Using rockchalk for Regression Presentations

Paul Johnson

June 12, 2012

1 Introduction

The rockchalk package is a collection of functions that I need, or my students might need, when I’'m teaching
about regression. The functions here divide into three categories.

1. Functions that help me prepare lectures and reports. The function to create ITEX tables from re-
gression output, outreg, falls into this category. It speeds up the preparation of lectures immensely
to include table generating code that “just works” with R output. Some functions in R are very hard
to use and get right consistently, especially where 3 dimensional plotting is concerned. That’s where
functions like mcGraphl, mcGraph2, mcGraph3, and plotPlane come in handy. These don’t do any
work that is particularly original, but they do help to easily make the multidimensional plots that turn
out “about right” most of the time.

2. Functions simplify vital chores that are difficult for regression students. I keep track of the R idioms that
bother the students and try to craft functions that simplify them. I have often asked students to plot
several regression lines, “one for each sub-group of respondents,” and this sometimes proves frustrating.
The function plotSlopes is offered as my suggestion for creating interaction plots of “simple slopes”.
This handles the work of calculating predicted values and drawing them for several possible values of
a third variable. plotPlane is along the same line. If students find that useful, they can then use the
examples to build up more complicated drawings.

3. Functions that people often ask for, even if they might be unwise to use them. A function to estimate
a “standardized regression” is offered. Although that is clearly unwise (in the eyes of many), some folks
still want to calculate “beta weights.” Some functions, such as meanCenter and residualCenter, are
offered not because I need those tools, but because other people propose them to the students. Those
procedures are, possibly, not truly helpful and in order to demonstrate that fact, I have to provide the
functions.

2 Facilitating Collection of Summary Information

2.1 summarize: A replacement for summary

R’s summary function has some limitations. For example, no indicators of diversity are included in the
presentation. I'd like to see the standard deviation and/or the variance. For categorical variables, I'd like an
indicator like entropy, which, roughly speaking, is a way of summarizing the chances that two observations
(randomly drawn) do not fall into the same category.

As work progressed on a revision of summary, I realized there are other things about R’s summary that
I wanted to change. First, I want to separate the numeric from the categorical (factor) variables. Second,
I want the option to have alphabetized columns in the output. Third, I want more workable objects to be
returned. I find it almost impossible to use the returned value from summary for further analysis. It offers
a large block of text in a table format.

In order to create more workable output objects, some re-arrangement of the work behind the scenes
can be done. Basically, it is necessary that the summarize function return the more-workable, less easily
printable output object, and then a print method is used to “pretty print” that output for the user.



The summarize function returns a list with two components, “numerics” and “factors”. The numeric sum-
mary is a data frame, with named rows, that can be used for further analysis. Users who wish to summarize
only the numeric variables can run summarizeNumerics instead, while others who want to summarize only
factors can run summarizeFactors. The output from summarizeFactors is a list of factor summaries.

Consider the results of applying the summarize function to Fox’s Chile data set from the car package:

data ( Chile)
(summChile <— summarize ( Chile))

$numerics
age income population statusquo

0% 18.00 2.500e+03 3.750e+03 —1.803e+00
25% 26.00 7.500e+403 2.500e+04 —1.002e+00
50% 36.00 1.500e+04 1.750e+05 —4.558e—02
75% 49.00 3.500e+04 2.500e+05 9.686e—01
100% 70.00 2.000e405 2.500e+05 2.049e+00
mean 38.55 3.388e+04 1.522e+05 —1.118e—08
sd 14.76 3.950e+04 1.022e+05 1.000e400
var 217.80 1.560e+09 1.044e+10 1.000e+400
NA's 1.00 9.800e+4+01 0.000e+00 1.700e+01
N 2700.00 2.700e403 2.700e+03 2.700e+03
$factors
education region sex
S :1120.0000 SA : 960.0000 F :1379.0000
P :1107.0000 S : 718.0000 M :1321.0000
PS : 462.0000 C : 600.0000 NA's 3 0.0000
NA's 5 11.0000 N : 322.0000 entropy 8 0.9997
entropy : 1.4900 M : 100.0000 normedEntropy : 0.9997
normedEntropy : 0.9401 NA's : 0.0000 N :2700.0000
N :2700.0000 entropy : 2.0628
normedEntropy : 0.8884
N :2700.0000
vote
N : 889.0000
Y : 868.0000
U : 588.0000
A : 187.0000
NA's : 168.0000
entropy 8 1.8264
normedEntropy : 0.9132
N :2700.0000

A companion function is centralValues, which will provide only one number for each variable in a data
frame. For numerics, it returns the mean, while for factor variables, it returns the mode.

centralValues (Chile)

region population sex age education income statusquo vote
1 SA 152222 .2 F 38.54872 S 33875.86 —1.118151e—08 N

2.2 Easier newdata objects for predict

These two functions greatly facilitate the creation of “newdata” objects for use with R’s predict methods.
This code fits a regression model on the Chile data and then it extracts the model frame for further analysis.

ml <— Im(statusquo ~ age + income + population 4+ region + sex, data=Chile)
mlmf <— model.frame (ml)

If we were to run
predict (ml)
we would receive a predicted value for each observation. We want a smaller set of calculations, just predictions

for a few cases we find interesting. In R, one should create a “newdata” data frame, which can then be used
in a command like

predict (ml, newdata=myNewDF)
The newdata must include one column for each variable in the model, and those variables must have exactly

the same names as were used in the regression formula. This makes it difficult for students to get the
predictions they want without learning a lot about variable management in R.



