Load the spant package:
library(spant)
Get the path to a data file included with spant:
<- system.file("extdata", "philips_spar_sdat_WS.SDAT", package = "spant") fname
Read the file and save to the workspace as mrs_data
:
<- read_mrs(fname, format = "spar_sdat") mrs_data
Output some basic information about the data:
print(mrs_data)
#> MRS Data Parameters
#> ----------------------------------
#> Trans. freq (MHz) : 127.7861
#> FID data points : 1024
#> X,Y,Z dimensions : 1x1x1
#> Dynamics : 1
#> Coils : 1
#> Voxel resolution (mm) : 20x20x20
#> Sampling frequency (Hz) : 2000
#> Reference freq. (ppm) : 4.65
#> Nucleus : 1H
#> Spectral domain : FALSE
Plot the spectral region between 5 and 0.5 ppm:
plot(mrs_data, xlim = c(5, 0.5))
Apply a HSVD filter to the residual water region and align the spectrum to the tNAA resonance at 2.01 ppm:
<- hsvd_filt(mrs_data)
mrs_proc <- align(mrs_proc, 2.01)
mrs_proc plot(mrs_proc, xlim = c(5, 0.5))
Simulate a typical basis set for short TE brain analysis, print some basic information and plot:
<- sim_basis_1h_brain_press(mrs_proc)
basis print(basis)
#> Basis set parameters
#> -------------------------------
#> Trans. freq (MHz) : 127.786142
#> Data points : 1024
#> Sampling frequency (Hz) : 2000
#> Elements : 27
#>
#> Names
#> -------------------------------
#> -CrCH2,Ala,Asp,Cr,GABA,Glc,Gln,
#> GSH,Glu,GPC,Ins,Lac,Lip09,
#> Lip13a,Lip13b,Lip20,MM09,MM12,
#> MM14,MM17,MM20,NAA,NAAG,PCh,
#> PCr,sIns,Tau
stackplot(basis, xlim = c(4, 0.5), labels = basis$names, y_offset = 5)
Perform ABfit analysis of the processed data (mrs_proc
):
<- fit_mrs(mrs_proc, basis) fit_res
Plot the fit result:
plot(fit_res)
Extract the estimated amplitudes from fit_res
and print as a ratio to total-creatine in column format:
<- fit_amps(fit_res)
amps print(t(amps / amps$tCr))
#> [,1]
#> X.CrCH2 0.00000000
#> Ala 0.15614884
#> Asp 0.54809302
#> Cr 0.66327791
#> GABA 0.28180848
#> Glc 0.06746846
#> Gln 0.07453135
#> GSH 0.35689234
#> Glu 1.10359962
#> GPC 0.26459041
#> Ins 0.99277074
#> Lac 0.09734830
#> Lip09 0.37880005
#> Lip13a 0.04545743
#> Lip13b 0.00000000
#> Lip20 0.00000000
#> MM09 0.17194597
#> MM12 0.11370655
#> MM14 0.44453995
#> MM17 0.42554654
#> MM20 1.53642806
#> NAA 0.97179508
#> NAAG 0.27434701
#> PCh 0.00000000
#> PCr 0.33672209
#> sIns 0.10883989
#> Tau 0.00000000
#> tNAA 1.24614209
#> tCr 1.00000000
#> tCho 0.26459041
#> Glx 1.17813097
#> tLM09 0.55074602
#> tLM13 0.60370393
#> tLM20 1.53642806
Unscaled amplitudes, CRLB error estimates and other fitting diagnostics, such as SNR, are given in the results table:
