sequenza usage example

Francesco Favero} Tejal Joshi, Andrea M. Marquard, Aron C. Eklund
February 4, 2014

Contents
I_Abstractl 1
|2 Getting started| 2
[2.1 Minimum requirements|.o 2
R2 Tnstallafion] . .« . o oo e 2
2.3 Workflow overview| e 2
2.4 Preparing inputs for Sequenzal. Lo oL 2
2.5 Obtaining the required ABfreq file.| oo oL 3
[2.5.1 Processing the data with sequenza-utils.py 3
2.5.2 onverting VarScan2 output to Teq. - 3
[3 Exploring the ABfreq file and GC-correction details| 4
BI Readthefild 4
[3.2 Quality control and normalization|, 4
- izationl. L e 5
[4__Analyzing sequencing data with sequenza) 6
1 xtract the information from the req file|o 6
4.1.1 Plot chromosome view with mutations, BAF, depth ratio and segments| . . 7
4.2 Inference of cellularity and ploidy|.o oL 7
4.3 Results of model fitting| o 8
[4.3.1 Confidence intervals, confidence region and point estimate] 8

[£-4Call CNVs and mutations using the estimated parameters| 11

4.4.1 Detect variant alleles (mutations)|. 11
4.4.2 Detect copy number variations| 12
4.5 Visualize detected copy number changes and variant alleles| 12
4.5.1 Genome-wide view of the allele and copy number statef. 14
1 Abstract

Deep sequence of tumor DNA along with corresponding normal DNA can provide a valuable
perspective on the mutations and aberrations that characterize the tumor. However, analysis of
this data can be impeded by tumor cellularity and heterogeneity and by unwieldy data. Here we
describe Sequenza, which comprises a fast python-based pre-processor and an R-based analysis
package. Sequenza enables the efficient estimation of tumor cellularity and ploidy, and generation
of copy number, loss-of-heterozygosity, and mutation frequency profiles.

This document details a typical analysis of matched tumor-normal exome sequence data using
sequenza.

*favero@cbs.dtu.dk

2 Getting started

2.1 Minimum requirements

e Software: R, Python

Operating system: Linux, OSX

Memory: Minimum 4GB of RAM. Recommended >8GB.

Disk space: 1.5 GB for sample
e R version: 2.15.1

Python version: 2.7; rpy2 is required to run sequenza R functions from the python command
line programs.

2.2 Installation

In order to install sequenza, you can download the package from the nearest CRAN mirror doing:

> install.packages("sequenza')

2.3 Workflow overview

A typical workflow developed with Sequenza on pre-aligned sequencing files (BAM format) is
structured as follows:

1. Convert pileup to ABfreq format
2. GC normalization

3. Allele-specific segmentation using the depth ratio and the B allele frequencies (BAFs)
4. Infer cellularity and ploidy by model fitting
5. Call CNV and variant alleles

2.4 Preparing inputs for Sequenza

In order to obtain precise mutational and aberration patterns in a tumor sample, Sequenza requires
a matched normal sample from the same patient. In summary, the following files are needed to
get started with Sequenza.

1. A bam file or a derived pileup file from the tumor specimen.
2. A bam file or a derived pileup file from the normal specimen.

3. A FASTA reference genomic sequence file (to extract GC-content information, and to trans-
form bam to pileup if needed.)

We recommend using pre-processed and quality filtered BAM files to obtain pileup calls for both
samples.

Pileup files can be generated using samtools[2]. The genome sequence file can be obtained
from (url).

1 samtools mpileup —f hgl9.fasta —Q 20 normal.bam | gzip > normal.pileup.gz
2 samtools mpileup —f hgl9.fasta —Q 20 tumor.bam | gzip > tumor.pileup.gz

Alternatively, it is possible to use the output of VarScan2[I] (http://varscan.sourceforge.net),
which would require a similar approach and the generation of pileups as well.

