
Random Uniform Forests : an overview

Saïp CISS∗

September 17, 2014

Abstract

Random Uniform Forests are a variant of Breiman’s Random Forests (tm) (Breiman,
2001) and Extremely randomized trees (Geurts et al., 2006). Random Uniform
Forests are designed for classification and regression. They are an ensemble model

that builds many unpruned and randomized binary decision trees. Main goals of the
algorithm are to achieve a low correlation between trees (or trees residuals), to allow
a deep analysis of variable importance and selection and to be natively incremental.
Random Uniform Forests are enough versatile to build a purely random forest or to
do Bagging with random uniform decision trees, which are the core of the model. We
provide an R package (randomUniformForest) that implements almost all functions
of the algorithm, including Breiman’s bounds and, in this overview, we present main
theoretical arguments of the model and fully comprehensive examples with R code.

Keywords : Random Uniform Forests, Random Forests, statistical learning, machine
learning, ensemble learning, classification, regression, R package.

∗Modal’X. Université Paris Ouest Nanterre La Défense. saip.ciss@wanadoo.fr

1

Contents

1 Introduction 2

2 Random uniform decision trees 3
2.1 Regions . 3
2.2 Stopping rules . 4
2.3 Optimization criterion . 4
2.4 Decision rule . 5
2.5 Algorithm . 5

3 Random Uniform Forests 6
3.1 Algorithm . 6
3.2 Key concepts . 6
3.3 Decision rule . 7
3.4 Convergence of prediction error . 7
3.5 The OOB classifier . 8
3.6 Bounds . 9
3.7 Decomposition of prediction error and OOB bounds 11
3.8 Variable importance . 13

4 Some extensions 17
4.1 Prediction and confidence intervals . 17
4.2 Output perturbation sampling . 18
4.3 Incremental learning . 19

5 Examples 20
5.1 Classification . 21

5.1.1 Iris data (assessment of variable importance) 21
5.1.2 Vehicle data . 27
5.1.3 German credit data (cost sensitive learning) 30
5.1.4 Breast cancer data (more on Breiman’s bound) 33

5.2 Regression . 35
5.2.1 AutoMPG data . 35
5.2.2 Abalone, Concrete compressive strength, Boston housing data . . 38

5.3 Incremental learning, big data and/or streaming data 38

6 Conclusion 45

1 Introduction

Random Uniform Forests belong to the family of ensemble models that build many based
learners, then combine them to achieve tasks like classification or regression. They are
first designed to be less computationally expensive than Breiman’s Random Forests, but
to keep all properties of the latter. they also follow the idea of Extremely Randomized
Trees (Extra-Trees) but, here, we do not want to loose the OOB (Out-of-bag) evaluation.

2

Implementations of ensemble learning are widespread, using different manners, but we
focus on Random Forests and Extra-Trees since they provide efficient algorithms that
can be used in R (R core Team, 2014) for real life problems and are close to Random
Uniform Forests for their decision rule. Based learners are decision trees, like the CART
(Breiman et al., 1984) paradigm, but in Random Uniform Forests they are unpruned and
not deterministic.

In Random Uniform Forests, we seek strong randomization and some kind of global
optimization. Hence, we want to achieve low correlation between trees (or trees resid-
uals) leaving average variance of trees, eventually, increase but not to much. We are
not concerned by bias, since we assume that if trees are enough randomized, ensemble
model should have low bias. If not, Random Uniform Forests implement post-processing
functions designed to reduce bias. So, conceptually, we build the model using the next
steps.

i) For classification, we first draw, for each tree and with replacement, n observations
among the n of the training sample (the bootstrap). For regression, we use subsampling
(drawing, without replacement, m points out-of n, m < n).

ii) Each tree is grown by sampling uniformly, with replacement, a set of variables at
each node. It means that, if the dimension of the problem is d, one can choose ⌈βd⌉
variables, β ≥ 1/d, at each node to grow the tree.

iii) Each cut-point is generated randomly, according to the continuous Uniform dis-
tribution on the support of each candidate variable. Hence, we do not use any local
optimization to find the best cut-point. Note that each cut-point follows exactly the
continuous Uniform distribution and, so, is not drawn among points in the node.

iv) Optimal random node is, then, selected by maximizing Information Gain (classifi-
cation) or minimizing ’L2’ (or ’L1’) distance (regression).

Each of the four elements above has a difference with either, Random Forests or Extra-
Trees. Main arguments reside in drawing (with replacement) variables, using the contin-
uous Uniform distribution and choosing the optimization criterion. One can note that at
the algorithmic level, some others arguments are used (e.g. for categorical variables).
In both Extra-Trees and Random Forests, there is no replacement when drawing vari-
ables.
Extra-Trees use random cut-point, which is drawn uniformly between the minimal and
the maximal value of each candidate variable for the current node.
As in Random Forests, Random Uniform Forests use bootstrap for classification, but in
the case of regression, sub-sampling is used, giving better results than bootstrap.
All three algorithms use a different criterion to find optimal cut-point and variable, for
each node, between candidates.

In the next section we focus on theoretical arguments of random uniform decision trees,
the base learners. In the section 3, we provide the details of Random Uniform Forests.

3

In section 4, we provide some useful extensions of the model.
In section 5, we give some fully comprehensive and reproducible examples with real life
data sets.

2 Random uniform decision trees

Random uniform decision trees are unpruned and randomized binary decision trees. They
use the continuous Uniform distribution to be built (that give them their name) and, un-
like CART, do not seek optimality. They, first, used to be the core of Random Uniform
Forests and just growing one random uniform decision tree is useless (in comparison to
CART). But understanding Random Uniform Forests need first to know mechanisms of
the former. We suppose than the reader knows what is a decision tree and are just
concerned on how it is grown in this specific case. When building a (random uniform)
decision tree we need, essentially, to know three aspects :
- how to grow and modify a node (region),
- when to stop growing tree,
- how to define and build the decision rule.

To better clarify these steps, we first give a quick definition of trees we propose.

Definition. A random uniform decision tree is a binary decision tree in which nodes
are built using random cut-points. For each step of the recursive partitioning βd vari-
ables, β ≥ 1/d are drawn with replacement. Then for each candidate variable, a cut-point
α is drawn using the continuous Uniform distribution on the support of each candidate.
Optimal random node is the one that maximizes information gain (in classification) or
that minimizes a L

2 distance (or another one) in regression. The recursive partitioning
is pursued unless a stopping rule is matched. The decision rule is then applied and exists
only for terminal nodes.

