
1

Order Interface 7.2-7.4

Kernel-Quicky 2001/05/10

2

tsp1_packet = RECORD
sp1_header : tsp1_packet_header;
CASE integer OF

1: (sp1_varpart : tsp_moveobj);

2: (sp1_segm : tsp1_segment);
END;

tsp1_packet_header = RECORD
sp1h_mess_code : tsp_code_type;
sp1h_mess_swap : tsp_swap_kind;
sp1h_filler1 : tsp_int2;
sp1h_appl_version : tsp_c5;
sp1h_application : tsp_c3;
sp1h_varpart_size : tsp_int4;
sp1h_varpart_len : tsp_int4;
sp1h_filler2 : tsp_int2;
sp1h_no_of_segm : tsp_int2;
sp1h_filler3 : tsp_c8

END;

sp1h_no_of_segm segment

sp1_varpart (byte array)

sp1_segm (first segment)

part 1segment
header part n

part
header buf

sp1_header

sp1h_varpart_len
sp1h_varpart_size

th

bufpart
header

SQL Packet

More than 1 segment/command can be send to the kernel at once.
For each input-segment one output-segment is send back (in the same
ordering)
Output-segments are BEHIND the input-segments in the same SQL-packet

(to give clients the chance to reuse parts of the input; as far as I
know: not used by clients;

useful for kernel, because no intermediate storing of the
following segments/parts is necessary)
The whole SQL-packet has to have at least 16KB and not more than 128KB
(_PACKET_SIZE in cserv.pcf)
To be able to return at least a ‚not enough space in order interface to answer
correctly‘ a minimal number

of bytes are reserved in the order interface which may only be
used for answers kernelà client

(_MINREPLY_SIZE in cserv.pcf).
The number of bytes available for the communication clientà kernel are

_PACKET_SIZE - _MINREPLY_SIZE - some overhead for
the OS (depending on the OS)

3

tsp1_segment = RECORD
CASE integer OF

1: (sp1s_segm_header : tsp1_segment_header;
sp1p_part : tsp1_part);

2: (sp1s_space1 : tsp1_segment_header;
sp1p_part_header : tsp1_part_header;
sp1p_buf : tsp_moveobj);

END;

tsp1_segment_header = RECORD
sp1s_segm_len : tsp_int4;
sp1s_segm_offset : tsp_int4;
sp1s_no_of_parts : tsp_int2;
sp1s_own_index : tsp_int2;
sp1s_segm_kind : tsp1_segment_kind;
sp1c_mess_type : tsp1_cmd_mess_type;
sp1c_sqlmode : tsp1_sqlmode;
…
sp1c_mass_cmd : boolean;
...

END;

sp1s_no_of_parts = 2
sp1s_own_index = 2 (second segment)

sp1_buf

sp1p_part (part 1)sp1s_segm_header

sp1p_part
_header

segment 1 segment 2

sp1s_segm_offset

sp1s_segm_len

part 2

varpart

alignment filler

SQL Packet: Segment

One segment consists of 0 (return-segment with no output and no error) to n
parts.
In the segment header it is given if this is a cmd- (clientà kernel) or return-
segment (kernelà client)
In the segment header it is specified (sp1c_mess_type) what kind of command it is,
for example:

dbs (parse SQL-statements, prepare internal messbuffer and execute at once, no
data given)

parse (parse SQL-statements and prepare internal messbuffer)
execute (execute messbuffer prepared earlier for SQL-statement using given data)
incopy (pages are send to the kernel during restore and so on)
utility (parse and execute utility-commands like RESTART, SAVE…)

In the segment header the sqlmode can be specified, usually as ‘session_sqlmode’,
but sometimes with a

special sqlmode for just this single statement
In the segment header it can be specified during parse that more than one dataportion
(more than one row

in an insert for example) will be given during one execute call for this
SQL-statement

Each part in a segment and each segment is aligned to be able to use pointers to
those segments/parts. These pointers will point to pascal-
records/C-structs.