2.5 Obtaining the required ABfreq file.
2.5.1 Processing the data with sequenza-utils.py.

For convenience and efficiency we have implemented pre-processing algorithms in a standalone
(not called from R) Python program. This program is provided with the R package; its exact
location can be found like this:

> system.file("exec", "sequenza-utils.py", package="sequenza")

You may wish to copy this program to a location on your path.

To obtain the GC content information (required to obtain an ABfreq file), it is possible to
use a function from sequenza-utils, and extract the average GC content using a fixed genomic
windows, or download the gchBase from golden path (http://hgdownload-test.cse.ucsc.edu/
goldenPath/hg19/gcbBase/). The following example calculates GC content for 50 nucleotides
windows:

1 sequenza—utils.py GC—windows —w 50 hgl9.fa | gzip > hgl9.gc50Base.txt.gz

When the GC content file is available, it is possible to process the two pileup files to obtain
an ABfreq file containing genotype information, alleles and mutation frequency, and more other
features.

1 sequenza—utils.py pileup2abfreq —gc hgl9.gc50Base.txt.gz \
2 —r normal.pileup.gz \
3 —s tumor.pileup.gz | gzip > out.abfreq.gz

If you don’t yet have the pileup, or you are not interested in storing the pileup for further use,
you can use two FIFO files, to pipe the samtools output directly to sequenza-utils:

1 mkfifo normal.fifo tumor.fifo

2 samtools mpileup —f hgl9.fasta —Q 20 normal.bam > normal.fifo &

3 samtools mpileup —f hgl9.fasta —Q 20 tumor.bam > tumor fifo &

4 sequenza—utils.py pileup2abfreq —gc hgl9.gc50Base.txt.gz \

5 —r normal.fifo \

6 —s tumor.fifo | gzip > out.abfreq.gz
7 rm normal.fifo tumor.fifo

To compress further the results, it is possible to use a binning function provided in sequenza-
utils. This would decrease the memory requirement to load all the available positions in memory.
as well it would speedup the processing of the sample:

1 sequenza—utils.py abfreq—binning —w 50 \
2 out.abfreq.gz | gzip > out_small.abfreq.gz

Where the parameter -w indicate a window size in nucleotides, to be used for the binning. The
heterozygous and the position carrying variant calls would remain untouched.

2.5.2 Converting VarScan2 output to ABfreq.

Since many projects might already have been processed with VarScan2, it can be convenient to
be able to import such results. For this purpose a simple function is provided within the package,
to convert the output of the somatic and copynumber programs of the VarScan2 suite into the
ABfreq format.

> cnv <- read.table("varscan.copynumber", header = TRUE, sep = "\t")

> snp <- read.table("varscan.snp", header = TRUE, sep = "\t")

> abf.data <- VarScan2abfreq(varscan.somatic = snp, varscan.copynumber = cnv)

> write.table(abf.data, "my.sample.abfreq", col.names = TRUE, row.names = FALSE, sep = "\t")

For whole genome sequencing the information in the varscan.snp could be enough to estimate
the ploidy and cellularity, and define the copy number and mutations, hence the varscan.copynumber
argument is optional, but it is strongly suggested to use it in case of exome sequencing.

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/gc5Base/
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/gc5Base/

3 Exploring the A Bfreq file and GC-correction details

After the aligned sequence data have been pre-processed, the sequenza R package handles all the
normalization and analysis steps. So the following part of this vignette will take place in R.

> library("sequenza")

3.1 Read the file
In the package we provide an example file, to find the complete path of the example data file:

> data.file <- system.file("data", "abf.data.abfreq.txt.gz", package = "sequenza")
> data.file

The ABfreq file can be read all at once, but processing one chromosome at a time is less demand-
ing on computational resources, especially while processing NGS data and might be preferable in
case of limited computational resources.

Read only the data corresponding to chromosome 1:

> abf.data <- read.abfreq(data.file, chr.name = "1")
Alternatively, read all data at once:

> abf.data <- read.abfreq(data.file)

> str(abf.data, vec.len = 2)

'data.frame': 45003 obs. of 13 variables:

$ chromosome : chr "1" "1

$ n.base : int 133037 330227 883223 884960 896946 ...
$ base.ref : chr "T" "G"

$ depth.normal: int 170 9 126 29 151

$ depth.sample: int 130 13 96 23 131

$ depth.ratio : num 0.765 1.444 ...

