task and a
precompiler task to send the contents of ABAP-tables.

27 abap_info

This PART KIND consists of two parts: the name of the program/ABAP/testfile the given
SQL statement is written in and the linenumber in this program/ABAP/testfile this SQL
statement can be found. The linenumber is specified as char value.

Each part consists of 1 byte giving the length of the information following directly behind this
byte and the information itself with the length given in the corresponding byte.

28 checkpoint_info

This PART KIND is for SAP use only.

PART ATTRIBUTES

PART ATTRIBUTES is a set built of the following bits:

bit 0 : last_packet
bit 1 : next_packet
bit 2 : first_packet

The bits are stored in the byte used for PART ATTRIBUTES as follows:

 | 7 6 5 4 3 2 1 0 |

Statements with MASS CMD set to 01 are used for ORACLE-like array commands. These
will be parsed with the MESSAGE TYPE PARSE and then be executed.

It may happen that not all the data stored in the application process array can be sent to the
SAP DB task with one message block, so that it must be divided into several blocks. To show
the SAP DB task that the message block is the first one, the last one or one message block in
between for this array command, PART ATTRIBUTES have to be set.

Only none or exactly one of those bits defined by now may be set at one time.

Last_packet must be set in the segment in which the last data-packet was given to the
SAP DB task, even if this is the only message block for this statement.

In cases of FETCH with MASS CMD set to 01 or the SELECT which will do such FETCH
implicitely last_packet is set to show the application process that no more results can be found
and that no further FETCH is necessary.

ARGUMENT COUNT

This field specifies the number of arguments in the part.

In the case of 03 (command), 06 (errortext), 08 (modulname), 10 (parsid),
11 (parsid_of_select), 12 (resultcount), 13 (resulttablename), 15 (user_info_returned),
19 (tablename), 20 (session_info_returned), 24 (relative_pos), and 27 (abap_info) this is
always 1.

In the case of 05 (data), this value is usually 1.
Only together with SQL statements which were parsed with MASS CMD set to 01 when more
than one data-packet is given to the SAP DB task, this value can be higher than 1.
ARGUMENT COUNT then specifies the number of data-packets.

In the case of a result of FETCH with MASS CMD set to 01 or RFETCH or a SELECT which
returns the first n result rows, ARGUMENT COUNT may be higher than 1, too.

In the case of 01 (appl_parameter_description), 02 (columnnames), 14 (shortinfo), and 21
(output_columns_without_parameter), ARGUMENT COUNT specifies the number of
parameters described in this part.

In the case of 04 (conv_tables_returned), ARGUMENT COUNT will be 4 or 6, dependent of
the specification of a termchar set in the CONNECT statement.

BUF LEN

This field specifies the number of bytes used in the variable part of this part, i.e. the part
behind the PART HEADER.

Every part must start at a position in the variable part of the message block, so that 'number-
of-bytes-before' MOD 8 = 0 is true. As the PART HEADER has a length of 16 bytes, the
application process must only care about the number of bytes between two PART HEADERs
or between the PART HEADER and the next SEGMENT HEADER. Nevertheless, BUF LEN
must specify the number of used bytes, which usually cannot be divided by 8. Then, between
two parts, there will be a 'hole', what is correct.

BUF SIZE

This field specifies how many bytes are left in the variable part of the message block,
counting the first byte behind the PART HEADER as the first one.

For the first part of the first segment, this must be VARPART SIZE - length-of-a-
SEGMENTHEADER - length-of-a-PARTHEADER. For the second part in the first segment,
this must be VARPART SIZE - length-of-a-SEGMENTHEADER - length-of-a-
PARTHEADER(first part) - BUF LEN-of-first-part - 'hole' - length-of-a-
PARTHEADER(second part).

VARIABLE PART OF A PART
According to the PART KIND specified in the PART HEADER, the information must start
directly behind the PART HEADER and has a length of 0 to BUF SIZE bytes. The length of
the information in the variable part is stored in BUF LEN.

DATA FORMAT
Values of host variables must be and will be specified in the following manner:

 1 byte variable length

 | undef | in/out-value |
 | signal | |

UNDEFSIGNAL = 'FF' means that the value of the corresponding column = NULL
(undefined). In that case, IN/OUT-VALUE has the proper length for the particular column,
but is not relevant. Usually it is filled with hexadecimal 00.

UNDEFSIGNAL = 'FE' can only be found with output. It means that IN/OUT-VALUE has
the proper length for the particular column, but is not relevant. This is because there was an
arithmetical overflow during the calculation of the corresponding arithmetic expression.

UNDEFSIGNAL = 'FD' is for SAP DB use only. It means that the corresponding column was
defined with a default value and that this default value should be used. The given IN/OUT-
VALUE is not relevant but has the proper length.

All other values of UNDEFSIGNAL mean that IN/OUT-VALUE contains the relevant value.
Usually the UNDEFSIGNAL should have / will have the same value as the byte, the value is
filled with, if necessary. The filling will be done with blanks for values of types Char
ASCII/EBCDIC, Varchar ASCII/EBCDIC, DATE, TIME, and TIMESTAMP. The filling has
to use hexadecimal 00 for all kinds of numbers, Char BYTE, Varchar BYTE, and Boolean.
For value of Unicode types the filling has to be done with blanks (2 bytes), but the
UNDEFSIGNAL will be hexadecimal 01.

The length of the IN/OUT-VALUE is determined by the maximum number of positions this
column can occupy. With character columns, it actually equals this maximum number; with
unicode character columns it actually equals twice this maximum number; with number
columns, it is the result of the internal length formula ((LENGTH + 1) DIV 2) + 2.

Numberformat
NUMBER (FIXED, FLOAT, SMALLINT and INTEGER)

Within the SAP DB system, number values are stored and processed in special a
representation. This has the following structure:

 1 byte a maximum of 19 bytes

 | characteristic | mantissa |

This yields a maximum length of 20 bytes for number representation within SAP DB.

With each number column definition in SAP DB, the internal length of the number
representation is defined by the formula:

((n+1) DIV 2) + 1
where n specifies the total number of positions in the number column--that is: the desired
precision for this column. This n is specified as part of the number column definition, such as:

fixed (n,m)
or

float (n).
m defines the number of decimal places in a fixed number column.

Since n should not be larger than 38 in SAP DB (in some SQLMODEs larger ones are
changed to 38), the formula defines a maximum length of 20 bytes for number representation.

The characteristic of a number Z = z * 10 ** e has one of the following settings:

 192 + e if Z > 0
 128 if Z = 0
 64 - e if Z < 0

The characteristic 0 is not used.

The following applies for the mantissa z: 0 <= z < 1. The mantissa z is scaled; i.e., displayed
without leading zeroes. The mantissa digits are stored in the form of packed decimal numbers
(1 digit per half-byte). The mantissa has the following form:
z = scaled digits if Z >= 0
z = scaled digits as the ten's complement if Z < 0.
The ten's complement is formed by subtracting the last digit of the mantissa from 10, the
previous digits from 9.
If necessary, the mantissa is filled up with binary zeroes.

This mantissa and exponential form was selected so that simple string comparisons can be
performed, when comparing numbers.

Fixed number columns have a maximum absolute exponent of 38.
Float number columns have a maximum absolute exponent of 63.

Character Data
The CHAR column or VARCHAR column with the code type ASCII or EBCDIC, with a
maximum length of 8000 bytes, is translated into either STANDARD ASCII or STANDARD
EBCDIC, depending on the specified code type of the application process, and then, during
output, adapted again to the code type or termchar set of the application process. At the same
time, the column--written in left-adjusted fashion--is filled up with blanks, if necessary.

A CHAR column or VARCHAR column with the code type BYTE is filled up with binary
zeroes, if necessary. It is not converted even in case application process and SAP DB task
uses different code types (ASCII/EBCDIC).

A CHAR column or VARCHAR column with the code type UNICODE may only exist in a
database with configuration parameter _UNICODE set to YES. A column with code type
UNICODE has a length of up to 4000 character = 8000 bytes.

The input and output of UNICODE data is given as UCS_2 or the swapped form of UCS_2,
no matter of the value for MESSAGE CODE.

This column--written in left-adjusted fashion--is filled up with unicode blanks, if necessary.

Date- and Time Data
DATE

The data type DATE has a length of 10 bytes and the filling convention depends on the date-
and-time format in use (INTERNAL, ISO, USA, EUROPE, JIS, ANSI). If necessary, the
column is filled up with blanks.
The date output also has the representation depending on the date-and-time format in use. The
specified MESSAGE CODE controls ASCII/EBCDIC/termchar set conversion, if this should
be necessary.

TIME

The data type TIME has a length of 8 bytes and the filling convention depends on the date-
and-time format in use (INTERNAL, ISO, USA, EUROPE, JIS, ANSI). If necessary, the
column is filled up with blanks.
The time output also has the representation depending on the date-and-time format in use. The
specified MESSAGE CODE controls ASCII/EBCDIC/termchar set conversion, if required.

TIMESTAMP

The data type TIMESTAMP has a length of 26 bytes and the filling convention depends on
the date-and-time format in use (INTERNAL, ISO, USA, EUROPE, JIS, ANSI or
NLS_DATE_FORMAT in case of SQLMODE Oracle). If necessary, the column is filled up
with blanks.
The timestamp output also has the representation depending on the date-and-time format in
use. The specified MESSAGE CODE controls ASCII/EBCDIC/termchar set conversion, if
required.

BOOLEAN Data

The data type BOOLEAN has a length of 1 byte and only the values 00 (false) and 01 (true)
are accepted.

LONG Data
Values of data types LONG and LONGFILE (shortly named LONG) have a length of up to
2 GB. It is impossible to read/write such a value with one message. Therefore several reads
(see GETVAL) or writes (see PUTVAL) are performed with one data portion each.

To describe the portion and the value it belongs to, a block of 40 bytes in length (plus one
byte for the UNDEFSIGNAL) is written. The shortinfo given for a LONG column describes
the position and length of this block, not of the LONG value.

The current portion of the LONG column can use the whole variable part not used so far of
the part the data is written to. The maximum length of the variable part is specified with
BUF_SIZE.

The specified MESSAGE CODE controls ASCII/EBCDIC/termchar set/Unicode conversion
for LONG, if required.

See PUTVAL/GETVAL for a description of the processing of LONG columns in DML,
SELECT, DECLARE CURSOR and FETCH statements.