2.1 Regions

Random uniform decision trees are closed to other types of decision trees and a node has
always two or zero children nodes. We can now get the details of the algorithm in a few
lines. We first have to define what is a region and for that, we call P , a partition of the
data. Following Devroye et al. (1996), we propose this definition.

Definition. A is a region of the partition P if, for any B ∈ P , A ∩B = ∅ or A ⊆ B.

Hence, we suppose that we have Dn = {(Xi, Yi), 1 ≤ i ≤ n}, corresponding to the obser-
vations and responses of the training sample, where (X, Y) is a Rd × Y-valued random
pair. A is an optimal region of the random uniform decision tree if :

for any A ∈ P ,
{
X

(j∗)
i ≤ αj∗ |Dn

}
, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

for any AC ∈ P ,
{
X

(j∗)
i > αj∗ |Dn

}
, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

4

where, for classification :
αj ∼ U

(
min(X(j)|Dn), max(X

(j)|Dn)
)

and j∗ = arg max
j∈{1,...,d}

IG(j,Dn),

and for regression :
αj ∼ U

(
min(X(j)|Dn), max(X

(j)|Dn)
)

and j∗ = arg min
j∈{1,...,d}

L2(j,Dn).

2.2 Stopping rules

Once A and AC , its complementary region, are found, we repeat the recursive partitioning
for the two regions (drawing random variables and cut-points and choosing the optimal
region) until we meet some conditions, which are :
- the minimal number of observations is reached,
- for one region, all the observations have the same label (or value),
- for one region, all the observations are the same,
- IG(j,Dn) (or, in regression, L2(j,Dn)) reached a threshold (usually 0).

2.3 Optimization criterion

Now, we just need to define the IG function, which is the information gain, and a decision
rule for the tree. For classification, let us suppose that Y ∈ {0, 1}. We have :

IG(j,Dn) = H(Y |Dn)−
[
H
((
Y |X(j) ≤ αj

)
|Dn

)
+ H

((
Y |X(j) > αj

)
|Dn

)]
,

where H is the Shannon entropy (note that we use it with the natural logarithm),
and

H(Y |Dn) = −
1∑

c=0

{
1

n

n∑

i=1

I{Yi=c} log

(
1

n

n∑

i=1

I{Yi=c}

)}
,

with 0 log 0 = 0, so that H(Y) ≥ 0.

Let n
′

=
∑n

i=1 I
{

X
(j)
i ≤αj

}, then

H
((
Y |X(j) ≤ αj

)
|Dn

)
= −

n
′

n

1∑

c=0

{
1

n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

} log

(
1

n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

}

)}
,

and

H
((
Y |X(j) > αj

)
|Dn

)
=

−
n− n

′

n

1∑

c=0

{
1

n− n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

} log

(
1

n− n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

}

)}
.

For regression, we have

L2(j,Dn) =
n∑

i=1

(
YiI

{

X
(j)
i ≤αj

} − ŶAI
{

X
(j)
i ≤αj

}

)2

+
n∑

i=1

(
YiI

{

X
(j)
i >αj

} − ŶACI{
X

(j)
i >αj

}

)2

,

with

ŶA =
1

n′

n∑

i=1

YiI
{

X
(j)
i ≤αj

} and ŶAC =
1

n− n′

n∑

i=1

YiI
{

X
(j)
i >αj

}.

5

2.4 Decision rule

Each time a stopping criterion is met, we define the decision rule, g
P
, for an optimal (and

terminal) node A. We have for classification :

g
P
(x,A,Dn) = g

P
(x) =




1, if

∑n
i=1 I{Xi∈A,Yi=1} >

∑n
i=1 I{Xi∈A,Yi=0}, x ∈ A

0, otherwise.

And for regression :

g
P
(x,A,Dn) = g

P
(x) =

1∑n
i=1 I{Xi∈A}

n∑

i=1

YiI{Xi∈A}, x ∈ A.

2.5 Algorithm

We can summarize the different tasks mentioned above by the following algorithm :

1- draw with replacement (or subsample, m out-of n, in case of regression) n obser-
vations of Dn.
a) draw with replacement ⌈βd⌉ variables,
b) for each of the ⌈βd⌉ variables, draw α using the continuous Uniform distribution on
the support of each candidate variable,
2- for each of the ⌈βd⌉ variables, choose the pair (j∗, α∗) that maximizes IG(j,Dn) for
classification, and for regression the one that minimizes L2(j,Dn),
3- (j∗, α∗) is the pair that defines the regions A and AC ,
4- If a stopping rule is met, stop the partitioning and build the decision rule g

P
,

5- If not, pursue step 1 to 5 for A and AC .

In a random uniform decision tree, partitioning leads to a large and deep tree (if bal-
anced, depth is log(n)/log(2)) due to the randomness introduced. Since no pruning is
done, terminal nodes tend to have a very few values leading to a high variance of the tree.
But bias remains low and an interesting property is that more randomness does not hurt
bias. Hence, in a random uniform décision tree prediction error is not an achievement,
but high variance is. To avoid it increase too much, perturbations on the training sample
sent to optimization criterion are the main argument. The second one is that no local
optimization is done since we want to lower the correlation between trees : following
Breiman’s ideas, as variance for a single tree is high and hard to reduce, one lets it get
high (introducing more diversity) and lets ensemble do the reduction using law of large
numbers when trees are independent. In practice, they are not and one can use correla-
tion to measure level of dependence.

Comparing to CART, one single random uniform decision tree will have an higher vari-
ance, but average variance of trees will be lower, in most cases, than CART variance.
Then next step is to know how averaging will affect prediction error.

6

3 Random Uniform Forests

As Random Forests do, we use ensemble of random uniform decision trees to build a
Random Uniform Forest. Algorithm is straightforward but one can note that many
improvements come from the algorithmic level where a lot of randomness is essential to
get improvements over a simple averaging of trees. Another point of view is that Random
Uniform Forests use the Bayesian paradigm : the classifier is the result of almost all
parameters for a fixed data set.

3.1 Algorithm

Once the structure of a random uniform decision tree is known, algorithm needs a few
lines (but much more in practice) :
1- For each tree, from b = 1 to B, grow a random uniform decision tree and build its
decision rule
2- For the B trees, apply the rule ḡ(B)

P
(see section 3.3).