I have sought to streamline this by developing a “can’t miss” sequence of steps. My preferred approach
is as follows. First, create a new data frame that sets the predictors at their central values (mean or mode).
Then specify some alternate levels for particular predictors in a new data frame, and then combine those
special interest variables with the central values data set.

In the context of model m1, suppose we want to formulate predictions for each of the 3 middle quantiles of
the age variable and for the levels of region called “C” and “N”. The summarize function and the central Values
functions are run first to collect up the needed information.

mlmfsumm <— summarize (mlmf)
mlcv <— centralValues (mlmf)

Use R’s expand.grid function to create, mixAndMatch, a mix-and-match data frame of all combinations
of the values for which we want to calculate predictions.

mixAndMatch <— expand.grid (age = summChile$numerics[2:4, “age”], region = c¢(”C”,"’N”))
mixAndMatch
age region
1 26 C
2 36 C
3 49 C
4 26 N
5 36 N
6 49 N

There are many ways to put together the interesting combinations in the mixAndMatch data frame with
the central values in mlcv. There is a danger that we may end up with columns that have duplicate names
(there is a variable “age” in both mlcv and mixAndMatch). To avoid duplicate column names, I keep only
the columns from mlcv that are not already in mixAndMatch when I join the two together.

mynewdf <— cbind (mixAndMatch, mlcv |

,!colnames (mlcv) %in% colnames (mixAndMatch)])

mynewdf

age region statusquo income population sex
1 26 C —0.008720772 33868.73 151750 F
2 36 C —0.008720772 33868.73 151750 F
3 49 C —0.008720772 33868.73 151750 F
4 26 N —0.008720772 33868.73 151750 F
5 36 N —0.008720772 33868.73 151750 F
6 49 N —0.008720772 33868.73 151750 F

The predicted values are called fit

and added to mynewdf.

mynewdf$ fit <— predict (ml, newdata = mynewdf)

mynewdf

age region statusquo income population sex fit
1 26 C —0.008720772 33868.73 151750 F —0.16296485
2 36 C —0.008720772 33868.73 151750 F —0.07867231
3 49 C —0.008720772 33868.73 151750 F 0.03090800
4 26 N —0.008720772 33868.73 151750 F 0.05611256
5 36 N —0.008720772 33868.73 151750 F 0.14040510
6 49 N —0.008720772 33868.73 151750 F 0.24998541

If one desires confidence intervals, the procedure is similar, although the data management is slightly

more tedious.

mynewdf <— cbind (mixAndMatch, mlcv |
preds <— predict (ml,

newdata = mynewdf,

,!colnames (mlcv) %in% colnames (mixAndMatch)])
interval="confidence”)

mynewdf <— cbind (mynewdf, preds)

mynewdf

age region statusquo income population sex fit lwr
1 26 C —0.008720772 33868.73 151750 F —-0.16296485 —0.25825809
2 36 C —0.008720772 33868.73 151750 F —0.07867231 —0.16924382
3 49 C —0.008720772 33868.73 151750 F 0.03090800 —0.06387181
4 26 N —0.008720772 33868.73 151750 F 0.05611256 —0.06156769
5 36 N —0.008720772 33868.73 151750 F 0.14040510 0.02679847
6 49 N —0.008720772 33868.73 151750 F 0.24998541 0.13335550

upr

1 —0.06767162
2 0.01189920
3 0.12568780
4 0.17379281
5 0.25401173
6 0.36661531




Table 1: My One Tightly Printed Regression

Estimate
(S.E.)
(Intercept) 40.224*
(0.723)
x1 -2.364*
(0.715)
N 100
RMSFE 7.141
R? 0.1
adj R? 0.091

*p <0.05

3 Better Regression Tables: Some outreg Examples.

On May 8, 2006, Dave Armstrong, a political science PhD student at University of Maryland, posted a code
snippet in r-help that demonstrated one way to use the “cat” function from R to write ITEX markup. That
gave me the idea to write a W TEX output scheme that would help create some nice looking term and research
papers. I’d been frustrated with the IXTEX output from other R functions. I needed a table-maker to include
all of the required information in a regression table without including a lot of chaff (in my opinion). I don’t
want both the standard error of b and the t value, I never want p values, I need stars for the significant
variables, and I want a minimally sufficient set of summary statistics. In 2006, there was no function that
met those needs.