$ Af : num 0.573 0.615 0.533 0.524 0.557 ...
$ Bf : num 0.427 0.385 0.467 0.476 0.443 ...
$ ref.zygosity: chr "het" "het" ...

$ GC.percent : num 38 56 50 68 66 ...

$ good.s.reads: num 124 13 92 21 115 ...

$ AB.germline : chr "CT" "CT"

$ AB.sample : chr "." "."

The files can be read even faster; after mapping the chromosomes location in the file, it is
possible to select the coordinate (in terms of from line x to line y) of the file to read. See the man
page of read.abfreq for an example.

3.2 Quality control and normalization

Each aligned base, in the next generation sequencing, is associated with a quality score. The
sequenza-utils software is capable of filtering the base with a quality score lower then a specified
value (default, 20). The number of reads that have passed the filter is returned in the column
good.s.reads, while the depth.sample column contains the raw depth indicated in the pileup.

3.3 GC-normalization

The GC content bias affects most of the samples; however, some samples are more biased than
others. We attempt to remove this bias by normalizing with the mean depth ratio value of a
corresponding GC content value.

It is possible to gather GC-content information from the entire file and in the meantime map the

chromosome position in the file (to fast access chromosome by chromosome later, see ?read.abfreq):

> gc.stats <- gc.sample.stats(data.file)

> str(gc.stats)

List of 6

$

©“ &H

$

$

raw : num [1:43, 1:3] 0.625 0.504 0.534 0.406 0.502 ...
..— attr(x, "dimnames")=List of 2

..$: chr [1:43] "8" "10" "12" "14"

..$: chr [1:3] "25%" "50%" "75%"
adj : num [1:43, 1:3] 0.866 0.662 0.775 0.601 0.64 ...
..— attr(*, "dimnames")=List of 2

..$: chr [1:43] "8" "10" "12" "14"

..$: chr [1:3] "25%" "50%" "75%"
gc.values : num [1:43] 8 10 12 14 16 18 20 22 24 26 ...
raw.mean : Named num [1:43] 0.843 0.829 0.7 0.684 0.821
..— attr(*, "names")= chr [1:43] "8" "10" "12" "14"

raw.median : Named num [1:43] 0.722 0.762 0.69 0.675 0.785 ...
..— attr(*, "names")= chr [1:43] "8" "10" "12" "14"
file.metrics:'data.frame': 23 obs. of 4 variables:

..$ chr : Factor w/ 23 levels "1","10","11",..: 1 12 16 17 18 19 20 21 22 2 ...

..$ n.lines: int [1:23] 4542 2728 2396 1822 1775 2370 2178 1425 2087 2430 ...
..$ start : num [1:23] 1 4543 7271 9667 11489 ...
..$ end : num [1:23] 4542 7270 9666 11488 13263 ...

Or alternatively, it is possible to collect the GC-contents information from an object already

loaded in the environment.

A\

VvV Vv

gc.stats <- gc.norm(x = abf.data$depth.ratio,
gc = abf.data$GC.percent)

In either case the the normalization to the depth.ratio is performed in the following way:

gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values)
abf.data$adjusted.ratio <- abf.data$depth.ratio /
gc.vect[as.character (abf.data$GC.percent)]

> par(mfrow = c(1,2), cex = 1, las = 1, bty = '1')

> matplot(gc.stats$gc.values, gc.stats$raw,

+ type = 'b', col = 1, pch = ¢(1, 19, 1), 1ty = c(2, 1, 2),

+ xlab = 'GC content (7)', ylab = 'Uncorrected depth ratio')

> legend('topright', legend = colnames(gc.stats$raw), pch = c(1, 19, 1))
> hist2(abf.data$depth.ratio, abf.data$adjusted.ratio,

