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Abstract

Reversible jump Markov chain Monte Carlo is a Bayesian multimodel inference method
that involves ‘jumping’ between several candidate models. The method is powerful, but
can be challenging to implement. Presented is an R package rjmcmc which automates
much of the reversible jump process, in particular the post-processing algorithms of Barker
and Link (2013). Previously-estimated posterior distributions (in the form of coda files)
are used to estimate posterior model probabilities and Bayes factors. Automatic dif-
ferentiation is used for the partial derivative calculations required in finding Jacobian
determinants.

Keywords: Reversible jump, Bayesian multimodel inference, R, post-processing, Bayes factors,
automatic differentiation.

1. Introduction

Discriminating between models is a difficult problem. There are several options for models fit-
ted using Bayesian inference, including Bayes factors and posterior model probabilities (Kass
and Raftery 1995), information criteria such as DIC and WAIC (Spiegelhalter, Best, Carlin,
and Van Der Linde 2002, Watanabe 2010) and cross validation (Arlot, Celisse et al. 2010).
All of these approaches have practical challenges: Bayes factors and posterior model probabil-
ities require either the evaluation of a complex high dimensional integral or specification of a
transdimensional algorithm such as reversible jump Markov chain Monte Carlo (RJMCMC);
information criteria require an estimate of the effective number of parameters; cross-validation
requires burdensome computational effort. Our focus is on the first two of these approaches.
We have developed an R package that posthoc calculates Bayes factors and posterior model
probabilities using MCMC output, simplifying a frequently daunting problem.

The Bayes factor was developed by Jeffreys (1935). It is considered by many to be the default
method of Bayesian model comparison and features in nearly every textbook on Bayesian
inference (e.g. Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2013, Gill 2014). The
Bayes factor Bij compares the marginal likelihood for two competing models indexed i and
j,

Bij =
p(y|Mi)

p(y|Mj)
=

∫
p(y|θi,Mi)p(θi|Mi)dθi∫
p(y|θj ,Mj)p(θj |Mj)dθj

,

where p(y|θk,Mk) is the likelihood function under model k and p(θk|Mk) is the prior distribu-
tion under model k. The random variable M is a model indicator with M ∈ {1, . . . ,K} where



2 R Package rjmcmc

K is the number of models considered – for ease of notation, we let Mk refer to the event
M = k. It is straightforward to compute Bayes factors from posterior model probabilities
and vice versa provided the prior model weights are known (Kass and Raftery 1995). This
facilitates Bayesian model averaging (Hoeting, Madigan, Raftery, and Volinsky 1999) allowing
for model uncertainty to be accounted for in estimation.

A major limitation in the implementation of Bayes factors and corresponding posterior model
probabilities is the difficulty of calculating the marginal integral. Approximation is frequently
used; for example, the Bayesian Information Criterion (Schwarz et al. 1978) is an asymptotic
approximation to the Bayes factor (Raftery 1986).

Markov chain Monte Carlo (MCMC) approaches are also available. Carlin and Chib (1995)
propose an MCMC sampler that uses ‘pseudo-priors’ to facilitate jumping between models
while RJMCMC (Green 1995) augments the model space in order to move between models
using bijections. Generating sensible pseudo-priors or augmenting variables for these algo-
rithms is challenging. Gill (2014) notes that reversible jump methodology continues to be an
active research area. The R package demonstrated here is the first reversible jump package to
be released on the Comprehensive R Archive Network (CRAN), and offers an accessible yet
general framework for the calculation of Bayes factors and posterior model probabilities.

In Section 2, RJMCMC is discussed further and a Gibbs sampling approach to RJMCMC
is described. In Section 3, we introduce the R package rjmcmc which implements the Gibbs
algorithm with examples. We conclude with a discussion in Section 4.

2. Transdimensional algorithms

Suppose we have data y, a set of models indexed 1, . . . ,K, and a model-specific parameter
vector θk for each model, k = 1, . . . ,K. If we also assign prior model probabilities p(Mk),
k = 1, . . . ,K, we can find the posterior model probabilities

p(Mi|y)

p(Mj |y)
= Bij ×

p(Mi)

p(Mj)
.

RJMCMC (Green 1995) is an approach to avoiding the integral required in finding the
posterior model probabilities. A bijection (i.e. an invertible one-to-one mapping) is spec-
ified between the parameter spaces of each pair of models; a total of

(
K
2

)
bijections are re-

quired. To match dimensions between models, augmenting variables uk are specified so that
dim(θk, uk) = dim(θj , uj) for j, k ∈ {1, . . . ,K}. The augmenting variables do not change the
posterior distribution but do affect computational efficiency. Figure 1 gives a stylised visual
representation of the sets and bijections involved in RJMCMC.

The RJMCMC algorithm proceeds as follows. At iteration i of the Markov chain, a model

M∗h is proposed with the current value denoted M
(i−1)
j . Proposed parameter values for model

M∗h are found using the bijection fjh(·)

(θ∗h, u
∗
h) = fjh(θ

(i−1)
j , u

(i−1)
j ).

The joint proposal is then accepted using a Metropolis step (Green 1995). In defining a bi-
jection, we can incorporate any known relationships between the parameters of two models
and potentially simplify the relationship between the augmenting variables. Reasonable bi-
jections can be hard to find if it is unclear how the parameters in each model correspond to
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Figure 1: The ten reversible jump bijections required for a five-model set. Arrows represent
bijections between parameter sets. Each parameter set contains the model-specific parameters
θk and augmenting variables uk.

one another. If our bijections are inefficient, we often only find out once the algorithm has
run and failed to converge; at this point we must repeat the process with new bijections.