Tables 1 through 6 present examples of table output that I am able to generate with outreg. The
regression models are fit with some simulated data.

set.seed (1234)

x1 <— rnorm (100)

x2 <— rnorm (100, m=10)

x3 <— rnorm (100)

vyl <— 5#rnorm (100) — 3xx1 4 4xx2

y2 <— rnorm (100)+5%x2

dat <— data.frame(x1, x2, x3, yl, y2)

rm (x1, x2, yl, y2)

ml <— Im (yl~x1l, data=dat)

m2 <— Im (yl~x2, data=dat)

m3 <— Im (yl ~ x1 + x2, data=dat)

myilogit <— function(x) exp(x)/(1 + exp(x))

dat$y3 <— rbinom (100, size=1, p=myilogit(scale(dat$yl)))

gml <— glm(y3~x1 4+ x2, data=dat)

dat$y4 <— 1 + 0.1 * dat$xl — 6.9 % dat$x2 + 0.5 x dat$xlxdat$x2 + 0.2 * dat$x3 + rnorm(100,0, sd
=10)

Table 1 displays the default outreg output, without any special options. The command is
outreg (ml)
In the literature, regression tables are sometimes presented in a tight column format, with the estimates
of the coefficients and standard errors “stacked up” to allow multiple models side by side, while sometimes
they are printed with separate columns for the coefficients and standard errors. The outreg option tight=F

provides the two column style. In Table 2, I've also used the argument modelLabels to insert the word
“Fingers” above the regression model. The command that produces the table is

outreg (ml, tight=FALSE, modelLabels=c(”Fingers”))
The outreg function can present different models in a single table, as we see in Table 3. The default

output uses the tight format, so there is no need to specify that explicitly. In part (a) of Table 3, we have
tightly formatted columns of regression output that result from this command:

outreg (list (ml,m2), modelLabels=c(”Mine”,” Yours”), varLabels = list (x1="Billie”))



Table 2: My Spread Out Regressions

Fingers

Estimate (S.E.)
(Intercept) 40.224*  (0.723)
x1 2.364*  (0.715)
N 100
RMSE 7.141
R? 0.1
adj R? 0.091
*p <0.05

Table 3: My Two Linear Regressions Tightly Printed
(a) Tightly Formatted Columns

Mine Yours

Estimate Estimate

(S.E.) (S.E.)
(Intercept) 40.224*  -7.687

(10.723) ( 5.542)
Billie -2.364*

(0.715)
x2 . 4.808*

(10.549)

N 100 100
RMSFE 7.141 5.639
R? 0.1 0.439
adj R? 0.091 0.433
*p <0.05

(b) Two Columns Per Regression Model

Mine Yours

Estimate (S.E.) Estimate (S.E.)
(Intercept) 40.224*  (0.723) -7.687 (5.542)
Billie 2.364%  (0.715)
x2 . 4.808*  (0.549)
N 100 100
RMSE 7.141 5.639
R? 0.1 0.439
adj R? 0.091 0.433
*p <0.05



Table 4: My Three Linear Regressions in a Tight Format

A B C
Estimate Estimate Estimate

(SE)  (SE)  (SE)

(Intercept) 10.224%  7.687  7.482
(0.723)  (5.542)  (5.104)
I Forgot x1 -2.364* . -2.24%*
(0.715) ( 0.52)
He Remembered x2 . 4.808%* 4.753*
(0.549)  ( 0.506)
N 100 100 100
RMSE 7.141 5.639 5.193
R? 0.1 0.439 0.529
adj R? 0.091 0.433 0.519
¥ < 0.05

Table 5: Three Regressions in the Spread out Format

I Love love love really long titles Hate Long Medium
Estimate (S.E.) Estimate (S.E.)  Estimate (S.E.)
(Intercept)  40.224%* (0.723) -7.687 (5.542) -7.482 (5.104)
x1 -2.364* (0.715) . -2.24% (0.52)
x2 . 4.808* (0.549) 4.753* (0.506)
N 100 100 100
RMSE 7.141 5.639 5.193
R? 0.1 0.439 0.529
adj R? 0.091 0.433 0.519

*p<0.05

To my eye, there is something pleasant about the less-tightly-packed format, as illustrated in part (b) of Table
3. Note that the only difference in the commands that produce those tables is the insertion of tight=FALSE.

outreg (list (ml,m2), tight=FALSE, modelLabels=c(”Mine”,”Yours”), varLabels = list (x1="Billie”))

In addition to using modelLables to provide headings for the 2 models, the other argument that was
used in Table is 3 varLabels. It is often a problem that the variable names are terse, while a presentation
must have a full name. So in Table 3, I've demonstrated how to replace the variable name x1 with the word
“Billie”. Any of the predictor variables can be re-named in this way. Another usage of varLabels is offered
in an example with three models in Table 4, which is a result of

outreg (list (ml,m2,m3), modelLabels=c(”A”,”B”,”C”), varLabels = list (x1="1 Forgot x1”7, x2="He
Remembered x27))

As one can see, outreg gracefully handles the situation in which variables are inserted or removed from a
fitted model.

I have not bothered too much with some fine points of ITEX table formatting. In order to produce
tables that are completely ready for publication in a journal, it would be necessary to use some special ITEX
packages to control the vertical alignment of columns and such. Doing so would make outreg more difficult
for researchers to use, and I believe the benefit would be minimal. In Table 5, we have regression output
which is, in my opinion, completely acceptable for inclusion in a presentation or conference paper. There are
some warts: because the model labels are not equal in length, the columns are not equally sized.

Another feature of outreg is that it can present the estimates of different kinds of models. It can present



Table 6: Combined OLS and GLM Estimates

OLS:y1 GLM: Categorized yl
Estimate Estimate

(SE)  (SE.)