3.2 Key concepts

Before going further, one can note the difference of concept between Random Forests and
Random Uniform Forests :
in Random Forests, a tree is grown by choosing, at each step of the recursive partitioning,
the optimal region among a few locally optimal and random regions. In Random Uniform
Forests, the optimal region is chosen among many random regions. In extremely random-
ized trees, the optimal region is chosen among a few random regions.
In all cases, guarantees are due to the law of large numbers that generates convergence
and needs trees to be independent.

Why not simply use Extra-Trees which are the fastest and have similar performance
than Random Forests (and sometimes better, in case of regression)?
The first reason is that they lack of OOB evaluation, since they need all training exam-
ples for each tree grown. In practice, OOB informations are much more important than
just being an equivalent of cross-validation.
The second reason is linked with optimization criterion which is more complex in Extra-
Trees (in both classification and regression). We are looking for (very) simple optimiza-
tions in Random Uniform Forests in order to preserve diversity.
The third one is that we think that the dimension of the problem matters as the ran-
domization is increased and, especially in the regression case, dimension is one key to the
problem.

the main difference with Random Forests appears in trees correlation which is usually
higher in the latter (at least for regression) and their average variance smaller. The
motivation of pursuing low correlation appears directly in the law of large numbers and
theoretical properties of Random Forests, and Random Uniform Forests, that we want
to be the closest to the practice.

7

Saying in other words, Random Uniform Forests are an application of Breiman’s ideas
using (strong) randomization to the point of view of observations rather than to the
dimension whose we need, here, more for optimization.

3.3 Decision rule

Let us write g
P
(X)

def
= g

P
(X, θ), where θ is the parameter that translates the randomness

introduced in the tree.
For the b-th tree, 1 ≤ b ≤ B, we have g(b)

P
(X)

def
= g

P
(X, θb). For an ensemble of trees, the

decision rule, ḡ(B)
P

, is simple to write. We have for (binary) classification :

ḡ(B)
P

(x) =





1, if
∑B

b=1 I{g
(b)
P

(x)=1}
>
∑B

b=1 I{g
(b)
P

(x)=0}

0, otherwise.

And for regression :

ḡ(B)
P

(x) =
1

B

B∑

b=1

g(b)
P
(x).

Rule is very simple and one can ask how to find interesting properties and how to explain
good results of ensemble models. Trees in Random (Uniform) Forests are designed to
be weakly dependent in order to apply most of their properties. Breiman provides main
theoretical properties of Random Forests and Random Uniform Forests simply inherit
from them.

3.4 Convergence of prediction error

Let us first look classification.
Consider mg, the margin function that measures the difference (in frequency) between
points correctly classified and points misclassified. We have

mg(X, Y) =

(
1

B

B∑

b=1

I
{g

(b)
P

(X)=Y }

)
−

(
1

B

B∑

b=1

I
{g

(b)
P

(X) 6=Y }

)
.

Let us call (following Breiman’s notation), PE∗ the prediction error. We have

PE∗ = PX,Y (mg(X, Y) < 0) ,

and by the law of large numbers, when B → ∞,

PE∗ p.s.
→ PE = PX,Y{Pθ(gP

(X, θ) = Y)−Pθ(gP
(X, θ) 6= Y) < 0}.

(Breiman, 2001, theorem 1.2).

For regression, we get same results. We have

PE∗(forest)
def
= PE∗(ḡ(B)

P
(X)) = EX,Y

(
Y −

1

B

B∑

b=1

g(b)
P
(X, θb)

)2

,

8

and when B → ∞,

PE∗(ḡ(B)
P

(X))
p.s.
→ PE(ḡ(B)

P
(X)) = EX,Y (Y − EθgP

(X, θ))2 .

(Breiman, 2001, theorem 11.1).

- As a consequence, Random Uniform Forests do not overfit if trees are independent
(in practice, a little dependent). One can note that low correlation between trees is easy
to achieve in (binary) classification (usually around 0.1) but much harder in regression
(usually around 0.3 or more).
- A second consequence is that one does not need to builds a lot of trees. Convergence
to the true prediction error of the model will happen as one add trees to the forest.
- The third one is that classification needs first to lower bias when regression needs first
to reduce correlation.

But the main application of convergence is the ability to just focus on ways to reduce
prediction error without the need to further work on consistency. Note that, for the
latter, first results for regression have been obtained recently (Scornet et al., 2014) and
will probably lead to interesting developments.

3.5 The OOB classifier

the Out-of-bag (OOB) informations are the observations that do not participate to the
trees building. For each tree, due to bootstrap or sub-sampling, some observations are
not chosen and are stored to build the OOB classifier whose decision rule is ḡ

(B)

P ,oob(X).
The OOB classifier exists only for the training sample and use B′ trees, B′ < B with n
observations. Note that the B′ trees are not necessary the same for each observation that
need to be evaluated. We have for an observation x and for only Dn

ḡ(B)
P ,oob

(x) =





1, if
∑B

b=1 I
{

g
(b)
P

(x)=1
}I{b∈G− (x,B)} >

∑B
b=1 I

{

g
(b)
P

(x)=0
}I{b∈G− (x,B)}

0, otherwise.

And, for regression :

ḡ(B)
P ,oob

(x) =
1∑B

b=1 I{b∈G− (x,B)}

B∑

b=1

g(b)
P
(x)I{b∈G− (x,B)},

where G
−

(x,B) is the set of trees, among the B, which have never classified x.

The OOB classifier gives an estimate of prediction error and lead to many improvements,
like post-processing, in order to control prediction error or for others purposes. One of
the most important is that it gives a way to prevent overfitting using it with Breiman’s
bounds

9

3.6 Bounds

As correlation decreases, average variance of trees increases and it begins harder to reduce
prediction error. If one wants to control both correlation and variance, one key is to
observe and monitor Breiman’s bounds. These are the bounds of Random (Uniform)
Forests that ensure that prediction error (under the i.i.d. assumption) will not increase
beyond a limit. Most applications of Breiman’s bounds are linked with the OOB classifier
(that inherit to the bounds) and show if one has to do much work (also depending on n,
but not on feature engineering) to improve the modeling or if there is no more room for
the algorithm. First bounds involve classification and we have two. The first bound is,
by the Bienaymé-Tchebychev inequality,

PE∗ ≤
Var(mr)

s2
,

where
mr(X, Y) = Pθ(gP

(X, θ) = Y)−Pθ(gP
(X, θ) 6= Y),

is the limit of mg and s, s > 0, the strength (or margin), is

s = EX,Y{mr(X, Y)}.

