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This vignette introduces the rrv package, a package for modelling portfolio returns as random vari-

ables. There’s a strong emphasis on modelling portfolios as functions of weight, and using empirical

distributions.

Introduction

This package is largely inspired by the early work of Markowitz (1952, 1959). Markowitz considered
the characteristics of portfolio returns, where both portfolio returns and individual security returns
are regarded as random variables. He emphasized selecting efficient sets of portfolios, giving a good
compromise between expected return and variance, under the assumption that security returns are
often dependent. He then creates geometric representations of portfolios (especially portfolios with
three securities), using isomean lines and isovariance curves. Here, we follow from Markowitz, however
with a few key differences:

1. We shall treat and emphasize portfolios as functions of weight.

2. Following the notion that portfolios are functions of weight, instead of modelling weights in a
cartesian space, we shall use a triangular space.

3. We shall model historical returns using empirical distributions.

4. Whilst we shall consider variance, we shall also consider quantiles.

This package is still at a very early stage. The author is hoping to later add support for:

� Constrained optimisation.

� Modelling isoquantile curves (i.e. the quantile equivalent to isovariance curves).

� Triangular contour plots.

We shall make use of the dataset from Markowitz (1959), it gives discounted returns for nine securities
over an eighteen year period.

> x = markowitz1959data ()

> x [c (1:2, 17:18),]

Year Am.T. A.T. & T. U.S.S. G.M. A.T. & Sfe C.C. Bdn. Frstn. S.S.

1 1937 -0.305 -0.173 -0.318 -0.477 -0.457 -0.065 -0.319 -0.400 -0.435

2 1938 0.513 0.098 0.285 0.714 0.107 0.238 0.076 0.336 0.238

17 1953 -0.010 0.035 0.006 -0.072 -0.027 0.067 0.210 -0.084 -0.048

18 1954 0.154 0.176 0.908 0.715 0.469 0.077 0.112 0.756 0.185



Portfolios as Functions of Weight

Portfolio return Y , which is itself a random variable, can be regarded as the dot product of a vector of
weights w and a vector random variable X. Equivalently, it can also be regarded as the weighted sum
of multiple (often dependent) random variables X1, X2, ..., Xk.

Y = wX

= w1X1 + w2X2 + ... + wkXk

We will assume that the weights always sum to one, hence it’s more precise to regard portfolio return
as a weighted average (rather than weighted sum). This also allows us to model weights in a triangular
space (rather than a cartesian space).

Before we continue, we need to clarify two important notions, function valued functions and random
variable valued functions. Perhaps the most common example of a function valued function is differen-
tiation. When we differentiate a function, differentiation itself can be regarded as a function, say diff,
that maps a function to a function. So f ′ = diff(f). Just as functions can return functions, functions can
also return random variables. Perhaps the most common example is the mean (of random variables).
The mean of the elements of a vector variable random, can be regarded as function, that maps a vector
random variable to a scalar random variable. So Y = mean(X).

In our case, we will construct a portfolio g, from a set of historical returns. We have a portfolio
constructor Cg, which is a function, that maps a matrix of historical returns x (the realised values of
X) to a portfolio. We shall regard a portfolio as a function that maps a vector of weights to portfolio
return. So:

g = Cg(x)

Y = g(w)

The portfolio is based on the weighted sum given earlier, and treats the random variables as constants
(constant in the sense that their distributions are constant). Exactly what g, X and Y are, is discussed
later. For now, let’s take things a step further, and derive conditional parameters of Y .

Following the notion that a portfolio is a function of weight, we can also compute the expected value
of portfolio return as a function of weight. This function is constructed from a portfolio, so:

fE = CE(g)

E(Y |w) = fE(w)

We are going to be unorthodox, and denote variance using V and quantiles as Q. We compute can
compute them (and almost any conditional parameter) in the same manner, so:

fV = CV(g)

fQ = CQ(g, p)

V(Y |w) = fV(w)

Q(Y |w) = fQ(w)

Note that the p in the constructor for quantile return is probability, and is a number between zero and
one.

Using rrv we can construct a portfolio for the two investment (or two security) case, using say, the
first two securities in the dataset. We can then go on to create functions for expected return, variance
(of) return, and quantile return.

> names (x) [2:3]

[1] "Am.T." "A.T. & T."
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> g = portfolio (x [,2:3])

> fe = expectedpr (g)

> fv = variancepr (g)

> fq25 = quantilepr (g, 0.25)

> fq50 = medianpr (g)

If we want, we can compute the expected return of a portfolio, which contains equal weighting over both
investments.

> fe (c (0.5, 0.5) )

[1] 0.06375

We can also plot the expected return and variance of return.

> par (mfrow=c (1, 2) )

> plot (fe, main="expected return")

> plot (fv, main="variance of return")

0.0 0.2 0.4 0.6 0.8 1.0

0.
06

2
0.

06
3

0.
06

4
0.

06
5

0.
06

6 expected return

w

r

0.0 0.2 0.4 0.6 0.8 1.0

0.
02

0.
03

0.
04

0.
05

variance of return

w

r

As well as, the 0.25 and 0.5 quantiles.