(Intercept) 40.224* -1.232*
(0.723) (10.466)

x1 -2.364* 0.031
(0.715) (10.047)

x2 . 0.172%*

(10.046)

N 100 100

RMSE 7.141

R? 0.1

adj R? 0.091

Deviance 21.799

—2LLR(Modelx?) 3.191

*p <0.05

the estimates from R’s Im and glm functions in a single table. Consider Table 6, which resulted from the
command

outreg (list (ml,gml) ,modelLabels=c(”OLS:yl1” ,”GLM: Categorized yl1”))

In the future, outreg will be enhanced to handle more types of regression models, including mixed
(hierarchical) models.

4 plotSlopes, plotPlane and plotCurves

4.1 plotSlopes for linear models with moderator variables

Suppose the fitted model includes several variables,
g = lA)() + lA)lzvli + 2721‘22' + 83I1¢ZE2¢ + ZA)4$3z (1)

We would like to visualize the effect of x1 on y for several values of x2, keeping x3; set at some reference
value.

The plotSlopes function assists with that project. First, we fit a regression model, and then we pass that
object to plotSlopes. Suppose we estimate the model in equation 1. Then use plotSlopes to illustrate the
effect of x1 as it depends on z2.

m4 <— Im (yl ~ x1%x2 4+ x3, data=dat)
plotSlopes (m4, plotx="x1”, modx="x2", xlab="x1 is a Continuous Predictor”)

The plotx argument is variable x1, meaning that x1 will be on the horizontal axis, and x2 serves as the
moderator variable. plotSlopes requires that the plotx argument must be the name of a numeric variable,
but modx may be the name of either a numeric or a factor variable.

When modx is a numeric variable, then some particular values must be selected for calculation of pre-
dictive lines. By default, three hypothetical values of plotx are selected (the quantiles 25%, 50%, and 75%).
Any other variables in the model are set at central values, which would be the mean for a numeric variable
and the mode for a categorical variable. The user can also use the modxVals argument to specify a different
selection of values of the moderator for plotting.

Figure 1 illustrates the plotSlopes function for two use cases. The first is the default selection of values for
the moderator. The second example in that figure illustrates user-selected values for the moderator, which
in this case are {8, 10.5, 12}.
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plotSlopes is intended for linear models with multiplicative interactions, but it will also draw ordinary
linear models. It returns an object that may facilitate further analysis. The output object includes the
newdata object that was used to construct the plots that are draw. That output object is used by the
function testSlopes, which is discussed below.

The plotSlopes function also works well if the moderator is a categorical variable. When modx is cat-
egorical, the points and lines are drawn with colors that represent the categories of the plotted responses.
Suppose we have a four-valued categorical variable, “West” "Midwest”, “South”, and “East”. If that variable
is used in an interaction in the regression model, then the plotSlopes output will include four lines, one for
each region. Like other plot functions in R, the col option can be used to adjust the colors to suit the taste
of the user. In Figure 2, the categorical variable is x4.

4.2 testSlopes, a companion of plotSlopes

In psychology, methodologists have recommended the analysis of “simple slopes” to depict the effect of several
variables in a 2 dimensional plot. This is most often of interest in the analysis of regression models with
interactive terms.

Aiken and West (and later Cohen, Cohen, West, and Aiken) propose using the t test to find out if the
effect of the “plotx” variable is statistically significantly different from zero for each particular value of the
moderator variable. The user should first run plotSlopes, and then submit the output object to testSlopes.
The usual use case would be the following;:
m4 <— Im (yl ~ x1xx2 + x3, data=dat)
mdps <— plotSlopes(m4, plotx="x1", modx="x2", xlab="x1 is a Continuous Predictor”)
testSlopes (mdps)

The output from that testSlopes usage is illustrated in Figure 3.

The hypothesis tests reported by testSlopes should be understood as follows. Each of the lines in the
output from plotSlopes, say Figure 1, can be tested to find out if its “simple slope” is different from zero.
The tests calculated by testSlopes represent the null hypothesis that

HO :0= l;simple slope — l;plotm + bplotmmodmm()dx (2)

where modz is the moderator variable and plotz is plotted on the horizontal axis in the plotSlopes output.

Following a suggestion of Preacher, Curran, and Bauer (2006), the testSlopes function also tries to
calculate the Johnson-Neyman (1936) interpretation of the same test. It presents a plot, as illustrated in
Figure 3. The J-N test would have us ask, “for which values of the moderator would the value Bsimple slope
be statistically significantly different from zero?” The J-N calculation requires the solution an equation that
is quadratic in the value of the moderator variable, modx. The interval of values of modx associated with
a statistically significant effect of plotz on the outcome is determined from the computation of a T statistic
for l;simpleslope. The J-N interval is the set of values of modx for which the following holds:

. bs; bsi
i— y szrr;;ple slope _ — /imple slope —— > T% Jdf
st .€T'T( simpleslope) \/Var(bplota:) + moda? Var(bplotm-moda?) + QmOd:ECOU(bPIOtT’ bPlom'mOdI)

(3)
Suppose there are two real roots, rootl and root2. The values of modx for which the slope is statistically
significant may be a compact interval, [root1, root2], or it may two open intervals, (—oo, root1] and [root2, o).
The J-N interpretation is most useful when the moderator is a continuous variable and the result specifies
an interval inside the range of the moderator. In quite a few cases, the J-N interval is outside the observed
range of the moderator, which makes it either difficult to interpret or irrelevant.

