Type: Package
Title: Global Value Chain Decomposition for Value-Added Trade
Version: 0.1.1
Description: Provides tools for decomposing Global Value Chain (GVC) participation and value-added trade. It implements the frameworks proposed by Borin and Mancini (2023) 10.1080/09535314.2022.2153221> for source-based and sink-based decompositions, and by Borin, Mancini, and Taglioni (2025) 10.1093/wber/lhaf017> for tripartite and output-based GVC measures.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Depends: R (≥ 4.0.0)
Imports: Matrix, methods, stats
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
VignetteBuilder: knitr
RoxygenNote: 7.3.3
Config/testthat/edition: 3
NeedsCompilation: no
Packaged: 2025-12-02 09:36:15 UTC; ballavbabu
Author: Lila Ballav Bhusal ORCID iD [aut, cre], Alessandro Borin [ctb] (Methodology: Borin and Mancini (2023); Borin, Mancini and Taglioni (2025)), Michele Mancini [ctb] (Methodology: Borin and Mancini (2023); Borin, Mancini and Taglioni (2025)), Daria Taglioni [ctb] (Methodology: Borin, Mancini and Taglioni (2025))
Maintainer: Lila Ballav Bhusal <krish.bhula@gmail.com>
Repository: CRAN
Date/Publication: 2025-12-09 07:40:01 UTC

BM_2023 pure bilateral decomposition of exports from s to r

Description

BM_2023 pure bilateral decomposition of exports from s to r

Usage

bm_2023_bilateral_pure(io, s, r)

Arguments

io

A bm_io object.

s

Exporter country (name or index).

r

Importer country (name or index).

Value

A data frame with the pure bilateral value-added decomposition.


BM_2023 pure bilateral (/sr) decomposition for all pairs

Description

BM_2023 pure bilateral (/sr) decomposition for all pairs

Usage

bm_2023_bilateral_pure_all(io)

Arguments

io

A bm_io object.

Value

Data frame of pure bilateral decomposition for all pairs.


BM_2023 sink-based bilateral decomposition of exports from s to r

Description

BM_2023 sink-based bilateral decomposition of exports from s to r

Usage

bm_2023_bilateral_sink(io, s, r)

Arguments

io

A bm_io object.

s

Exporter country (name or index).

r

Importer country (name or index).

Value

A data frame with the sink-based value-added decomposition.


BM_2023 sink-based bilateral decomposition for all pairs

Description

BM_2023 sink-based bilateral decomposition for all pairs

Usage

bm_2023_bilateral_sink_all(io)

Arguments

io

A bm_io object.

Value

Data frame of sink-based decomposition for all pairs.


BM_2023 source-based bilateral decomposition of exports from s to r

Description

BM_2023 source-based bilateral decomposition of exports from s to r

Usage

bm_2023_bilateral_source(io, s, r)

Arguments

io

A bm_io object.

s

Exporter country (name or index).

r

Importer country (name or index).

Value

A data frame with the source-based value-added decomposition.


BM_2023 source-based bilateral decomposition for all pairs

Description

BM_2023 source-based bilateral decomposition for all pairs

Usage

bm_2023_bilateral_source_all(io)

Arguments

io

A bm_io object.

Value

Data frame of source-based decomposition for all pairs.


BM_2023 exporter-perspective decomposition of total exports of s

Description

BM_2023 exporter-perspective decomposition of total exports of s

Usage

bm_2023_exporter_total(io, s)

Arguments

io

A bm_io object.

s

Exporter country (name or index).

Value

A data frame with the exporter-total decomposition.


BM_2023 exporter totals for all countries

Description

BM_2023 exporter totals for all countries

Usage

bm_2023_exporter_total_all(io)

Arguments

io

A bm_io object.

Value

Data frame of exporter totals for all countries.


BM_2025 output-based GVC components by exporter

Description

BM_2025 output-based GVC components by exporter

Usage

bm_2025_output_components(io)

Arguments

io

A bm_io object.

Value

Data frame with output-based GVC components.


BM 2025 output components by country and sector

Description

BM 2025 output components by country and sector

Usage

bm_2025_output_components_sector(io)

Arguments

io

A bm_io object.

Value

Data frame with sectoral output components.


BM_2025 output-based GVC participation indicators

Description

BM_2025 output-based GVC participation indicators

Usage

bm_2025_output_measures(io)

Arguments

io

A bm_io object.

Value

Data frame with output-based GVC participation measures.


BM 2025 output participation measures by country and sector

Description

BM 2025 output participation measures by country and sector

Usage

bm_2025_output_measures_sector(io)

Arguments

io

A bm_io object.

Value

Data frame with sectoral GVC measures.


BM_2025 exporter-level GVC trade totals

Description

BM_2025 exporter-level GVC trade totals

Usage

bm_2025_trade_exporter(io)

Arguments

io

A bm_io object.

Value

Data frame of exporter totals.


BM_2025 trade-based GVC participation indicators

Description

BM_2025 trade-based GVC participation indicators

Usage

bm_2025_trade_measures(io)

Arguments

io

A bm_io object.

Value

Data frame of trade-based indicators.


BM_2025 tripartite GVC trade decomposition for one pair (s,r)

Description

BM_2025 tripartite GVC trade decomposition for one pair (s,r)

Usage

bm_2025_tripartite_trade(io, s, r)

Arguments

io

A bm_io object.

s

Exporter country (name or index).

r

Importer country (name or index).

Value

Data frame for the pair (s,r).


BM_2025 tripartite GVC trade decomposition for all pairs

Description

BM_2025 tripartite GVC trade decomposition for all pairs

Usage

bm_2025_tripartite_trade_all(io)

Arguments

io

A bm_io object.

Value

Data frame for all pairs.


Build a bm_io object from IO table blocks

Description

Build a bm_io object from IO table blocks

Usage

bm_build_io(Z, Y, VA, X, countries, sectors)

Arguments

Z

Intermediate demand matrix (GN x GN).

Y

Final demand matrix. Can be (GN x G) OR (GN x (G * FD_categories)).

VA

Value added. Can be a vector (length GN) or matrix (Rows x GN).

X

Output vector (length GN).

countries

Character vector of country names/codes (length G).

sectors

Character vector of sector names/codes (length N).

Value

An object of class "bm_io".


Exports from s to r (sectoral)

Description

Exports from s to r (sectoral)

Usage

bm_get_e_sr(io, exporter, importer)

Arguments

io

bm_io object.

exporter

Exporter country (name or index).

importer

Importer country (name or index).

Value

Numeric vector of exports.


Total exports of s to all foreign destinations

Description

Total exports of s to all foreign destinations

Usage

bm_get_e_star(io, exporter)

Arguments

io

bm_io object.

exporter

Exporter country (name or index).

Value

Numeric vector of total exports.


Toy 4-country, 3-sector IO table for bmGVC

Description

A small multi-country input–output data set used in bmGVC examples and vignettes. It contains four countries (China, India, Japan, ROW) and three sectors (Primary, Manufacturing, Service).

Format

bm_toy_Z

numeric matrix 12 x 12

bm_toy_Y

numeric matrix 12 x 4

bm_toy_VA

numeric vector of length 12

bm_toy_X

numeric vector of length 12

bm_toy_countries

character vector of length 4

bm_toy_sectors

character vector of length 3

Details

The data are stored in six objects:

The ordering of industries is (China P,M,S; India P,M,S; Japan P,M,S; ROW P,M,S).