+ breaks = prettyLog, key = vkey, panel.first = abline(0, 1, 1ty = 2),
+ xlab = 'Uncorrected depth ratio', ylab = 'GC-adjusted depth ratio')
o 25 -
n O
10 46} n R e
o L ° R
=] n S 20 .
£ ® c - "Counts
£ 08 AP = -
=3 R o, ; g i " 30000
[} ° [] 15 .
k) A S = = " 10000
° o . 2 3000
@ 06 \ \ 2 p
5 5 . ® | - 1000
8 So oqgﬂm%%@ : 2 10 - 300
= @0 ' =] .
8 044 o 7 © - 100
c ' [O 30
=)] o 54 10
3
0.2 - p - 1
\ \ \ \ 0 \ \ \ \
20 40 60 80 0 5 10 15 20
GC content (%) Uncorrected depth ratio

Figure 1: Visualization of depth.ratio bias in relation of GC content (left), and resulting normal-
ization effect (right).

4 Analyzing sequencing data with sequenza

The R package sequenza offers an ensemble of functions and models that can be used to design
customized workflows and analyses. Here we provide generic and most commonly used analysis
steps.

e Extract the relevant information from the raw ABfreq file.
e Fit the sequenza model to infer cellularity and ploidy (ploidy).

e Apply the estimated parameter to detect CNV variant alleles

4.1 Extract the information from the A Bfreq file.

The function sequenza.extract is designed to efficiently access the raw ABfreq data and take care
of normalization steps. The arguments enable customization of a set of actions listed below:

e binning depth ratio and B allele frequency in a desired window size (allowing a desired
number of overlapping windows);

e performing a fast, allele specific segmentation using the copynumber package[3];

o filter mutations by frequency and noise.

> test <- sequenza.extract(data.file)
> names (test)

After the raw data is processed, the size of the data is considerably reduced. For instance the R
object resulting from sequenza.extract can be stored as a file of a few megabytes, even for whole
genome sequencing data.

The result of this first step consists of a list of lists. All the sub-lists have a different information
subdivided by chromosome. Every list share the same chromosome order.

4.1.1 Plot chromosome view with mutations, BAF, depth ratio and segments

Each chromosome can be visualized using the function chromosome.view as in Figure[2l The same
function can be used to visualize the data after the estimation of cellularity and ploidy parameters
as in Figure [0

> chromosome.view(mut.tab = test$mutations[[1]], baf.windows = test$BAF[[1]],

+ ratio.windows = test$ratio[[1]], min.N.ratio = 1,
+ segments = test$segments[[1]], main = test$chromosomes[1])
1
1.0
)
c 0.8
g ASC, T>G
g 064 o A>G, T>C
£ AST, T>A
© , ° C>A, G>T
s 04 ° : C>G, G>C
F C>T, G>A
3 02+
=

)
c
(3]
3
o
g
©
°
® + 1 .
R I £ g
- -
0.0
25
'
20 .- - {
>,
9 - eler '..a F £
g 15 T T - i) -
. _&* ol L8 - 2.
E=] N <% M‘
§ 10 ¥ BTRRILITL 2 T -
o - ® - * - e
o5 "
0.0

rT 11T 1T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240

Position (Mb)

Figure 2: Plots of mutant allele frequency (top), B-allele frequency (middle) and depth ratio
(bottom) for chromosome position.

4.2 Inference of cellularity and ploidy

After the raw data is conveniently processed, we can apply the Bayesian inference implemented
in the package. The function sequenza.fit performs the inference using the calculated B allele
frequency and depth ratio of the obtained segments. The method can be explored in more detail
by reading the manual pages for the function baf.model.fit.

> CP.example <- sequenza.fit(test)

The result is a list in the format list(z, y, z), which is directly usable by standard graphical
functions, such as image. However we provide functions to explore and better display the results,
and to extract the point estimate and confidence intervals.

