Package 'DTEAssurance'

December 2, 2025

Type Package

Effect Version 1.1.0

```
Salsbury JA, Oakley JE, Julious SA, Hampson LV (2024)
     ``Assurance methods for designing a clinical trial with a delayed treatment
     effect" <doi:10.1002/sim.10136>,
     Salsbury JA, Oakley JE, Julious SA, Hampson LV (2024)
     ``Adaptive clinical trial design with delayed treatment effects using
     elicited prior distributions" <doi:10.48550/arXiv.2509.07602>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.3.3
Imports SHELF, shiny, stats, survival, nleqslv, nph, nphRCT, dplyr,
     rjags, rpact, magrittr, rlang, future.apply
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 4.1.0)
Date 2025-12-02
URL https://jamesalsbury.github.io/DTEAssurance/
NeedsCompilation no
Author James Salsbury [aut, cre] (ORCID:
     <https://orcid.org/0000-0002-2584-3640>)
Maintainer James Salsbury < jsalsbury 1@sheffield.ac.uk>
Repository CRAN
Date/Publication 2025-12-02 12:20:02 UTC
```

Title Assurance Methods for Clinical Trials with a Delayed Treatment

Description Provides functions for planning clinical trials subject to a delayed treatment effect using assurance-based methods. Includes two 'shiny' applications for interactive exploration, simulation, and visualisation of

trial designs and outcomes. The methodology is described in:

2 add_recruitment_time

Contents

	add_recruitment_time	2
	assurance_adaptive_shiny_app	
	assurance_shiny_app	4
	BPP_func	4
	calc_dte_assurance	6
	calc_dte_assurance_adaptive	8
	calibrate_BPP_threshold	11
	calibrate_BPP_timing	13
	cens_data	15
	INTEREST	16
	MCMC_sample	17
	REVEL	17
	sim_dte	18
	survival_test	19
	update_priors	20
	ZODIAC	22
Index		23
шисл		

Description

Simulates recruitment timing for each patient in a survival dataset using either a power model or a piecewise constant (PWC) model. The function appends recruitment times and pseudo survival times (time from recruitment to event or censoring).

Usage

```
add_recruitment_time(
  data,
  rec_method,
  rec_period = NULL,
  rec_power = NULL,
  rec_rate = NULL,
  rec_duration = NULL)
```

Arguments

data	A dataframe containing survival data with columns: time, status, and group
rec_method	Recruitment method: "power" for power model or "PWC" for piecewise constant model
rec_period	Period length for the power model

rec_power Power parameter for the power model

rec_rate Comma-separated string of recruitment rates for the PWC model

rec_duration Comma-separated string of durations corresponding to each rate in the PWC

model

Value

A dataframe with two additional columns:

rec_time Simulated recruitment time for each patient
pseudo_time Time from recruitment to event or censoring

Class: data.frame

Examples

```
set.seed(123)
df <- data.frame(
   time = rexp(20, rate = 0.1),
   status = rbinom(20, 1, 0.8),
   group = rep(c("Control", "Treatment"), each = 10)
)
recruited <- add_recruitment_time(df, rec_method = "power", rec_period = 12, rec_power = 1)
head(recruited)</pre>
```

```
assurance_adaptive_shiny_app
```

Launch the 'shiny' adaptive assurance app

Description

Launches a 'shiny' application to simulate group sequential trials with delayed treatment effects (DTE) using elicited prior distributions. The app allows interactive exploration of trial designs and assurance calculations.

Usage

```
assurance_adaptive_shiny_app()
```

Value

No return value, called for side effects (invisibly returns NULL). The function launches an interactive 'shiny' application.

```
# Launch the interactive Shiny app
assurance_adaptive_shiny_app()
```

BPP_func

```
assurance_shiny_app
```

Launch the 'shiny' Assurance app

Description

Launches a 'shiny' application to calculate assurance for clinical trials where delayed treatment effects (DTE) may be present. The app allows elicitation of prior distributions and calculates assurance metrics.

Usage

```
assurance_shiny_app()
```

Value

No return value, called for side effects (invisibly returns NULL). The function launches an interactive 'shiny' application.

