
Rchaeology

Paul E. Johnson <pauljohn @ ku.edu>

June 18, 2012

This document was initiated on May 31, 2012. The newest copy will always be available at http://pj.

freefaculty.org/R and as a vignette in the R package “rockchalk”.

Rchaeology: The study of R programming by investigation of R source code. It is the effort to discern
the programming strategies, idioms, and style of R programmers in order to better communicate with
them.

Rchaeologist: One who practices Rchaeology.

These are Rcheological observations about the style and mannerisms of R programmers in their native
habitats. Almost all of the insights here are gathered from the r-help and r-devel emails lists, the stackoverflow
website pages for R, and the R source code itself. These are lessons from the “school of hard knocks.”

How is this different from Rtips(http://pj.freefaculty.org/R/Rtips.{pdf,html})?

1. This is oriented toward programming R, rather than using R.

2. It is more synthetic, aimed more at finding “what’s right” rather than “what works.”

3. It is written with Sweave (using Harrell’s Sweavel style) so that code examples work.

Contents

1 Style Guides (or the Lack Thereof) 1

2 R Idioms. What’s In R Guts? 9

2.1 Rewriting Formulas. My Introductory Puzzle. 9

2.2 do.call and eval . 10

2.2.1 do.call . 10

2.2.2 eval . 11

2.3 substitute . 14

2.4 setNames and names . 15

2.5 The Big Finish . 17

3 Do This, Not That (Stub) 17

1 Style Guides (or the Lack Thereof)

The R Core Team has not been eager to write out an exhaustive formal list of criteria that define “good
R style.” I believe there are many different opinions about how to name functions and variables. The R
Internals section “R coding standards,” is quite brief. Nature abhors a vacuum, as they say. Many others
have seen fit to try to fill in the gaps (Google R style guide1; Hadley Wickham’s Style Guide2). In my R

1http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
2https://github.com/hadley/devtools/wiki/Style

1

http://pj.freefaculty.org/R
http://pj.freefaculty.org/R
http://pj.freefaculty.org/R/Rtips.{pdf,html}
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
https://github.com/hadley/devtools/wiki/Style

group at the University of Kansas, we have sought to do the same. Aaron Boulton surveyed these efforts
and we developed some guidelines for our group.

It is important to remember the following. Any advice that does not come directly from the R Core Team
has no “authority.” I have advice, Hadley has advice, but none of it can be used as a trope with which to
bludgeon someone who does things differently.

Another important point is that although the official requirements for R code are not stated in all-encompassing
detail, there are generally accepted guidelines on what code ought to “look like.” Code writers can make
ugly code that “runs,” but they can’t compel anyone else to read it. With few exceptions, coding style is
not about making things “work,” it is about making them work in a way that is understood by the widest
possible audience.

Generally speaking, according to the R team, what should your code look like? Here are the two best answers
I have.

1. Open the source code for R itself, and navigate to the directory src/library/stats/R. Open the file
“lm.R”. There’s your answer.

2. Open an R session, run the following commands

> lm
> summary.lm
> s t a t s : : : print.summary.lm

There’s your answer again.

If I’m looking over your shoulder as you write code, I may say “ach, don’t do that” or “nobody is going to
want to look at that.” You may say, as many students have, “but this works!” And all I can say in response
is, “lucky for you, you don’t need help fixing it. Because nobody will want to help that.” Sometimes ugly
code runs, but it is hard to understand, hard to debug.

From my expertise as an Rchaeologist, I have accumulated a list of bits of style advice. These proceed in
order, from things that every knowledgeable expert will accept, to matters of personal taste that are more
widely accepted, to things that I like, but nobody else does. In the remainder, I’m going to try to help the
reader sort between my advice and the advice of “good” R programmers by assigning subjective probabilities
of agreement for each of these points. If we could draw a random R programmer from the set of programmers
that I admire, what is the probability that the programmer would agree with this advice? Let’s call that the
“Subjective and completely unscientific personal Estimate of Agreement,” or SEA.

1. (SEA 1.0) Indentation of sections is required. This is one of the few guidelines that is explicitly
spelled out in the R documentation from the core team. They discourage the use of the tab key for
indentation, instead suggesting 4 blank spaces. Personally, I prefer 2 spaces, and until 2011 that is
what I used. The documentation provides a brief example of startup code for Emacs so that indentions
are set correctly at 4 spaces. Otherwise, Emacs will provide 2 spaces while editing R files.

2. (SEA .98) Blank spaces around symbols are required. Put blank spaces on both sides of
assignment symbols, equal signs and mathematical symbols like “<”,“*”,”+”, and so forth. Put one
space after commas. This is purely a matter of convention and judgment, it does not affect the
“rightness” of code. But every finished program by a well-qualified programmer will do this. While
developing code, it sometimes helps me to leave spaces inside parentheses and squiggly braces. It helps
me keep the logic straight. The experts never leave those spaces in their final version, however, and I
try to remember to fix them.

I believe 99.8% of the R programmers that I admire follow those first two standards. I believe that
95% of my favorites adhere to these principles for the placement of squiggly braces.

3. (SEA .90) Place squiggly braces (“{” and “}” carefully. This is partly a matter of appearance,
but there are some conditions under which code will break if the braces are not placed properly.

In R, the opening squiggly braces, “{” should be at the end of the line of code, rather than at the
beginning of the next line. This is recommended with for and if statements. And it is vital in if/else
statements.

2

In the C language, this is known as the “K&R style” (named after Kernighan and Ritchie, 1988). Here
is an example of some code that follows the guideline, and it works.

> x <− 1
> i f (x < 10) {

pr in t (”h e l l o ”)
} e l s e {
pr in t (”goodbye ”)
}

[1] ” h e l l o ”

Programmers who don’t follow this guideline should expect trouble. The trouble arrives in two flavors.

(a) The unexpected else problem. Sometimes the “else” part of an if/else statement will be
“broken” if R does not realize that a command is continuing. Try this at the command line.