The RJMCMC framework is general and powerful, but has significant mathematical complex-
ity and can be challenging to implement. Barker and Link (2013) suggest a restricted version
of Green’s RJMCMC algorithm that can be implemented via Gibbs sampling. The approach
is based on the introduction of a universal parameter denoted by ψ, a vector of dimension
greater than or equal to

max{dim(θk)}, k = 1, . . . ,K.

From ψ, the model-specific parameters θk, along with augmenting variables uk, can be cal-
culated using the bijection gk(ψ) = (θ′k, u

′
k)
′ with ψ = g−1((θ′k, u

′
k)
′). In practice this means

that in order to find new parameters θh from θk we must first find the universal parameter ψ
(Figure 2). If we have K models in our set, Barker & Link’s approach requires the specifica-
tion of K bijections where Green’s approach requires

(
K
2

)
bijections. Link and Barker (2009)

refer to this method as a ‘hybrid’ between RJMCMC and the approach by Carlin and Chib
(1995).

The joint distribution can be expressed as

p(y, ψ,Mk) = p(y|ψ,Mk)p(ψ|Mk)p(Mk),

where p(y|ψ,Mk) = p(y|θk,Mk) is the data model for model k, p(ψ|Mk) is the prior for ψ for
model k and p(Mk) is the prior model probability for model k.
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Figure 2: In Barker & Link’s reversible jump approach, five bijections are required for a
five-model set. Each transformation is evaluated via the universal parameter ψ.

In general we do not have priors in the form p(ψ|Mk) but p(θk|Mk). To find p(ψ|Mk) we note
that

p(ψ|Mk) = p(gk(ψ)|Mk)

∣∣∣∣∂gk(ψ)

∂ψ

∣∣∣∣
where p(gk(ψ)|Mk) = p(θk, uk|Mk). If we assume prior independence between θk and uk this
reduces to

p(θk, uk|Mk) = p(θk|Mk)p(uk|Mk).

The term
∣∣∣∂gk(ψ)∂ψ

∣∣∣ is the determinant of the Jacobian for the bijection gk which we hereafter

denote as |Jk|. Once we know |Jk|, we can find the prior p(ψ|Mk) and in turn the joint
distribution p(y, ψ,M).

The algorithm proceeds by defining a Gibbs sampler that alternates between updating M and
ψ. The full-conditional distribution for M is categorical with probabilities

p(Mk|·) =
p(y, ψ,Mk)∑
j p(y, ψ,Mj)

.

To draw from the full-conditional for ψ, we sample θk from its posterior p(θk|Mk, y) and uk
from its prior p(uk|Mk) and determine ψ = g−1k ((θ′k, u

′
k)
′). Posterior model probabilities are

not estimated empirically based on the sampling frequencies for each model – rather, the
results come from an eigendecomposition of the transition matrix for M .

The dimension of Jk is dim(ψ) × dim(ψ), for each of the K models under consideration. If
we consider several models with several parameters each, finding J1, . . . , JK could involve
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hundreds of partial derivative calculations. We describe the automatic calculation of |Jk| in
the next section. This makes Barker & Link’s formulation of RJMCMC more elegant and
user-friendly.

3. Implementation in R package rjmcmc

Available from CRAN, the rjmcmc package utilises the work of Barker and Link (2013) to
perform RJMCMC post-processing.

3.1. Automatic differentiation and madness

Automatic differentiation (AD; Griewank and Walther 2008), also called algorithmic differ-
entiation, numerically evaluates the derivative of a function for a given input in a mechanical
way. The process involves breaking a program into a series of elementary arithmetic operations
(+, ×) and elementary function calls (log, exp, etc.). The chain rule is then propogated along
these operations to give derivatives. The resulting derivatives are usually more numerically
accurate than those from finite differencing and many other numerical methods (Carpenter,
Hoffman, Brubaker, Lee, Li, and Betancourt 2015). AD tends to be more versatile than sym-
bolic differentiation as it works on any computer program, including those with loops and
conditional statements (Carpenter et al. 2015).

Automatic differentiation has two variants – forward-mode and reverse-mode. We focus on
forward-mode as this is the variant used by our software. Suppose we have a composition
such that the chain rule can be written as dy

dx = ∂y
∂w1

∂w1
∂w2

∂w2
∂x , where w1, w2 are variables

representing intermediate chain rule sub-expressions. Then forward-mode AD traverses the
chain rule from the inside to the outside. We compute ∂w2

∂x first and work backwards to get to
dy
dx . This amounts to fixing the independent variable x. In a multivariate situation where both
x and y are vectors, we consider each independent variable xi one at a time, differentiating
the entire vector y with respect to xi.

Recently published, the madness package (Pav 2016) performs forward-mode automatic dif-
ferentiation from within R using the S4 class madness. The package is not reliant on any
external AD software. The primary drawback to madness is that it only calculates deriva-
tives of specific R functions. Fortunately, the list of supported functions is extensive and is
given in Pav (2016).

The function adiff from the rjmcmc package is essentially a wrapper to the primary func-
tionality of madness as used in this application. The usage is

adiff(func, x, ...).

The object x is converted into a madness object, and the function func is applied to it.
Generally, func will be a user-defined function of some sort. The ‘...’ represents any further
arguments to be passed to func.