Examples

```
# Launch the interactive Shiny app
assurance_shiny_app()
```

BPP_func

Calculate Bayesian Predictive Probability given interim data and posterior samples

Description

Calculate Bayesian Predictive Probability given interim data and posterior samples

Usage

```
BPP_func(
   data,
   posterior_df,
   control_distribution = "Exponential",
   n_c_planned,
   n_t_planned,
   rec_time_planned,
   df_cens_time,
   censoring_model,
   analysis_model,
   n_sims = 500
)
```

BPP_func 5

Arguments

data

A data frame containing interim survival data, censored at df_cens_time, with columns:

- time Final observed/event time at the interim (on the analysis time scale).
- group Treatment group indicator (e.g. "Control", "Treatment").
- rec_time Recruitment (calendar) time.
- pseudo_time time + rec_time (calendar time at event/censoring).
- status Event indicator at the interim (1 = event, 0 = censored).
- survival_time Observed follow-up time from randomisation to event/censoring at the interim.

posterior_df

A data frame of posterior samples with columns: lambda_c, delay_time and HR, corresponding to the control hazard, the delay (changepoint) time and the post-delay hazard ratio, respectively.

control_distribution

Distributional form assumed for the control arm: either "Exponential" (default) or "Weibull".

n_c_planned Planned maximum number of patients in the control group.

n_t_planned Planned maximum number of patients in the treatment group.

rec_time_planned

Planned maximum recruitment calendar time for the full trial.

df_cens_time Calendar time at which df has been censored (interim analysis time). censoring_model

A named list specifying the censoring mechanism for the future data:

- method: one of "Time", "Events", or "IF".
- time, events, IF: parameters for the corresponding method.

analysis_model A named list specifying the final analysis and decision rule:

- method: e.g. "LRT", "WLRT", or "MW".
- alpha: one-sided type I error level.
- alternative_hypothesis: direction of the alternative (e.g. "one.sided").
- rho, gamma, t_star, s_star: additional parameters for WLRT or MW (if applicable).

n_sims

Number of predictive simulations to run (default is 1000).

Value

A single numeric value giving the Bayesian predictive probability of success at the final analysis under the specified design, censoring model and analysis model.

```
set.seed(123)
n <- 30
cens_time <- 15</pre>
```

6 calc_dte_assurance

```
time <- runif(n, 0, 12)
rec_time <- runif(n, 0, 12)</pre>
df <- data.frame(</pre>
 time = time,
 group = c(rep("Control", n/2), rep("Treatment", n/2)),
 rec_time = rec_time
)
df$pseudo_time <- df$time + df$rec_time</pre>
df$status <- df$pseudo_time < cens_time</pre>
df$survival_time <- ifelse(df$status == TRUE, df$time, cens_time - df$rec_time)</pre>
posterior_df <- data.frame(HR = rnorm(20, mean = 0.75, sd = 0.05),</pre>
                            delay_time = rep(0, 20),
                            lambda_c = rnorm(20, log(2)/9, sd = 0.01))
censoring_model = list(method = "Time", time = 25)
analysis_model = list(method = "LRT",
                       alpha = 0.025,
                       alternative_hypothesis = "one.sided")
BPP_outcome <- BPP_func(df,
           posterior_df,
           control_distribution = "Exponential",
           n_c_planned = n/2,
           n_t_planned = n/2,
           rec_time_planned = 12, df_cens_time = 15,
           censoring_model = censoring_model,
           analysis_model = analysis_model,
           n_sims = 10
```

calc_dte_assurance

Calculate Assurance for a Trial with a Delayed Treatment Effect

Description

Simulates operating characteristics for a clinical trial under prior uncertainty about a delayed treatment effect. The function integrates beliefs about control survival, treatment delay, post-delay hazard ratio, recruitment, censoring, and analysis method to estimate assurance and other trial metrics.

Usage

```
calc_dte_assurance(
  n_c,
```

calc_dte_assurance 7

```
n_t,
  control_model,
  effect_model,
  censoring_model,
  recruitment_model,
  analysis_model,
  n_sims = 1000
)
```

Arguments

n_c Vector of control group sample sizes

n_t Vector of treatment group sample sizes

control_model A named list specifying the control arm survival distribution:

- dist: Distribution type ("Exponential" or "Weibull")
- parameter_mode: Either "Fixed" or "Distribution"
- fixed_type: If "Fixed", specify as "Parameters" or "Landmark"
- lambda, gamma: Scale and shape parameters
- t1, t2: Landmark times
- surv_t1, surv_t2: Survival probabilities at landmarks
- t1_Beta_a, t1_Beta_b, diff_Beta_a, diff_Beta_b: Beta prior parameters

effect_model A named list specifying beliefs about the treatment effect:

- delay_SHELF, HR_SHELF: SHELF objects encoding beliefs
- delay_dist, HR_dist: Distribution types ("hist" by default)
- P_S: Probability that survival curves separate
- P_DTE: Probability of delayed separation, conditional on separation

censoring_model

A named list specifying the censoring mechanism:

- method: "Time", "Events", or "IF"
- time, events, IF: Parameters for each method

recruitment_model

A named list specifying the recruitment process:

- method: "power" or "PWC"
- period, power: Parameters for power model
- rate, duration: Comma-separated strings for PWC model

analysis_model A named list specifying the statistical test and decision rule:

- method: "LRT", "WLRT", or "MW"
- alpha, alternative_hypothesis: Type I error and hypothesis direction
- rho, gamma, t_star, s_star: Parameters for WLRT or MW
- success_threshold_HR: Optional threshold for declaring success

n_sims Number of simulations to run (default = 1000)

Value

A named list containing:

assurance Estimated assurance (probability of success under prior uncertainty)

CI 95% confidence interval for assurance

duration Mean trial duration across simulations

sample_size Mean sample size across simulations

diagnostics Additional diagnostics if success_threshold_HR is specified

Class: list

Examples

```
set.seed(123)
control_model <- list(dist = "Exponential", parameter_mode = "Fixed",</pre>
fixed_type = "Parameters", lambda = 0.1)
effect_model <- list(delay_SHELF = SHELF::fitdist(c(3, 4, 5),</pre>
probs = c(0.25, 0.5, 0.75), lower = 0, upper = 10),
delay_dist = "gamma",
HR_SHELF = SHELF::fitdist(c(0.55, 0.6, 0.7), probs = c(0.25, 0.5, 0.75), lower = 0, upper = 1.5),
HR_dist = "gamma",
P_S = 1, P_DTE = 0)
censoring_model <- list(method = "Time", time = 12)</pre>
recruitment_model <- list(method = "power", period = 12, power = 1)</pre>
analysis_model <- list(method = "LRT", alpha = 0.025, alternative_hypothesis = "two.sided")</pre>
result <- calc_dte_assurance(n_c = 300, n_t = 300,
                                       control_model = control_model,
                                       effect_model = effect_model,
                                       censoring_model = censoring_model,
                                       recruitment_model = recruitment_model,
                                       analysis_model = analysis_model,
                                       n_sims = 10
str(result)
```

calc_dte_assurance_adaptive

Calculates operating characteristics for a Group Sequential Trial with a Delayed Treatment Effect

Description

Simulates assurance and operating characteristics for a group sequential trial under prior uncertainty about a delayed treatment effect. The function integrates beliefs about control survival, treatment delay, post-delay hazard ratio, recruitment, and group sequential design (GSD) parameters.

Usage

```
calc_dte_assurance_adaptive(
  n_c,
  n_t,
  control_model,
  effect_model,
  recruitment_model,
  GSD_model,
  analysis_model = NULL,
 n_sims = 1000
)
```

Arguments

n_c Control group sample size

Treatment group sample size n_t

control_model

A named list specifying the control arm survival distribution:

- dist: Distribution type ("Exponential" or "Weibull")
- parameter_mode: Either "Fixed" or "Distribution"
- fixed_type: If "Fixed", specify as "Parameters" or "Landmark"
- lambda, gamma: Scale and shape parameters
- t1, t2: Landmark times
- surv_t1, surv_t2: Survival probabilities at landmarks
- t1_Beta_a, t1_Beta_b, diff_Beta_a, diff_Beta_b: Beta prior parame-

effect_model

A named list specifying beliefs about the treatment effect:

- delay_SHELF, HR_SHELF: SHELF objects encoding beliefs
- delay_dist, HR_dist: Distribution types ("hist" by default)
- P_S: Probability that survival curves separate
- P_DTE: Probability of delayed separation, conditional on separation

recruitment_model

A named list specifying the recruitment process:

- method: "power" or "PWC"
- period, power: Parameters for power model
- rate, duration: Comma-separated strings for PWC model

GSD_model

A named list specifying the group sequential design:

- events: Total number of events
- alpha_spending: Cumulative alpha spending vector
- alpha_IF: Information Fraction at which we look for efficacy
- futility_type: beta (for beta-spending), BPP (for Bayesian Predictive Probability) or none
- futility_IF: Information Fraction at which we look for futility
- beta_spending: Cumulative beta spending vector

• BPP_threshold: BPP value at which we will stop for futility

analysis_model A named list specifying the final analysis and decision rule:

- method: e.g. "LRT", "WLRT", or "MW".
- alpha: one-sided type I error level.
- alternative_hypothesis: direction of the alternative (e.g. "one.sided").
- rho, gamma, t_star, s_star: additional parameters for WLRT or MW (if applicable).

n_sims

Number of simulations to run (default = 1000)

Value

A data frame with one row per simulated trial and the following columns:

Trial Simulation index

IF Information fraction label used at the decision point

Decision Interim decision outcome (e.g., "Continue", "Stop for efficacy", "Stop for futility")

StopTime Time at which the trial stopped or completed

SampleSize Total sample size at the time of decision

Final_Decision Final classification of trial success based on the test statistic and threshold

Class: data.frame

```
set.seed(123)
control_model <- list(dist = "Exponential", parameter_mode = "Fixed",</pre>
fixed_type = "Parameters", lambda = 0.1)
effect_model <- list(P_S = 1, P_DTE = 0,</pre>
HR\_SHELF = SHELF::fitdist(c(0.6, 0.65, 0.7), probs = c(0.25, 0.5, 0.75), lower = 0, upper = 2),
HR_dist = "gamma",
delay\_SHELF = SHELF::fitdist(c(3, 4, 5), probs = c(0.25, 0.5, 0.75), lower = 0, upper = 10),
delay_dist = "gamma"
recruitment_model <- list(method = "power", period = 12, power = 1)</pre>
GSD_model <- list(events = 300, alpha_spending = c(0.0125, 0.025),
                   alpha_IF = c(0.75, 1), futility_type = "none")
result <- calc_dte_assurance_adaptive(n_c = 300, n_t = 300,
                         control_model = control_model,
                         effect_model = effect_model,
                         recruitment_model = recruitment_model,
                         GSD_model = GSD_model,
                         n_sims = 10)
str(result)
```

```
calibrate_BPP_threshold
```

Function to calculate the 'optimal' BPP threshold value

Description

Function to calculate the 'optimal' BPP threshold value

Usage

```
calibrate_BPP_threshold(
    n_c,
    n_t,
    control_model,
    effect_model,
    recruitment_model,
    IA_model,
    analysis_model,
    data_generating_model,
    n_sims = 100
)
```

Arguments

n_c Number of control patients

n_t Number of treatment patients

control_model

A named list specifying the control arm survival distribution:

- dist: Distribution type ("Exponential" or "Weibull")
- parameter_mode: Either "Fixed" or "Distribution"
- fixed_type: If "Fixed", specify as "Parameters" or "Landmark"
- lambda, gamma: Scale and shape parameters
- t1, t2: Landmark times
- surv_t1, surv_t2: Survival probabilities at landmarks
- t1_Beta_a, t1_Beta_b, diff_Beta_a, diff_Beta_b: Beta prior parameters

effect_model

A named list specifying beliefs about the treatment effect:

- delay_SHELF, HR_SHELF: SHELF objects encoding beliefs
- delay_dist, HR_dist: Distribution types ("hist" by default)
- P_S: Probability that survival curves separate
- P_DTE: Probability of delayed separation, conditional on separation

recruitment_model

A named list specifying the recruitment process:

• method: "power" or "PWC"

- period, power: Parameters for power model
- rate, duration: Comma-separated strings for PWC model

IA_model

A named list specifying the censoring mechanism for the future data:

- events: Number of events which is 100% information fraction
- IF: The information fraction at which to censor and calculate BPP

analysis_model A named list specifying the final analysis and decision rule:

- method: e.g. "LRT", "WLRT", or "MW".
- alpha: one-sided type I error level.
- alternative_hypothesis: direction of the alternative (e.g. "one.sided").
- rho, gamma, t_star, s_star: additional parameters for WLRT or MW (if applicable).

data_generating_model

A named list specifying the parameters for the data-generating mechanism

- lambda_c: hazard rate for the control group
- delay_time: time at which the treatment starts to take effect
- post_delay_HR: hazard ratio, after delay_time

n_sims

Number of data sets to simulate (default is 100).