4.3 Results of model fitting

The last part of the workflow is to apply the estimated parameters. There is an all-in-one function
that plots and saves the results, giving control on file names and output directory:

> sequenza.results(sequenza.extract = test, sequenza.fit = CP.example,
+ sample.id = "Test", out.dir="TEST",)

Although this standard way of presenting the result would be appropriate for most situations,
it is possible to create an alternative wrapper by using functions in the following sub-sections.

4.3.1 Confidence intervals, confidence region and point estimate

The object resulting from sequenza.fit has two vectors, x and y, indicating respectively the tested
values of ploidy and cellularity, and a matrix z with x columns and y rows, containing the estimated
log-likelihood. Confidence intervals for these two parameters can be calculated using the function
get.ci.

> cint <- get.ci(CP.example)

It is also possible to plot the likelihood over the combinations of the two parameters, highlight-
ing the point estimate and the confidence region.

> cp.plot(CP.example)
> cp.plot.contours(CP.example, add = TRUE, 1likThresh = c(0.999))

1.0

0.8 — @)

2 06—
k=
Fi
i
(@)
04 —
0.2 = —— C.R.99.9%

+ Point estimate
1 1 1 1 1 1
1 2 3 4 5 6 7
Rank likelihood

Ploidy
1000 3500 6000

Figure 3: Result from the Bayesian inference over the defined range of cellularity and ploidy. Color
intensity indicates the log-likelihood of corresponding cellularity/ploidy values.

By exploring the results for cellularity and ploidy separately, it is possible to draw the likelihood
distribution for each parameter. The information is returned by the get.ci function.

> par(mfrow = c(2,2))
cp.plot (CP.example)
cp.plot.contours (CP.example, add = TRUE)
plot(cint$values.y, ylab = "Cellularity",
xlab = "likelihood", type = "n")
select <- cint$confint.y[1] <= cint$values.y[,2] &
cint$values.y[,2] <= cint$confint.y[2]
polygon(y = c(cint$confint.y[1], cint$values.y[select, 2], cint$confint.y[2]),
x = c(0, cint$values.y[select, 1], 0), col='red', border=NA)
lines(cint$values.y)
abline(h = cint$max.y, 1ty = 2, 1lwd = 0.5)
plot(cint$values.x, xlab = "Ploidy",
ylab = "likelihood", type = "n")
select <- cint$confint.x[1] <= cint$values.x[,1] &
cint$values.x[,1] <= cint$confint.x[2]
polygon(x = c(cint$confint.x[1], cint$values.x[select, 1], cint$confint.x[2]),
y = c(0, cint$values.x[select, 2], 0), col='red', border=NA)
lines(cint$values.x)
abline(v = cint$max.x, 1ty = 2, lwd = 0.5)

VVV+V+YV +V VYV +YV +YV + YV VYV

1.0 o
—
*
0.8 _
z z .
% 0.6 1 % o
S 04 - S .
C.R. 95% ~
0.2 — + Point estimate o 7
T T T T T T 1 T T T T T
1 2 3 4 5 6 7 00 02 04 06 08
Rank likelihood
~hHidy likelihood

1000 3500 6000

likelihood
0.0 0.2 04 0.6 0.8

Ploidy

Figure 4: Plot of the log-likelihood with respective cellularity and ploidy probability distribution
and confidence intervals.

10

4.4 Call CNVs and mutations using the estimated parameters

The point estimate value corresponds to the point of maximum likelihood, detected after the
confidence interval computation:

> cellularity <- cint$max.y
> cellularity

[1] 0.89

> ploidy <- cint$max.x
> ploidy

[1] 1.7

In addition we need to calculate the average normalized depth ratio, used to set a value for the
baseline copy number.