The adiff function returns the result of computing func(x, ...) and, more importantly,
the Jacobian matrix of the transformation func. This is accessed as the gradient attribute
of the result. For a basic example, consider the function x3, which returns the cube of an
object x. Suppose we pass x1 = 5, x2 = 6.
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x3 = function(x){

return(x^3)

}

y = rjmcmc::adiff(x3, c(5,6))

attr(y, "gradient")

## [,1] [,2]

## [1,] 75 0

## [2,] 0 108

Entry (i, j) in the Jacobian is the result of differentiating func with respect to xi and eval-
uating the derivative at xj . See the package documentation for further detail about this
function.

3.2. Posterior draws

The rjmcmc package performs multimodel inference by post-processing. In other words, it
draws from posterior distributions that have already been calculated. There are many ways
to obtain posterior draws by MCMC – popular software packages include STAN and the
WinBUGS/JAGS packages, or we can code our own MCMC samplers. In some cases it is
also possible to find the posterior analytically. How the posterior draws are obtained is not
important as each approach has different advantages that we do not wish to go into. The
crucial thing for the use of this package is that the posterior distribution be in a form where
it can be repeatedly sampled from. The aforementioned MCMC packages return matrix-like
coda output – each row of the coda is treated as a draw from the posterior distribution of the
parameter vector. The rjmcmc package is designed to work with coda output.

3.3. The rjmcmcpost function

The core function of the rjmcmc package is rjmcmcpost, which automates much of the re-
versible jump MCMC process. An rjmcmcpost function call is of the form:

rjmcmcpost(post.draw, g, ginv, likelihood, param.prior, model.prior, chainlength).

For a model set of size K, the user must provide:

• post.draw: A list of K functions. The kth function randomly draws from the posterior
distribution p(θk|y,Mk), k = 1, . . . ,K. Generally these functions will sample from the
coda output of a model fitted using MCMC. Functions that draw from the posterior in
known form are also allowed.

• g: A list of K functions specifying the transformations from ψ to (θk, uk) for every k.

• ginv: A list of K functions specifying the transformations from (θk, uk) to ψ for every
k. These are the inverse transformations g−1.

• likelihood: A list of K functions specifying the log-likelihood functions log p(y|θk,Mk)
for the data under each model.
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• param.prior: A list of K functions specifying the log-priors log p(θk|Mk) for each
model-specific parameter vector θk.

• model.prior: A vector of the prior model probabilities p(Mk).

• chainlength: The number of iterations to run the algorithm for.

The output from the rjmcmcpost function is an object of class rj. An rj object contains
several elements which can be extracted using the $ operator:

1. result – contains point estimates of:

• The transition matrix corresponding to the Markov chain for M . The (i, j)th entry
is the probability of moving from Mi to Mj at a given iteration. The diagonal
entries correspond to retaining a model, while the off-diagonal entries correspond
to switching models.

• The posterior model probabilities. The ith entry in this vector is the estimate of
p(Mi|y).

• The Bayes factors, found using

BFij =
p(y|Mi)

p(y|Mj)
=
p(Mi|y)

p(Mj |y)

p(Mj)

p(Mi)
.

The Bayes factors from rjmcmcpost compare each model to the first model – i.e.
they are BFi1, i = 1, . . . ,K. The first Bayes factor printed will always equal 1.

• The second eigenvalue of the transition matrix, used to estimate a bound on the rate
of convergence by Cheeger’s Inequality (Liu 2008, page 261). In short, 0 ≤ λ2 ≤ 1
and an eigenvalue close to one implies fast convergence.

Using the print method on an rj object will print result.

2. densities – matrices containing the log-likelihood, log-prior density, and log-posterior
density for each model at every iteration of the algorithm. These densities can be used
to assess problems with model specification etc.

3. psidraws – a matrix of the universal parameter vector ψ sampled at every iteration of
the algorithm.

4. progress – contains the transition matrices and posterior model probabilities as they
were calculated while the Markov chain progressed. This can be used to assess efficiency
in reaching the values in result.

5. Meta – Information about the rjmcmcpost call.

Note that using the functions densities or psidraws on an rj object will return the cor-
responding output. Using the probplot function on an object of class rj produces a vi-
sualisation of the progress element, showing how the posterior probability estimates have
converged.

Crucially, this implementation is a post-processing algorithm. Suppose we consider several
sets of bijections g. Given that we have posterior information about each of the K models
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under consideration, it is quick to call rjmcmcpost several times to find the bijections which
are most efficient. By contrast, in order to modify the bijections in standard RJMCMC, the
entire algorithm must be executed again.

3.4. The defaultpost function

Often, defining efficient bijections between models is difficult. To aid in the package’s usability,
we have included a sister function to rjmcmcpost called defaultpost which does not require
user-defined bijections. The defaultpost function uses a pseudo-prior approach similar to
that of Carlin and Chib (1995) based on a normal approximation of the posterior distribution.
While sometimes inefficient, this function might be useful for preliminary analyses or for very
complex models.

The function behaves very similarly to rjmcmcpost – the differences are laid out below:

defaultpost(coda, likelihood, param.prior, model.prior, chainlength, TM.thin).

• The first argument is a list of the codas themselves, rather than a list of functions that
draw from the codas.

• The arguments g and ginv are removed – they are replaced by normal pseudo-priors
determined within the function.