Value

A vector of length n_sims corresponding to the value of BPP for each simulated trial

```
set.seed(123)
control_model = list(dist = "Exponential",
                     parameter_mode = "Distribution",
                     t1 = 12,
                     t1_Beta_a = 20,
                     t1_Beta_b = 32)
effect_model = list(delay_SHELF = SHELF::fitdist(c(5.5, 6, 6.5),
                    probs = c(0.25, 0.5, 0.75), lower = 0, upper = 12),
                    delay_dist = "gamma",
                    HR\_SHELF = SHELF::fitdist(c(0.5, 0.6, 0.7),
                    probs = c(0.25, 0.5, 0.75), lower = 0, upper = 1),
                    HR_dist = "gamma",
                    P_S = 1,
                    P_DTE = 0
recruitment_model <- list(method = "power", period = 12, power = 1)</pre>
IA_{model} = list(events = 20, IF = 0.5)
analysis_model = list(method = "LRT",
                      alpha = 0.025,
                      alternative_hypothesis = "one.sided")
```

calibrate_BPP_timing 13

calibrate_BPP_timing $\ Function \ to \ calculate \ the \ 'optimal' information fraction to \ calculate \ BPP$

Description

Function to calculate the 'optimal' information fraction to calculate BPP

Usage

```
calibrate_BPP_timing(
    n_c,
    n_t,
    control_model,
    effect_model,
    recruitment_model,
    IA_model,
    analysis_model,
    n_sims = 50
)
```

Arguments

n_c Number of control patients

n_t Number of treatment patients

control_model .

A named list specifying the control arm survival distribution:

- dist: Distribution type ("Exponential" or "Weibull")
- parameter_mode: Either "Fixed" or "Distribution"
- fixed_type: If "Fixed", specify as "Parameters" or "Landmark"
- lambda, gamma: Scale and shape parameters
- t1, t2: Landmark times

- surv_t1, surv_t2: Survival probabilities at landmarks
- t1_Beta_a, t1_Beta_b, diff_Beta_a, diff_Beta_b: Beta prior parameters

effect_model A named list specifying beliefs about the treatment effect:

- delay_SHELF, HR_SHELF: SHELF objects encoding beliefs
- delay_dist, HR_dist: Distribution types ("hist" by default)
- P_S: Probability that survival curves separate
- P_DTE: Probability of delayed separation, conditional on separation

recruitment_model

A named list specifying the recruitment process:

- method: "power" or "PWC"
- period, power: Parameters for power model
- rate, duration: Comma-separated strings for PWC model

IA_model

A named list specifying the censoring mechanism for the future data:

- events: Number of events which is 100% information fraction
- IF: The information fraction at which to censor and calculate BPP

analysis_model A named list specifying the final analysis and decision rule:

- method: e.g. "LRT", "WLRT", or "MW".
- alpha: one-sided type I error level.
- alternative_hypothesis: direction of the alternative (e.g. "one.sided").
- rho, gamma, t_star, s_star: additional parameters for WLRT or MW (if applicable).

n_sims

Number of data sets to simulate (default is 100).

Value

A vector of length n_sims corresponding to the value of BPP for each simulated trial

cens_data 15

cens_data

Censor a survival dataset

Description

Applies administrative censoring to a survival dataset using one of three methods: fixed time, fixed number of events, or fixed information fraction. The input data must contain columns for pseudo survival time, recruitment time, and observed time.

Usage

```
cens_data(
  data,
  cens_method = "Time",
  cens_time = NULL,
  cens_IF = NULL,
  cens_events = NULL
)
```

Arguments

data	A dataframe containing uncensored survival data with columns: pseudo_time.rec_time, and time
cens_method	Censoring method: "Time" (default), "Events", or "IF"
cens_time	Time point for censoring (required if cens_method = "Time")
cens_IF	Information fraction for censoring (required if cens_method = "IF")
cens_events	Number of events for censoring (required if cens_method = "Events")

16 INTEREST

Value

```
A list containing:
```

```
data Censored dataframe with updated status and filtered rowscens_events Number of events used for censoring (if applicable)cens_time Time point used for censoringsample_size Number of patients remaining after censoring
```