> par (mfrow=c (1, 2) )

> plot (fq25, main="0.25 quantile return")

> plot (fq50, main="median return")
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Many textbooks consider standard deviation versus expected return. At present the implementations
are not fully vectorised, so:
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> s = seq (0, 1, length=20)

> re = rsd = numeric (20)

> fsd = sdpr (g)

> for (i in 1:20)

{ w = c (s [i], 1 - s [i])

re [i] = fe (w)

rsd [i] = fsd (w)

}

> plot (rsd, re, type="l")
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Visualising Portfolios over Triangular Spaces

We have suggested that weight exists in a triangular space (or equivalently, that portfolios are triangular
functions). This principle is most intuitive in the case of three investments.

The examples used in the previous section, works using three investments as well. Hopefully contour
plots will be implemented soon. Currently, this uses heat maps, with bright colours (white and yellow)
representing high values and darker colours (red) representing low values.

> names (x) [2:4]

[1] "Am.T." "A.T. & T." "U.S.S."

> g = portfolio (x [,2:4])

> fe = expectedpr (g)

> fv = variancepr (g)

> fq25 = quantilepr (g, 0.25)

> fq50 = medianpr (g)

> plot (fe)
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Am.T.

A.T. & T. U.S.S.

> plot (fv)

Am.T.

A.T. & T. U.S.S.

> plot (fq25)

rrv 0.2.0 Charlotte Maia 5



Am.T.

A.T. & T. U.S.S.

> plot (fq50)

Am.T.

A.T. & T. U.S.S.

Returns with Empirical Distributions

Up to this point, we haven’t really discussed what X and Y really are. This package assumes that random
variables have an almost arbitrary distribution that can be modelled using an empirical cumulative
distribution function (ECDF). In the case of vector random variables, we assume a multivariate ECDF,
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however at present this package does not make use of multivariate ECDFs (even though we will use the
mecdf function).

ECDFs are modelled uses realised values of a random variable, and we can plot their distributions.
Using all our data:

> par (mfrow=c (3, 3) )

> for (j in 2:10)

plot (mecdf (x [,j], continuous=FALSE), main=names (x) [j])
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Note that at the time of writing, there’s is a minor error in the mecdf package when computing continuous
ECDFs (which is the default in the univariate case).

Roughly speaking, we can compute a vector of realised values for Y , which we shall denote y. This
uses a trivial extension to the expression used at the beginning of section two (on modelling portfolios
as function). Remember that x is a matrix (not a regular vector).

y = xw

In this package, we can create rrv (random return variable) objects from matrices (or any object that
can be converted to a matrix). We can also create rprv objects (random portfolio return objects), using
an rrv object and a vector of weights. rprv objects are what is returned by portfolio functions and are
based on the expression above.

We can create a portfolio, then compute (and plot) different rprv objects.

> names (x) [4:5]

[1] "U.S.S." "G.M."

> g = portfolio (x [,4:5])

> par (mfrow=c (1, 2) )

> plot (g (c (0.25, 0.75) ) )

> plot (g (c (0.75, 0.25) ) )
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Utility Functions

Note, here “utility”, is utility in the programming sense.
A simple issue, which needs to be dealt with in R, is formatting numeric vectors to look like money.

The can be achieved with the moneyf function (or creating a money object, see the Rd file).

> #some random numbers...

> x = 4e7 * rnorm (30)

> print (moneyf (x), quote=FALSE)

[1] 32,682,242 24,351,289 -63,391,745 -34,926,118 29,513,379 -55,576,562

[7] 56,297,302 27,638,922 53,284,265 -73,496,828 -61,129,770 37,892,672

[13] -18,003,842 -54,669,721 30,283,517 6,223,924 -5,434,243 48,268,097

[19] 14,700,474 22,208,457 -4,857,648 -127,502 39,595,924 74,589,642

[25] -51,638,108 -71,754,288 -8,327,605 2,226,115 4,658,491 -51,321,633

> print (moneyf (x, 2, "$ "), quote=FALSE)

[1] $ 32,682,242.39 $ 24,351,288.65 -$ 63,391,745.05 -$ 34,926,118.02

[5] $ 29,513,378.61 -$ 55,576,561.77 $ 56,297,302.47 $ 27,638,922.04

[9] $ 53,284,264.85 -$ 73,496,827.97 -$ 61,129,769.68 $ 37,892,671.89

[13] -$ 18,003,841.95 -$ 54,669,721.01 $ 30,283,517.00 $ 6,223,923.58

[17] -$ 5,434,243.45 $ 48,268,097.47 $ 14,700,474.47 $ 22,208,457.29

[21] -$ 4,857,648.23 -$ 127,501.65 $ 39,595,924.10 $ 74,589,641.74

[25] -$ 51,638,108.41 -$ 71,754,288.17 -$ 8,327,604.93 $ 2,226,115.28

[29] $ 4,658,490.51 -$ 51,321,633.01
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