3.5. Example 1: Gompertz vs. von Bertalanffy

Individual growth models represent how individual organisms increase in size over time. Two
popular individual growth models are the Gompertz function (Gompertz 1825)

µi = A exp(−be−cti) A > 0, b > 0, c > 0

and the von Bertalanffy growth equation (Von Bertalanffy 1938)

µi = L(1− exp(−k(ti + t0)) L > 0, k > 0, t0 > 0.

In particular, these curves are often used in the literature to model the length of fish over time;
see, for example, Katsanevakis (2006) for a multi-model comparison across several datasets
based on AIC. Here, we analyse the Croaker2 dataset from the R package FSAdata (Ogle
2016) which records the growth of Atlantic croaker fish. We consider only the male fish. The
goal is to assess model uncertainty of male croaker growth using the rjmcmc package.

Selected realisations of these curves can be found in Figure 3. Under our parameterisation,
each model has three parameters. The Gompertz curve is parameterised by A, b and c. The
value A is the mean length of a fish of infinite age, i.e. the value that the curve approaches
asymptotically. The displacement along the x-axis is controlled by b, and c is the growth rate.

The von Bertalanffy curve has parameters L, t0, and k. Also representing the mean length at
infinity, L (sometimes L∞ in other texts) corresponds with A in the Gompertz model. The
value k is a growth rate coefficient, while t0 is the theoretical time between size 0 and birth.

In order to define likelihoods for the purposes of RJMCMC, we can treat the observations yij
for fish i at time j as normally-distributed. The mean for each model is equal to the value of
the respective growth curve at time j with the same variance for all fish.

Model 1: yij ∼ Normal(A exp(−be−ctj ), σ2)
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Figure 3: Some possible curves under the Gompertz and von Bertalanffy models. A and L
are fixed at 100 for their respective models. In each plot, we also fix the value of a second
parameter to ascertain the effect of the final parameter. For example, on the top left we fix
c = 0.5 to examine the effect of varying b.

Model 2: yij ∼ Normal(L(1− exp(−k(tj + t0)), σ
2)

In order to represent this in R, we define simple functions dgomp and dbert which calculate
the height of the respective growth curves for supplied parameter values.

dgomp = function(t, A, b, c){ A*exp(-b*exp(-c*t)) }

dbert = function(t, L, t0, k){ L*(1-exp(-k*(t+t0))) }

Suppose that our data (the lengths of fish) are in an R vector y, and our parameter values
are an R vector theta corresponding to (A, b, c, τ)′ for Model 1 and (L, t0, k, τ)′ for Model 2,
where the precision τ = 1

σ2 . Then we can define the log-likelihoods for these models in R:

L1 = function(theta){ sum(dnorm(y, dgomp(t, theta[1], theta[2], theta[3]),

1/sqrt(theta[4]), log=TRUE))}

L2 = function(theta){ sum(dnorm(y, dbert(t, theta[1], theta[2], theta[3]),

1/sqrt(theta[4]), log=TRUE))}
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Next, we define the bijections between the ψ space and the parameter set for each model.
Recall that, under Barker and Link’s algorithm, dim(ψ) = dim(θ(k), u(k)) for all k, and specif-
ically dim(ψ) = max{dim(θ(k))}. In this example, dim(θ(1)) = dim(θ(2)) = 4, so dim(ψ) = 4
and we do not require any augmenting variables.

Suppose that, under Model 2 (von Bertalanffy) we choose to associate (ψ1, ψ2, ψ3, ψ4)
′ with

the parameter vector (L, t0, k, τ)′. Then the bijection g2 is simply the identity transformation
and we can easily define an R function to represent each direction of the bijection, as follows.

g2 = function(psi){ return(theta=psi) }

ginv2 = function(theta){ return(psi=theta) }

The parameter A in the Gompertz model is exactly equivalent to L in the von Bertalanffy
model so we also associate A with ψ1 directly. Likewise, we directly relate the precision τ in
both models. We relate the other parameters so that the resulting growth curves are as similar
as possible. We do this by having the curves intersect at two points: t = 0 and t = t∗. The
choice of t∗ has no effect on the posterior distribution but does influence MCMC efficiency
and can be thought of as a tuning parameter. In practice, t∗ should be chosen where there is
high data concentration. Under this bijection, we can calculate θ(1) by taking:

θ =


A
b
c
τ

 = g1



ψ1

ψ2

ψ3

ψ4


 =


ψ1

− log(1− exp(−ψ2ψ3))

− log
[
log(1−exp(−ψ3[ψ2+t∗]))

log(1−exp(−ψ2ψ3))

]
/t∗

ψ4


and solving for ψ gives the inverse g−11 (θ):

ψ = g−11



A
b
c
τ


 = g−11



θ1
θ2
θ3
θ4


 =


θ1

log(1− exp(−θ2))t∗/ log
[
exp(−θ2 exp(−θ3t∗))−1

exp(−θ2−1)

]
− log

[
exp(−θ2 exp(−θ3t∗))−1

exp(−θ2−1)

]
/t∗

θ4


g1 = function(psi){

temp = exp(-psi[2]*psi[3])

c(psi[1],

-log(1-temp),

-log((log(1-temp*exp(-psi[3]*tstar))) / (log(1-temp)))/tstar,

psi[4])

}

ginv1 = function(theta){

temp = -log((exp(-theta[2]*exp(-theta[3]*tstar))-1)

/ (exp(-theta[2])-1))/tstar

c(theta[1],

-log(1-exp(-theta[2]))/temp,

temp,

theta[4])

}
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Next we define the prior distributions for all seven parameters. We have used weakly infor-
mative prior distributions (Gelman et al. 2006) so that the overall variability of the prior
predictive distribution was similar between the two models. We used the following indepen-
dent half-normal prior distributions:

A,L ∼ Half-Normal(0, 106), b, t0 ∼ Half-Normal(0, 20), c, k ∼ Half-Normal(0, 1).