4.3 plotCurves

plotCurves generalizes the plotting capability of plotSlopes. plotCurves should be able to handle any regres-
sion formulas that include nonlinear transformations. Models that have polynomials or terms that are logged
(or otherwise transformed) can be plotted. In that sense, plotCurves is rather similar to R’s own termplot
function. The difference is that plotCurves allows for moderator variables, which implies that one can draw
several different curves to represent separate groups.
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Suppose a dependent variable y5 is created according to a nonlinear process.

y5; = —3z1; + 1.5 x log(x2) + 1.122; + 2.2x1; X 2; + ¢; (4)

4.4 plotPlane

The persp function in R works well, but its interface is too complicated for most elementary and intermediate
R users. To facilitate its use for regression users, the plotPlane is offered.

The plotPlane function offers a visualization of the mutual effect of two predictors in m4. See Figure 5
for the plot created by

plotPlane (m4, plotx1="x1", plotx2="x2")

plotPlane is designed to work like plotCurves, to tolerate nonlinear components in the regression formula.
As illustrated in Figure 6, plotPlane allows the depiction of a 3 dimensional curving plane that “sits” in the
cloud of data points. The variables that are not explicitly pictured in the plotPlane figure are set to central
reference values. As illustrated in Figure 4, plotCurves is a 2 dimensional depiction of the same model.

At some point in the future, the ability to make plotSlopes and plotPlane work together will be introduced.
The user will be able to see how the two and three dimensional graphs relate to each other. A preliminary
rendering of what that might look like is presented in Figure 7. It is as if we can “press the plane down” into
the 2-D slopes plot, or the 2-D simple slopes can be depicted in the 3 dimensional plane.

5 Standardized, Mean-Centered, and Residual-Centered Regres-
sions

5.1 Standardized regression

Many of us learned to conduct regression analysis with SPSS, which (historically, at least) reported both
the ordinary regression coefficients as well as a column of coefficients obtained from a regression in which
each of the predictors in the design matrix had been “standardized.” That is to say, each variable, for
example x1;, was replaced by an estimated Z — score : (z1; — x1)/std.dev.(x1;). A regression fitted with
those standardized variables is said to produce “standardized coefficients.” These standardized coefficients,
dubbed “beta weights” in common parlance, were thought to set different kinds of variables onto a common
metric. While this idea appears to have been in error (see, for example, King 1986), it still is of interest to
many scholars who want to standardize their variables in order to compare them more easily.

The function standardize was included in rockchalk to facilitate lectures about what a researcher ought
not do. standardize performs the complete, mindless standardization of all predictors, no matter whether
they are categorical, interaction terms, or transformed values (such as logs). Each column of the design
matrix is scaled to a new variable with mean 0 and standard deviation 1. The input to standardize should
be a fitted regression model. For example:

m4 <— Im (y4 ~ x1 x x2, data=dat)
m4s <— standardize (m4)
It does seem odd to me that a person would actually want a standardized regression of that sort, and
the commentary included with the summary method for the standardized regression object probably makes
that clear.

summary (md4s)

All variables in the model matrix and the dependent variable

were centered. The centered variables have the letter ”s” appended to their
non—centered counterparts, even constructed

variables like “x1:x2' and poly(x1,2). We agree, that's probably

ill—advised , but you asked for it by running standardize ().
The rockchalk function meanCenter is a smarter option, probably.

The summary statistics of the variables in the design matrix.
mean std.dev.
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m6 <— Im (y5 ~ log(x2%x2) + x1 * x2, data=dat)

plotCurves (m6, plotx="x2”, modx="x1")
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lotx1="x1”, plotx2="x2"
p

pl00 <— plotPlane (m4,

Figure 5: plotPlane for the Interactive Model
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Table 7: Comparing Ordinary and Standardized Regression

Not Standardized Standardized
Estimate (S.E.) Estimate (S.E.)
(Intercept) 6.291 (9.276) 0 (0.07)
x1 2.118 (9.753)
x2 7567F (0.921)
x1:x2 0.296 (0.984) .
x1s 0.162 (0.746)
X2s 0.595%  (0.072)
x1:x 2" 0.224 (0.747)
N 100 100
RMSE 9.241 0.704
R? 0.52 0.52
adj R? 0.505 0.505
¥ <0.05

y4s 0 1
x1s 0 1
x2s 0 1
*x1:x2s” 0 1
Call:
Im(formula = y4s ~ x1s + x2s + “x1:x2s’, data = stddat)
Residuals:
Min 1Q Median 3Q Max

—2.05325 —0.52401 0.04822 0.46293 1.36599

Coefficients:
Estimate Std. Error t value Pr(>]|t])

(Intercept) 4.984e—16 7.037e—02 0.000 1.000

x1s 1.620e—01 7.460e—01 0.217 0.829

x2s —5.948e—01 7.236e—02 —8.220 9.7le—13 x*x*
‘x1:x2s” 2.244e—01 7.465e—01 0.301 0.764
Signif. codes: 0 'sxx*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1

Residual standard error: 0.7037 on 96 degrees of freedom
Multiple R?: 0.5198, Adjusted R?: 0.5048
F —statistic: 34.64 on 3 and 96 DF, p-—value: 2.924e—15