LONG Description Block

The description block has the following structure:

 1 byte 16 bytes 4 bytes 4 bytes 1 byte 2 byte
 --
 | undef | ——— | maxlen | intern | info | ——— | ...
 | signal | | | pos | set | |

 1 byte 2 bytes 2 bytes 4 bytes 4 bytes
 --
 ... | valmode | valind | not | valpos | vallen |
 | | | used | | |
 --

— — : of no interest for the application process

For a LONG value the value NULL is possible, therefore UNDEFSIGNAL may be
hexadecimal FF. Any other value for UNDEFSIGNAL (usually hexadecimal 00) makes the
description block a valid one.

MAXLEN

This field will be used for reading LONGs. When the first part of the LONG value is read, the
length of the whole LONG is given in MAXLEN to allow the application process respectively
the application to assign enough storage space for the whole LONG value.

INTERN POS

INTERN POS specifies the first position in the column which must be read/written next. It
always starts with 1. For writing LONG values the application process has to initialize this
value with 1. Afterwards the application process may not change this value. It will be changed
by the SAP DB task.

INFO SET

INFO SET is a set consisting of several elements. Nearly all of them are used only by the
SAP DB task. Only bit 2 may be used by the application process.

bit 0 : not used by application process
bit 1 : not used by application process
bit 2 : no_close
bit 3 : not used by application process
…
bit 7 : not used by application process

These bits are stored in the byte used for INFO SET as follows:

 | 7 6 5 4 3 2 1 0 |

During reading a LONG column value, the application process specifies the maxmum number
of bytes which can be returned for this LONG value. Even if more than this number of bytes
is stored in the database, the LONG value is closed, i.e. reading is finished for this LONG
value. To prevent the closing because reading will be done in smaller pieces, no_close has to
be sent during GETVAL messages. Then the LONG column will not be closed and the next
piece of the LONG column can be read with the next GETVAL message.

See vm_close and GETVAL for a full description.

VALMODE

See special chapter

VALIND

VALIND is a field for private use by the application process. In this for example the number
of the corresponding parameter or something like this may be stored. The SAP DB task will
not change it.

VALPOS

VALPOS gives the position of the data portion of the LONG column in the variable part of
the current part of PART KIND data/longdata.

VALLEN

VALLEN specifies the length of the data portion. The data portion has no UNDEFSIGNAL.

If a LONG descriptor has to be initialized for the EXECUTE of an INSERT or UPDATE with
LONGs, the first 20 bytes of the block should be set to binary zero. INTERN POS has to be
set to 1, INFO SET to 0. The 26th and 27 th byte should be set to hexadecimal 00. VALMODE,
VALPOS and VALLEN have to be set to values according to the description in PUTVAL,
Communication Protocol.

VALMODE

VALMODE specifies how this description block must be interpreted.

00 (vm_datapart) one of several data portions for this LONG column
01 (vm_alldata) the whole LONG column value
02 (vm_lastdata) the last of several data portions for this LONG column
03 (vm_nodata) no data portion for this LONG column in this segment
04 for internal use
05 (vm_last_putval) no description block for a data portion; all data portions for all

LONG columns of this row have been sent, the handling of this row is finished
06 (vm_data_trunc) is used in GETVAL results:

the SAP DB task was told (in VALLEN) how much space is left in the host variable to
store the returned LONG value part and finds that this will not be enough.

07 (vm_close) the application process wants to close the half-read column after sending at
least one GETVAL message with no_close set for this LONG descriptor

MESSAGE TYPES
The descriptions of the MESSAGE TYPEs contain the directional specifications IN and OUT.
These specifications refer to the following model of interaction:

 ----------------------- IN ----------------
 | | ----------> | |
 | application process | | SAP DB task |
 | | <---------- | |
 ----------------------- OUT ----------------

DBS

*IN - PART KINDs
 command
 modulname (optional)
 resultcount (for FETCH with MASS CMD set to 01/RFETCH)
 data (for special commands)
 parsid (for DROP PARSEID)
 abap_info (optional)

*OUT - PART KINDs
 errortext
 resulttablename (for SELECT, DECLARE
 in case of error 100)
 OR
 conv_tables_returned (for CONNECT)
 user_info_returned (for CONNECT)
 session_info_returned (for CONNECT)
 OR
 resultcount (for DML, SELECT, DECLARE, FETCH..)
 resulttablename (for SELECT, DECLARE)
 tablename (for SELECT, DECLARE)
 data (for SELECT .. INTO, FETCH)
 columnnames (if WITH INFO was specified and for DESCRIBE)
 shortinfo (if WITH INFO was specified and for DESCRIBE)
 relative_pos (for FETCH RELATIVE with parameter)

All the SAP DB functions except the Utilities are available via this MESSAGE TYPE. The
statement string created in the manner described in the SAP DB Reference Manuals is
provided in a part of PART KIND command.
The statement is checked for correct syntax, analysed and executed with one communication
between application process and SAP DB task. The SAP DB task does not have any memory
of finished statements sent with this MESSAGE TYPE except for diagnostic info if this is
switched on.

This MESSAGE TYPE allows the specification of a modulname for all statements. This
modulname is used to distinguish module-local result table names in SQLMODE ORACLE.

A part of PART KIND data may be only specified together with the SQL statements ALTER
PASSWORD, CONNECT, CREATE USER, SET LANGUAGE, SET FORMAT, USAGE ...
(see there) if these statements contain parameters.

A part of PART KIND parsid may be only specified together with the SQL statements DROP
PARSEID (see there).

PARSE

*IN - PART KINDs
 command
 modulname (optional)
 appl_parameter_description (optional)
 abap_info (optional)

*OUT - PART KINDs
 errortext
 OR
 shortinfo
 parsid
 parsid_of_select (for FETCH, RFETCH)
 resulttablename (for SELECT, DECLARE)
 output_columns_without_parameter
 (for SELECT, DECLARE)
 columnnames (if WITH INFO was specified)
 relative_pos (for FETCH RELATIVE with parameter)

This MESSAGE TYPE causes the parsing of a SAP DB statement in an application program.
This means, the syntactical and semantical (existence, privileges,…) check is done and the
statement converted into an internal structure whose identification is a so-called parse ID.

The statement string created in the manner described in the SAP DB Reference Manuals is
provided in the part of PART KIND command. As a result of this parsing, SAP DB returns
the 12-byte parse ID in the part of PART KIND parsid.

In a subsequent execution step (see: EXECUTE), this unchanged parse ID or parse ID with
changed field APPLICATION INFO1 has to be provided again, usually together with a data
part belonging to the statement. This will then cause the execution of the statement.

The reason for separating the parsing process from execution is most evident when calling
SAP DB from a programming language: Whenever the same statement is called repeatedly
(with different data each time), it is not necessary to repeat the check of the statement syntax,
user authorization and existence of SAP DB objects and it is not necessary to repeat the
conversion of the statement into internal structures as they are needed for execution.

If a statement is faulty, then no part of PART KIND parsid is returned, but one of
PART KIND errortext.

SYNTAX

*IN - PART KINDs
 command

*OUT - PART KINDs
 errortext
 OR
 no part

This MESSAGE TYPE causes limited parsing of a SAP DB statement in an application
program.

The statement string--created in the manner described in the SAP DB Reference Manual --is
provided in the part of PART KIND command. Unlike the MESSAGE TYPE PARSE,
SYNTAX does not perform an existence test for the specified table or column names, nor
does it convert the statement into internal structures needed for execution. Only the formal
statement syntax is tested.

Only with MESSAGE TYPE SYNTAX, runtime parameters (<NNN>) can be specified
instead of table and column names.

As a result of the syntax check, the SQLCODE is set and--in the event of a syntax error--
ERRORPOS is set to the error position and a part of PART KIND errortext is returned.

You cannot use the MESSAGE TYPE SYNTAX instead of PARSE to separate parsing and
execution. To do so, a PARSE must be requested at runtime (once the runtime parameters
have been substituted).

EXECUTE

*IN - PART KINDs
 parsid
 data (optional)
 resultcount (for RFETCH,
 INSERT, UPDATE, FETCH ...
 with MASS CMD set to 01)
 resultablename (if not given in statement
 during PARSE)
 abap_info (optional)

*OUT - PART KINDs
 errortext
 resulttablename (for SELECT, DECLARE
 in case of error 100)
 resultcount (for INSERT, UPDATE, DELETE
 with MASS CMD set to 01)
 OR
 resultcount (for DML, SELECT, DECLARE, FETCH..)
 resulttablename (for SELECT, DECLARE)
 data (for SELECT, DECLARE, FETCH)
 longdata (for statements with LONG column)
 parsid_of_select (for CLOSE)

 OR (in case of SQLCODE = -9):
 shortinfo
 parsid
 parsid_of_select (for FETCH, RFETCH)
 resulttablename (for SELECT, DECLARE)
 output_columns_without_parameter
 (for SELECT, DECLARE)
 columnnames (if WITH INFO was specified during
 parsing)

This MESSAGE TYPE executes previously parsed SAP DB statements. To be able to do so,
the parse ID obtained in the parse step must be specified in the part of PART KIND parsid.

The data part belonging to the statement is provided in a part of PART KIND data. In case the
statement to be executed was parsed with MASS CMD set to 01, the PART ATTRIBUTES
first_packet, next_packet, last_packet have to be set.

Certain situations (change of session or parallel DDL activities) may require another parsing
of the statement. Upon execution, this is signalled by SQLCODE -8. As SAP DB knows the
statement (see PREPARE in REQUEST SEGMENT HEADER), the parsing is done
internally. In this case, SQLCODE is set to -9 and the result is the same as after PARSE. The
newly given parse ID and the new PARAMETER_INFOs in the part with PART KIND
shortinfo must be used for another request having the MESSAGE TYPE EXECUTE. Only
then, the statement will be executed. The old parse ID and the old PARAMETER_INFOs are
no longer of any use. The old parse ID will not even be known any longer by the SAP DB
task.

PUTVAL

*IN - PART KINDs
 longdata

*OUT - PART KINDs
 errortext
 OR
 longdata

In a program, INSERT and UPDATE statements can be specified which will give LONG
columns new values. This functionality can only be used when statements are executed by
using PARSE and then EXECUTE.

For LONG columns, the new values can only be given as 'NULL' in the statement string or
via a parameter. Only for short LONG columns in an INSERT statement, its values can be
specified in the statement string using string literals.

When an INSERT or UPDATE statement is parsed, PARAMETER_INFOs and a parse ID are
given back as described in the chapter PARSE. For the LONG column(s) specified in this
statement using parameter(s), PARAMETER_INFO(s) are given which describe one block of
40 bytes (plus UNDEFSIGNAL) per LONG column parameter.