Examples

```
set.seed(123)
df <- data.frame(
   pseudo_time = rexp(20, rate = 0.1),
   rec_time = runif(20, 0, 12),
   time = rexp(20, rate = 0.1)
)
censored <- cens_data(df, cens_method = "Time", cens_time = 10)
str(censored)</pre>
```

INTEREST

INTEREST data set

Description

A reconstructed survival data set for the INTEREST clinical trial

Usage

INTEREST

Format

A data frame with 710 rows and 2 variables:

```
Survival time Survival Time (in months)

Status Event indicator (0=Alive, 1=Dead)
```

Source

Reconstructed survival data set from the following publication: https://www.sciencedirect.com/science/article/pii/S01406736

MCMC_sample 17

MCMC_sample

 $MCMC_sample$

Description

An MCMC sample for the example given in Salsbury et al (2024)

Usage

MCMC_sample

Format

A data frame with 100000 rows and 1 variables:

x Sample from the MAP prior

Source

A MCMC sample for the control group for the example given in https://onlinelibrary.wiley.com/doi/full/10.1002/sim.10136. Three historical data seta are used to generate a Meta-Analytic-Predictive Prior distribution

REVEL

REVEL data set

Description

A reconstructed survival data set for the REVEL clinical trial

Usage

REVEL

Format

A data frame with 625 rows and 2 variables:

Survival time Survival Time (in months)

Status Event indicator (0=Alive, 1=Dead)

Source

Reconstructed survival data set from the following publication: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)60845-X/fulltext

18 sim_dte

sim dte	Simulates survival times for a delayed treatment effect (DTE) scenario,
51m_400	where the treatment group experiences a delayed onset of benefit. Con-
	trol and treatment groups are generated under exponential or Weibull
	distributions.

Description

Simulates survival times for a delayed treatment effect (DTE) scenario, where the treatment group experiences a delayed onset of benefit. Control and treatment groups are generated under exponential or Weibull distributions.

Usage

```
sim_dte(
    n_c,
    n_t,
    lambda_c,
    delay_time,
    post_delay_HR,
    dist = "Exponential",
    gamma_c = NULL
)
```

Arguments

n_c The number of patients in the control group

n_t The number of patients in the treatment group

lambda_c The baseline hazard rate for the control group

delay_time The length of delay before treatment effect begins

post_delay_HR The hazard ratio after the delay period

dist The distribution for the control group; must be one of "Exponential" (default) or "Weibull"

gamma_c The shape parameter for the Weibull distribution (only used if dist = "Weibull")

Value

A data frame with two columns:

time Simulated survival times

group Group assignment: "Control" or "Treatment"

Class: data.frame

survival_test 19

Examples

```
set.seed(123) \\ sim_data <- sim_dte(n_c = 10, n_t = 10, lambda_c = 0.1, \\ delay_time = 6, post_delay_HR = 0.6) \\ head(sim_data)
```

survival_test

Calculate statistical significance on a survival dataset

Description

Performs a survival analysis using either the standard log-rank test (LRT) or a weighted log-rank test (WLRT). The function estimates the hazard ratio and determines whether the result is statistically significant based on the specified alpha level and alternative hypothesis.

Usage

```
survival_test(
  data,
  analysis_method = "LRT",
  alternative = "one.sided",
  alpha = 0.05,
  rho = 0,
  gamma = 0,
  t_star = NULL,
  s_star = NULL
)
```

Arguments

data A dataframe containing survival data. Must include columns for survival time,

event status, and treatment group.

 $analysis_method$

Method of analysis: "LRT" (default) for standard log-rank test, or "WLRT" for

weighted log-rank test.

alternative String specifying the alternative hypothesis. Must be one of "one.sided" or

"two.sided" (default).

alpha Type I error threshold for significance testing.

rho Rho parameter for the Fleming-Harrington weighted log-rank test.

gamma Gamma parameter for the Fleming-Harrington weighted log-rank test.

t_star Parameter t^* used in modestly weighted tests. s_star Parameter s^* used in modestly weighted tests. 20 update_priors

Value

A list containing:

Signif Logical indicator of statistical significance based on the chosen test and alpha level. **observed_HR** Estimated hazard ratio from a Cox proportional hazards model.