> avg.depth.ratio <- mean(testgcadjl, 2])
> avg.depth.ratio

(11 1

4.4.1 Detect variant alleles (mutations)

To detect variant alleles, we use a mutation frequency model that is implemented as the mufreq.bayes
function:

> mut.tab <- na.exclude(do.call(rbind, test$mutations))
> mut.alleles <- mufreq.bayes (mufreq = mut.tab$F,
+ depth.ratio = mut.tab$adjusted.ratio,
+ cellularity = cellularity, ploidy = ploidy,
+ avg.depth.ratio = avg.depth.ratio)
> head(mut.alleles)
CNn CNt Mt L
4 2 2 1 -25.30391
41 2 2 1 -12.49285
2 2 1 1 -12.33863
42 2 2 1 -13.30915
43 2 2 1 -12.99802
44 2 2 1 -13.01904
> head(cbind(mut.tab[,c("chromosome", "n.base","F", "adjusted.ratio", "mutation")],
+ mut.alleles))
chromosome n.base F adjusted.ratio mutation
1.95 1 2585089 0.244 1.1393516 C>T
1.162 1 6197233 0.428 1.1393516 G>T
1.673 1 16535060 0.780 0.6341823 G>T
1.1253 1 31740870 0.500 1.1779920 T>G
1.1446 1 41234537 0.398 1.1779920 C>A
1.1576 1 47583731 0.486 1.1779920 C>T
CNn CNt Mt L
1.95 2 2 1 -25.30391
1.162 2 2 1 -12.49285
1.673 2 1 1 -12.33863
1.1253 2 2 1 -13.30915
1.1446 2 2 1 -12.99802
1.1576 2 2 1 -13.01904

11

The result consists of four values for every imputed mutation: CNn is the provided copy number
of the normal sample at the given position (default = 2); CNt is the estimated copy number of
the tumor at the given position; Mt is the estimated numbers of alleles carrying the mutation; L
is the log-likelihood of the model fit.

4.4.2 Detect copy number variations

To detect copy number variations we use a B allele frequency model, implemented in the function
baf.bayes, with the estimated parameters of cellularity and ploidy:

> seg.tab <- na.exclude(do.call(rbind, test$segments))
> cn.alleles <- baf.bayes(Bf = seg.tab$Bf, depth.ratio = seg.tab$depth.ratio,
+ cellularity = cellularity, ploidy = ploidy,
+ avg.depth.ratio = avg.depth.ratio)
> head(cn.alleles)
CNt A B L
[1,] 211 -11.68157
[2,] 110 -12.28254
[3,] 110 -26.57928
[4,] 11 0 -10.86406
[5,] 211 -11.61929
[6,] 211 -12.33114

> seg.tab <- cbind(seg.tab, cn.alleles)
> head(seg.tab)

chromosome start.pos end.pos Bf N.BAF
1.1 1 133037 12988756 0.43349084 405
1.2 1 13000305 13380725 0.13668009 50
1.3 1 13380510 13448938 0.25821883 9
1.4 1 13450081 22304519 0.09495172 461
1.5 1 22317088 55523989 0.44303403 624
1.6 1 55524484 111741107 0.40325013 471
depth.ratio N.ratio CNt A B L
1.1 1.1393516 430 211 -11.68157
1.2 0.6345426 57 110 -12.28254
1.3 0.6341432 10 110 -26.57928
1.4 0.6341823 541 1 1 0 -10.86406
1.5 1.1779920 646 21 1 -11.61929
1.6 1.2879646 538 211 -12.33114

The result consists of four values for every imputed segment: CNt is the estimated copy number
of the tumor of the given segment; A is the estimated number of A alleles; B is the estimated
number of B alleles; L is the log-likelihood of the model fit.

4.5 Visualize detected copy number changes and variant alleles

To visualize the data after detection of CNV and variant alleles, it is possible to use the chromo-
some.view. In order to draw the relative model points (and to evaluate how the estimated model
fits the real data) more information is needed compared to Figure

e Each segment must have the columns relative to the copy number variation calling.
e (Cellularity and ploidy estimates.

e Average normalized depth ratio.