Finally, we use a conjugate gamma prior for the precision τ = 1
σ2 :

τ ∼ Gamma(0.01, 0.01).

Since ψ = g−1(θk), we can find p(ψ|Mk) by applying the change of variables theorem to the
prior for the parameters p(θk|Mk). So the prior for ψ is

p(ψ|M1) = p(A|M1)p(b|M1)p(c|M1)p(τ |M1)× |J1|
= N(A; 0, 106)×N(b; 0, 20)×N(c; 0, 1)×Gamma(0.01, 0.01)× |J1|.

The R function we define to represent this must be log p(ψ|M1), since the rjmcmcpost function
uses log-priors along with log-likelihoods. Note that, although the determinant of the Jacobian
|J1| is required for this transformation, the algorithm will automatically calculate and multiply
by |J1| so we need not include it.

p.prior = function(theta){

sum(dnorm(theta[1:3], 0, 1/sqrt(c(1e-6, 0.05, 1)), log=T)) +

dgamma(theta[4], 0.01, 0.01, log=T)}

Ordinarily, we would define one prior function per model. Since our priors are the same for
both models, we can just use the same function twice.

Finally, we need a function defined for each model which randomly draws from the posterior.
Given the MCMC output from an analysis of the model, this function should select an iteration
at random and return the parameter vector θ at that iteration. The rjmcmc package includes
a function getsampler which may be of use here. It takes an object modelfit which may be
coerced to an mcmc object – for example, a matrix with one column per variable or an rjags

object – and defines a sampling function of the correct form. The function usage is:

getsampler(modelfit, sampler.name="post.draw", order="default").

The parameters can be sorted using the order argument before they are returned. By default,
they are in alphabetical order.

If the posterior is in known form, a function can instead be defined by the user which randomly
generates values from the known distribution directly.

For this example, we fit our models using JAGS (Plummer et al. 2003). We obtained the coda
objects C1 and C2 for our respective models (see Appendix for the code used). We then used
getsampler to define functions draw1 and draw2. Note that (A,b,c,tau) is in alphabetical
order but (L,t_0,k,tau) is not, so we must use the order argument for Model 2. We also
need to remove the deviance column that JAGS automatically returns (this is the 4th column
of C1 and the 1st column of C2).
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library("rjmcmc")

getsampler(C1, "draw1")

getsampler(C2, "draw2", order=c(2,3,1,4))

We are now ready to read in the data and call rjmcmcpost. In this case, we assign model
priors that result in each model being visited in approximately equal proportion – this will
skew our posterior model probabilities towards 0.5 but make our Bayes factor estimates more
robust. We choose t∗ = 6 because of the high data concentration around t = 6.

data("Croaker2", package="FSAdata")

CroakerM = Croaker2[which(Croaker2$sex=="M"),]

y = CroakerM$tl; t = CroakerM$age

tstar = 6

growth = rjmcmcpost(post.draw = list(draw1,draw2), g = list(g1,g2),

ginv = list(ginv1,ginv2), likelihood = list(L1,L2),

param.prior = list(p.prior,p.prior),

model.prior = c(0.7,0.3), chainlength = 5000, progress = FALSE)

growth$result

## $‘Transition Matrix‘

## [,1] [,2]

## [1,] 0.6869592 0.3130408

## [2,] 0.2985453 0.7014547

##

## $‘Posterior Model Probabilities‘

## [1] 0.4881493 0.5118507

##

## $‘Bayes Factors‘

## [1] 1.000000 2.446625

##

## $‘Second Eigenvalue‘

## [1] 0.3884139

The prior odds are equal to 0.3
0.7 , so BF21 = 0.512

0.488 ×
0.3
0.7 = 2.45, despite the fitted models being

barely distinguishable by eye (Figure 4). Repeating the function call with equal model priors
gives posterior model probabilities of 0.287 and 0.713 for Models 1 and 2.

These results indicate that Model 2, the von Bertalanffy curve, may fit Atlantic croaker growth
better than Model 1, the Gompertz function. This is perhaps unsurprising since Ogle (2016)
used the male croaker data to demonstrate the suitability of the von Bertalanffy function for
modelling fish growth. We also note that both fitted models seem to approximate exponential
growth; there is no evidence of a sigmoid shape in the Gompertz model. This may be due to
the lack of information we have on young fish, with only a single observation for t < 2.