> i f (x < 10) p r in t (”h e l l o ”)
[1] ” h e l l o ”
> e l s e p r in t (”goodbye ”)
Error : unexpected ' e l s e ' in ” e l s e ”

The else is not understood because it is not tied to the if statement. If we keep the braces on a
line with the else, the danger is eliminated.

This is the problem that the help page ?if is referring to when it says, “In particular, you should
not have a newline between ‘}’ and ‘else’ to avoid a syntax error in entering a ‘if ... else’ construct
at the keyboard or via ‘source’. For that reason, one (somewhat extreme) attitude of defensive
programming is to always use braces, e.g., for ‘if’ clauses.”

This is a confusing area because sometimes code will work if the else is “out in the open” without
any squiggly braces nearby. For example, when an if/else is wrapped inside a larger structure–say
a function–then R will correctly interpret else on a line by itself. This works

> myfn <− f unc t i on (x){
i f (x < 7)
{

pr in t (”x i s l e s s than 7 ”)
}
e l s e
{

pr in t (”x i s e x c e s s i v e ”)
}

}
> myfn (3)

[1] ”x i s l e s s than 7 ”

> myfn (88)

[1] ”x i s e x c e s s i v e ”

The danger, however, is that code in that format cannot be run line-by-line, so developing it by
running the individual lines will always result in failure. The else is disconnected from the if,
when each individual line is executed in R.

As a result, I believe one is well advised to take the defensive approach that is mentioned in the
help page and write like so:

i f (x < 7){
pr in t (”so far , so good ”)

} e l s e {
pr in t (” t h i s i s the ”de f en s i v e ” s t y l e mentioned in the R documents ”)

}

(b) The accidental breakage of else statements.

It is not necessary to use squiggly braces at all. We can write an if/else statement all on one line
if we want to.

i f (x < 7) p r in t (”so far , so good ”) e l s e p r in t (” t h i s i s e l s e ”)

3

This would be legal. In fact, it is the method in which if and else are documented in ?if.

We can also “dangle” the else at the end of the if statement, without any squiggly braces. R knows
that there is more coming on the next line.

i f (x < 7) p r in t (”so far , so good ”) e l s e
p r in t (” t h i s i s e l s e ”)

There is some danger in that way of writing. Suppose we want to add another command to be
performed within the scope of the else command. Add something on (carelessly):

i f (x < 7) p r in t (”so far , so good ”) e l s e
p r in t (” t h i s i s e l s e ”)
p r in t (”and t h i s other th ing i f e l s e i s t rue ”)

That’s broken. But every programmer I know has done it, at least once. The first print will run
only when else is true, but the second one runs all the time. This will work properly:

i f (x < 7) p r in t (”so far , so good ”) e l s e {
pr in t (” t h i s i s e l s e ”)
p r in t (”and t h i s other th ing i f e l s e i s t rue ”)

}

If we forget the squiggly braces, the logic of the situation will not hold up. Thus, especially
while developing and testing code, I insert squiggly braces even when they are not required. The
squiggly braces reduce the chance that I will make a mistake while revising this code. Perhaps,
when a program is done, I’ll go back and “tighten it up” so that I use fewer lines (and won’t look
so much like a novice).

Summary of points 1-3

The advice so far mostly concerns “white space” in code. A programmer’s text editor, such as Emacs, will
generally have built-in functionality to correctly indent sections. It may automatically insert spaces. It
generally will not re-position the squiggly braces for us, however.

There is a recently introduced R function that can do all three of these chores. This function, which is called
“tidy.source”, is available in the “formatR” package (Xie, 2012). The style that is followed in formatR is not
“officially sanctioned,” but in my experience, it does very well. I’ve put it to the test with some very ugly
tangles of code that students have submitted and it works well. One of its very useful features is that it
scans the input and refuses to re-format when there are coding errors. This helps in proof-reading student
projects.

The tidy.source function can handle code files, but there is a quick “clipboard copy” feature. Below I’ve
pasted in part of an Emacs session. I wrote a badly formatted function myfn, and copied it to the clipboard,
and then tidy.source() reads the clipboard. It seems like magic!.

> myfn <− f unc t i on (x){ i f (x < 7) { i = 77 ; p r i n t (paste (”x i s l e s s than 7 but i i s ” , i))} e l s e {
pr in t (”x i s e x c e s s i v e ”) }}

> l i b r a r y (formatR)
> t i d y . s o u r c e ()
func t i on (x) {

i f (x < 7) {
i = 77
pr in t (paste (”x i s l e s s than 7 but i i s ” , i))

} e l s e {
pr in t (”x i s e x c e s s i v e ”)

}
}

By adding the source parameter, a file name can be provided.

That output is not quite right, in my opinion, because it allows the equal sign for assignment of the variable
i. However, tidy.source has an option to correct that.

> t i d y . s o u r c e (source = ”c l ipboard ” , r e p l a c e . a s s i g n = TRUE)
func t i on (x) {

i f (x < 7) {
i <− 77
pr in t (paste (”x i s l e s s than 7 but i i s ” , i))

} e l s e {

4

pr in t (”x i s e x c e s s i v e ”)
}

}

I believe that the style advice to this point will be almost universally supported, or at least understood and
accepted. There are some variations in the code from various projects, but the differences don’t generally
result from a philosophical disagreement with these white-space rules, but rather from differences in text
editors.

Now we begin to consider some issues that are more subjective.

4. How to name functions. This is a difficult area because many styles are legal, but some are more
easily understood. The programmer’s experience may affect whether code looks “right” or not. It is
also difficult because R syntax has changed over the years, and some things that were illegal are now
allowed.

(a) (.98 SEA) Avoid using names that are already in use, especially common ones. Don’t write
functions named “rep”“seq”“lm”, and so forth. Don’t do this, even though R (since 2.14) has a
graceful mechanism to tolerate duplicated names. All functions exist within packages, so one could
run base::rep to get the built-in version of rep, while using rep for a package-specific function.
Doing that will likely to make code very difficult for the experts to read because (almost always)
they assume “seq” is “seq” from base. Why confuse the R programmers by making a new function
“seq” that does something different? Pick a new name.