During EXECUTE, the values for non-LONG columns must be specified as ususal. If the
LONG column is set to NULL, the UNDEFSIGNAL of the block must be hexadecimal 'FF'.
The block itself may have any value.

If the LONG column is to receive a real value, the UNDEFSIGNAL should be set to blank or
binary zero.

If a description block is to be given, some parts must be used according to the description in
PUTVAL, Communication Protocol.

Together with LONG columns, no INSERT..SELECT is allowed.

UPDATE statements are only allowed if they update only one record.

The description blocks of one INSERT or UPDATE statement together with its PUTVAL
messages are of no use for any following statement and should not be saved.

PUTVAL, Communication Protocol

With one INSERT or UPDATE statement containing LONG column values there are several
messages needed from application process to SAP DB task and vice versa:

1. PARSE
2. EXECUTE
3. 0-n times PUTVAL

PARSE

The SQL statement (the INSERT for example) is parsed as usual, using parameters for all
columns in this table. Let us assume a table with (very unusual) 8 LONG columns and several
other non-LONG columns.

All parameter are described in the part with PART KIND shortinfo. Even for those 8 LONG
column a description is given where to put the description block for each LONG column.
There is no description where to put the LONG values itself.

EXECUTE (1)

For all non-LONG columns there values have to be filled in the variable part of a part with
PART KIND data at the position given with BUF POS and filled to its IN/OUT-LENGTH.

For the LONG column values we think of the following example situation:

LONG1 one short LONG value of 817 bytes
LONG2 has to be set to NULL
LONG3 a LONG value of 34 bytes
LONG4 a LONG value of 372 456 bytes
LONG5 has to be set to NULL
LONG6 a LONG value of 87 bytes
LONG7 a LONG value of 52 321 bytes
LONG8 a LONG value of 120 bytes

For all LONG columns the descriptor block has to be given in the variable part of a part with
PART KIND data at the position given with BUF POS.

For LONG2 and LONG5, those LONGs which will be NULL afterwards, the
UNDEFSIGNAL has to be hexadecimal FF. The rest of the descriptor block is of no use, but
should be filled with hexadecimal 00.

For those LONGs becoming real values it has to be decided, if those values should be (partly)
given to the SAP DB task during EXECUTE or if all LONG data will be sent using
PUTVAL. Usually the LONG data is (partly) sent via EXECUTE to prevent extra
communication.

It can be seen that not all data of our 6 LONG columns will fit into one message. Therefore
we will need PUTVALs. But in our example we will start sending data using EXECUTE.

With EXECUTE the first byte (no UNDEFSIGNAL is given for LONG values) of a LONG
value may start just behind the last non-LONG column value.

For EXECUTE and PUTVAL we have to pay attention to the rules for LONG column values
which is described in a special chapter, see Rule for LONG Column Handling.

Rule for LONG Column Handling

For each EXECUTE and PUTVAL/GETVAL segment there is one strict rule:

1. The first X LONG descriptor blocks found in the data part describe LONG columns
given with its complete value (VALMODE=01(vm_alldata)). 0 <= X <= N, were N is
the number of non-NULL LONG column values.

2. Following is 0 or exactly 1 LONG descriptor (0 <= P1 <= 1) describing a LONG

column whose value was partly sent and whose last part is in this segment
(VALMODE=02 (vm_lastdata)), i.e. after this segment the whole LONG value is
known in the SAP DB task. With EXECUTE no such LONG descriptor can exist.

3. If P1 = 1, the following Y LONG descriptor blocks found in the data part describe

LONG columns given with its complete value (VALMODE=01(vm_alldata)). 0 <= Y.
With EXECUTE no such LONG descriptor can exist.

4. Following is 0 or exactly 1 LONG descriptor (0 <= P2 <= 1) describing a LONG

column whose value is partly sent and will not be sent to the full with this segment
(VALMODE=00 (vm_datapart)).
If P1 = 1, with this segment only the first part of the value can be sent.
If X = 0 and P1 = 0, some part out of the middle of the value may be sent.

5. Following are those Z LONG descriptors describing LONG columns for whom no

value is sent with this segment (VALMODE=03 (vm_nodata)).

With EXECUTE all (N) LONG column descriptors have to be filled (X+P1+Y+P2+Z = N).

With PUTVAL only those LONG descriptors have to be sent to the SAP DB task for whom
values are sent in the current segment.

To say it in short: after each EXECUTE and PUTVAL only 0 or 1 LONG column value may
be sent partly with VALMODE=00 (vm_datapart).

The first LONG descriptor sent with VALMODE=00 (vm_datapart) or VALMODE=03
(vm_nodata) will stop the LONG writing.

If with one EXECUTE/PUTVAL one LONG value was sent with VALMODE=00
(vm_datapart) X should be 0 with the next PUTVAL. This is not mandatory but desirable.

The SAP DB task will behave accordingly in case of EXECUTE and GETVALs.

EXECUTE (2)

Imagine the non-LONG column values uses bytes 1 – 480 of the variable part of the part with
PART KIND data à BUF_LEN = 480. Let BUF_SIZE be 30 112.

LONG1 and LONG3 will fit in this part, the next LONG (LONG4) does not, therefore X = 2,
P2 = 1, Z = 3.

The LONG column values should start directly behind the last non-LONG value. The LONG
values should be directly behind each other à VALPOS in descriptor for LONG(n+1) should
be VALPOS + VALLEN of descriptor in LONG(n).

Remember the LONG values:

LONG1 one short LONG value of 817 bytes
LONG2 has to be set to NULL
LONG3 a LONG value of 34 bytes
LONG4 a LONG value of 372 456 bytes
LONG5 has to be set to NULL
LONG6 a LONG value of 87 bytes
LONG7 a LONG value of 52 321 bytes
LONG8 a LONG value of 120 bytes

For our example the 6 non-NULL LONG column descriptors will look like this:

 INTERN POS VALMODE VALPOS VALLEN
LONG1 1 All data 01 481 817
LONG3 1 All data 01 1298 34
LONG4 1 Part of data 00 1332 (*) 28776
LONG6 1 No data 03 0 0
LONG7 1 No data 03 0 0
LONG8 1 No data 03 0 0

(*) There are 28 781 bytes left according to BUF_SIZE. But according to the rule that for
every part BUF_LEN MOD 8 = 0 is true, only 28 776 bytes can be used for the first part of
LONG4.

In the result for this EXECUTE (beside other parts) there will be a part of PART KIND
longdata. It contains all LONG column descriptors (including UNDEFSIGNAL) for non-
NULL LONG values, whose writing was not finished, i.e. for which VALMODE <> 01
(vm_alldata), i.e. which do not belong to count X. The ARGUMENT COUNT of this part will
show the number of LONG descriptors in this part.

All descriptors were changed in the SAP DB task, therefore these returned descriptors have to
be used for all subsequent PUTVALs for this statement.

In our example a descriptor for LONG4 with some changes in it and the increased
INTERN POS (set to 28777) plus the changed descriptors for LONG6, LONG7, LONG8 are
returned. They are returned one directly behind the other à (4*41 bytes) 164 bytes are sent
back after the EXECUTE of our example.

PUTVAL for LONG4

Several PUTVAL messages have to be sent to sent all data for LONG4, i.e. for the LONG
column in the open state.

With PUTVAL a part of PART KIND longdata has to be sent, not PART KIND data.

Only the LONG descriptor for LONG4 (together with its UNDEFSIGNAL) has to be sent.
Directly following (VALPOS=42) the LONG value has to start.

INTERN_POS will be changed by the SAP DB task. The application process is not allowed to
change it after the first initialization with 1.

VALMODE has to stay with 00 (vm_datapart) for the next 11 PUTVALS (372456-
28776) DIV 30600, if we assume 30600 bytes available for the LONG column value with
each PUTVAL message. Let us assume BUF_SIZE = 30648. 41 Bytes are used for the
descriptor. 30607 are not used. The maximum value x for which (x MOD 8 = 0) is true, is
30600.

VALMODE = 00 (vm_datapart), VALPOS = 42, VALLEN = 30600 in our example.

For each PUTVAL the changed and returned LONG descriptor of the PUTVAL/EXECUTE
before has to be used.

The ARGUMENT COUNT in the longdata part has to be set to the number of LONG
descriptors written in this part.

If no LONG value is in an open state, no longdata part will be returned with the PUTVAL.

In our example the descriptor for LONG4 will be returned.

Last PUTVAL for LONG4

There are some (in our example: 7080) bytes left out of the value of LONG4. For them
VALMODE in the corresponding LONG column descriptor has to be changed to 02
(vm_lastdata). Every LONG column sent with several PUTVALs has to use VALMODE = 02
(vm_lastdata) with the PUTVAL the last data-portion of this LONG column is sent to the
SAP DB task.

VALMODE = 02 (vm_lastdata), VALPOS = 42, VALLEN = 7080.

It can be seen (assuming BUF_SIZE = 30648 as before), that the whole LONG6 (87 bytes)
and the first part of LONG7 (> 53KB) will fit in the longdata part (BUF_LEN = 7121).

In every PUTVAL in which more than one LONG column is handled, the variable part of the
longdata part should look like this:

1. First LONG descriptor with VALPOS=42
2. starting at position 42: data belonging to first descriptor with the length given in

VALLEN
3. directly behind the first value the second descriptor with VALPOS =

(2*41)+VALLEN of first descriptor+1

4. directly behind the second descriptor the corresponding value
5. third descriptor… .

To say it shortly:
Always write a LONG descriptor and the corresponding value directly behind each other and
directly behind the combination descriptor/value written before.

In our example the descriptor for LONG6 (that one returned with EXECUTE) has to be
written to position 7122 and has to look like this:

VALMODE = 01(vm_alldata), VALPOS = 7163 (7122+41 bytes of descriptor),
VALLEN = 87.

The value for LONG6 has to start at position VALPOS.

The descriptor for LONG7 will start at (7163+87=7250) and look like this:

VALMODE = 00 (vm_datapart), VALPOS = 7291 (7250+41 bytes of descriptor),
VALLEN = 23304
(Assuming BUF_SIZE 30648: VALLEN (30648-7290=23358à 23352 MOD 8 = 0))

No LONG descriptor for LONG8 needed.

Last PUTVAL for the Statement

The rest of the value of LONG7 has to be handled like the rest of LONG4, i.e. some
PUTVALs with VALMODE = 00 (vm_datapart), the last part of the value with
VALMODE = 02 (vm_lastdata). In our example the whole rest of LONG7 will fit into one
message, therefore only one PUTVAL for LONG7 is necessary, which will use
VALMODE = 02 (vm_lastdata).