The bijections g and ginv we have used are efficient at the expense of simplicity. Suppose
we did not wish to go through the algebra required to find efficient bijections. We could
instead use the defaultpost function to invoke the default method using normal posterior
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Figure 4: Fitted growth curves for male Atlantic croakers, obtained using median posterior
estimates from JAGS output. The von Bertalanffy curve is preferred by RJMCMC with
probability 2.447.

approximations. The only difference in the function call is that g and ginv are not required,
and the post.draw functions are replaced with the codas themselves.

growthDef = defaultpost(coda = list(C1, C2[,c(2,3,1,4)]),

likelihood = list(L1, L2),

param.prior = list(p.prior, p.prior),

model.prior = c(0.5,0.5), chainlength = 5000,

progress = FALSE)

growthDef$result

## $‘Transition Matrix‘

## [,1] [,2]

## [1,] 0.82519628 0.1748037
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## [2,] 0.06982554 0.9301745

##

## $‘Posterior Model Probabilities‘

## [1] 0.2854341 0.7145659

##

## $‘Bayes Factors‘

## [1] 1.000000 2.503435

##

## $‘Second Eigenvalue‘

## [1] 0.7553707

3.6. Example 2: Logistic Regression – Seeds

Originally appearing in the distribution of WinBUGS (Lunn, Thomas, Best, and Spiegelhalter
2000), this example considers a 2× 2 factorial experiment of seed germination rates with two
types of seeds and two root extracts. The data is presented in Table 1.

i Xi Ni Extract Seed i Xi Ni Extract Seed

1 10 39 0 B 12 8 16 1 B
2 23 62 0 B 13 10 30 1 B
3 23 81 0 B 14 8 28 1 B
4 26 51 0 B 15 23 45 1 B
5 17 39 0 B 16 0 4 1 B
6 5 6 0 C 17 3 12 1 C
7 53 74 0 C 18 22 41 1 C
8 55 72 0 C 19 15 30 1 C
9 32 51 0 C 20 32 51 1 C
10 46 79 0 C 21 3 7 1 C
11 10 13 0 C

Table 1: Number of germinated seeds Xi out of total seeds Ni. Seeds were either beans (B)
or cucumbers (C), and were in the presence of one of two root extracts.

The data are modelled as exchangeable binomial random variables

Xi ∼ Bin(Ni, pi), ηi = logit(pi),

where pi are the germination rates. The linear predictor ηi is modelled in three different ways:
Model 1: ηi = γfi ,
Model 2: ηi = γfi + εi, εi ∼ N(0, σ2ε ),
Model 3: ηi ∈ R,
where the factor level of an observation i is f(i) = 2Ei+Si+1 with indicators Ei for extract 1
and Si for seed type ‘bean’. We wish to use RJMCMC to investigate the strength of evidence
for each of these models.

Respectively, our parameter sets are of dimensions 4, 25 and 21, so the universal parameter
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ψ is of dimension 25. Twenty-one augmenting variables will be required for Model 1 and four
will be required for Model 3, as shown in Table 2.

ψ Θ(1) Θ(2) Θ(3)

ψ1 γ1 γ1 u1
ψ2 γ2 γ2 u2
ψ3 γ3 γ3 u3
ψ4 γ4 γ4 u4
ψ5 u5 ε1 η1
ψ6 u6 ε2 η2
ψ7 u7 ε3 η3
...

...
...

...
ψ25 u25 ε21 η21

Table 2: The universal parameter vector ψ and the corresponding model-specific parameters.

The log-likelihoods for these models can be written as follows:

L1 = function(theta){

pr = plogis(theta[f])

sum(dbinom(X, N, pr, log=T))

}

L2 = function(theta){

pr = plogis(theta[f] + theta[5:25])

sum(dbinom(X, N, pr, log=T))

}

L3 = function(theta){

pr = plogis(theta[5:25])

sum(dbinom(X, N, pr, log=T))

}

Next, we specify priors on our parameters. We define a variance hyperparameter V used to
control how much the parameters can vary. Then (using V ) we assign the following priors:
Model 1: γi ∼N(0, V −1), i = 1, . . . , 4
Model 2: γi ∼N(0, (2V )−1), i = 1, . . . , 4, σ2ε = (2V )−1,
Model 3: ηi ∼N(0, V −1), i = 1, . . . , 21.
Link and Barker (2009) show that assigning 1

V a Gamma(3.29, 7.80) prior gives the desirable
property that p is approximately Uniform(0, 1) distributed. Finally, we need priors on the
augmenting variables. Since their posterior distributions are not informed by data, the poste-
rior is equal to the prior – for this reason, a sensible choice is to choose the priors for u1, . . . , u4
(Model 3) as normal approximations to the posteriors for γ1, . . . , γ4 (Model 2). Similarly, we
choose the prior for u5, . . . , u25 (Model 1) to be normal approximations of the posteriors for
ε1, . . . , ε21 (Model 2).
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prior1 = function(theta){

sum(dnorm(theta[1:4], 0, 1/sqrt(theta[26]), log=T)) +

sum(dnorm(theta[5:25], mu[2,5:25], sig[2,5:25], log=T))

}

prior2 = function(theta){

sum(dnorm(theta[1:25], 0, 1/sqrt(2*theta[26]), log=T))

}

prior3 = function(theta){

sum(dnorm(theta[1:4], mu[2,1:4], sig[2,1:4], log=T)) +

sum(dnorm(theta[5:25], 0, 1/sqrt(theta[26]), log=T))

}

Note that mu and sig above are 3× 25 matrices of posterior means and standard deviations.
Each row corresponds to one of the three models, and each column corresponds to a parameter.