(b) (.65 SEA)Use periods to indicate classes, otherwise don’t use periods in function names. Instead,
use camel case to name functions. myFunction or getCalculatedValues are better function names
than my.thing or get.calculated.values. A camel cased function may be ugly in the eyes of some,
but it will never send the reader searching for a class called “calculated.values” or “thing”.

This is my opinion, but it is not unanimously shared. I bet one-half or two-thirds of the R
programmers that I admire would agree. As a spot check, consider two of my favorite packages,
MASS and car. There are not many camel case function names in the MASS package (Venables
and Ripley, 2002), which is distributed with R. The preferred style in MASS is to give functions
brief, all lower case letters, such as “boxcox.” Contrast that with the car package (Fox and
Weisberg, 2011), which is very widely used, which has a similar function called “boxCox”. Some
time ago, Professor Fox systematically revised car to change the period-style function names to
camel case. If those two packages are counterbalancing each other in my mind (for and against
camel case functions), the leading packages for mixed effects models, nlme (Pinheiro et al., 2012)
and lme4 (Bates, Maechler and Bolker, N.d.), weigh in on “my side”.

Why would a period in a function name be distracting to some readers? Some readers are trained
in Java or C++. In those languages, the period is a “connective” symbol that can join an object
name with its variables or member functions. In Java, one would write myThing.x to extract a
variable x from an object myThing. When I read R code, I am still (after 10 years) distracted by
periods in function names for this reason.

In R, the period is not used to extract variables, instead we write (in S3) myThing$x or (in
S4) myThing@x. However, in R we do use the period as connective tissue between a generic
function name and the type of object to which it must be applied. The “full name” of a function
will often include a suffix, even though the R interface tries to conceal those suffixes from the
readers. Observe the output from the methods function, which lists the class-specific methods,
but indicates that they are not exported for easy use.

> methods (” c on f i n t ”)
[1] c o n f i n t . d e f a u l t c on f i n t . g lm * con f i n t . lm * c o n f i n t . n l s *

Non−visible f unc t i on s are a s t e r i s k ed
> methods (”summary”)

[1] summary.aov summary.aovl i st summary.aspel l *
[4] summary.connection summary.data.frame summary.Date
[7] summary.default summary.ecdf* summary.factor

[1 0] summary.glm summary. inf l summary.lm
[1 3] summary. loess * summary.manova summary.matrix
[1 6] summary.mlm summary.nls* summary.packageStatus*

5

[1 9] summary.PDF Dictionary* summary.PDF Stream* summary.POSIXct
[2 2] summary.POSIXlt summary.ppr* summary.prcomp*

[2 5] summary.princomp* summary . s r c f i l e summary.srcre f
[2 8] summary.stepfun summary.stl * summary.table
[3 1] summary.tukeysmooth*

Non−visible f unc t i on s are a s t e r i s k ed
> methods (”p r ed i c t ”)

[1] p r e d i c t . a r * pred ict .Ar ima *

[3] p r ed i c t . a r ima0 * pred i c t . g lm
[5] p r ed i c t .Ho l tWinte r s * pr ed i c t . lm
[7] p r e d i c t . l o e s s * predict .mlm
[9] p r e d i c t . n l s * p r ed i c t . p o l y

[1 1] p r ed i c t . pp r * predict .prcomp *

[1 3] pred i c t .pr incomp * p r ed i c t . smoo th . s p l i n e *
[1 5] p r e d i c t . sm o o t h . s p l i n e . f i t * pred i c t .S t ruc tTS *

Non−visible f unc t i on s are a s t e r i s k ed

Observe that when the user runs “confint(myThing)” or “summary(myThing)”, the R system has
to select one particular method with which to get the work done. R checks for the class of
myThing. If the class is “glm”, and there is a function confint.glm, summary.glm, or so forth, then
those specific methods are used to answer the user’s request. If there is no class-specific method
available, then the work is sent to confint.default or summary.default.

Many R commands create new objects of particular types that require specialized processing. The
command

m1summ <− summary(m1)

creates a new object from the class “summary.lm”. And in order to show that result to the user,
the R system uses a function called “print.summary.lm,” but the user would ordinarily not notice
that a specialized print function exists. The same result is produced by these three commands:

m1summ
pr in t (m1summ)
s t a t s : : : print.summary.lm (m1summ)

The first two are equivalent because typing an object’s name is always understood as a request for
a print function. The R design discourages us from using the last approach. We are supposed to
let the R system select methods to match the classes of the objects being processed. That’s why
the print.summary.lm function is not exported from the stats package, and thus it is necessary to
use the three colons when I want to access it directly.

The whole point is that, inside the R system, the periods are not just punctuation. They may
indicate the class type of the object that is being received. Thus, I avoid gratuitous periods in
function names.

Admittedly, many programmers, especially the ones who are trained in C++, find camel cased
functions to be very ugly. On the other hand, Java and Objective-C programmers are used to
them, and may even find them attractive. But the key point is that periods are distracting.

It seems to me that new functions introduced in R tend to have either camel case or underscores
for punctuation. Run ?get all vars. That’s an eye-opener. Some parts of R, especially the old
parts, were developed before “object oriented” programming had come to the forefront and, as
a result, they do not comply with this advice. However, newer functions generally do. Observe
?browseVignettes. If I knew how to use SVN very well, I’d download the R-devel code and then
list all functions by the date on which they were introduced. I will bet a cup of coffee with anybody
that the probability of camel cases is higher in the more recent commits. I also would bet that
the chance of finding a period in a function name for purely punctuation reasons is almost zero in
the most recent commits. Instead of periods, we find either short lower case names, camel case,
or punctuation with underscores. I hasten to admit that the underscores look really strange to
me!

5. How to name variables (and objects and other things you need to keep track of).

(a) (1.0 SEA) Officially, R variable names must begin with an alphabetical character and must include
only letters, numbers and the symbols “ ”, “-”, and “.”. They must not include “*”,”?”,”!”,”&” or
other special symbols.