Examples

```
set.seed(123)
df <- data.frame(
   survival_time = rexp(40, rate = 0.1),
   status = rbinom(40, 1, 0.8),
   group = rep(c("Control", "Treatment"), each = 20)
)
result <- survival_test(df, analysis_method = "LRT", alpha = 0.05)
str(result)</pre>
```

update_priors

Update prior distributions using interim survival data

Description

This function updates elicited priors (defined through SHELF objects and parametric prior distributions) using interim survival data under a delayed-effect, piecewise-exponential model for the treatment arm and an exponential or Weibull model for the control arm.

Usage

```
update_priors(data, control_model, effect_model, n_samples = 1000)
```

Arguments

data

A data frame containing interim survival data with columns:

- survival_time Observed time from randomisation to event/censoring.
- status Event indicator (1 = event, 0 = censored).
- group Group identifier (e.g., "Control", "Treatment").

control_model

A named list specifying the control arm survival distribution:

- dist: Distribution type ("Exponential" or "Weibull")
- parameter_mode: Either "Fixed" or "Distribution"
- fixed_type: If "Fixed", specify as "Parameters" or "Landmark"
- lambda, gamma: Scale and shape parameters
- t1, t2: Landmark times
- surv_t1, surv_t2: Survival probabilities at landmarks
- t1_Beta_a, t1_Beta_b, diff_Beta_a, diff_Beta_b: Beta prior parameters

update_priors 21

effect_model A named list specifying beliefs about the treatment effect:

- delay_SHELF, HR_SHELF: SHELF objects encoding beliefs
- delay_dist, HR_dist: Distribution types ("hist" by default)
- P_S: Probability that survival curves separate
- P_DTE: Probability of delayed separation, conditional on separation

n_samples Number of posterior samples to generate (default: 1000).

Value

A data frame containing Monte Carlo samples from the updated (posterior) distribution of the model parameters. Columns normally include:

- lambda_c Posterior samples for the control hazard parameter.
- delay_time Posterior samples for the delay/changepoint time T.
- HR Posterior samples for the post-delay hazard ratio.
- gamma_c (only if control_distribution = "Weibull") Posterior samples for the Weibull shape parameter.

Priors for lambda_c, T, and HR are constructed from elicited distributions using the SHELF framework, then updated through sampling-based posterior inference.

```
set.seed(123)
interim_data = data.frame(survival_time = runif(10, min = 0, max = 10),
status = rbinom(10, size = 1, prob = 0.5),
group = c(rep("Control", 5), rep("Treatment", 5)))
control_model = list(dist = "Exponential",
                     parameter_mode = "Distribution",
                     t1 = 12,
                     t1_Beta_a = 20,
                     t1_Beta_b = 32)
effect_model = list(delay_SHELF = SHELF::fitdist(c(5.5, 6, 6.5),
                    probs = c(0.25, 0.5, 0.75), lower = 0, upper = 12),
                    delay_dist = "gamma",
                    HR\_SHELF = SHELF::fitdist(c(0.5, 0.6, 0.7),
                    probs = c(0.25, 0.5, 0.75), lower = 0, upper = 1),
                    HR_dist = "gamma",
                    P_S = 1,
                    P_DTE = 0
posterior_df <- update_priors(</pre>
 data = interim_data,
 control_model = control_model,
 effect_model = effect_model,
 n_{samples} = 10
```

22 ZODIAC

ZODIAC

ZODIAC data set

Description

A reconstructed survival data set for the ZODIAC clinical trial

Usage

ZODIAC

Format

A data frame with 697 rows and 2 variables:

Survival time Survival Time (in months)

Status Event indicator (0=Alive, 1=Dead)

Source

Reconstructed survival data set from the following publication: https://www.sciencedirect.com/science/article/abs/pii/S14702

Index

```
\ast datasets
    INTEREST, 16
    MCMC_sample, 17
    REVEL, 17
    ZODIAC, 22
add_recruitment_time, 2
assurance\_adaptive\_shiny\_app, 3
assurance_shiny_app, 4
BPP_func, 4
calc_dte_assurance, 6
{\tt calc\_dte\_assurance\_adaptive, 8}
{\tt calibrate\_BPP\_threshold}, {\color{red}11}
calibrate_BPP_timing, 13
cens_data, 15
INTEREST, 16
MCMC_sample, 17
REVEL, 17
sim_dte, 18
survival_test, 19
update_priors, 20
ZODIAC, 22
```