Finally, we define bijections from the ψ space to each model-specific parameter set. We choose
to use an identity transformation for Model 2, meaning that g2(ψ) = θ. From here, we can use
the value of γi, under Model 2 to ‘predict’ the value of γi under Model 1 using the regression
equation to get

g1(ψi) = µ1(γi) +
σ1(γi)

σ2(γi)
(ψi − µ2(γi))

for i = 1, . . . , 4, and where µM (·) and σM (·) denote the posterior means and standard devi-
ations under Model M . We can do the same thing to relate εi under Model 2 with ηi under
Model 3:

g3(ψi+4) = µ3(ηi) +
σ3(ηi)

σ2(εi)
(ψi+4 − µ2(εi))

for i = 1, . . . , 21. The bijections for the augmenting variables can simply be the identity map.

g1 = function(psi){

theta = c(mu[1,1:4] + sig[1,1:4]/sig[2,1:4] *(psi[1:4] - mu[2,1:4]),

psi[5:26]) # u5,...,u25 and V follow identity map

}

ginv1 = function(theta){

psi = c(mu[2,1:4] + sig[2,1:4]/sig[1,1:4] *(theta[1:4] - mu[1,1:4]),

theta[5:26])

}

g2 = function(psi){ psi }

ginv2 = function(theta){ theta }

g3 = function(psi){

theta = c(psi[1:4],

mu[3,5:25] + sig[3,5:25]/sig[2,5:25]*(psi[5:25] - mu[2,5:25]),

psi[26])

}
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ginv3 = function(theta){

psi = c(theta[1:4],

mu[2,5:25] + sig[2,5:25]/sig[3,5:25]*(theta[5:25] - mu[3,5:25]),

theta[26])

}

We again use JAGS and getsampler to define functions draw1, draw2, and draw3 which
sample from coda output; the code used can be found in the Appendix. Finally, we read in
the data and complete the function call. We again assign prior model probabilities that lead
to roughly equal sampling frequencies.

seeds = rjmcmcpost(post.draw = list(draw1, draw2, draw3),

likelihood = list(L1, L2, L3),

g = list(g1, g2, g3), ginv = list(ginv1, ginv2, ginv3),

param.prior = list(prior1, prior2, prior3),

model.prior = c(0.011, 0.028, 0.961), chainlength = 5000,

progress=FALSE)

seeds$result

## $‘Transition Matrix‘

## [,1] [,2] [,3]

## [1,] 0.66036416 0.02624654 0.31338930

## [2,] 0.02926903 0.91356500 0.05716597

## [3,] 0.30958321 0.05354773 0.63686905

##

## $‘Posterior Model Probabilities‘

## [1] 0.3403495 0.3161518 0.3434987

##

## $‘Bayes Factors‘

## [1] 1.00000000 0.36492626 0.01155232

##

## $‘Second Eigenvalue‘

## [1] 0.8746264

The results indicate that Model 1, the simplest model, is preferred. The Bayes factors in
favour of this Model are BF12 = 2.74 and BF13 = 86.56 (by convention we work with Bayes
factors greater than one, so we have inverted the Bayes factors from the output above). With
equal model weights, the posterior model probabilities are 0.74, 0.251, and 0.009.



18 R Package rjmcmc

4. Discussion

Bayes factors are often difficult to compute, impeding the practicality of Bayesian multimodel
inference. The rjmcmc package presents a relatively simple framework for accurately estimat-
ing Bayes factors and posterior model probabilities for a set of specified models. Other R
packages exist that use Bayes factors and marginal likelihoods for model selection. For in-
stance, BayesFactor (Morey, Rouder, and Jamil 2015) is a package for calculating Bayes factors
for simple designs including ANOVA and linear regression models. Similarly, BMS (Zeugner
2015) is powerful for working with linear models, particularly in variable selection and model
averaging problems, and allows efficient computation of posterior model probabilities for these
models. The MitISEM package (Basturk, Hoogerheide, Opschoor, and van Dijk 2017) can
calculate the marginal likelihood of a function using Importance Sampling, given that the
function can be well-approximated by a mixture of t-distributions. The MCMCpack package
(Martin, Quinn, Park, Vieille-dent, Malecki, and Blackwell 2017) can use post-processing to
calculate Bayes factors for eighteen common statistical models, as long as these models were
also fit using MCMCpack. The value of rjmcmc lies in its generality. Users are not restricted
to common classes of models – custom probability models can also be compared.

The use of Bayes factors is controversial. There are well documentated issues with the Bayes
factor when certain vague or improper priors are used (Berger and Pericchi 1998, Han and
Carlin 2001). We stress that we do not advocate the unconditional use of Bayes factors over
other multimodel methods – we simply provide a new way to calculate them. In particular,
care should be taken when candidate models are nested, as in variable selection contexts.
We think Bayes factors are best used when candidate models are non-nested (as in our first
example) and the variability in the prior predictive distribution is similar between models.
In variable selection problems, we follow Gelman et al. (2013, page 84) in advocating for
continuous model expansion in place of Bayes factors.

The rjmcmc package is not suited to variable selection from a practical perspective either.
For example, consider a regression problem with k predictor variables where we wish to
compare all possible models. Then, even excluding interactions, we must fit 2k models and
calculate each posterior distribution by MCMC. The burden of running every model is likely
to be prohibitive. The BMS package provides a better alternative here, using a birth-death
sampler for large values of k rather than considering all possible models.

As the algorithm uses coda output, most of the intensive computation is completed prior
to the function call. The model fitting and model comparison steps are effectively separate.
The nature of the algorithm means that we can, for instance, adjust our choice of bijections
without recalculating posteriors. For models of very high dimensionality, storing codas may
become an issue. Because the algorithm requires a posterior distribution for every parameter,
our coda files could occupy considerable memory. If full conditional distributions are known
for any of the parameters, we may be able to mitigate this problem by computing posterior
draws as required, instead of storing them in a coda.