6

(b) (1.0 SEA) Never name a variable T or F.

This is one thing that almost everybody (99.9%) will agree with. NEVER name variables “T” or
“F”. These are too easily mistaken for TRUE and FALSE values. Since R uses TRUE and FALSE
as vital elements of almost all commands and functions, and since users are allowed to abbreviate
those as T or F, a horrible confusion can develop if variables are named T or F.

(c) (.75 SEA) Avoid declaring variables that have the same names as widely used functions. In 2001,
I created a variable “rep” (for Republican party members) and nothing worked in my program. In
exasperation, I wrote to the r-help list, and learned that I had obliterated R’s own function rep
with my variable. That kind of mistake was common. In 2002 or so, the R system was revised so
that user-declared variables cannot “step on” R system functions. Nevertheless, it is disconcerting
to me (probably others) when users create variables with names like “lm”, “rep”, “seq”, and so
forth. Its distracting; its confusing.

(d) (0.40) I avoid underscores in variable names. To understand why, please understand the history
of S and R. At one time, the underscore “ ” was used as the assignment symbol. That’s right,
instead of “<-”, we used to write

y x + x∧2

The underscore for assignment was allowed, but discouraged, when I started using R. In those
days, R functions that imported data would translate underscores into other symbols. Underscore
for assignment has since been forbidden altogether. A while after that, the underscore was allowed
in variable and function names. Because of that history, R veterans may still consider it jarring
if your variables include underscores.

(e) (0.40 SEA) Use long names for infrequently used variables. If a variable is going to be used twice,
we might as well be verbose about it. “xlog” is better than “xl”, if we are only writing it a few
times. If we are going to use a name 50 times in a 5 line program, we should choose a short one.
For abbreviations, include a comment to remind the reader what the thing stands for.

(f) (0.10 SEA) This is my personal naming scheme, nobody else knows about it, unless they have
heard about it from me. But they might like it if they think it over. I suggest we use an
alphabetical scheme for naming related things so that they always stay together in the workspace.
As seen by ls(), the related bits should always be together. From now on, when I work with a
variable named “x”, then all transformations will begin with “x”. I will use “xlog” rather than
“logx” and so forth.

Example 1. Create a numeric variable, recode it as a factor, then create the “dummy” variables that
correspond.

> x <− r un i f (1000 , min = 0 , max = 100)
> xf <− cut (x , breaks = c (−1, 20 , 50 , 80 , 101) , l a b e l s = c (”co ld ” , ” luke ” , ”warm” , ”hot ”))
> xfdummies <− c on t r a s t s (xf , c on t r a s t s = FALSE) [xf ,]
> colnames (xfdummies) <− paste (”xf ” , c (”co ld ” , ” luke ” , ”warm” , ”hot ”) , sep=””)
> rownames (xfdummies) <− names (x)
> dat <− data . f rame (x , xf , xfdummies)
> head (dat)

x xf x f c o l d x f l uke xfwarm xfhot
1 72 .09039 warm 0 0 1 0
2 87 .57732 hot 0 0 0 1
3 76 .09823 warm 0 0 1 0
4 88 .61246 hot 0 0 0 1
5 45 .64810 luke 0 1 0 0
6 16 .63718 co ld 1 0 0 0

Example 2. Estimate a regression, calculate the summary, extract summary statistics.

> s e t . s e e d (12345)
> x1 <− rnorm (200 , m = 300 , s = 140)
> x2 <− rnorm (200 , m = 80 , s = 30)
> y <− 3 + 0 .2 * x1 + 0 .4 * x2 + rnorm (200 , s=400)
> dat <− data . f rame (x1 , x2 , y) ; rm(x1 , x2 , y)
> m1 <− lm (y ∼ x1 + x2 , data = dat)
> m1summary <− summary(m1)
> (m1se <− m1summary$sigma)

7

[1] 397 .3396

> (m1rsq <− m1summary$ r . squa r ed)

[1] 0 .02527128

> (m1coef <− m1summary$ coe f)

Estimate Std . Error t value Pr(>| t |)
(I n t e r c ep t) −111.7117859 103 .0981785 −1.083548 0 .27988980
x1 0 .3347818 0 .1888153 1 .773065 0 .07776316
x2 1 .3078582 0 .9804299 1 .333964 0 .18375574

> (m1aic <− AIC(m1))

[1] 2966 .469

Example 3. Run a regression, collect mean-centered and residual centered variants of it, summarize
each, and compare them.

> l i b r a r y (rockcha lk)
> dat$y2 = with (dat , 3 + 0 .02 * x1 + 0 .05 * x2 + 2 .65 * x1 *x2 + rnorm (200 , s=4000))
> par (mfcol=c (1 , 2))
> m1 <− lm(y2 ∼ x1 + x2 , data = dat)
> m1i <− lm(y2 ∼ x1 * x2 , data = dat)
> m1ps <− p l o tS l ope s (m1, p lotx = ”x1 ” , modx = ”x2 ”)
> m1ips <− p l o tS l ope s (m1i , p lotx = ”x1 ” , modx = ”x2 ”)

0 100 200 300 400 500 600 700

0
50

00
0

10
00

00
20

00
00

x1

y2

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

moderator: x2

x2 = 25%
x2 = 50%
x2 = 75%

0 100 200 300 400 500 600 700

0
50

00
0

10
00

00
20

00
00

x1

y2

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

moderator: x2

x2 = 25%
x2 = 50%
x2 = 75%

> m1imc <− meanCenter (m1i)
> m1irc <− r e s i dua lCent e r (m1i)
> outreg (l i s t (m1, m1i , m1imc , m1irc) , t i g h t = TRUE, modelLabels = c (”Linear ” , ” I n t e r a c t i o n ” , ”Mean

Centered ” , ”Res idual Centered ”))

8

Linear Interaction Mean Centered Residual Centered
Estimate Estimate Estimate Estimate
(S.E.) (S.E.) (S.E.) (S.E.)