5.2 Mean-centered Interaction Models

Sometimes people will fit a model like this

Yi = by +b1xl; + box2; + €

(5)

and then wonder, “is there an interaction between z1; and 22;7” The natural inclination is to run this model,

ml <— Im(y ~ x1%x2)

or its equivalent
m2 <— Im(y ~ x1 + x2 + x1:x2)

For a variety of reasons, researchers have been advised that they should not run the ordinary interaction
model. Instead, they should “mean center” the variables x1 and x2 before entering them into the regression
model. That is, they should replace z1; with (z1; — 21) and x2; with (22; — 22), so that the fitted model is

actually

yi = b, + bl(xli — H) + bg(.’lﬁQi — ﬁ) + b3(.’171i — H)(JTQZ‘ — E) +e;
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This is easy enough to do in R, but it can be tedious to center the variables and then run the model. To
make it easier for users to compare the results of the “ordinary interaction” and the “mean centered” model,
this package includes a function meanCenter. meanCenter will receive a model, scan it for interaction terms,
and then center the variables that are involved in interactions. It is used as follows. First, fit any regression,
such as m4 above, the same one with which the standardize function was demonstrated. Pass the output
object to the meanCenter function.

m4mc <— meanCenter (m4)
summary (m4mc)

These variables were mean—centered before any transformations were made on the design matrix.
[1] 7”x1c¢” "x2c”
The centers and scale factors were
xlc x2c
mean —0.1567617 10.04124
scale 1.0000000 1.00000
The summary statistics of the variables in the design matrix (after centering).
mean std.dev.

y4 —70.49561 13.13142
xlc 0.00000 1.00441
x2c 0.00000 1.03219

xlc:x2c —0.02605 0.96090

The following results were produced from:

meanCenter.default (model = m4)
Call :
Im(formula = y4 ~ xlc * x2c, data = stddat)
Residuals:
Min 1Q Median 3Q Max

—26.9622 —6.8810 0.6332 6.0789 17.9374

Coefficients:
Estimate Std. Error t value Pr(>]|t])

(Intercept) —70.4879 0.9244 —76.252 < 2e—16 *xx*x*
xlc 5.0892 0.9413 5.406 4.69e—07 s***
x2c —7.6133 0.9009 —8.451 3.13e—13 *xx*
xlc:x2c 0.2959 0.9843 0.301 0.764

'

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.241 on 96 degrees of freedom
Multiple R%: 0.5198 , Adjusted R%?: 0.5048

F —statistic: 34.64 on 3 and 96 DF, p-—value: 2.924e—15

The default settings for meanCenter cause it to center only the variables involved in an interaction, and
it leaves the others unchanged. If the user wants all of the numeric predictors to be mean-centered, the usage
would be
mdmec <— meanCenter (m4, centerOnlyInteractors = FALSE)
summary (mlmc4)

By default, it does not standardize while centering (but the user can request standardization). Users who
want to standardize the variables that are centered can use the argument standardize=TRUE. The option
centerDV causes the dependent variable to be centered as well.

5.3 Residual-centered Models

Residual-centering is another adjustment that has been recommended for models that include interactions
or squared terms. Like mean-centering, it is recommended mainly as a way to ameliorate multicollinearity.
I think of residual-centering as follows. Suppose we fit the linear model, with no interaction

Y=o+ clxl —+ 02x2 +e;. (7)

Suppose that those parameter estimates, ¢1, ¢, are the “right ones”. We want to estimate the interactive
model,
yi = by + b1xl; + box2; + byxl; X x2; + €, (8)

but if we estimate that, it will “ruin” our estimates for the effects of 1 and x2. So we proceed by constraining
the fitted coefficients in the interactive model so that the main effects remain the same. That is to say, require
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that the parameter estimates of 1 and 2 must match match estimates from equation 7. Effectively, by = ¢4
and i)g = 62.

How can this be done in a convenient, practical way? The answer: use “residual-centering.” First,
estimate the following regression, in which the left hand side is the interaction product term:

(:U].i X $21) = do + dlxli + d2$2 + u; (9)

The residuals from that regression are, by definition, orthogonal to both x1 and z2. Call those fitted
residuals ;. We fit the interactive model using @; in place actual product term (x1; x 22;).

yi = bo + bixl; 4+ box2; + b3u; + ey, (10)

In essence, we have taken the interaction (z1; x x2;), and purged it of its parts that are linearly related to
xl; and x2; separately.

The rockchalk function residualCenter handles this for the user. Like meanCenter, the user has to fit an
interactive model first, and the result object is passed to residualCenter like so:

m4rc <— residualCenter (m4)
summary (m4rc)

Call:
Im(formula = y4 ~ x1 + x2 4+ x1.X.x2, data = mfnew)
Residuals:

Min 1Q Median 3Q Max

—26.9622 —6.8810 0.6332 6.0789 17.9374

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 6.8586 9.0821 0.755 0.452

x1 5.0366 0.9249 5.445 3.97e—07 *xx*

x2 —7.6250 0.9000 —8.472 2.82e—13 #x*x

x1.X.x2 0.2959 0.9843 0.301 0.764

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.241 on 96 degrees of freedom
Multiple R?: 0.5198, Adjusted R?: 0.5048
F—statistic: 34.64 on 3 and 96 DF, p—value: 2.924e—15

The objects created by residualCenter are assigned the class “rcreg” and the package includes summary,
print, and predict methods for these objects. In the regression output, the residual-centered interaction term
is labeled as (x1Xx2).