This first bound states that prediction error will always be under a limit which is explicit
but unknown (unless one evaluates it using OOB informations). It is the upper bound
of prediction error but it can be loose (but useful in case of problem with imbalanced
classes).

The second bound is tighter. We have (Breiman, 2001, theorem 2.3)

PE∗ ≤
ρ̄(1− s2)

s2
,

where

ρ̄ =
Eθ,θ

′ [ρ(θ, θ
′

)
√
Var(θ)

√
Var(θ′)]

Eθ,θ
′ [
√

Var(θ)
√

Var(θ′)]
,

with ρ(θ, θ
′

) is the correlation of two trees of parameters θ and θ′ and Var(θ) is the
variance of the tree, standing as the variance of the raw strength. Let us note the latter
rmg. We have

rmg(θ,X, Y) = I{g
P
(X,θ)=Y } − I{g

P
(X,θ) 6=Y },

and
Var(θ)

def
= Var

X,Y
(rmg(θ,X, Y)).

One can note that mr(X, Y) = Eθ(rmg(θ,X, Y)).

Here we are concerned by correlation and much more by strength, which is connected
with bias. In Random Uniform Forests, we first expect to increase the strength by adding
more trees. If we try more optimization, strength may also increase but correlation will
increase too. Fortunately, we can lower correlation by using more randomization (up to
a limit) without not affecting strength too much. we call Breiman’s second bound the

10

expected bound of prediction error and one result we are looking for is that it must not
be exceeded, thanks to the OOB error. One can note that the bound could not work in
case of imbalanced classes or correlated covariates.

In regression, Breiman also provides a bound and the theoretical prediction error of
the forest. The key differences with classification reside in the fact that :
1 - the bound is not an upper bound,
2 - It tells explicitly where prediction error can be pushed.
3 - It has stronger link with variance of trees.

Suppose that, for all θ, E(Y) = EX(gP
(X, θ)). We have, Breiman (2001, theorem 11.2),

PE(forest) ≤ ρ̄PE(tree),

where
PE(tree)

def
= PE(g

P
(X, θ)) = EθEX,Y(Y − g

P
(X, θ))2,

and ρ̄ is the average correlation between trees residuals.
Moreover, we have the estimator of the theoretical prediction error of the forest given by

P̂E∗(forest) = P̂E∗(ḡ(B)
P

(X)) = ˆ̄ρ


 1

B

B∑

b=1

√√√√ 1

n

n∑

i=1

(
Yi − g

(b)
P (Xi)

)2



2

,

with

ˆ̄ρ =

∑
1≤b<c≤B ρ̂

b,c
(θ, θ′)

√
V̂arθ(Y − g

(b)
P (X, θ))

√
V̂arθ′(Y − g

(c)
P (X, θ′))

∑
1≤b<c≤B

√
V̂arθ(Y − g

(b)
P (X, θ))

√
V̂arθ′(Y − g

(c)
P (X, θ′))

.

In regression we are concerned by both correlation and average prediction error of trees
(and, then, by their variance). Here, each time one wants to lower variance, correlation
increases unless one finds a way to do both reduction. Randomization is, yet, the key
to reduce correlation. To avoid variance getting high, one strategy is to work more on
the dimension, growing large and deep trees (also useful for bias reduction) and, in many
cases, to use post-processing. In regression, the main problem is that randomization
leads to a lot of combinations that affect variance but not enough reduce correlation. As
a consequence, in many experiments, correlation can exceed, 0.3 or 0.4, without reducing
variance.

We can note two points :
- Due to this correlation, not enough low, a part of the problem is linked with bootstrap
which does not generate enough diversity. That’s why it is not used in Random Uniform
Forests for regression.
- Due to variance that may remain high, we allow to draw variables, at each node, with
replacement in order to increase competition, and thus try to reduce average variance of
trees at some cost (expected low) to the correlation.

11

The good news is that it seems there is enough room to reduce prediction error in Ran-
dom (Uniform) Forests. One way to assess it is to monitor the theoretical prediction
error of the forest using the OOB classifier. If it is lower than the OOB prediction error
then improvements may be found at the cost of more computation. If not then one has
to take care of possible overfitting.

3.7 Decomposition of prediction error and OOB bounds

We suppose here that the relation of Y and X is unknown. Only first and second order
moments are expected (and i.i.d. assumption). Then, we can decompose prediction
error in order to find where to look for the control of the latter. We have, for binary
classification (and Y ∈ {0, 1}),

PX,Y

(
ḡ(B)
P

(X) 6= Y
)
= P(Y = 1) +P(ḡ(B)

P
(X) = 1)− 2E

{
Y ḡ(B)

P
(X)

}
. (1)

And for regression,

EX,Y(Y − ḡ(B)
P

(X))2 = E(Y 2)− 2EX,Y

{
Y ḡ(B)

P
(X)

}
+
{
EX

(
ḡ(B)
P

(X)
)}2

+VarX

(
ḡ(B)
P

(X)
)
.

(2)

Replacing Breiman’s bounds by their OOB counterparts give OOB bounds whose we want
to be upper bounds (letting us fully control algorithm and prediction error) of test errors.

A- In the case of classification,
i) let us suppose that for any randomly chosen training and test samples, the first term of
the relation (1) sees its empirical counterparts be approximatively equal in both samples.
ii) Consider the OOB classifier and suppose its correlation, ρ, with Y values of the train-
ing sample is approximatively equal with the one of the forest classifier with unknown Y
values in the test sample.

If n, the size of the training sample, and B are large enough and if

√
V̂arX

(
ḡ
(B)
P (X)

)
−

√
V̂arX

(
ḡ
(B)
P ,oob(X)

)

>

(
1− 2

n

∑n
i=1 I{Yi=1}

)(
1

N−n

∑N
i=n+1 I

{

ḡ
(B)
P

(Xi)=1
} − 1

n

∑n
i=1 I

{

ḡ
(B)
P ,oob

(Xi)=1
}

)

2ρ̂

√
V̂ar(Y |Dn)

then, for any test sample of size, large enough, N − n,

PE
∗
≤ PE

∗(B)

oob .

The claim means that we can found non-asymptotically conditions where OOB error will
be an upper bound of test error. It suffices that we have a large enough train sample (in
practice test sample will also be large for real life problems) under the i.i.d. assumption.
Then the point i) will hold. For the point ii), one can note that the OOB classifier is
a weaker classifier than the forest classifier (since it uses less trees) and is a part of the

12

latter. Hence, its correlation with Y will usually be lower or close to the correlation of
the forest classifier with Y in the test sample.