(Intercept) -72728.682* 1369.158 70482.081* -72728.682*
(3373.402) (2053.016) (290.315) (1064.652)

x1 226.746* -2.383 . 226.746*
(6.178) (5.768) (1.95)

x2 860.306* -12.511 . 860.306*
(32.08) (23.023) (10.124)

x1:x2 . 2.682* . .
(0.064)

x1c . . 218.979* .
(1.958)

x2c . . 846.615* .
(10.13)

x1c:x2c . . 2.682* .
(0.064)

x1.X.x2 . . . 2.682*
(0.064)

N 200 200 200 200
RMSE 13001.068 4103.162 4103.162 4103.162
R2 0.916 0.992 0.992 0.992
adj R2 0.915 0.992 0.992 0.992

* p ≤ 0.05

2 R Idioms. What’s In R Guts?

2.1 Rewriting Formulas. My Introductory Puzzle.

On May 29, 2012, I was working on a regression problem in the rockchalk package. The functions like
meanCenter and residualCenter receive a fitted regression model and transform some variables. The non-
centered variable “x1” is renamed to “x1c”, and then the regression is executed with the new data. Thus it is
necessary to take something that is fitted with a formula like y ˜ x1*x2, and then re-fit with a formula like
y ˜ x1c*x2c. In the end, the answer is a single, if complicated line of code that speaks volumes about the
way the advanced R user interacts with the system.

My first effort used R’s update function. It is fairly easy to replace x1 with x1c in the formula, but not when
x1 is logged or otherwise transformed. In exasperation, I wrote to r-help and described the problem with
this working example.

> dat <− data . f rame (x1=rnorm (100 ,m=50) , x2=rnorm (100 ,m=50) ,
x3=rnorm (100 ,m=50) , x4 = rnorm (100 , m=50) , y=rnorm (100))

> m2 <− lm(y ∼ l og (x1) + x2*x3 , data=dat)
> su f f i xX <− f unc t i on (fmla , x , s){

upform <− as . f o rmu la (paste (” . ∼ . ” , ”−” , x , ”+” , paste (x , s , sep=””) , sep=””))
update . formula (fmla , upform)
}

> newFmla <− formula (m2)
> newFmla
> su f f i xX (newFmla , ”x2 ” , ”c ”)
> su f f i xX (newFmla , ”x1 ” , ”c ”)

Run that and check the last few lines of the output. See how the update misses x1 inside log(x1) or in the
interaction?

> newFmla <− formula (m2)
> newFmla
y ∼ l og (x1) + x2 * x3
> su f f i xX (newFmla , ”x2 ” , ”c ”)
y ∼ l og (x1) + x3 + x2c + x2 : x3
> su f f i xX (newFmla , ”x1 ” , ”c ”)
y ∼ l og (x1) + x2 + x3 + x1c + x2 : x3

9

It gets the target if the target is all by itself, but not otherwise.

While struggling with this, I noticed this really interesting thing. The object “newFmla” is not just a text
string. It is actually a list. Its parts can be probed recursively, to eventually reveal all of the individual
pieces:

> newFmla

y ∼ l og (x1) + x2 * x3

> newFmla [[1]]

`∼`

> newFmla [[2]]

y

> newFmla [[3]]

l og (x1) + x2 * x3

> newFmla [[3]] [[2]]

l og (x1)

> newFmla [[3]] [[2]] [[2]]

x1

How could I put that information to use? I asked the members of r-help.

Lately I’ve had very good luck with r-help. Gabor Grothendieck wrote an answer to r-help on May 29, 2012,
“Try substitute:”

> d o . c a l l (” s ub s t i t u t e ” , l i s t (newFmla , setNames (l i s t (as.name (”x1c ”)) , ”x1 ”)))
y ∼ l og (x1c) + x2 * x3

Bingo.

That’s quintessential R. It packs together a half-dozen very deep thoughts that I will try to explain in the
rest of this section. It has most of the essential secrets of R’s guts, laid out in a single line. It has do.call,
substitute, it interprets a formula as a list, and it shows that every command in R is, when it comes down
to brass tacks, a list.

I would like to take up these separate pieces in order.

2.2 do.call and eval

In my early work as an Rchaeologist, I had noticed eval and do.call, but did not understand their significance
in the mind of the R programmers. Whenever difficult problems arose in r-help, the answer almost invariably
involved do.call or eval. Maybe both.

2.2.1 do.call

Let’s concentrate on do.call first. The syntax is like this

d o . c a l l (”someRFunction ” , aListOfArgumentsToGoInTheParentheses)

It is as if we were telling R to run this:

someRFunction (aListOfArgumentsToGoInTheParentheses)

10

Let’s consider an example that runs a regression the ordinary way, and then with do.call. In this example,
the role of “someRFunction” will be played by lm and the list of arguments will be the parameters of the
regression. The regression m1 will be constructed the ordinary way, while m2 is constructed with do.call.

> m1 <− lm(y ∼ x1*x2 , data=dat)
> co e f (m1)

(In t e r c ep t) x1 x2 x1 : x2
334 .7175924 −6.5100168 −6.8113110 0 .1325085

> r ega rg s <− l i s t (formula = y ∼ x1*x2 , data= quote (dat))
> m2 <− d o . c a l l (”lm” , r ega rg s)
> co e f (m2)

(In t e r c ep t) x1 x2 x1 : x2
334 .7175924 −6.5100168 −6.8113110 0 .1325085

> a l l . e q u a l (m1, m2)

[1] TRUE

The object regargs is a list of arguments that R can understand when they are supplied to the lm function.

do.call is a powerful, mysterious symbol. It holds flexibility; we can calculate commands and then run them.
I first needed it when we had a simulation project that ran very slowly when confronted with medium or large
sized problems. There’s a writeup in the working examples distributed with rockchalk called stackListItems-
01.R. I was using rbind over and over to join the results of simulation runs. Basically, the code was like
this

f o r (i in 1 :10000) {
dat <− someHugeSimulation (i)
r e s u l t <− rbind (r e su l t , dat)