$res_tab
fit_res#> X Y Z Dynamic Coil X.CrCH2 Ala Asp Cr
#> 1 1 1 1 1 1 0 9.497446e-06 3.333668e-05 4.034257e-05
#> GABA Glc Gln GSH Glu GPC
#> 1 1.714045e-05 4.103636e-06 4.533223e-06 2.170727e-05 6.712427e-05 1.609319e-05
#> Ins Lac Lip09 Lip13a Lip13b Lip20 MM09
#> 1 6.038333e-05 5.921019e-06 2.303977e-05 2.764859e-06 0 0 1.045828e-05
#> MM12 MM14 MM17 MM20 NAA NAAG
#> 1 6.915977e-06 2.703827e-05 2.588303e-05 9.345021e-05 5.910752e-05 1.668662e-05
#> PCh PCr sIns Tau tNAA tCr tCho
#> 1 0 2.048046e-05 6.619972e-06 0 7.579414e-05 6.082303e-05 1.609319e-05
#> Glx tLM09 tLM13 tLM20 X.CrCH2.sd Ala.sd
#> 1 7.16575e-05 3.349804e-05 3.67191e-05 9.345021e-05 2.353862e-06 4.359105e-06
#> Asp.sd Cr.sd GABA.sd Glc.sd Gln.sd GSH.sd
#> 1 8.967177e-06 3.769575e-06 4.496012e-06 4.33038e-06 4.891685e-06 2.019976e-06
#> Glu.sd GPC.sd Ins.sd Lac.sd Lip09.sd Lip13a.sd
#> 1 4.911039e-06 2.340557e-06 2.023101e-06 5.343971e-06 4.067373e-06 1.338191e-05
#> Lip13b.sd Lip20.sd MM09.sd MM12.sd MM14.sd MM17.sd
#> 1 6.502037e-06 7.383161e-06 3.767184e-06 4.507066e-06 7.122518e-06 3.579251e-06
#> MM20.sd NAA.sd NAAG.sd PCh.sd PCr.sd sIns.sd
#> 1 8.280714e-06 1.021341e-06 1.289272e-06 1.998752e-06 3.162822e-06 7.079375e-07
#> Tau.sd tNAA.sd tCr.sd tCho.sd Glx.sd tLM09.sd
#> 1 3.741984e-06 7.137556e-07 5.844875e-07 2.12582e-07 2.883712e-06 9.731164e-07
#> tLM13.sd tLM20.sd phase lw shift asym
#> 1 1.520084e-06 2.886552e-06 10.83963 5.024142 -0.002971685 0.1771378
#> res.deviance res.niter res.info
#> 1 7.455766e-05 27 2
#> res.message bl_ed_pppm
#> 1 Relative error between `par' and the solution is at most `ptol'. 1.969325
#> max_bl_flex_used full_res fit_pts ppm_range SNR SRR FQN
#> 1 FALSE 8.202625e-05 497 3.8 63.23666 51.27882 1.520763
#> tNAA_lw auto_bl_crit_7 auto_bl_crit_5.901 auto_bl_crit_4.942
#> 1 0.04585122 -8.872611 -8.918514 -8.954323
#> auto_bl_crit_4.12 auto_bl_crit_3.425 auto_bl_crit_2.844 auto_bl_crit_2.364
#> 1 -8.980263 -8.99748 -9.009404 -9.017234
#> auto_bl_crit_1.969 auto_bl_crit_1.647 auto_bl_crit_1.384 auto_bl_crit_1.17
#> 1 -9.020159 -9.008891 -8.957936 -8.841036
#> auto_bl_crit_0.997 auto_bl_crit_0.856 auto_bl_crit_0.743 auto_bl_crit_0.654
#> 1 -8.684537 -8.555256 -8.478502 -8.441092
#> auto_bl_crit_0.593 auto_bl_crit_0.558 auto_bl_crit_0.54 auto_bl_crit_0.532
#> 1 -8.424848 -8.418125 -8.415348 -8.414187
#> auto_bl_crit_0.529
#> 1 -8.413697
Spectral SNR:
$res_tab$SNR
fit_res#> [1] 63.23666
Linewidth of the tNAA resonance in PPM:
$res_tab$tNAA_lw
fit_res#> [1] 0.04585122