4

tsp1_part = RECORD
sp1p_part_header : tsp1_part_header;
sp1p_buf : tsp_moveobj

END;

sp1_buf

part 1segment header

sp1p_part
_header

tsp1_part_header = RECORD
sp1p_part_kind : tsp1_part_kind;
sp1p_attributes : tsp1_part_attr;
sp1p_arg_count : tsp_int2;
sp1p_segm_offset : tsp_int4;
sp1p_buf_len : tsp_int4;
sp1p_buf_size : tsp_int4

END;

segment 1 segment 2

sp1p_segm_offset
part 2

varpart

sp1h_varpart_size

sp1p_buf_size

sp1p_buf_len

alignment filler

SQL Packet: Part

In the part header is specified, what part kind this part is of (dbs, parse,
execute, utility, ...), that is: how to interpret the buffer behind the header
In one segment, 0 or 1 (not more) parts of one part kind may exist.
In the part header is specified how many arguments belong to this part.
Usually this is 1.

With data and masscommand this may be > 1.
With shortinfo and/or columnnames usually it is > 1.
Only few other partkinds have more than 1 argument.

5

Part
Kind

Part
attri-
butes

Argument
count Segment offset Buffer length Buffer size

1 byte 1 byte 4 bytes4 bytes2 bytes 4 bytes

01 = appl_parameter_description
02 = columnnames
03 = command
04 = conv_tables_returned
05 = data
06 = errortext
07 = getinfo
08 = modulname
09 = page
0A = parsid
0B = parsid_of_select
0C = resultcount
0D = resulttablename
0E = shortinfo
0F = user_info_returned
10 = surrogate
11 = bdinfo
12 = longdata
13 = tablename
14 = session_info_returned
15 = output_columns_no_parameter
16 = key
17 = serial
18 = relative_pos
19 .. 22

Bytes left in the
variable part of a
message block
(counting starts
at the first byte
behind a part
header)

Bit 0: last packet
for statements
with
MASS CMD=01

Bit order:
7 6 5 4 3 2 1 0

The segment header this
part belongs to starts at
the (segment offset + 1)-
th byte in the variable
part of the SQL packet

Number of bytes used in
this part
starting behind the part
header

Part Header

6

Part header

Part kind = 03
SQL statement

N bytes

•requests with the following MESSAGE TYPEs: DBS
PARSE
GETPARSE
SYNTAX

Part kind: command

The readable SQL statement is written there

7

(used for results)

Part header

Part kind = 06
Errortext (if SQLCODE <> 0)

<= 256 bytes

Part kind: errortext

The errortext is written there.
The errornumber will be returned in the return-segment-header

8

Example 1
Input with writing error near ‚WHERE‘ (WHRE)

REQUEST: ascii, full_swap, 70205-XCI (1 segment, len: 120)
dbs SEGMENT 1 (1 part, len: 120)

session_sqlmode, user_cmd
with_info

command PART (1 argument, size: 28136)
buf(57):
'SELECT EMPNAME, EMPNO FROM EMP WHRE FIRST_NAME = 'Martin''

RECEIVE: ascii, full_swap, 70205-XCI (1 segment, len: 88)
*** -3014 / RETURN SEGMENT 1 (1 part, len: 88)

select_fc, errpos: 37, sqlstate: '42000'
errortext PART (1 argument, size: 32080)

buf(28): 'Invalid end of SQL statement'

1 segment with one part is send to the kernel.
This single part consists of the readable SQL-statement.

Because this SQL-statement can not be handled, an error message is send
back, which consists of

one part with the errortext.
The errorno (-3014) is send back in the segment header, together with

- the function_code (..._fc, to distinguish commit, insert, select,
create... from each other. The client shall notparse the statement to get this
info, which is necessary at least for OCI)

- the errorposition in the statement
- the sqlstate (the ANSI-standard-‘errorno‘)

9

Part kind: parseid (used for requests and results)