As with LONG6 behind the rest of LONG4, LONG8 will fit behind the rest of LONG7.
Therefore the longdata part looks like this:
Descriptor for LONG7, rest of LONG7, descriptor for LONG8
(VALMODE = 01,vm_alldata), LONG8.

But it is the last PUTVAL for the whole statement (in our example, the INSERT). That makes
things different.

The SAP DB task does not remember how many LONG descriptors belong to this statement.
Therefore the SAP DB task is not able to decide if the last PUTVAL belonging to this
statement was done. On the other hand, for the SAP DB task this statement is in an open state.
If an error occurred during any PUTVAL, the whole statement with INSERT of non-LONG
values and all PUTVALs has to be rollbacked. For this reason, an implicit subtrans is opened
for the statement. Therefore the SAP DB task has to know, when the statement is finished, i.e.
when the last PUTVAL is done. Then the task can ‘close’ this statement, i.e. ends this
subtrans.

For this reason, the last PUTVAL for a statement has to send an extra and special LONG
descriptor. In this LONG descriptor only the fields VALMODE and INFO SET are of any
use. Therefore any of the old LONG descriptors can be copied. VALMODE has to be set to

05 (vm_last_putval). This LONG descriptor has to be the last in the longdata part. No data
belongs to this descriptor.

Even if there is not enough space in the last PUTVAL message containing real values, this
special LONG descriptor has to be sent. Then another PUTVAL message has to be sent with
exactly this special LONG descriptor in it.

If all LONG values fit in the EXECUTE, no extra LONG descriptor with VALMODE = 05
(vm_last_putval) is allowed. Only if at least one PUTVAL was necessary, this extra LONG
descriptor is needed.

Error

In case the application / the application process found an error, for example a file reading
error during LONG PUTVALs, i.e. an error not found by the SAP DB task, then it has to
work as follows:

For the SAP DB task everything seems to be fine. There is possibly one LONG column in an
open state which belongs to an open statement. The LONG column which is the open state is
not known by the SAP DB task.

Therefore the application process has to send a PUTVAL with the descriptor of the LONG
column in open state with
VALMODE = 02 (vm_lastdata), VALPOS = 42, VALLEN = 0.
Even VALPOS and VALLEN are important here.

The extra LONG descriptor with VALMODE = 05 (vm_last_putval) has to be appended at
position 42.

If no LONG value is in an open state, only the extra and special LONG descriptor with
VALMODE = 05 (vm_last_putval) has to be sent.

MASS CMD = 01

If more than one row will be handled at once (MASS CMD set to 01), then for those rows
using LONG columns the following communication protocol exists:

All data of one row has to be sent together, i.e. the values for non-LONG columns inclusive
the LONG descriptors and directly following the LONG values for this row.

If for one row all values inclusive those for LONG column fit in one message, the next row
can be sent in the same message with its LONG values and another one and so on. All will be
sent with EXECUTE.

At the end there will be one of three situations:

1. all row values (incl. LONG column values) fit in one EXECUTE, that is the only
message

2. the last row (non-LONG column values + LONG column values) will not fit as the
whole in this message, the non-LONG columns fit, but one or more LONG values do
not fit

3. the last row will not fit, because not even all of the non-LONG values fit

With situation 1, there is no problem, the message can be sent.

In situation 3 the last row whose non-LONG values do not fit in the current message will not
be written in this message. Non-LONG columns have to stay together. Therefore the current
message will not be filled up to the last byte, but sent now. And the row which did not fit will
be the first one in the next message send with EXECUTE.

Situation 2 is a little bit more complicate. In case only few LONG value bytes can be sent
together with (short) non-LONG values, it may be of use to behave as in situation 3 if this row
together with its LONG values will fit in the next EXECUTE message.

Otherwise PUTVALs have to be used. That means, x full rows + the non-LONG column
values of the current row and some of its LONG values (or part of it) are sent with the current
EXECUTE message. Then some PUTVAL messages have to be sent with the rest of the
LONG column values of this current row. The last PUTVAL for this row has to sent an extra
and special LONG descriptor with VALMODE = 05 (vm_last_putval), last data for this row.

With this PUTVAL, no matter how much space is left, no non-LONG values may be sent.

Therefore the next row to be sent will start with a new EXECUTE message. For this one the
rules given above are true: if one row fits as the whole, one or more others may be in the same
data part, use PUTVAL, if necessary.

GETVAL

*IN - PART KINDs
 longdata

*OUT - PART KINDs
 errortext
 OR
 longdata

In a program, SELECT statements can be used which specify LONG column(s) in the select
list. During SELECT..INTO or FETCH, the values of these LONG columns will be given to
the application process.

When a SELECT or FETCH statement is parsed, PARAMETER_INFOs and a parse ID are
given back as described in the chapter PARSE. For the LONG column(s) specified in the
select list, PARAMETER_INFO(s) are given describing one block of 40 bytes (plus
UNDEFSIGNAL) per LONG column. When a SELECT or FETCH statement is used together
with the MESSAGE TYPE DBS and the field WITH INFO has the value 01, then the part of
PART KIND shortinfo contains a description of one block of 40 bytes (plus
UNDEFSIGNAL) per LONG column.

During EXECUTE, the values for non-LONG columns are written as usual. For a LONG
column, the description block is given at the BUFPOS position specified in the corresponding
PARAMETER_INFO.

If the LONG column has the NULL value, the UNDEFSIGNAL of the block is hexadecimal
FF. The block itself is then of no interest. No real LONG column value exists.

If the LONG column has a real value, the UNDEFSIGNAL is set to blank or binary zero.

SAP DB will fill the first 27 bytes of the block and the application process is not allowed to
change these bytes except in a special case described below.

All LONG column values are given behind all non-LONG columns and description blocks. If
a description block is given, some parts will be used according to the following description.

VALPOS specifies the first byte of the value of the LONG column in the variable part of the
message. The value has no UNDEFSIGNAL in front.

VALLEN specifies the length of this portion of the LONG column value; i.e., the length of
the LONG column value as it is in the variable part of this segment.

VALMODE specifies how this data portion is to be interpreted:

03 (vm_nodata) In this message, there is no portion of this LONG column because there is

not enough space.
01 (vm_alldata) This data portion is the whole value of the LONG column.
00 (vm_datapart) This data portion is one of several portions. The LONG column value must

be cut in several portions because the space in one message is too small for the whole

LONG column value.
The other data portions will be given during following messages using GETVAL.

06 (vm_data_trunc) This data portion is not the whole (rest of the) LONG value. According
to VALLEN given with this LONG descriptor, the application process told the SAP DB
task how much space it has available for this LONG value. The LONG value is longer.
Therefore it is truncated to fit into this available memory space.

The values of the LONG columns are given in the order in which the description blocks are
written.

In Rule for LONG Column Handling it is written, which VALMODEs will be found in the
result of EXECUTE and GETVAL messages.

If with EXECUTE at least one LONG descriptor with VALMODE = 00 (vm_datapart) or
= 03 (vm_nodata) is returned to the application process, a loop of messages must start using
GETVAL to read the missing LONG column values or portions from the SAP DB task.

Those LONG descriptors returned with EXECUTE or GETVAL have to be used for the next
GETVAL. During this loop, the UNDEFSIGNAL of a block should not change and the first
28 bytes of a block are not allowed to be changed by the application process (except in a
special case described below).

With GETVAL, the part of PART KIND longdata must be filled with all blocks given that
have no UNDEFSIGNAL = 'FF' and no VALMODE = 01(vm_alldata), 02 (vm_lastdata) or
06 (see below for a special case); i.e., all blocks describing LONG column values that were
not completely given by the SAP DB task yet. The first LONG descriptor should be that one
which was returned with VALMODE = 00 (vm_datapart) during the GETVAL/EXECUTE
before. LONG descriptors returned with VALMODE = 06 are the only ones which are
allowed to be sent before that one with VALMODE = 00 (vm_datapart).

VALPOS is of no interest in the request of GETVAL

VALLEN has to be set to the number of bytes left in the host variable to store the following
data portions of the corresponding LONG column value. SAP DB will use this value and will
not send back more bytes than the number of bytes that can be stored.

If there are more bytes in the column value but these are not given back because of the
smaller VALLEN, VALMODE will be set to 06 for the output. In this case, INTERNPOS
will be set to (length-of-the-whole-LONG-column-value + 1); i.e., to one byte more than the
length the host variable should have had.

In case of VALMODE = 06, the LONG value is in no open state, that means: further
GETVALs for this LONG value are not allowed. If for some reason, it is necessary to read
smaller pieces out of a LONG value one after each other, it is necessary to prevent the
SAP DB task from closing the LONG value. This has to be done with no_close set in
INFO SET for each GETVAL for this LONG value. The VALMODE for this LONG
descriptor has to be changed to 00 (vm_datapart) and no_close set in INFO SET for each
subsequent GETVAL for this LONG value. Even in case of the last data portion returned
(VALMODE = 02 (vm_lastdata)), the LONG value is not closed. It has to be closed explicitly
by sending a GETVAL message with VALMODE = 07 for this LONG descriptor. This

explicit closing has to be used for such a LONG descriptor used with no_close set in
INFO SET no matter if it is read to its end or not.

As a result of GETVAL, the part of PART KIND longdata consists of a LONG descriptor
(inclusive UNDEFSIGNAL) and the corresponding value directly behind its descriptor and
this combination directly behind the combination descriptor/value written before.

At the end those LONG descriptors can be found of which no value is in this part.

ARGUMENT COUNT will be set to the number of LONG descriptors in this part.

The description blocks of a statement together with its GETVAL messages are of no use for
any following statement and should not be saved.

In case of an error not occuring in the SAP DB task, but in the application (file error in the file
the LONG column is put to, for example), those LONG descriptors which are in open state
(VALMODE = 00 (vm_datapart) or VALMODE = 06 and no_close was set for it), have to be
closed. This can be done with VALMODE = 00 (vm_datapart), VALLEN = 0 and , of course,
no_close not set or with VALMODE = 07 (close).

In case of a statement with MASS CMD set to 01, the layout of the result message of a
reading statement (SELECT or FETCH) is different to the layout of a request message of a
writing statement as INSERT or UPDATE. With the EXECUTE of an INSERT or UPDATE,
the whole row inclusive all LONG columns has to be sent to the SAP DB task before the first
byte of the second row has to be sent.