5.4 Why are we bothering with mean-centering and residual-centering in the
first place?

In the long run, think the correct answer will be, “we were mistaken.” Nevertheless, the advice that one
ought to mean-center or residual-center in regression analysis has become quite widely established. The
primary advocates of “mean-centering” have been Aiken and West (1991), who integrated that advice into
the very widely used regression textbook, Applied Multiple Regression/Correlation for the Behavioral Sciences
(Cohen, et. al , 2002). The advice that one ought to mean-center the predictors has been picked up in other
fields. Ome statistics text for biologists notes, “We support the recommendation of Aiken & West (1991)
and others that multiple regression with interaction terms should be fitted to data with centered predictor
values” (Quinn and Keough, 2002, Chapter 6).

In order to understand how mean-centering came to seem like a “magic bullet,” it is necessary to re-
trace some steps to find out how we arrived in our current situation. For this example, I used the function
genCorrelatedData in rockchalk. The “true model” from which the data is produced is

where e; ~ N(0,300%) and py1 .2 = 0.4.

Virtually everybody who has experimented with regression has had the “what the heck happened to
my predictors?” experience. Please consider the Table 8. In the first column, we have the ordinary linear
specification
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Table 8: Comparing Regressions

Linear Interaction Mean-centered Residual-centered
Estimate (S.E.) Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)

(Intercept) -562.148% (98.822) 86.498 (385.418) 533.508*  (16.808) -562.148* (98.57)
x1 11.958* (1.874) -1.6 (8.009) . 11.958* (1.869)
x2 10.194* (1.696) -3.053 (7.795) . 10.194* (1.691)
x1:x2 . 0.273 (0.157)
xlc . . 12.077* (1.87)
x2¢ . . 10.49* (1.7)
xle:x2c . . 0.273 (0.157)
x1.X.x2 . . . 0.273 (0.157)
N 400 400 400 400
RMSE 315.489 314.685 314.685 314.685
R? 0.245 0.251 0.251 0.251
adj R? 0.241 0.245 0.245 0.245
*p <0.05

Im(y ~ x1 + x2, data=dat2).

The coefficients of 1 and x2 appear to be “statistically significant,” a very gratifying regression indeed. It
appears we might have found something!

Unable to leave well enough alone, the researcher wonders, “is there an interaction between z1 and x27”
The second column in Table 8 summarizes the regression that includes an interaction term. That interaction
model, which adds the product variable x1 x x2, is estimated in R with

Im(y ~ x1 * x2, data=dat2)

A quick scan of column two usually lead to the “what the heck?” or “Holy Cow!” response. The regression
went to helll Neither of the key variables, z1 nor x2, is “statistically significant” any more. While the
coeflicients for the variables 1 and z2 did seem to be substantial in the first model, the introduction of the
interactive effect appears to ruin the whole thing. What should be done when adding a product term seems
to “ruin” a regression model?

Cohen, et al. refer to the apparent instability of the coefficients as a reflection of “inessential collinearity”
among the predictors, due to the fact that x1 and z2 are correlated with the new term, x1 x x2. They
advised their readers to “mean center” their predictors, to subtract the mean of each predictor from the
observed model and run the regression again.

Mean-centering seems to help. The result of the meanCenter function is displayed in the third column of
Table 8. It appears that the estimates for the slopes are “significant again” and we have “solved” the problem
of inessential collinearity.

The solution, however, is simply an illusion. Technical rebuttals have been published (Kromrey, J. D., &
Foster-Johnson, L. , 1998; Echambadi and Hess, 2007), but applied researchers continue to use the practice.
The argument against mean-centering is really quite simple. It has no effect. There is no benefit. The
ordinary model and the mean-centered models are actually exactly the same in every important way. The
technical critiques have focused on the multicollinearity issue, but they leave open the possibility that mean-
centering may facilitate interpretation of the estimates. The presentation here should convince the reader
that even the interpretation is not facilitated by mean-centering.

The first hint of trouble is in the fact that the coefficient of the interactive effect in columns 2 and 3 is
identical. Those coefficients are the same because they are estimates of a constant, the cross partial derivative
0%y/0x1022. That is to say, when the different models try to estimate the same coefficient, they get the
same result. Note as well that the root mean square and R? estimates are identical. Is it possible that the
mean-centered regression could really be “better” if its fit statistics are not altered?

The models only appear different because we sometimes forget that we are studying a nonlinear problem
when the regression model includes interactions. To assist in the visualization of this situation, we can use
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Figure 8: Predicted Planes from Centered and Uncentered Fits Identical

some functions in rockchalk. In Figure 8, we see that the ordinary interaction and mean-centered models
produce identical predicted values!