}

That will call rbind 10000 times. I had not realized that rbind is a comparatively time-consuming task
because it accesses a new chunk of memory each time it is run. On the other hand, we could collect those
results in a list, then we can call rbind one time to smash together all of the results.

f o r (i in 1 :10000) {
myl i s t [[i]] <− someHugeSimulation (i)

}
r e s u l t <− d o . c a l l (”rbind ” , myl i s t)

It is much faster to run rbind only once. It would be OK if we typed it all out like this:

r e s u l t <− rbind (myl i s t [[1]] , my l i s t [[2]] , my l i s t [[3]] , my l i s t [[4]] , . . . , my l i s t [[1 0 0 0 0])

But who wants to do all of that typing? How tiresome! Thanks to Erik Iverson in r-help, I understand that

r e s u l t <− d o . c a l l (”rbind ” , myl i s t)

is doing the EXACT same thing. “mylist” is a list of arguments. do.call is constructing a function call from
the list of arguments. It is as if I had actually typed rbind with 10000 arguments.

The beauty in this is that we could design a program that can assemble the list of arguments, and also
choose the function to be run, on the fly. We are not required to literally write the function in quotes, as in
“rbind”. We could instead have a variable that is calculated to select one function among many, and then
use do.call on that. In a very real sense, we could write a program that can write itself as it runs.

From all of this (and a peek at ?call), I arrive at an Rchaeological eureka! A call object is a quoted command
plus a list of arguments for that command.

2.2.2 eval

Where does eval fit into the picture? As far as I can tell, do.call(”rbind”, mylist) is basically the same as
eval(call(“rbind”, mylist). The call function manufactures the call object, the eval function tells it to do its

11

work. I think of do.call as a contraction of “eval” and “call”. eval can handle evaluates any valid R expression,
and a call is a valid expression. I’m leaving the question of “what is an expression” to a later time.

Here’s a quick example that repeats the two regressions exercise that was completed with do.call. Now I’ll
create an expression regargs2. Note it is necessary for me to evaluate the expression before the lm function
can understand it.

> m3 <− lm(y ∼ x1*x2 , data=dat)
> co e f (m3)

(In t e r c ep t) x1 x2 x1 : x2
334 .7175924 −6.5100168 −6.8113110 0 .1325085

> r egarg s2 <− expr e s s i on (y ∼ x1*x2 , data = dat)
> m4 <− lm(eva l (r egarg s2))
> co e f (m4)

(In t e r c ep t) x2 x3 x4 y
54 .23244193 0 .14541440 −0.13451021 −0.09570416 0 .09045886

The main reason for using eval is that we can “piece together” commands and then run them after we have
assembled all the pieces.

We can create a formula object implicitly (without explicitly asking for it) by using this code.

> f 1 <− y ∼ x1 + x2 + x3 + log (x4)
> c l a s s (f 1)

[1] ”formula ”

> m5 <− lm(f1 , data = dat)

The object f1 is a formula object because R has created it that way. Its not just a text string. R notices the
∼ symbol and the whole line is interpreted as a formula. Observe it has separate pieces, just like newFmla
in the example problem that started this section.

> f 1 [[1]]

`∼`

> f 1 [[2]]

y

> f 1 [[3]]

x1 + x2 + x3 + log (x4)

> f 1 [[3]] [[1]]

`+`

> f 1 [[3]] [[2]]

x1 + x2 + x3

> f 1 [[3]] [[3]]

l og (x4)

Note that f1 created in this way must be a syntactically valid R formula; it cannot include any other regression
options.

> f 1 <− y ∼ x1 + x2 + x3 + log (x4) , data=dat
Error : unexpected ' , ' in ” f1 <− y ∼ x1 + x2 + x3 + log (x4) , ”

12

If I declare f1exp as an expression, then R does not re-interpret it as a formula (f1exp is an unevaluated
expression, the R parser has not translated it yet). To use that as a formula in the regression, we have to
evaluate it.

> f1exp <− expr e s s i on (y ∼ x1 + x2 + x3 + log (x4))
> c l a s s (f1exp)

[1] ” expr e s s i on ”

> m6 <− lm(eva l (f1exp) , data=dat)

When f1exp is evaluated, what do we have? Here’s the answer.

> f 1 expeva l <− eva l (f1exp)
> c l a s s (f 1expeva l)

[1] ”formula ”

> a l l . e q u a l (f1expeva l , f 1)

[1] TRUE

> m7 <− lm(f1expeva l , data=dat)
> a l l . e q u a l (c o e f (m5) , c o e f (m6) , c o e f (m7))

[1] TRUE

The point here is that the pieces of an ordinary use command can be separated and put back together again
before the work of doing calculations begins.

Now we turn back to the main theme. How is eval used in functions? Some functions take a lot of arguments.
They need to pick some arguments, and send those to some functions.

Let’s consider the lm code in some detail. Suppose a user submits a command like “lm(y ˜ x, data=dat, x
= TRUE, y = TRUE).” Inside lm, it is necessary to pick through those arguments and then pass them off
to other functions in order to build the data matrix and so forth. Here are the first lines of the lm function

1 lm <− f unc t i on (formula , data , subset , weights , na .ac t ion , method = ”qr ” ,
2 model = TRUE, x = FALSE, y = FALSE, qr = TRUE, s i n gu l a r . o k = TRUE,
3 c on t r a s t s = NULL, o f f s e t , . . .)
4 {
5 r e t . x <− x
6 r e t . y <− y
7 c l <− match . ca l l ()
8 mf <− match . ca l l (expand.dots = FALSE)
9 m <− match (c (”formula ” , ”data ” , ”subset ” , ”weights ” , ”na . a c t i on ” ,

10 ” o f f s e t ”) , names (mf) , 0L)
11 mf <− mf [c (1L , m)]
12 mf$ d r op . unu s ed . l e v e l s <− TRUE
13 mf [[1 L]] <− as.name (”model . frame ”)
14 mf <− eva l (mf , parent . f rame ())