Part header

Part kind = 0A

4 bytes

Of no interest
for the

application
process

Of no interest for application process
application

info1Session id

6 bytes 1 byte 1 byte

0 : none
1 : statement_executed
2 : use_dbs
10 : release_found
20 : fast_select_direct_possible
30 : not_allowed_for_program
40 : close_found
41 : describe_found
42 : fetch_found
43 : fetch_with_MASS_CMD_found
44 : mass_select_found
45 : select_for_update_found
46 : reuse_select_found
47 : reuse_select_for_update_found
60 : dialog_call
70 : mass_statement
114 : select_with_MASS_CMD_found
115 : for_update_select_with_MASS_CMD_found
116 : reuse_select_with_MASS_CMD_found
117 : reuse_select_ for_update_ with_MASS_CMD_found

Identification of session in which the
corresponding SQL statement was parsed

With session-release the parseid is of no use any more. Every client should
throw away parseids (somewhere

stored in his memory) belonging to the old session.
The last but one byte existed before the function code in the return-segment-
header was created. Sometimes

(MASS_CMD... or use_dbs (no parsing for this statement
allowed)) a little bit more info is in this byte

than in the function_code of the return segment header

10

Part kind: shortinfo, pic. 1

Part header

Part kind = 0E

12 bytes

•Returned part for requests with MESSAGE TYPE: PARSE or DBS

• this part contains a description of all input and output parameters used in the statement

Parameter_info_N...

12 bytes 12 bytes

Parameter_info_1

Parameter are
-:<name>
-?

11

Part kind: shortinfo, pic. 2
12 bytes

Parameter_info_1

mode lengthin/out
type

data
type frac in/out

length bufpos

1 byte 1 byte 1 byte 1 bytes 2 bytes 2 bytes 4 bytes

Bit 0: NULL not accepted
bit 1 : NULL accepted
bit 2 : col has default
bit 3 : input parameter for

escape character

Bit order: 7 6 5 4 3 2 1 0

Specifies whether the involved
parameter is an
00: output parameter
01: input parameter
02: input and output parameter

Specifies the data type
that was given during a
CREATE TABLE or
ALTER TABLE

Column length
user specified
column length

Fixed number columns : number of decimal places
all other : 0

Specifies how long the value must be
(internal database column length)

Specifies position
where the UNDEF-
signal of the
corresponding column
must start in the
data part or the
output result will be
(upon following
EXECUTE statement)

Length and in/out length correspond. Frac is of no use for calculating the
in/out length.

in/out length
LONG-col (length = 0) : 41
FIXED (n[,m]), FLOAT (n) : (n+1) DIV 2 + 2
CHAR (n) : n+1
(no unicode order interface)
CHAR (n) : (2*n) + 1 (
unicode order interface)
CHAR (n) UNICODE : (2*n) + 1
.......
Every data has fixed length and an undef-byte in front of it.
The undef-byte shows x‘FF‘ if the NULL-value was specified, x’00‘, x’20‘,
x’40‘, x’01‘ otherwise, depending on the data type

12

Example 2.1
Input to be just prepared, not executed, with input- and output-variables

REQUEST: ascii, full_swap, 70205-XCI (1 segment, len: 120)
parse SEGMENT 1 (1 part, len: 120)

session_sqlmode, user_cmd
with_info

command PART (1 argument, size: 28136)
buf(64):
'SELECT NUMBVAL, TI INTO :NUMB, :TIME FROM T WHERE KEYCOL = :KEYC'

RECEIVE: ascii, full_swap, 70205-XCI (1 segment, len: 128)
ok / RETURN SEGMENT 1 (2 parts, len: 128)

select_into, sqlstate: '00000'
shortinfo PART (3 arguments, size: 32080)

1. pos: 1 io_len: 8 output fixed(12) optional
2. pos: 9 io_len: 9 output time(8) optional
3. pos: 1 io_len: 9 input char_asc(8) optional

parsid PART (1 argument, size: 32024)
mess_type: select
buf(12):
00000019 00000601 3C000000

This is a vtrace-output:
REQUEST:

way from client to kernel
RECEIVE:

way back from kernel to client
The example was prepared with the client-tool XCI (not distributed) of the
version 7.02.05.