The gradients calculated from reverse-mode automatic differentiation should theoretically be
more efficient for statistical purposes than the directional derivatives obtained from forward-
mode, since we usually have fewer outputs than we have parameters. If madness was swapped
out for a reverse-mode AD engine, one might expect an increase in performance for models
with many parameters. However, as mentioned earlier, madness appears a more accessible
option for R users than any current reverse-mode implementation.
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Appendix

Defining coda-sampling functions for Example 1

We obtain coda files using the program JAGS (Plummer et al. 2003), specifically the package
R2jags which interfaces with R. A coda file contains the posterior distribution for the param-
eters, which we randomly sample from. First, we must define our models. Using R2jags, the
models can be defined in an external text file, or in an R function using JAGS syntax. Here,
we use text files fishGomp.txt and fishBert.txt.

## In fishGomp.txt:

model{

for(ti in 1:10){

mu[ti] <- A*exp(-b*exp(-c*ti))

}

for(i in 1:n){

y[i] ~ dnorm(mu[t[i]], tau)

}

A ~ dnorm(0, 0.00001)T(0,) #

b ~ dnorm(0, 0.05)T(0,) # precision = 1/variance

c ~ dnorm(0, 1)T(0,) #

tau ~ dgamma(0.01, 0.01)

}

## In fishBert.txt:

model{

for(ti in 1:10){

mu[ti] <- L*(1-exp(-k*(ti+t0)))

}

for(i in 1:n){

y[i] ~ dnorm(mu[t[i]], tau)

}

L ~ dnorm(0, 0.000001)T(0,)

t0 ~ dnorm(0, 0.05)T(0,)

k ~ dnorm(0, 1)T(0,)

tau ~ dgamma(0.01, 0.01)

}

Next, we perform the MCMC sampling using R2jags.

## Gompertz model

inits = function(){list(A = abs(rnorm(1, 350, 200)), b = abs(rnorm(1, 2, 3)),

c = abs(rnorm(1, 1, 2)), tau = rgamma(1, 0.1, 0.1))}

jagsfit1 = jags(data = c(’y’, ’t’, ’n’), inits,

params = c("A", "b", "c", "tau"), n.iter=1e5, n.thin=20,

model.file = "fishGomp.txt")
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C1 = as.matrix(as.mcmc(jagsfit1))[,-4]

## von Bertalanffy model

inits = function(){list(L = abs(rnorm(1, 350, 200)), t0 = abs(rnorm(1, 2, 3)),

k = abs(rnorm(1, 1, 2)), tau = rgamma(1, 0.1, 0.1))}

jagsfit2 = jags(data = c(’y’, ’t’, ’n’), inits,

params = c("L", "t0", "k", "tau"), n.iter=1e5, n.thin=20,

model.file = "fishBert.txt")

C2 = as.matrix(as.mcmc(jagsfit2))[,-1]

Defining coda-sampling functions for Example 2

## In model1.txt:

model{

for(i in 1:21) {

X[i] ~ dbin(p[i],N[i])

logit(p[i]) <- beta[f[i]]

}

for(j in 1:4){

beta[j] ~ dnorm(0, V) # precision, not variance

}

V ~ dgamma(3.29, 7.80)

}

The JAGS files for models 2 and 3 are very similar.

We then run the sampler to estimate the posteriors and define the coda functions.

## Fit Model 1

jags1 = jags(data = c(’N’, ’X’, ’f’), param=c(’beta’, ’V’), n.iter=n.i,

n.burnin=n.burn, model.file = "model1.txt")

fit1 = as.mcmc(jags1); coda1 = as.matrix(fit1)[,-5]

## Fit Model 2

jags2 = jags(data = c(’N’, ’X’, ’f’), param=c(’beta’, ’eps’, ’V’), n.iter=n.i,

n.burnin=n.burn, model.file = "model2.txt")

fit2 = as.mcmc(jags2); coda2 = as.matrix(fit2)[,-5]

## Fit Model 3

jags3 = jags(data = c(’N’, ’X’), param=c(’eta’, ’V’), n.iter=n.i,

n.burnin=n.burn, model.file = "model3.txt")

fit3 = as.mcmc(jags3); coda3 = as.matrix(fit3)[,-1]

## Re-order codas to match order in manuscript
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coda2 = coda2[,c(1:5, 16, 19:25, 6:15, 17:18, 26)]

coda3 = coda3[,c(1, 12, 15:21, 2:11, 13:14, 22)]

## Calculate posterior means and standard deviations

mu = sig = matrix(NA, 3, 25)

for(j in 1:25){

mu[2,j] = mean(coda2[,j])

sig[2,j] = sd(coda2[,j])

if(j<=4){

mu[1,j] = mean(coda1[,j])

sig[1,j] = sd(coda1[,j])

} else {

mu[3,j] = mean(coda3[,j-4])

sig[3,j] = sd(coda3[,j-4])

}

}

## attach posteriors for augmenting variables to codas

lcoda = dim(coda1)[1]

u1_4 = matrix(rnorm(lcoda*4, mu[2,1:4], sig[2,1:4]), lcoda, 4, byrow=T)

u21_25 = matrix(rnorm(lcoda*21, mu[2,5:25], sig[2,5:25]), lcoda, 21, byrow=T)

coda1 = cbind(coda1[,1:4], u21_25, coda1[,5])

coda3 = cbind(u1_4, coda3)

## Define functions to randomly sample from posterior

getsampler(coda1, "draw1")

getsampler(coda2, "draw2")

getsampler(coda3, "draw3")
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