With EXECUTE of a SELECT or FETCH, the non-LONG column values of as many result
rows as exist or as wanted or as will fit in the message are filled into the message. If there is
some space left, LONG values are filled behind the last non-LONG-column-result row-parts.
This is done in the sequence the LONG descriptors are found in the data part. To get the rest
of the LONG values, several GETVALs have to be performed.

That means: to output one full result row inclusive all of its LONG values, sometimes, the
result of the EXECUTE has to be stored somewhere in the application process and the
GETVALs needed to get the wanted LONG values have to be performed. Therefore the
number of wanted result rows for one EXECUTE of FETCH should be small enough to be
able to store its non-LONG column values temporarly.

HELLO

*IN - no part

*OUT - no part

This MESSAGE TYPE allows a user to verify whether the SAP DB task assigned to this user
is still able to process statements--without the user having to issue a SAP DB statement. At
the same time, this prevents the session from being ended implicitly as a result of the user's
inactivity. This is the only MESSAGE TYPE without any parts.

SENDING AND RECEIVING MESSAGE
BLOCKS
If an application process has allocated a message block that is not longer than the maximum
length returned by SQLACONNECT, this message block is used for both directions of
communication between application process and SAP DB task.

For the direction to the SAP DB task, the first segment, i.e. the first command, must be
directly behind the MESSAGE HEADER.

When the results are returned, during SQLARECEIVE the application process obtains a
pointer to the message block being returned. The pointer of the return-message-block differs
from the pointer of the request-message-block. The pointers to the return-message-blocks of
different results may be different from each other. Therefore, the request pointer must be
saved and the result pointer be forgotten after interpreting the return-message-block to which
it belongs.

In some cases, e.g., the parsid in the MESSAGE TYPEs PARSE and EXECUTE, parts
returned must be sent to the SAP DB task again. It must be ensured that
PART ATTRIBUTES, SEGMENT OFFSET and BUF SIZE are changed between the part
returned and the part belonging to the request.

SAP DB FUNCTIONS FOR SYSTEM
PROGRAMMERS
Only some of the SAP DB statements described in this section (like DECLARE CURSOR,
OPEN, CONNECT, CREATE USER, and ALTER PASSWORD) are available to users of the
interactive SAP DB interface or to programmers working with the SAP DB system via
SAP DB statements embedded in programming languages.

DECLARE CURSOR, OPEN
In a program, DECLARE CURSOR is specified in a declare section. The corresponding
OPEN is specified in that part of the program that is dynamically executed. If one checks the
trace information written by SAP DB, no OPEN will be found. The application process (i.e.,
the precompiler) must store the DECLARE CURSOR and send it to SAP DB when the
corresponding OPEN is found in the program. The DECLARE CURSOR will then search for
the result rows and will not wait for an OPEN statement to be started.

FETCH with MASS CMD set to 01
This statement basically functions in the same way as the FETCH statement described in the
SAP DB Reference Manual. Whereas each normal FETCH only provides a single result row
plus a description, if requested, of the output columns (WITH INFO = 01), FETCH with
MASS CMD set to 01 passes several result rows to the user--or, i.e., as many rows as are
wanted respectively as many rows as will fit in the message block together with the
description of the output columns.

Lock handling will be done as with FETCH.

FETCH FIRST provides the first result rows, FETCH LAST the last, FETCH PREV the
previous ones and FETCH POS the result rows following the specified position. Even FETCH
LAST and FETCH PREV provide the result rows in ascending FETCH order (i.e., just like
the normal FETCH FIRST, FETCH NEXT and FETCH POS).

If FETCH SAME is called following FETCH with MASS CMD set to 01, then it provides a
result row with the largest key contained in the last FETCH set (regardless of FETCH NEXT
or PREV).

In a part of PART KIND resultcount, a number must be sent to the SAP DB task specifying
the number of hits to be provided. The returned segment then contains a part of PART KIND
shortinfo and one of PART KIND columnnames (if requested by the field WITH INFO = 01
and the MESSAGE TYPE DBS), a part of PART KIND resultcount and a part of
PART KIND data. The only difference to a FETCH statement is that ARGUMENT COUNT
in the data part may be larger than 1.

FETCH with MASS CMD set to 01 is not allowed for SELECTs in which FOR UPDATE
was specified.

SELECT, DECLARE with MASS CMD set to 01
These statements basically function in the same way as SELECT and DECLARE CURSOR.
With SELECT or DECLARE, one value can be specified for each parameter given in the
statement, in the following called 'data-packet'.

With SELECT and DECLARE CURSOR with MASS CMD set to 01, several data-packets
can be specified, each containing one value for each of the parameters.

The result is one (!) result table in which all the result rows specified with the first data-packet
plus the result rows specified with the second data-packet plus ... plus the result rows
specified with the last data-packet are stored.

Several message blocks can be used to build one result table with several data-packets.

SELECT and DECLARE CURSOR with MASS CMD set to 01 can only be used together
with the MESSAGE TYPEs PARSE and EXECUTE. While parsing, everything looks as
usual, except that MASS CMD is set to 01 instead to its usual value 00. If there is no set
function (AVG, MIN and so on), no GROUP BY, no HAVING, no UNION, no EXCEPT and
no INTERSECT specified in the statement, this statement can be handled as a mass
command.

This will be shown in the parse ID with application info1 set to 114
(select_with MASS CMD found), 115 (for_upd_select_with MASS CMD found), 116
(reuse_select with MASS CMD found) or 117
(reuse_select_for_update with MASS CMD found).

If this statement can only be handled like a normal SELECT or DECLARE CURSOR,
application info1 will have the value 44, 45, 46, 47 respectively, i.e. the above value minus
70. Then no more than one data-packet is allowed and the statement must be executed as
described in the chapter EXECUTE.

The application process is not allowed to change 44/45/46/47 to 114/115/116/117. SAP DB
checks for such a misuse and returns an error.

If application info1 has the value 114, 115, 116 or 117, one or more data-packets can be given
during execution. While executing, the part of PART KIND parsid looks as usual. If the
statement was parsed with MASS CMD set to 01, but only one data-packet belongs to this
statement, the statement should be executed like a normal SELECT (see EXECUTE) and with
the application info1 set to 44/45/46/47 (old application info1 minus 70 (mass_statement)). If
application info1 has the value 114/115/116/117 and more than one data-packet is to be given,
the parsid part consists of the unchanged parse ID.

Another part (PART KIND resultcount) consists of a number in the format Fixed(10)
specifying the number of results found during the last messages belonging to this statement.
For the first message in one statement, the UNDEFSIGNAL of this value must be 'FF'. For
the following messages, the resultcount given with the previous message must be given to
SAP DB.

The ARGUMENT COUNT of the data part states the number of data-packets actually given
to SAP DB. If this is the last message for this statement, last_packet must be set in
PART ATTRIBUTES. If this is the first one first_packet has to be set, for those in the middle
next_packet has to be set.

Every data-packet looks like a data-packet for the corresponding SELECT or DECLARE
CURSOR statement, this means, as described in the PARAMETER_INFOs. All data-packet
have to be sent directly one behind the other.

The result looks like a result of a normal SELECT or DECLARE CURSOR.

SELECT ... INTO with MASS CMD set to 01
This statement basically function in the same way as SELECT ... INTO usually does. With
SELECT ... INTO, one value can be specified for each parameter given in the statement, in
the following called 'data-packet'.

With SELECT ... INTO with MASS CMD set to 01, several data-packets can be specified,
each containing one value for each of the parameters. The result is one result row for each of
the specified data-packets. In case no result exists for one data-packet a result row filled with
x'FF' is returned.

SELECT ... INTO with MASS CMD set to 01 can only be used together with the MESSAGE
TYPEs PARSE and EXECUTE. While parsing, everything looks as usual, except that
MASS CMD is set to 01 instead to its usual value 00.

INSERT, UPDATE, DELETE with MASS CMD set to 01
These statements basically function in the same way as usual, except for INSERT-SELECT,
which is not allowed together with MASS CMD set to 01.

With these statements, it is possible to INSERT or UPDATE or DELETE several rows during
one call with EXECUTE. These statements are only allowed together with PARSE and
EXECUTE, not with DBS.

They are parsed as usual, MASS CMD is set to 01 instead of the usual value 00. If there is no
INSERT-SELECT specified in the statement, this statement can be handled as a mass
command. This will be shown in the parse ID with the application info1 set to 70
(mass_statement).

If this statement can only be handled like a normal INSERT, UPDATE or DELETE,
application info1 will have the value 0 (none). Then no more than one data-packet is allowed
and the statement must be executed as described in the chapter EXECUTE.

The application process is not allowed to change 0 to 70. SAP DB checks for such a misuse
and returns an error.

If application info1 has the value 70, one or more data-packets can be given during execution.
If the statement was parsed with MASS CMD set to 01 with only one data-packet belonging
to this statement, the statement should be executed like a normal
INSERT/UPDATE/DELETE (see EXECUTE) and with application info1 set to 0 (old
application info1 minus 70 (mass_statement)).

If application info1 has the value 70 and more than one data-packet is to be given, the parsid
part consists of the unchanged parse ID.

Another part (PART KIND resultcount) consists of a number in the format Fixed(10)
specifying the number of rows handled during the last messages belonging to this statement.
For the first message in a statement, the UNDEFSIGNAL of this value must be 'FF'. For the
following messages, the resultcount given with the previous message must be given to
SAP DB.

ARGUMENT COUNT of the data part states the number of data-packets actually given to
SAP DB.

If this is the last message for this statement, bit 1 must be set in PART ATTRIBUTES of the
data part. If this is the first one first_packet has to be set, for those in the middle next_packet
has to be set.

Every data-packet looks like a data-packet for the corresponding INSERT, UPDATE or
DELETE statement, this means, as described in the PARAMETER_INFOs. All data-packet
have to be sent directly one behind the other.

The result looks like a result of a normal INSERT, UPDATE or DELETE.

If SQLCODE <> 0, then ERRORPOS specifies the number of the data-packet producing this
error and a part of PART KIND errortext is returned. Another part with PART KIND
resultcount is returned to show the number of changed rows up to the wrong data-packet.

In case of an error, all changes done before this error occurred remain done. No changes are
done for the wrong data-packet and the data-packets following the wrong one.

CONNECT
In case of a CONNECT, a part of PART KIND data must be filled with the name of the user
(UNDEFSIGNAL plus name with 64 bytes) if the name of the user was not given in the SQL
statement. Then the password in a crypted format (UNDEFSIGNAL plus 24 bytes) and the
result of SQLTERMID (UNDEFSIGNAL plus the 18 bytes of the result) must be specified.