13

Part kind: data

Part header

Part kind = 05
DATA

•Received part
–requests with MESSAGE TYPES: DBS or DBSINFO or EXECUTE or GETEXECUTE
–request with SELECTs whose first results are returned during the execution of SELECT

•Request part
–SQL statements with MESSAGE TYPES: PARSE or GETPARSE which include parameters.

The data for those parameters must be specified during the co rresponding EXECUTE or GETEXECUTE
(the data must be given as described in a part of part kind shortinfo which will be returned during
PARSE).

–SQL statements ALTER PASSWORD, CONNECT, CREATE USER, SET LANGUAGE,
SET FORMAT, USAGE ... are specified and a SQL statement with MESSAGE TYPE DBS contains
parameters.
The data, corresponding to the parameters must be given in a part of part kind data in the same segment.

(used for requests and results)

Data is filled in this part according to the part kind shortinfo, starting at
position bufpos (in the buffer behind the

part header).
Data is filled close to each other. It is NOT aligned. Even unicode-data
(sometimes handled as int) are NOT aligned.
Each data has ist undef-byte with him and is of fixed length. If neccesary it is
filled with x’00‘, or blank.
Numbers (FIXED, FLOAT) are stored in a way to be comparable byte-wise,
that is:

one byte characteristic, up to 19 bytes (maximum of 38
significant digits) mantissa, one digit per half-byte

14

Part kind: resultcount
(used for requests and results)

Part header

Part kind = 0C
Number of the format fixed(10,0)Undef-

signal

6 bytes1 byte

•Returned part for requests for all MESSAGE TYPEs except: SYNTAX and the following SQL statements:
INSERT, UPDATE, DELETE, SELECT, DECLARE CURSOR, FETCH, RFETCH

–specifies the number of rows inserted, updated, deleted, found or fetched

•Request part for SQL statements FETCH with MASS CMD or RFETCH

–specifies the number of wanted result rows (by the application)

Number –1 is returned in case of ‚the kernel does not know by now‘ because
the result set was not copied, that

means, the kernel does not know how many rows will fulfil the
conditions.
Number –1 is returned in case of ‚the kernel does not know because he did not
count‘ the number of deleted rows

if the whole table was deleted
Number 0 (usually in Oracle mode) is returned after a SELECT / DECLARE
CURSOR was executed and means: no result rows are
fetched by now

15

Example 2.2
Execute for the SELECT .. INTO :NUMB, :TIME FROM T WHERE KEYCOL = :KEYC'

REQUEST: ascii, full_swap, 70205-XCI (1 segment, len: 104)
execute SEGMENT 1 (2 parts, len: 104)

session_sqlmode, user_cmd
with_info

parsid PART (1 argument, size: 28136)
mess_type: select
buf(12):
00000019 00000601 3C000000

data PART (1 argument, size: 28104)
buf(9): ' keyval1 '

RECEIVE: ascii, full_swap, 70205-XCI (1 segment, len: 104)
ok / RETURN SEGMENT 1 (2 parts, len: 104)

select_into, sqlstate: '00000'
external WARNING 0: warning_exists
external WARNING 8: table_scan

resultcount PART (1 argument, size: 32096)
result_count: 1

data PART (1 argument, size: 32072)
buf(17):
00C44711 00000000 20303031 34333934 34 '..G..... 00143944'

Remember:
every data has undef-byte in front
numbers start with the mantissa (C4 means : 104), 0.4711 * 104

16

Advantage of this Layout
The shown layout has the advantage of being very flexible:

- a SQL packet may consist of one or more segments each with one command
- a segment may consist of n (n of nearly any number, up to the number of different part kinds) parts
- if a new part kind has to be created, this is easy possible.

Every client and the kernel have to ignore unknown part kinds to be backward and forward
compatible with older/newer releases

17

More Info

The first 3 pages are taken from http://pwww/Kern/v62/Internals62.ppt. Page 3 to 5.

The next pages are taken (and a little bit modified) from
//P26326/InetPub/wwwroot/SAP_DB_80/Foren/parts_header.ppt

A word description of the order interface can be found:
Version 6.2: http://pwww/Kern/v62/xorder.htm
Version 7.*: http://pwww/Kern/v72/xorder7.doc