Lets consider what those lines do with a command like this.

m1 <− lm(y ∼ x1*x2 , data=dat , x = TRUE, y = TRUE)

The lm function notices that I supply some arguments. In line 8, the match.call function is used to grab a
copy of the command that I typed. If we use R’s debugging facility to stop the program at that point, we
would see that mf is exactly the same as my command, except R has named the arguments:

> mf
lm(formula = y ∼ x1 * x2 , data = dat , x = TRUE, y = TRUE)

That’s not just a string of letters, however. It is a call object, a list with individual pieces that we can revise.
Lines 10 and 11 check the names of mf for the presence of certain arguments, and throw away the rest. It
only wants the arguments we would be needed to run the function model.frame. Line 12 adds an argument
to the list, drop.unused.levels. Up to that point, then, we can look at the individual pieces of mf:

13

> names (mf) [1] ”” ”formula ” ”data ” [4] ”d r op . unu s ed . l e v e l s ”
> mf [[1]]
lm
> mf [[2]]
y ∼ x1 * x2
> mf [[3]]
dat
> mf [[4]]
[1] TRUE

The object mf has separate pieces that can be revised and then evaluated. Line 13 replaces the element 1
in mf with the symbol “model.frame”. That’s the function that will be called. Line 14 is the coup de grâce,
when the revised call “mf” is sent to eval. In the end, it is as if lm had directly submitted the command

mf <− model. frame (y ∼ x1 * x2 , data=dat , d r op . unu s ed . l e v e l s=TRUE)

It would not do to simply write that into the lm function, however, because some people use variables that
have names different from y, x1, and x2, and their data objects may not be called dat. lm allows users to
input whatever they want for a formula and data, and then lm takes what it needs to build a model frame.

2.3 substitute

Most R users I know have not used substitute, except as it arises in the plotmath. In the context of plotmath,
the problem is as follows. Plotmath causes the R plot functions to convert expressions into mathematical
symbols in a way this is reminiscent of LATEX. For example, a command like this:

t ext (4 , 4 , exp r e s s i on (gamma))

will draw the gamma symbol at the position (4,4). We can use paste to combine symbolic commands and
text like so:

t ext (4 , 4 , exp r e s s i on (paste (gamma, ” = 7”)))

The number 7 is a nice number, but what if we want to calculate something and insert it into the expression?
Your first guess might be to insert a function that makes a calculation, such as the mean, but this fails:

t ext (4 , 4 , exp r e s s i on (paste (gamma, mean(x))))

In order to smuggle the result of a calculation into an expression, some fancy footwork is required. In the
help page for plotmath, examples using the functions bquote and substitute are offered.

For the particular purpose of blending expressions with calculation results, I find the bquote function to be
more immediately understandable. In this section, I’m trying to understand the use of substitute, so let’s
stick with that. The plotmath help page points to syntax like this:

> p lo t (1 : 1 0 , seq (1 ,5 , l eng th . ou t =10) , type = ”n” , main=” I l l u s t r a t i n g Subs t i tu t e with plotmath ” ,
xlab=”x” , ylab=”y”)

> t ext (5 , 4 , s ub s t i t u t e (gamma + x1mean , l i s t (x1mean = mean(dat$x1))))
> t ext (5 , 2 , exp r e s s i on (paste (gamma, ” i s the mean o f x1 ”)))

14

2 4 6 8 10

1
2

3
4

5
Illustrating Substitute with plotmath

x

y

γ + 49.97654

γ is the mean of x1

Run ?substitute and one is brought to a famous piece of Rchaeological pottery:

‘substitute’ returns the parse tree for the (unevaluated) expression ‘expr’, substituting any vari-
ables bound in ‘env’.

Pardon me. parse tree? We’ve seen expressions already, that part is not so off putting. But “parse tree”?
Really?

This is one of those points at which being an Rchaeologist has real benefits. The manual page gives us some
insights into the R programmer, and it is his or her view of his or her own actions, but it doesn’t necessarily
speak to how we should understand substitute. For me, the only workable approach is to build up a sequence
of increasingly complicated examples.

I start by creating the list of replacements. This replacement list can have a format like this:

> s u b l i s t <− l i s t (x1 = ”alphabet ” , x2 = ”zoology ”)

I want to replace x1 with alphabet and x2 with zoology. The quotes indicate that alphabet and zoology are
strings, not other objects that already exist. Consider:

> s ub s t i t u t e (expr e s s i on (x1 + x2 + log (x1) + x3) , s u b l i s t)

exp r e s s i on (”alphabet ” + ”zoology ” + log (”alphabet ”) + x3)

The special things to note are that the substitution 1) leaves other variables alone (since they are not named
in sublist) and 2) it finds all valid use of the symbols x1 and x2 and replaces them.

This isn’t quite what I wanted, however, because the strings have been inserted into the middle of my
expression. I just want symbols. It turns out that the functions as.name and as.symbol are exactly the same,
and usually I use as.symbol, but in Gabor’s answer to my question, as.name is used, so I will illustrate that
here.

> s u b l i s t <− l i s t (x1 = as.name (”alphabet ”) , x2 = as.name (”zoo logy ”))
> s ub s t i t u t e (expr e s s i on (x1 + x2 + log (x1) + x3) , s u b l i s t)

exp r e s s i on (alphabet + zoology + log (alphabet) + x3)

2.4 setNames and names

Almost every R user has noticed that the elements of R lists can have names. In a data frame, the names of
the list elements are thought of as variable names, or column names. If dat is a data frame, the names and
colnames functions return the same thing, but that’s not true for other types of objects.