One can observe here that we bypass the Bayes classifier, working directly on the predic-
tion error. We do not know if the forest classifier will be optimal but since it converges
our main goal will be to check first if OOB error is below the Breiman’s bound (or, in
case of enough correlated covariates or imbalanced classes, below the upper bound of
prediction error). In a second time we can apply the relation provided above to estimate
if overfitting could be a problem. Note that the relation is also a way to look for more
optimization. As it holds one can try to optimize more the forest.

B- In the case of regression,
i) let us suppose that for any randomly chosen training and test samples, enough large,
the empirical counterpart of EX,Y

{
Y ḡ(B)

P
(X)

}
is approximatively equal in the training

and test sample.
ii) Suppose that we get the same result for E(Y 2).

if

∣∣∣∣∣
1

N − n

N∑

i=n+1

ḡ(B)
P

(Xi)

∣∣∣∣∣ <
∣∣∣∣∣
1

n

n∑

i=1

ḡ
(B)

P ,oob(Xi)

∣∣∣∣∣ and V̂ar
X
(ḡ(B)

P
(X)) < V̂ar

X
(ḡ(B)

P ,oob
(X)),

then for any test sample of size, large enough, N − n

PE
∗
(ḡ(B)

P
(X)) ≤ PE

∗
(ḡ

(B)

P ,oob(X)).

In regression we have to focus on mean and variance of the forest (and OOB) classifier,
with respect to each sample, and thus there is more work to do (in classification the sam-
ple has more effect on the prediction error, in regression it is the model). Here, point i) is
not so obvious and the hope is, again, on convergence. In practice, one can for example
use validation sample to estimate how it holds.

Again, we do not rely on the best possible classifier but have a powerful tool with the
theoretical prediction error of the forest that will drive the modeling and that can be con-
nected with the relation above. Note that theoretical prediction error can be misleading
especially if correlation is too high and it does not prevent from overfitting.

To achieve first part of the presentation, we will omit some further steps, like post-
processing, random combinations of features, or extrapolation and will drive on inter-
pretability which give some important keys to the modeling.

3.8 Variable importance

As in Random Forests, we provide a measure for variable importance. In fact, Random
Uniform Forests are built to get deeper in the assessment of variable importance.

A - First measure is the global variable importance, measured directly used the optimiza-
tion criterion. if VI is the score of importance we have for the j-th variable, 1 ≤ j ≤ d,

13

named j∗ if it is optimal,

VI(j∗) =
B∑

b=1

k
b∑

l=1

IGb,l(j
∗, Dn),

and, for regression

VI(j∗) =
B∑

b=1

k
b∑

l=1

L2b,l(j
∗, Dn),

where k
b

is the number of regions for the b-th tree, 1 ≤ b ≤ B. We, then, measure

relative influence by computing VI(j∗)/
∑d

j=1 VI(j). If one variable is never optimal (for
the criterion), then it will never be measured and its influence will be null. This global
variable importance is similar to the one in Random Forests. The problem is that it
does not tell us anything about how one important variable affect the responses. If we
want to do feature selection, we might want to know, for example, features that affect
the most one class or features that lead to high values of Y . Or we might want to know
interactions of variables. To do that and more, we provide many measures that, for the
sake of brevity, we will just give a definition and will enumerate.

B - First, we define the local importance.

Definition. A predictor is locally important at the first order if, for a same obser-
vation, and for all trees, it is the one that has the highest frequency of occurrence in a
terminal node.

Let us note LVI(b)(j, i), the local importance score of the i-th observation and the j-
th variable of X, for the b-th tree,
LVI(j, i), the score for all trees,
LVI(j, .), the score of the j-th variable of X for all observations,
R(j, αj) = {X|X(j) ≤ αj}, a candidate terminal region whose all observations are below
αj, for X(j),
RC(j, αj) = {X|X(j) > αj}, its complementary region.
For simplicity, we rely on classification and define LVI(b)(j, i) by

LVI(b)(j, i)

= I{IGb(j∗,Dn)≥IGb(j,Dn)}

(
I{

g
(b)
P

(Xi,R(j∗,αj∗))=g
(b)
P

(Xi,R(j,αj))
} + I{

g
(b)
P

(Xi,RC(j∗,αj∗))=g
(b)
P

(Xi,RC(j,αj))
}

)
.

The above relation stands that we count when a variable falls into a terminal node, which
tree and which observation are concerned. Knowing that, we can count for all trees, the
function LVI(j, i) given by

LVI(j, i) =
B∑

b=1

LVI(b)(j, i),

and for all trees and observations and for the j-th variable,

LVI(j, .) =
n∑

i=1

LVI(j, i).

14

Next step is to consider that the j-th variable can appear in second, third, or more,
position when counting it, given the definition above. Due to the randomness in trees,
one can not expect that a locally important variable will not let space to some other
variables. For example, another variable may appear at the second position, very often
and never in first position. Note, here, that position and order designate the same term.
We, then, define the local importance score of position q, 1 ≤ q ≤ d, SLIq(j, .) for all
observations and for the j-th variable. We have

SLIq(j, .) =
n∑

i=1

LVI(d−q+1)(j, i),

where LVI(d−q+1) is the order statistics of the LVI function. Thus, at first position, we
get the score for the most locally important variable, and so on.

C - At this point, we get the tools to derive some new informations about variable
importance. First one is partial importance.

Definition. A predictor is partially important at the first order if, for a same ob-
servation, and at all the orders, it is the one that has the highest frequency of occurrence
in a terminal node.

Its score is given by

SLI(j, .) =
d∑

q=1

SLIq(j, .).

To understand partial importance one has to take account two points:
i) counting occurrences of a predictor is interesting but does just give frequency,
ii) for each observation we met in a terminal node, we record the value estimated by the
classifier. That give us the intensity (or the label in case of classification).

Hence, we have for each observation, the score of all covariates and the classifier esti-
mate. Then, partial importance gives, for each class or for some responses above (or
below) a threshold, the predictors which are the most relevant. To be more clear, partial
importance tells what are the variables that are explaining the variations of the response
(regression) or one class rather than another (classification). This gives us a new infor-
mation with regard to global variable importance, that just tells us what are the relevant
variables.