CREATE USER with crypted password
Usually, the <create user statement> is given like this: CREATE USER <user name>
PASSWORD <password> ...

In this case, the password is sent to SAP DB in a readable format. As someone would like to
hide the <password> even in the message, the crypted format of the password can be sent.

The statement then looks like this: CREATE USER <user name> ... without
'PASSWORD <password>'.

The <password> in its crypted format (24 bytes) must be given in a part of PART KIND data
together with an UNDEFSIGNAL.

This format can be used together with the MESSAGE TYPEs DBS, SYNTAX and PARSE.

ALTER PASSWORD with crypted password
Usually, the <alter password statement> is given like this:
ALTER PASSWORD <old password> TO <new password>
 or
ALTER PASSWORD <user name> <new password>

In these cases, the new password is sent to SAP DB in a readable format. As someone would
like to hide the <new password> even in the message, the crypted format of the new password
can be sent.

The statement then looks like this:
ALTER PASSWORD <old password> TO
 or
ALTER PASSWORD <user name> without '<new password>'.

The <new password> in its crypted format (24 bytes) must be given in a part of PART KIND
data together with an UNDEFSIGNAL.

This format can be used together with the MESSAGE TYPEs DBS, SYNTAX and PARSE.

SET LANGUAGE
Upon CONNECT, the SAP DB task does the language setting valid for the current user. This
language setting is used for error messages and for the names of months in SQLMODE
ORACLE and its data type date. The language used is english.

During the SAP DB session, SET LANGUAGE allows the user to switch the language used.
The desired language is entered as CHAR(3) value plus UNDEFSIGNAL in a part of
PART KIND data. SET LANGUAGE is neither parsable nor executable, and can only be
issued with the MESSAGE TYPE DBS.

At present only english messages and names of months are known in the SAP DB task.
Therefore it is not possible to set the language to another value than english.

SET FORMAT
As default, every user uses the date-and-time format specified during the configuration.

If a user uses an application which uses ODBC or JDBC for communication with the SAP DB
task, then the date-and-time format called ANSI is used, no matter of the format specified
during configuration.

This format is standardized by ODBC-commitees and looks like this for a TIMESTAMP
value:

'YYYY-MM-DD HH:MM:SS.MMMMMM' '1999-01-23 14:30:08.456234'

For DATE and TIME values it looks like the format JIS, described in the reference manual.

When an application is used, which uses ODBC or JDBC for communication with the
SAP DB task, then no SET FORMAT statement may be executed.

With other applications, the user can specifiy SET FORMAT to change the format used for
this session.

SET FORMAT ISO
SET FORMAT EUR
SET FORMAT USA
SET FORMAT JIS
SET FORMAT INTERNAL
SET FORMAT ANSI
SET FORMAT ORACLE

are available. For a description of the different formats, see the reference manual. The format
ORACLE results in ‘DD-MON-YY’ for values of datatape TIMESTAMP respectively those
columns being defined with DATE using SQLMODE ORACLE. For values of datatypes
DATE and TIME the format ORACLE looks like the INTERNAL format.

The date-and-time format is changed user- and session-specifically. This means, the default
date-and-time format will be used again after another CONNECT.

SET FORMAT is neither parsable nor executable and can only be issued with the MESSAGE
TYPE DBS.

SET ISOLATION LEVEL <unsigned integer>
With this command, the isolation level of the session can be changed for all subsequent
commands in this session. All known isolation level can be specified.

SET NLS_SORT
SET NLS_SORT BINARY/<identifier> This statement tells the SAP DB task how to sort
resultsets in the current session, if the order by clause is applied to alphanumeric columns. If
BINARY is specified, the normal binary sorting is used. Otherwise <identifier> identifies a
MAPCHAR SET which defines the sorting rules.

SET TIMEOUT ON/OFF
This command is no user-command, that means: the command can only be used internally
with PRODUCER <> user.

SET TIMEOUT … is neither parsable nor executable and can only be issued with the
MESSAGE TYPE DBS.

With this command the command timeout of this session can be switched on (as it is as
default) or off.

SET SESSION <sessionno> TRACE LEVEL <no>
Sometimes one would like to know what a running application is just doing. This is often
necessary in case this application seems to run endless or much to slow. In this case it is not
possible to stop the application, switch on some trace for it and rerun the whole application.

It is necessary to start some trace for the running application. This can only be done by
another session.

With this command, session x can specify, that another session, i.e. the session with the
number sessionno should return the specified trace level no to its application program. Each
application program has its own defintion, what kind of trace will be written together with the
different trace levels.

For a description of the different trace levels of different applications see their manuals.

EXPLAIN
With EXPLAIN, there are some options to get more information as with the usual EXPLAIN.

EXPLAIN VIEW SELECT ...

In case there is a joinview in the from-part of this SELECT, usually only the name of this
joinview is given for all 2 to 16 steps of performing this join. This is done because of
privilege handling. Not all users allowed to see this joinview are allowed to see the underlying
tables or views. Therefore they are not told how this joiniew was specified and which tables
or views are needed for it.

If EXPLAIN VIEW is given instead of EXPLAIN, the names of the underlying tables or
views are given as result. This allows the user to see in which sequence the underlying tables
or views are used.

EXPLAIN JOIN SELECT ...

Sometimes it is useful to see the values which were used and calculated for each join-
performing step. Therefore for each step values like STRATEGY, OWNER, TABLENAME
(as with the normal EXPLAIN) are given together with EXPECTED_ROWS, MULTIPLIER,
REVERSE_MULTIPLIER, NEW_LEFT_SIZE, NEW_LEFT_ROWS and
ACCUMULATED_COSTS.

EXPLAIN SEQUENCE SELECT ...

Sometimes it is useful to see the intermediate information prepared to find the best join
sequence for a SELECT statement. This info can be seen with EXPLAIN SEQUENCE.

The result is divided into several parts:

- one table access
- possible join strategies from one table to another
- possible join strategies from x tables to another one
- info about the strategy used for sequence search
- calculated costs for different sequences of all tables

one table access

In this part for each table implicitly or explicitly specified in the FROM part of the statement
it is shown, which access strategy would be used if this table together with the corresponding
predicates was given in one SELECT statement.

For each table the following info is shown:

- TABLE No.
- Tablename
- Search strategy (see in module VGG17 g17stratenum_to_line for the possible names

and meanings)
- Number of pages/part of one page in which records can be found which meet the

conditions given in the predicates

- Number of pages which have to be checked for finding all pages in which records
could be found which meet the conditions given in the predicates

- Pages in this table
- Access cost for access all pages needed
- Estimated number of records per page

In an example it looks like this (example taken from EXPL.vdnts):

TABLE No. 1
T
 SINV IN
 pages_found 0.100E-06
 strat 0.100E-06
 all_pages 1
 cost 1
 recs_per_p 1
--
TABLE No. 2
T1
 KEY RANGE
 pages_found 0.400E+00
 strat 0.100E+01
 all_pages 40
 cost 41
 recs_per_p 250
--
TABLE No. 3
T
 KEY EQ
 pages_found 0.100E+01
 strat 0.100E+01
 all_pages 1
 cost 1
 recs_per_p 1

possible join strategies from one table to another

In a table it is specified which join strategy could be used if the table with number TO was
joined to the table with number FROM.

See in module vak681 a681tr_joinvals for the possible join strategies:

 to_single_keyfield := 'SK'
 to_unique_field := 'UI'
 to_keypart := 'KP'
 to_key := 'MK'
 to_first_keyfield := 'FK'
 to_invfield := 'I'
 to_all_invfields := 'MI'
 to_invpart := 'IP'
 to_mt_join := 'MJ'
 to_eq_field := '='
 to_lt_gt_field := '><'
 to_ne_field,
 to_cartesian_prod := '??'
 to_illegal := '--'

--
| FROM 1 2 3
TO
1 -- MJ MJ
2 = -- =
3 SK SK --

possible join strategies from x tables to another one

With this it is shown which join strategy couls be used if all tables given in Used tables were
joined before and table TO had to be joined as the next one.

The following results will be given:

TO join to the x-th table in the from-part (or the x-th base-table, if there are joinviews in

the from-part)
Via information about the possible access strategy to that table (via INDEX or KEY or so)
Multiplier the expected number of rows which will be found in table 'TO' for each row in

the up-to-then intermediate result table
T how many tables have to be joined together to form the information needed for the

possible access strategy given in 'via'
F how many columns are needed to form the information needed for the possible access

strategy given in 'via'
J the index in an array (0-x) in which all join-conditions are stored. Be aware that

because of transitive join-conditions some new ones are build internally and filled into
this array

I the number of the index (multiple index) or the columnnumber (single index) which is
accessed using the access stratgy given in 'via'

Used tables as many tablenumbers as 'T' specifies are given to show the tables which have
to be joined together before table 'TO' could be joined if access strategy 'via' shall be
used

--
TO via multiplier T F J I Used tables
1 INDEX PART 0.100E+01 1 1 0 1 [2]
1 INDEX 0 1 1 0 2 [2]
1 INDEX PART 0.100E+01 1 1 2 1 [3]
1 INDEX 0 1 1 2 2 [3]

Here it is shown the combination of best join strategies for all tables. Sometimes this
sequence of tables is not a possible one with these strategies. Imagine a join strategy which
joins to table x and needs info from table y and z. This may be the best join strategy for x. But
it is not a possible one if y and z are not joined before.

This can be seen in this example where ji gives the number of the table the given join strategy
for table 1 as a joined table before. Table 2 was not joined before, therefore this
strategy/sequence is not a possible one. 1 is the default value for ji.
Mi gives the index in the array of tables.

--
TO via multiplier costs ji mi
1 INDEX 0 0.100000E+01 2 2 multiplejoin

2 EQUAL FIELD 0.200E+02 0.200391E+07 1 0
3 SINGLE KEY 0.100E+01 0.112777E+03 1 0

info about the strategy used for sequence search

It is the goal of a SAP DB task to find the best join strategy for all tables which are named in
the from clause. On the other hand, this search is not allowed to last too long. Therefore one
has to pay attention to the search cost itself. And therefore a full permutation of all table
sequences is possible for a small number of tables, but not for a large number.

With SA DB there are some JOIN_SEARCH_LEVEL (see installation parameters)

9 full permutation
4 heuristic
1 greedy algorithm
0 let SAP DB task decide the level according to the number of tables

For JOIN_SEARCH_LEVEL = 0, the number of tables (N) can be specified which will use
level 9, 4 or 1.