15

> dat <− data . f rame (x1=1:10 , x2=10:1 , x3=rep (1 : 5 , 2) , x4=g l (2 , 5))
> colnames (dat)

[1] ”x1 ” ”x2 ” ”x3 ” ”x4 ”

> names (dat)

[1] ”x1 ” ”x2 ” ”x3 ” ”x4 ”

After dat is created, we can change the names inside it with a very similar approach:

> newnames <− c (”whatever ” , ”sounds ” , ”good ” , ”tome”)
> colnames (dat) <− newnames
> colnames (dat)

[1] ”whatever ” ”sounds ” ”good ” ”tome”

While used interactively, this is convenient, but it is a bit tedious because we have to create dat first, and
then set the names. The setNames function allows us to do this in one shot. I’ll paste the data frame creating
commands and the name vector in for a first try:

> dat2 <− setNames (data . f rame (x1=rnorm (10) , x2=rnorm (10) , x3=rnorm (10) , x4=g l (2 , 5)) , c (”good ” , ”
names ” , ”tough ” , ” f i nd ”))

> head (dat2 , 2)

good names tough f i nd
1 −1.6598937 0 .02030747 −0.63971861 1
2 −0.2763602 −2.65139775 0 .08676547 1

In order to make this more generally useful, the first step is to take the data-frame-creating code and set it
into an expression that is not immediately evaluated (that’s datcommand). When I want the data frame to
be created, I use eval, and then the newnames vector is put to use.

> newnames <− c (”iVar ” , ”uVar ” , ”heVar ” , ”sheVar ”)
> datcommand <− expr e s s i on (data . f rame (x1=1:10 , x2=10:1 , x3=rep (1 : 5 , 2) , x4=g l (2 , 5)))
> eva l (datcommand)

x1 x2 x3 x4
1 1 10 1 1
2 2 9 2 1
3 3 8 3 1
4 4 7 4 1
5 5 6 5 1
6 6 5 1 2
7 7 4 2 2
8 8 3 3 2
9 9 2 4 2
10 10 1 5 2

> dat3 <− setNames (eva l (datcommand) , newnames)

The whole point of this exercise is that we can write code that creates the names, and creates the data frame,
and then they all come together.

What if we have just one element in a list? In Gabor’s answer to my question, there is this idiom

setNames (l i s t (as.name (”x1c ”)) , ”x1 ”)))

Consider this from the inside out.

1. as.name(“x1c”) is an R symbol object,

2. list(as.name(“x1c”)) is an list with just one object, which is that symbol object.

3. Use setNames. The object has no name! We would like to name it “x1”.

It is as if we had run the command list(x1 = x1c). The big difference, of course, is that this way is much
more flexible because we can calculate replacements.

16

2.5 The Big Finish

In the meanCenter function in rockchalk, some predictors are mean-centered and their names are revised.
A variable named “age” becomes “agec” or “x1” becomes “x1c”. So the user’s regression formula that uses
variables agec or x1 must be revised. This is a function that takes a formula “fmla” and replaces a symbol
xname with newname.

formulaReplace <− f unc t i on (fmla , xname , newname){
d o . c a l l (” s ub s t i t u t e ” , l i s t (fmla , setNames (l i s t (as.name (newname)) , xname)))
}

This is put to use in meanCenter. Suppose a vector of variable names called nc (stands for “needs centering”)
has already been calculated. The function std creates a centered variable.

newFmla <− mc$ formula
f o r (i in s eq a l ong (nc)){

i c e n t e r <− std (stddat [, nc [i]])
newname <− paste (a s . c h a r a c t e r (nc [i]) , ”c ” , sep = ””)
newFmla <− formulaReplace (newFmla , a s . c h a r a c t e r (nc [i]) , newname)
nc [i] <− newname

}

If one has a copy of rockchalk 1.6 or newer, the evidence of the success of this approach should be evident
in the output of the command example(meanCenter).

3 Do This, Not That (Stub)

R novices sometimes use Google to search for R advice and they find it, good or bad. They may find their
way to the r-help email list, where advice is generally good, or to the StackOverflow pages for R, which may
be better. A lot of advice is offered by people like me, who may have good intentions, but are simply not
qualified to offer advice.

One of the few bits of advice that seems to grab widespread support is that “for loops are bad.” One can
write an lapply statement in one line, while a for loop can take 3 lines. The code is shorter, but it won’t
necessarily run more quickly. I recall being jarred by this revelation in John Chambers’s book, Software for
Data Analysis. The members of the apply family (apply, lapply, sapply, etc) can make for more readable
code, but they aren’t always faster. “However, none of the apply mechanisms changes the number of times
the supplied function is called, so serious improvements will be limited to iterating simple calculations many
times. Otherwise, the n evaluations of the function can be expected to be the dominant fraction of the
computation”(Chambers, 2008, 213).

Todo: insert discussion of stackListItems-001.

Insert alternative methods of measuring executation time and measuring performance

Balance time spent optimizing code versus time spent running program.

References

Bates, Douglas, Martin Maechler and Ben Bolker. N.d. “lme4: Linear mixed-effects models using Eigen and
S4.”. R package version 0.999902344-0/r1694.
URL: http://R-Forge.R-project.org/projects/lme4/ 4b

Chambers, John M. 2008. Software for data analysis: programming with R. Statistics and computing New
York ; London: Springer. 3

Fox, John and Sanford Weisberg. 2011. An R Companion to Applied Regression. Second ed. Thousand Oaks
CA: Sage.
URL: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion 4b

Kernighan, Brian W. and Dennis M. Ritchie. 1988. C Programming Language. 2nd ed. ed. Prentice Hall. 3

17

Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar and R. Core Team. 2012. “nlme: Linear
and Nonlinear Mixed Effects Models.”. R package version 3.1-104. 4b

Venables, W. N. and B. D. Ripley. 2002. Modern Applied Statistics with S. Fourth ed. New York: Springer.
ISBN 0-387-95457-0.
URL: http://www.stats.ox.ac.uk/pub/MASS4 4b

Xie, Yihui. 2012. “formatR: Format R Code Automatically.”. R package version 0.4.
URL: http://CRAN.R-project.org/package=formatR 1

18

	Style Guides (or the Lack Thereof)
	R Idioms. What's In R Guts?
	Rewriting Formulas. My Introductory Puzzle.
	do.call and eval
	do.call
	eval

	substitute
	setNames and names
	The Big Finish

	Do This, Not That (Stub)