D - But we may want to know how covariates rely to the problem when we consider
them all. For example, some variables could have a low relative influence on the problem
but a strong effect on a more relevant covariate. Or this covariate could have many in-
teractions with others, leading the variable to have influence. Then, we need a definition
for interactions.

15

Definition. A predictor interacts with another one if, for a same observation, and
for all trees, both have respectively the first and the second highest frequency of occur-
rence in a terminal node.

And, if VII is the score of interactions, we have for X(j) and X(j′),

VII(1,2)(j, j
′) =

SLI1(j, .) + SLI2(j
′, .)

n
.

Interactions acts as a visualization tool in order to see the influence of all covariates in a
unique manner. Hence, the relation above computes the last step of the process.
i) First, we compute and order SLI1(j, .) for all covariates.
ii) Then, we compute and order SLI2(j, .) for all covariates.
iii) The last step computes VII(1,2)(j, j

′) and we create a contingency table where all
values of VII will stand. That gives us the interactions visualization tool of all covari-
ates. Moreover, we can merge covariates that have weak influence to have a granular view.

Interactions are interesting since they give the big picture on how all variables rely each
other with respect to the problem. They also lead to the measure of variable importance
based on interactions. This measure of relative influence is another tool to explain the
influence of covariates.

E - The last measures we provide are partial dependencies. There are tools that al-
low to measure how influence of each covariate (or a couple of covariates) is affecting
the response values, knowing the values of all others. In other words, a partial depen-
dence plot is the marginal effect of a covariate on the responses values. The idea of
partial dependence come from Friedman (2002) who uses it in Gradient Boosting Ma-
chines (GBM) but it is implemented differently in Random Uniform Forests. Call pD(j)q

the partial dependence at position q for the j-th variable. We have

pD(j)q (Y,X) =
{((

ḡ(B)
P

(Xi, R(j, αj)), X
(j)
i

)
|SLIq(j, i) > 0

)
, 1 ≤ i ≤ n

}
,

where ḡ(B)
P

(Xi, R(j, αj)) is the forest classifier evaluating each observation knowing that
the j-th variable is locally important for the current evaluated observation. The local
importance is, so, designated by the SLIq function for every point. What makes the
difference with a simple look in terminal node to get a prediction is that the covariate must
have some influence for each observation. Hence both predicted value and observation
will stress the partial dependence plot up to some point where no values will be available
to plot. To avoid getting a too weak relation between covariate and target, we define the
partial dependence function at all orders. It is given by

pD(j)(Y,X) =

{((
ḡ(B)
P

(Xi, R(j, αj)), X
(j)
i

) ∣∣∣∣∣
d∑

q=1

SLIq(j, i) > 0

)
, 1 ≤ i ≤ n

}
.

The function provides all the points needed in the range of the covariate and increases the
randomness. This has the advantage of getting more consistent and interpretable results.
If covariate and target have no relation, plotted points will have uniform distribution on

16

the map. Otherwise, one will get the shape of their relation.

Partial dependencies can be extended to a couple of variables, getting a surface, or even
on the whole dimension of the problem. But in this latter case, one will need a lot of
points and visualization would fail. Hence, one usually works on the most important
variables. One of the interesting point with partial dependencies is their ability to allow
extrapolation. This latter is known to be a limitation of Random (Uniform) Forests since
their estimator can not produce unseen values beyond the range of Y in the training
sample. To allow extrapolation one just has to compute a parametric model of the tails
in the partial dependence function. Usually these will be linear with the covariate and
extrapolation happens by choosing the right threshold beyond which a linear model will
be a good approximation. If many covariates have influence, one can eventually compute
one parametric model over a multi-dimensional partial dependence function. The main
argument of Random Uniform Forests is that they allow to get more points for such
objects like extrapolation. We think it might be the case for others ensemble models too.

We provide in the lines above many ways to assess variable importance and one can
visualize most of them in just one screen to get the big picture. It leads to both feature
selection and interpretation. This latter point is essential since to our point of view Ran-
dom (Uniform) Forests are not a black box. We can then summarize main properties of
variable importance in Random Uniform Forests.
i) All tools provided, except the global variable importance, work on both training and
test sample.
ii) All tools are complementary. It means that when a feature is found to be important,
an explanation can be found using each measure separately.
iii) The main purpose of variable importance is to assess what, when, where and how
covariates have influence on the problem.

4 Some extensions

In this section we quickly present a few other developments of Random Uniform Forests.
We begin by prediction and confidence intervals, then we briefly talk about output per-
turbation sampling which lead to get some insights about Random Forests and we end
with incremental learning.

4.1 Prediction and confidence intervals

When going toward real life problems or when industrialization comes to be the stan-
dard case, the main problem is not to give accurate prediction on average, but to give
strong guarantees that what is announced is what will be happen. First option uses the
cross-validation or OOB classifier and errors. For regression, one will usually not want
the prediction value, hard to exactly match, but the prediction value with a prediction
interval and, for a parameter, a confidence interval. To be more clear if, for example,
the problem involves some financial risk or cost, just rely on a prediction value could be
dangerous. What is more interesting is, instead, to give some other informations to the
man that pushes the button.

17

Random Uniform Forests provide a new approach to build some predictions and con-
fidence intervals, designed especially for real life cases. We do not discuss to the motiva-
tions behind such cases, and give directly the process to build such intervals.

Let us note q̂α(gP
(Xi, θ)) the α order empirical quantile of the g

P
distribution, for the

i-th observation. We usually have this relation : with a probability 1−α, and for all i
∈ [1, n], the bootstrap prediction interval for every Yi is like that

Yi ∈
[
q̂α/2(gP

(Xi, θ)), q̂1−α/2(gP
(Xi, θ))

]
.

This latter works well but is usually too large and sometimes difficult to use in practice.