12

> chromosome.view(mut.tab = test$mutations[[3]], baf.windows = test$BAF[[3]],

+ ratio.windows = test$ratio[[3]], min.N.ratio =1,

+ segments = seg.tab[seg.tab$chromosome == test$chromosomes([3],],
+ main = test$chromosomes[3],
+ cellularity = cellularity, ploidy = ploidy,
+ avg.depth.ratio = avg.depth.ratio)

3
1.0

s | e T
2 0.8 - BERREEE °-----
% A>C, T>G
g 0.6 - A>G, T>C
> A>T, T>A
) . G eee. TTTTTTTOTTOStLoLiLo Ll C>A, G>T
s 047 C>G, G>C
s | . T C>T, G>A
5 024
s
>
(8]
=
[
3
o
Q
()
°
T
o

-4
o -3 8
® £
£ 2
= T2z
8 g

O
-1
o

Position (Mb)

Figure 5: Plots of mutant allele frequency (top), B-allele frequency (middle) and depth ratio
(bottom) for chromosome position. Horizontal dotted lines indicate expectation values for various
copy number/allele states.

13

4.5.1 Genome-wide view of the allele and copy number state

> genome.view(seg.cn = seg.tab, info.type = "CNt")
> legend("bottomright", bty="n", c("Tumor copy number"),col = c("red"),
+ inset = c(0, -0.4), pch=15, xpd = TRUE)

1 2 3 4 5 6 7 8 9 1011 12 1314151617182@22 X

- 4 : LR LI~
[] : : : :
o : : : : : : : : R
1S 34 Do tn Donm im w3 Domloou Domm
S : : : : : : : : O
a 2 —fm— - |\—| ||(; " [I;I-EII\IEI\I-; n IR H -
$) R T I N A S A S SO OO O O O
1 — - P mimm memw e F mss) mw wm oo C
B Tumor copy number
0 200

Position (Mb)

Figure 6: Genome-wide copy number profile obtained from exome sequencing.

> genome.view(seg.cn = seg.tab, info.type = "AB")
> legend("bottomright", bty = "n", c("A-allele","B-allele"), col= c("red", "blue"),
+ inset = c¢(0, -0.45), pch = 15, xpd = TRUE)

Copy number

i - W
u A-allele
m B-allele

Position (Mb)

Figure 7: Genome-wide A and B alleles profile obtained from exome sequencing.

References

[1] Daniel C Koboldt, Qunyuan Zhang, David E Larson, Dong Shen, Michael D McLellan, Ling
Lin, Christopher A Miller, Elaine R Mardis, Li Ding, and Richard K Wilson. VarScan 2: so-
matic mutation and copy number alteration discovery in cancer by exome sequencing. Genome
Research, 22(3):568-76, March 2012.

[2] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,
Goncalo Abecasis, and Richard Durbin. The Sequence Alignment/Map format and SAMtools.
Bioinformatics (Ozford, England), 25(16):2078-9, August 2009.

[3] Gro Nilsen, Knut Liestg 1, Peter Van Loo, Hans Kristian Moen Vollan, Marianne B Eide,
Oscar M Rueda, Suet-Feung Chin, Roslin Russell, Lars O Baumbusch, Carlos Caldas, Anne-

14

Lise Bg rresen Dale, and Ole Christian Lingjaerde. Copynumber: FEfficient algorithms for
single- and multi-track copy number segmentation. BMC Genomics, 13:591, January 2012.

15

	Abstract
	Getting started
	Minimum requirements
	Installation
	Workflow overview
	Preparing inputs for Sequenza
	Obtaining the required ABfreq file.
	Processing the data with sequenza-utils.py.
	Converting VarScan2 output to ABfreq.

	Exploring the ABfreq file and GC-correction details
	Read the file
	Quality control and normalization
	GC-normalization

	Analyzing sequencing data with sequenza
	Extract the information from the ABfreq file.
	Plot chromosome view with mutations, BAF, depth ratio and segments

	Inference of cellularity and ploidy
	Results of model fitting
	Confidence intervals, confidence region and point estimate

	Call CNVs and mutations using the estimated parameters
	Detect variant alleles (mutations)
	Detect copy number variations

	Visualize detected copy number changes and variant alleles
	Genome-wide view of the allele and copy number state