The curves in Figure 8 are identical. With the original, non-transformed data, the vertical (y) axis is
positioned at the front-left edge of the graph, while the centered one re-positions the y axis into the center of
the graph. The coefficient estimates from a regression model on a nonlinear surface depend on the location
of the y axis. At some points, the estimates will be large, at some points they will be small. Mean-centering
may accidentally reposition the axis to a location that has “better” (bigger?) point estimates. The estimated
standard errors, of course, also change as we move the y axis about. In the middle of the data, the point
estimates of the standard errors are generally smaller than they are when the axis is positioned on the
periphery of the data. It can be shown that, from either fitted model, the estimated slopes and standard
errors at any given point in the data are exactly the same. Included with the rockchalk package, in the
examples folder, one can find a file called “residualCentering.R” that walks through this argument step by
step.

If mean-centering does not help, perhaps residual-centering will address the problem. Residual-centering
is offered as a new, improved sort of mean-centering. Where mean-centering seems to reduce the damage
done by inessential collinearity, residual-centering completely eliminates it. Because the residual-centered
interaction variable is, by definition, completely uncorrelated with the other variables in the model, the
problem of collinearity seems to be completely solved.

The fourth column in Table 8 presents the residual centered results. The parameter estimates are a little
larger, the standard errors are a bit smaller. In the way that applied researchers usually look at situations
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like this, it is a “better” model.

And, yet again, our high hopes are dashed. In the end, we will find out that the residual-centered model is
completely equivalent to the ordinary interaction model and the mean-centered model. My effort to visualize
this was initially frustrated by the difficulty of writing a predict function that worked for arbitrary new data
objects, but once that was finished, the result became completely clear. The predicted values of the ordinary
interactive model, the mean-centered model, and the residual-centered models are exactly the same. Perhaps
the most persuasive case is found in Figure 9.

The conclusion is this. One can code a nonlinear model in various ways, all of which are theoretically
and analytically identical. There are superficial differences in the estimates of the coefficients of the various
specifications, but these differences are understandable in light of the changes in the design matrix. The
connection between the observed values of the predictors and the predicted values remains the same in all
of these specifications.

Why do the coefficients differ if the models are actually the same? Recall that we are estimating the
slopes of a curving plane, and so estimates of the marginal effects of 1 and x2 will depend on the point
at which we are calculating the slopes. Mean-centering and residual-centering are different methods for
re-positioning the y axis. The interactive model has a constant mixed partial derivative, so the estimate of
the interaction coefficient is not affected by the position of the y axis. The other coefficients, however, do
change.

It is possible to translate between the estimates of any one of these fitted models and the estimates of
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another. The derivation proceeds as follows. The ordinary model is
yi = by + bixl; + bax2; + b3(x1; x x2;) + el; (12)
The mean-centered model is
y; = co + c1(xl; — xl) + ca(22; — 22) + c3(xl; — 1) x (22; — 22) + e2; (13)

In order to compare with equation 12, we would re-arrange like so

y; = co + c1(x1;) — crxl + c2(22;) — 222 + c3(wl;22; + 2122 — x122; — 2221;) + €2; (14)
yi = co + c1(xl;) — 1zl + co(12;) — w2 + c3(x1;22;) + cawla2 — czzle2; — czx2xl;) + e2; (15)
yi = {co — 121l — 222 + cgxla2} + {1 — czx2}xl; + {co — c3xl}a2; + c3(x1;22;) + €2; (16)

One can then compare the parameter estimates from equations 12 and 16 in order to understand the
observed changes in fitted coefficients after changing from the ordinary to the mean-centered coding. Both
12 and 16 include a single parameter times (z1;22;), leading one to expect that the estimate 133 should be
equal to the estimate of é3 (and they are, as we have found). Less obviously, one can use the fitted coefficients
from either model to deduce the fitted coefficients from the other. The following equalities describe that
relationship.

by = & —éial — a2 + ésrlal (17)
by = & —éa2 (18)
by = éy—ésxl (19)
by = ¢ (20)

The estimated fit of equation 13 would provide estimated coefficients ¢;, 7 = 0, ..., 3, which would then be
used to calculate the estimates from the noncentered model.
The estimation of the residual centered model requires two steps. First, estimate a regression

from which the predicted value can be calculated:

(a:li/x\a:Qi) = Ci() + cilxli + CZ2$21‘. (22)
The residual of that regression

is used as the “residual-centered” predictor in place of (x1; X x2;) in equation 12.

Replacing xli/x\in with cfo + cfmcli + CZQin, 24 becomes

yi = ho+ hizl; + hox2; + h3{m11 X x2; — Cz() — dlxli - (22.%'21‘} + e3; (25)
= ho+ hixl; + hox2; + hg{xli X Z‘Qi} — hgdAo — h36i133‘1i — h3c22x2i} + e3; (26)
{ho — hgczo} + {hl — hgdl}zli + {h2 — hchQ}xQz + hg{:lElZ X 1321} + 632' (27)

As in the previous comparison of models, we can translate coefficient estimates between the ordinary
specification and the residual-centered model. The coefficient estimated for the product term, hg, should be
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equal to by and és (and it is!). If we fit the residual centered model, 24, we can re-generate the coefficients
of the other models like so:

by =¢o— élﬁ — éQﬁ + c3xlz2 = hy — hgdo (28)
b1 = 61 — é3ﬁ = hl - hS(il (29)
bo =¢y — 32l = ho — hsds (30)

From the preceding, it should be clear enough that the three models are equivalent, in the sense that the
parameter estimates (parameters, predicted values, and so forth) from any one can be translated into the
terminology of the other.
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