As an alternative, we consider the following approach, for each Yi.
i) We draw, with replacement, Si estimates of G(Xi, B) = {g(1)

P
(Xi), g

(2)
P
(Xi), ..., g

(B)
P

(Xi)},
where S is the number of unique values of G(Xi, B). Then, we compute a first estimator
of Yi given by

ḡ(S)
P

(Xi) =
1

S

S∑

s=1

g(s)
P
(Xi),

where the g(s)
P
(Xi) are randomly chosen.

ii) We repeat the operation K times and it leads to a K-sample {ḡ(S1)
P

(Xi), ḡ
(S2)
P

(Xi), ..., ḡ
(SK)
P

(Xi)}.

iii) We, then, consider q̂α(ḡ
(S)
P

(Xi,)), the α order empirical quantile of the ḡ(S)
P

distribu-
tion for our K-sample. It is not directly used for Yi, mainly because for some distribution
like the exponential one, small or very frequent (and close) values are a hard problem
when considering a prediction interval. We suppose, so, that in the neighborhood of
a quantile, empirical distribution is gaussian and, then, define the following prediction
interval : with an approached probability 1− α,

Yi ∈


q̂α/2(ḡ(S)

P
(Xi)) + zα/2

√
V̂arθS(gP

(Xi, θS))

S
, q̂1−α/2(ḡ

(S)
P

(Xi)) + z1−α/2

√
V̂arθS(gP

(Xi, θS))

S


 ,

where zα/2 is the α/2 order quantile of the N (0, 1) gaussian distribution,

V̂arθS(gP
(Xi, θS)) is the empirical variance of the decision rule for which values are unique

for Xi.

We, then, derive a confidence interval for a parameter, say for example Ȳ .
Let us have

q̃α/2(gP
(Xi, θ)) = q̂α/2(ḡ

(S)
P

(Xi)) + zα/2

√
V̂arθS(gP

(Xi, θS))

S
,

then, with an approached probability 1− α,

Ȳ ∈

[
1

n

n∑

i=1

q̃α/2(gP
(Xi, θ)),

1

n

n∑

i=1

q̃1−α/2(gP
(Xi, θ))

]
.

iv) The last step is to validate intervals using OOB informations or with a validation
sample.

18

4.2 Output perturbation sampling

Output perturbation sampling is one of the most strange application of Random Uniform
Forests and we present it first before going further.
Let’s consider the algorithm and only the regression case : for each tree, subsample m
out-of n observations of Dn and proceed to the growth.
Output perturbation sampling stands that : for each tree, subsample m out-of n obser-
vations of Dn, and replace all (or a part) Yi values, 1 ≤ i ≤ m, by random values drawn

from a variable Z, where Z ∼ N (Ȳ , cV̂ar(Y)), c ≥ 1. Then, grow the tree.

When doing that, some results are empirically observed :
- overfitting hardly happens,
- correlation is strongly reduced (up to a factor 3), but variance increases a lot,
- prediction error slightly increases and, in some cases, is better.

The third point is the most surprising, since we found in many cases, that the prediction
error was, in fact, close to the standard case after some (automatic) post-processing. It
seems that the model just only needs the parameters. In others words, one just grows
many uncorrelated trees; not only convergence will happen but prediction error will re-
main low as long as one knows an estimate of the parameters of the distribution of Y .

4.3 Incremental learning

Incremental learning is a way to do do learning for streaming data. If data are very large
or come by chunks, then incremental learning is one way to treat them whatever their
size is. But, it will usually have a cost, at least a loss of accuracy. Incremental learning
proceeds by chunks of data and regression case is usually much than classification, for
achieving low prediction error (in contrast of one computed all the data at once). Incre-
mental learning has two cases :
- the i.i.d. assumption holds for all chunks (or, at least, many),
- the (joint) distribution of (X, Y) is shifting (either the distribution itself or its param-
eters).

Random Uniform Forests are natively incremental, even for a shifting distribution, but
some work is required. Output perturbation sampling is a part of the mix for not see-
ing erratic prediction error. The classification case is more simple and one can let the
algorithm change itself how the classification has to work, i.e., let it change the threshold
that is giving the result of the majority vote.

We consider the general case of a shifting distribution : the decision rule is the same
for all cases, but one has to rely on the OOB classifier (and some others tools) to adapt
the forest classifier. Let us call ḡ(T)

P,inc
the incremental forest classifier. We simply have

ḡ(T)
P,inc

=





1, if
∑T

t=1

∑Bt

b=1 I
{

g
(b)
Pt

(x)=1
} >

∑T
t=1

∑Bt

b=1 I
{

g
(b)
Pt

(x)=0
}

0, otherwise.

19

and for regression,

ḡ(T)
P,inc

(x) =
1∑T

t=1 Bt

T∑

t=1

Bt∑

b=1

g(b)
Pt

(x),

where P
t
is a partition of the data for the slice time t,

Bt, is the number of trees for the slice time t,
T , is the number of slices time.

Incremental learning is a subsampling process that we apply on both data and deci-
sion rule. Each tree sees only a part of the data and the forest itself sees a (bigger) part
of the data. The main argument here is that cut-points are random, so see a part or whole
data does not change many things. And even if it does, there is no other option. The
problem relies more on the informations retained. Some informations that are important
for a slice time, can be obsolete in the next slice time or worst, leading to confuse the
forest. The only hope is, then, to adapt the classifier to the new situation without loosing
all the informations memorized before. Since a sub-forest is a forest, with just less trees
(like the OOB classifier is) we can adapt Random Uniform Forests by assessing ḡ(T)

P,inc
,

ḡ(T−1)
P,inc

and ḡ(BT−1)
P

. One can note that a tree is never modified; it can only be deleted or
added.

5 Examples

We provide in this sections some full examples on how tasks are computed using Random
Uniform Forests.

Usage in R

The reference manual of the randomUniformForest package provides all the details of
how one can use and manage options in the algorithm. In the lines below, we refer on
the options used.

To install the package :

install.packages("randomUniformForest")

To load the package :

library(randomUniformForest)

Methods

With the randomUniformForest package, we use, for comparison,
- package randomForest (Liaw, Wiener, 2002), which implements the original Breiman’s
procedure,
- package extraTrees (Simm, de Abril, 2013), which freely implements the Extremely
Randomized Trees algorithm,

20

http://cran.r-project.org/web/packages/randomUniformForest/index.html

- package e1071 (Meyer et al.), which implements SVM (Support Vector Machines) (Vap-
nik, Cortes, 1995),
- package gbm (Ridgeway et al.), which implements Gradient Boosting Machines (Fried-
man, 2001, 2002).

Note that others accurate models are available on R, like BayesTree, ipred, glmnet, rpart,
kernlab, klar,... View more at Rdocumentation or at CRAN Task View: Machine Learn-
ing and Statistical Learning .

We use for all comparisons, a 10-fold cross validation. For each data set, we use the
same seed (equal to 2014), calling before each procedure the R code set.seed(2014), in
order to let everyone reproduce the results, since all data are available on the UCI repos-
itory : http://archive.ics.uci.edu/ml/index.html

We provide R code as much as possible to show how operations are done in a simple
way.