0 < N <= JOIN_MAXTAB_LEVEL9 (default 5) : use level 9
JOIN_MAXTAB_LEVEL9 < N <= JOIN_MAXTAB_LEVEL4 (default 16) : use level 4
N > JOIN_MAXTAB_LEVEL4 : use level 1

The next info says which sequence search strategy was used

--
JOIN SEQUENCE SEARCH = AUTOMATIC - LEVEL 9

calculated costs for different sequences of all tables

The info is given which sequence of all tables (seen in brackets) results in which costvalues.
The calculation is done in the sequence shown. With < the costs are marked which are the
smallest one up to that time. > shows costs which are higher than the lowest found by then.

The table sequence which is the last one marked with < is the best sequence and will be used.

Even in case of a full permutation not all combinations will be shown. In this example, the
join from table 1 to table 3 is more expensive than the full sequence 1,2,3. Therefore no
sequence of tables starting with 1,3 has any chance to result in smaller costs. Therefore no full
sequence is calculated and written in this list.

--
< COSTVALUE : 0.410292E+02 [1 2 3]
> COSTVALUE : 0.194875E+03 [1 3 2]
< COSTVALUE : 0.410292E+02 [2 1 3]
> COSTVALUE : 0.194875E+03 [3 1 2]

CCCRASHHH
Testing the termination and error analysis mechanisms of the various runtime environments
requires a statement which will cause SAP DB tasks to ABEND. This is realized using the
statement CCCRASHHH which is only available to the SYSDBA and must be used with the
MESSAGE TYPE DBS.

Tracing
Tracing in slowknl

For error and performance analysis sometimes it is necessary to output some information
produced during statement handling in the SAP DB task. This can be done using the switch
statement, which is written here in a reference manual-like manner:

<switch command> :=
 DIAGNOSE SWITCH OFF
| DIAGNOSE SWITCH MINBUF
| DIAGNOSE SWITCH MAXBUF
| DIAGNOSE SWITCH BUFLIMIT <unsigned integer>
| in version 7.3:

DIAGNOSE SWITCH LAYER <string literal>
 [DEBUG <string literal>]
 [<switch limit>]
 in version >= 7.4
 DIAGNOSE SWITCH
 [LAYER <string literal]
 [DEBUG <string literal>]
 [TOPIC <string literal>]

<switch limit> ::= LIMIT
 START <string literal>
 [COUNT <unsigned integer>]
 [STOP <string literal>]

With OFF tracing is switched of.

With MINBUF/MAXBUF it can be specified if buffer output will be in hexadecimal +
decimal + character form plus the position or if it will be only with hexadecimal and character
form.

With BUFLIMIT it can be specified which is the maximum buffer position to be written no
matter if the buffer is a longer one.

With LAYER it is specified for which layer in the SAP DB task (AK, GG, BD,...) the Pascal
routines write their names in the trace when they are called.

With DEBUG it is specified for which layer or part of a layer in the SAP DB task (AC, BI,
KF, GG, ...) the Pascal routines write some info about the current state of buffers, variables to
the trace.

With TOPIC it is specified for all SAP DB versions >= 7.4 which C++ components have to
write trace info.

With START it can be specified at which Pascal routine the tracing should start.

With COUNT it can be specified which call to this routine should start the tracing.

With STOP it can be specified at which Pascal routine tracing should stop.

This statement can only be used with the MESSAGE TYPE DBS.

Flush the trace in any kernel

The statement VTRACE forces the writing of the TRACE information of all SAP DB tasks
onto the disk. This can be used when searching for a faulty system behaviour to receive the
TRACE information.

This statement can only be used with the MESSAGE TYPE DBS.

DROP PARSEID
This statement deletes the parse ID--specified in the part of PART KIND data without
UNDEFSIGNAL--of a statement previously issued using PARSE, as well as the pertinent
information.

This statement can only be used with the MESSAGE TYPE DBS.

DESCRIBE [<result table name>]
This statement provides descriptions of all result table columns. These descriptions consist of
a part of PART KIND shortinfo and a part of PART KIND columnnames (see there)

The SELECT statement generating the named or unnamed result table must have been parsed
and/or executed.

DESCRIBE
All the following DESCRIBE statements are exclusively used by SAP DB LOAD
respectively the Replication Manager.

These statements can only be used with PRODUCER <> user_cmd.

DESCRIBE USER

This statement is used by SAP DB LOAD if auditing is required.

A description of all users and the corresponding userids is returned.

This statement will not be available with SAP DB version >= 7.4.

DESCRIBE CONSTRAINT/DEFAULT/INDEX <table name>

These statements are used by SAP DB LOAD respectively the Replication Manager,
whenever a table is extracted from or imported into the database.

If DESCRIBE CONSTRAINT is send, the datapart contains the number of the constraint to
be described.
The SAP DB task returns a description of the contraint.

If DESCRIBE DEFAULT is send, the datapart contains the number of the column of the
DEFAULT to be described.

If DESCRIBE INDEX is send, the datapart contains the number of the index to be described.

DESCRIBE TABLE <table name> [EXCEPT [CONSTRAINT] [RESTORE]]

This statement is used by SAP DB LOAD respectively the Replication Manager whenever a
table is extracted from or imported into the database.
The SAP DB task returns a description of structure of the base table identified by
<table name>.

CREATE TABLE
In addition to the syntax given in the reference manual, some options are available.

INTERNAL the table will become a 'SYSTEM' table and can only be specified during

installation

ROWID can be used in SQLMODE Oracle, see 'Differences to Oracle' in L1.

DYNAMIC the table will not be balanced after delete, because it is very dynamic, that

means, it is expected that one of the next inserts will fill the 'whole' produced
by the delete

FACT used with business warehouse to tell the SAP DB optimizer that this is the

main table, the fact table

DIMENSION used with business warehouse to tell the SAP DB optimizer that this is one of

several tables ‘around’ the fact table

BWHIERARCHY

used with business warehouse

The business warehouse options are not used any more

ALTER TABLE <table name> [NOT] DYNAMIC
With this command the dynamic-option (see CREATE TABLE) is changed.

CHECK TABLE

CHECK TABLE <table name> [NO SAVEPOINT]

This statement causes the SAP DB task to check the structure of the b*tree containing the data
of the table identified by <table name>.

If the structure is ok but the bad-flag of the table was set before, it is unset and a savepoint is
executed.

If NO SAVEPOINT is specified, no savepoint will be executed.

CHECK TABLE <table name> WITH SHARE LOCK

This statement causes the SAP DB task to check the structure of the b*tree containing the data
of the table identified by <table name>. In addition to the normal CHECK TABLE it is
checked if all LONG surrogates are correct, i.e. if for all identifications for LONG column
values these values exist.

To avoid problems with parallel changes in this table it it share locked.

CHECK TABLE <table name> CATALOG

This statement causes the SAP DB task to check the catalog information of the table identified
by <table name>. Any errors found are repaired implicitely.

CHECK DATABASE
CHECK DATABASE :database_fill LOG :log_fill The used space (in percent) of the
database and the log are returned. Each is returned as a value of datatype FIXED (2).

This statement may be used with MESSAGE TYPE DBS and PARSE/EXECUTE.

INSTALLATION ON/OFF
With INSTALLATION ON the SAP DB task is told, that the installation calls it and that
tables specified with 'INTERNAL' are allowed and should be 'SYSTEM' tables.

INSTALLATION OFF closes that part of the installation.

BEGIN SAVE
The following commands are exclusively used by SAP DB LOAD respectively the
Replication Manager.

BEGIN SAVE TABLE

BEGIN SAVE TABLE <table name> tells the SAP DB task, that the data pages of the table
identified by <table name> will be exported by the application process. The SAP DB task
returns a BD-info, which is used by the following outcopy orders.

BEGIN SAVE INDEX

BEGIN SAVE INDEX <table name> <indexno> tells the SAP DB task, that the leaf pages of
the index identified by <table name> and <indexno> will be exported by the application
process. The SAP DB task returns a BD-info, which is used by the following outcopy orders.

BEGIN SAVE LONG

BEGIN SAVE LONG <table name> tells the SAP DB task, that the container for short LONG
columns will be exported by the application process. The SAP DB task returns a BD-info,
which is used by the following outcopy orders.

BEGIN SAVE COLUMN

BEGIN SAVE COLUMN <columnno> tells the SAP DB task, that a column of datatype
LONG, which is stored in a B*tree will be exported by the application process.
This command is sent together with 2 additional parts: The bdinfo part contains the bdinfo
(consisting of a treeid of the base table and twice the root PNO of the base table) which was
returned by the SAP DB task for BEGIN SAVE TABLE <table name>. The data part contains
the file position of the base table, the long column count of that table, the column number, and
the key of the row containing the LONG column.
When giving the command for the first time, the file position is of no interest for the SAP DB
task. The column number has to be 0 and the key has to be the zero key.

The SAP DB task then returns a BD-info. In addition the SAP DB task returns a key part
which contains the new file position, the long column count (unchanged), the column number,
and the key of the row containing the long value to be extracted.

The returned BD-info is used by the following outcopy order. When the count of pages is less
than the maximum possible count of pages in a packet, the end of the outcopy order is
reached.

After having finished the extraction of one long value, the next long value has to be requested
by sending again BEGIN SAVE COLUMN, the BD-info and the values returned in the key
part on the former command. This loop has to be performed until the SAP DB task sends a
return code of 100 = "Row not found" for BEGIN SAVE COLUMN.

Loading
BEGINLOAD <table name> [WITH STAMP]

This statement is exclusively used by SAP DB LOAD respectively the Replication Manager.

It tells the SAP DB task that the data pages of the table identified by <table name> will be
imported into the database during a FASTLOAD for this table.

As the result the SAP DB task returns a BD-info, which will be used by the following incopy
messages.

LOAD <table name> (<column list>)

This statement is exclusively used by SAP DB LOAD respectively the Replication Manager
in the course of a fastload statement.

The SAP DB task returns a description of the table identified by <table name> which enables
the application to build the records of the table.

SAVE
SAVE CATALOG ALL INTO <table name>
SAVE CATALOG USER INTO <table name>
SAVE CATALOG OF <table name> INTO <table name>

All SAVE statements are exclusively used by SAP DB LOAD respectively the Replication
Manager to get information about tables, views, indexes, etc. The result is stored in a table
which has to be specified in the statement.

RESTORE
RESTORE TABLE <table name>

This statement is used by SAP DB LOAD respectively the Replication Manager to inform the
SAP DB task, that the data pages of the table identified by <table name> are to be loaded into
the SAP DB task. The SAP DB task returns a BD-info for the following incopy statements.

RESTORE LONG <table name>

This statement is used by SAP DB LOAD respectively the Replication Manager to inform the
SAP DB task, that the data pages of the short long columns of table <table name> are to be
loaded into the SAP DB task. The SAP DB task returns a BD-info for the following incopy
statements.

RESTORE COLUMN <table name>

This statement is used by SAP DB LOAD respectively the Replication Manager to inform the
SAP DB task, that the data pages of a long column of table <table name> is to be loaded into
the SAP DB task. The column is identified by the key and the column number. The SAP DB
task returns a BD-info for the following incopy statements.

ENDLOAD <table name>
This statement is exclusively used by SAP DB LOAD respectively the Replication Manager.
It tells the SAP DB task that an incopy operation of pages has been finished.

END
END LOAD <table name>

This statement is exclusively used by SAP DB LOAD respectively the Replication Manager.
It tells the SAP DB task that an incopy operation of the catalog of the table has been finished.

END RESTORE

This statement is exclusively used by SAP DB LOAD respectively the Replication Manager.
It tells the SAP DB task that a restore operation has been finished.

STATISTICS
LOAD STATISTICS

The statistics stored in the table SYSDBA.SYSSTATISTICS are transfered into the catalog.

UNLOAD STATISTICS

The statistics (i.e. number of rows, number of pages, distinict values) of all base tables and the
corresponding indexes are stored in the table SYSDBA.SYSSTATISTICS.

OPTIMIZE ON/OFF
As default it will be tried to convert SELECTs on complex views from two internal selects
into one step. With OPTIMIZE OFF this can be avoided.

This may be necessary in case of errors in the code of select conversion. With OPTIMIZE ON
the default behaviour can be selected again.

DBPROCEDURE
CREATE [OR REPLACE] DBPROC[EDURE]

CREATE [OR REPLACE] DBPROC[EDURE] <dbproc name>
[(<formal parameter>,..)] IN <package name> EXECUTE INPROC

This statement is sent (usually during installation) when a procedure implemented in a
programming language is to be imported into the SAP DB catalog.

This causes the SAP DB task to store the interface of the application method into the catalog.

[DB]PROC[EDURE]

[DB]PROC[EDURE] <dbproc name> [([<value expression>] [,...])] [WITH COMMIT]

CALL <dbproc name> [([<value expression>] [,...])] [WITH COMMIT]

This statement executes a DBPROCEDURE in the SAP DB task. See CALL statement in the
reference manual.

DBFUNCTION
CREATE [OR REPLACE] DBFUNCTION

CREATE [OR REPLACE] DBFUNCTION <db function>
[(<formal parameter>,..)] IN <package name>
[USING <function spec>,...]

<function spec> ::=
 <function name> [(VARCHAR | NUMBER)]

This statement is sent if a dbfunction is created.

This feature is not used any more.

DROP DBFUNCTION

DROP DBFUNCTION <name> is sent by the PL or SAP DBIC workbench to remove a
dbfunction from the SAP DB task.

CURRENT USER <username>
Within a ddl-trigger or as internal command this command will change the name of the
current user from the name given during CONNECT or the last CURRENT USER to the
username given now.

FORCE SAVEPOINT [NO OPEN TRANSACTION]
With this statement one can force a savepoint of the SAP DB task. If NO OPEN
TRANSACTION is specified, not only a savepoint, but a checkpoint is forced.

RESTART INDEX
All indexes which are marked as not to be accessible, are implicitely dropped and created
again. After execution of this statement all indexes should be accessible.

WRITE CACHE
This command dumps the AK-cache of this session.

ORDER INTERFACE 7.3................................2
Introduction................................ 3
MESSAGE FORMAT................................4

MESSAGE HEADER5
MESSAGE CODE................................6
SWAP KIND................................ 7
APPLICATION VERSION and APPLICATION ID 8

APPLICATION VERSION 8
APPLICATION ID................................8

VARPART SIZE and VARPARTLEN................................9
VARPART SIZE9

NO OF SEGMENTS10
VARIABLE PART OF A MESSAGE BLOCK 11
SEGMENT HEADER12
SEGMENT HEADER, common part................................ 13
REQUEST SEGMENT HEADER................................ 14

MESSAGE TYPE15
SQLMODE 16
PRODUCER 17
COMMIT IMMEDIATELY 18
IGNORE COSTWARNING................................ 19
PREPARE 20
WITH INFO................................ 21
MASS CMD................................ 22

MASS CMD, error handling 23
PARSE AGAIN................................ 24
Options................................ 25

RESULT SEGMENT HEADER................................ 26
WARNINGSET1................................26

WARNINGSET2................................26
FUNCTIONCODE 26

TRACELEVEL26
WARNINGSET1................................ 28
FUNCTIONCODE29

VARIABLE PART OF A SEGMENT................................ 32
PART HEADER 33

PART ATTRIBUTES33
ARGUMENT COUNT................................ 33
SEGMENT OFFSET 33
BUF LEN................................ 33
BUF SIZE 33

PART KIND 34
PART KINDs and MESSAGE TYPEs................................35
01 appl_parameter_description 37
02 columnnames................................38
03 command 39
04 conv_tables_returned 40
05 data................................ 41
06 errortext 42

08 modulname 43
09 page 44
10 parsid................................ 45
SESSION ID 45

APPLICATION INFO1 45
APPLICATION INFO1 46

11 parsid_of_select48
12 resultcount 49
13 resulttablename................................50
14 shortinfo 51

PARAMETER_INFO 52
DATA TYPE54
IN/OUT LENGTH................................ 56

15 user_info_returned 57
17 bdinfo 59
18 longdata 60
19 tablename 61
20 session_info_returned 62
21 output_columns_without_parameter63
22 key................................ 64
23 serial 65
24 relative_pos 66
25 abap_inputstream and 26 abap_outputstream 67
27 abap_info................................ 68
28 checkpoint_info69

PART ATTRIBUTES................................70
ARGUMENT COUNT................................71
BUF LEN................................ 72
BUF SIZE 73

VARIABLE PART OF A PART 74
DATA FORMAT................................ 75

Numberformat................................ 76
Character Data................................ 77
Date- and Time Data78
LONG Data................................ 80

LONG Description Block 81
MAXLEN................................ 81
This field will be used for reading LONGs. When the first part of the LONG value is
read, the length of the whole LONG is given in MAXLEN to allow the application
process respectively the application to assign enough storage space for the whole
LONG value. 81
INTERN POS................................ 81
VALIND 82
VALIND is a field for private use by the application process. In this for example the
number of the corresponding parameter or something like this may be stored. The
SAP DB task will not change it. 82
VALPOS 82
VALLEN................................ 82
VALMODE................................ 83

MESSAGE TYPES................................ 84
DBS85

PARSE................................ 86
SYNTAX 87
EXECUTE 88
PUTVAL................................ 89

PUTVAL, Communication Protocol 90
Rule for LONG Column Handling 92
Last PUTVAL for LONG4 94
Last PUTVAL for the Statement................................ 95

GETVAL 98
HELLO 101

SENDING AND RECEIVING MESSAGE BLOCKS................................ 102
SAP DB FUNCTIONS FOR SYSTEM PROGRAMMERS................................ 103

DECLARE CURSOR, OPEN................................ 104
FETCH with MASS CMD set to 01................................ 105
SELECT, DECLARE with MASS CMD set to 01 106
SELECT ... INTO with MASS CMD set to 01................................ 108
INSERT, UPDATE, DELETE with MASS CMD set to 01................................ 109
CONNECT................................ 111
CREATE USER with crypted password 112
ALTER PASSWORD with crypted password................................113
6.10 USAGE ON (haben wir das noch ???) Error! Bookmark not defined.
6.11 USAGE ADD Error! Bookmark not defined.
6.12 USAGE OFF Error! Bookmark not defined.
SET LANGUAGE................................ 114
SET FORMAT................................ 115
SET ISOLATION LEVEL <unsigned integer> 116
SET NLS_SORT................................ 117
SET TIMEOUT ON/OFF 118
SET SESSION <sessionno> TRACE LEVEL <no> 119
EXPLAIN 120
CCCRASHHH 124
Tracing................................ 125

Tracing in slowknl 125
Flush the trace in any kernel 126

DROP PARSEID 127
DESCRIBE [<result table name>] 128
DESCRIBE 129

DESCRIBE USER................................ 129
DESCRIBE CONSTRAINT/DEFAULT/INDEX <table name>129
DESCRIBE TABLE <table name> [EXCEPT [CONSTRAINT] [RESTORE]] 129

CREATE TABLE 130
ALTER TABLE <table name> [NOT] DYNAMIC 131
CHECK TABLE 132

CHECK TABLE <table name> [NO SAVEPOINT] 132
CHECK TABLE <table name> WITH SHARE LOCK 132
CHECK TABLE <table name> CATALOG 132

CHECK DATABASE 133
INSTALLATION ON/OFF 134
BEGIN SAVE................................ 135

BEGIN SAVE TABLE................................ 135
BEGIN SAVE INDEX 135

BEGIN SAVE LONG................................ 135
BEGIN SAVE COLUMN................................ 135

Loading / Unloading................................ 136
BEGINLOAD <table name> [WITH STAMP] 136
Was nutzt der replication manager ????? Error! Bookmark not defined.
LOAD <table name> (<column list>) 136
UNLOAD [TABLE] <table name>................................ .Error! Bookmark not defined.

6.36 SAVE 137
6.37 RESTORE................................ 138

6.37.1 RESTORE TABLE <table name>................................ 138
6.37.2 RESTORE INDEX <table name> <index no>....Error! Bookmark not defined.
6.37.3 RESTORE LONG <table name>................................ 138
6.37.4 RESTORE COLUMN <table name>................................ 138

6.38 ENDLOAD <table name> 139
6.39 END 140

6.39.1 END LOAD <table name>................................ 140
6.39.2 END RESTORE 140

6.40 LOAD STATISTICS 141
6.41 UNLOAD STATISTICS................................ 141
OPTIMIZE ON/OFF 142
DBPROCEDURE................................ 143

ALTER DBPROC[EDURE]................................Error! Bookmark not defined.
DBFUNCTION 144

CREATE [OR REPLACE] DBFUNCTION 144
DROP DBFUNCTION................................ 144
Trigger Error! Bookmark not defined.

ALTER TRIGGER................................ Error! Bookmark not defined.
CURRENT USER <username> 145
FORCE SAVEPOINT [NO OPEN TRANSACTION] 146
RESTART INDEX................................ 147
WRITE CACHE................................ 148