Some algorithms like gbm, extraTrees and randomUniformForest are such randomized
that using the same seed will produce different results on the same data. To get conver-
gence one has to use enough trees (≥ 200).

5.1 Classification

We evaluate 4 datasets available on the UCI repository using each time one topic to
illustrate in a different manner Random Uniform Forests.

5.1.1 Iris data (assessment of variable importance)

Iris data is one of the most famous dataset in machine learning. We report the description:
This famous (Fisher’s or Anderson’s) iris dataset gives the measurements in centimeters
of the variables sepal length and width and petal length and width, respectively, for 50
flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

load the algorithm and data

library(randomUniformForest)

data(iris)

XY = iris

column of the classes

classColumn = 5

separate data from labels

Y = extractYFromData(XY, whichColForY = classColumn)$Y

X = extractYFromData(XY, whichColForY = classColumn)$X

run model: default options

ruf = randomUniformForest(X, Y = as.factor(Y))

21

http://www.rdocumentation.org/domains/MachineLearning
http://cran.r-project.org/view=MachineLearning
http://cran.r-project.org/view=MachineLearning

display results...

ruf

...gives standard output (below) of a Random Uniform Forest

Call:

randomUniformForest.default(X = X, Y = as.factor(Y))

Type of random uniform forest: Classification

paramsObject

ntree 100

mtry 5

nodesize 1

maxnodes Inf

replace TRUE

bagging FALSE

depth Inf

depthcontrol FALSE

OOB TRUE

importance TRUE

subsamplerate 1

classwt FALSE

classcutoff FALSE

oversampling FALSE

outputperturbationsampling FALSE

targetclass -1

rebalancedsampling FALSE

randomcombination FALSE

randomfeature FALSE

categorical variables FALSE

featureselectionrule entropy

Out-of-bag (OOB) evaluation

OOB estimate of error rate: 4%

OOB error rate bound (with 1% deviation): 4.88%

OOB confusion matrix:

Reference

Prediction setosa versicolor virginica class.error

setosa 50 0 0 0.00

versicolor 0 47 3 0.06

virginica 0 3 47 0.06

OOB geometric mean: 0.9596

OOB geometric mean of the precision: 0.9596

22

Breiman’s bounds

Prediction error (expected to be lower than): 0.37%

Upper bound of prediction error: 3.84%

Average correlation between trees: 0.0176

Strength (margin): 0.9096

Standard deviation of strength: 0.1782

1 - One can note that some options are defined as in the RandomForest package, meaning
the same arguments (ntree for the number of trees, mtry for the number of variables tried
at each node, or nodesize for the minimal number of observations per node).
2 - The next lines give the OOB evaluation, with OOB errors, confusion matrix and some
measures to assess the evaluation.
3- Last group are the Breiman’s bounds and their details. One can note here that OOB
error is not bounded by any Breiman’s bound. It means that overfitting is likely to hap-
pen and one should have more data before concluding on prediction error, since pairwise
observations are needed to estimate margin and correlation, leading to less cases than
attended.

We, then, focus more on how to explain species with the covariates. First step gives
the global variable importance, which is embedded (by default) in the model.

call the summary() function gives some details about the forest and

global variable importance

summary(ruf)

Figure 1: Global Variable importance for the iris dataset

The figure shows relative influence of all variables. the vertical line (in grey) shows where
the influence would be if all variables had the same one. But, knowing what variables
are important do not tell us what explains one specie or another. We, then, get in the
details.

23

assess the details of variable importance

we set ’maxInteractions’ to its highest level,

i.e., the dimension of the problem

imp.ruf = importance(ruf, Xtest = X, maxInteractions = 4)

then, see the big picture (please use vertical tiling in the R menu

to see all plots)

plot(imp.ruf, Xtest = X)

Figure 2: Variable importance based on interactions, and interactions, for the iris dataset

Visualizing the interactions is the first manner to assess variable importance by relying
more on both model and data. Here we count variables that reside on terminal nodes
in first or second position. We ask more work to the model since most of each tree
is necessary before counting a variable, but only half (the terminal nodes) of the tree
can be used. Randomness creates constraint, as the interactions creates another one,
by requiring that the same variable occurs again in second order (position) to be enough
important. Counting occurrences relies more on data since all potential predictions (in all
trees) are involved. This scheme gives the Variables interactions over observations. One
can see that Petal.width and Petal.Length lead to most of interactions while Sepal.Length
have no interaction with any other variable.

The mosaic plot orders variables by their importance. First order means that the first
variable in column is the most important, following by the second variable and so on.
Second order means that there is another (unknown) variable more important than the
first one in row. This unknown variable can, however, appears in the second order if,
for example, it is important in most cases. To be simple, first variables in first and in
second order are usually the most important, when taking account interactions, but it is
not always the case and not a rule. Here, we do not have many variables. Petal.Length
has strong influence and consequently, even if we are looking the top variables in the
second order view, we get it but not at the most important variable. That shows us that
Petal.Length has an influence in probably most of the classes, but not the strongest in all.

24

Aggregating interactions gives the Variable importance based on interactions. It is a
variable importance that takes account potential variables that can lead to the better
separation between classes and are more interpretable than the global variable impor-
tance measure.

To show them in another view, one can see the Variable importance over labels which
gives another picture.

Figure 3: Variable importance over labels for the iris dataset

For each class, we see what variables are important, getting deeper in the analysis.
Petal.Length explains most two species while Petal.Width explains more the last one.
Sepal.Width remains important only by its interactions and not, here, by its contribution.

But what can we say about Sepal.Length ? We might want to know why it does not
give informations. In the same case, we also might want to know why the others vari-
ables are so important. For that, we get in the partial dependencies for all variables (note
that the call of the plot above just draws partial dependence for the most important
variables letting user to choose, at the prompt, the variable he wants to draw).

25

Figure 4: Partial dependencies for Petal Length and Petal Width

The main arguments of partial dependencies are to show what leads to separation
between species (the classes), and if it is easy to achieve it or not. For example, here, if
Petal.Length is below 2 and Petal.Width is below 0.5, the specie is, with great probability,
Setosa. Then, only two variables are enough to identify species. What about the others
? To get more partial dependencies we just call the function with the importance object

for the ’Sepal.Length’ variable

pD.Sepal.Length = partialDependenceOverResponses(imp.ruf, Xtest = X,

whichFeature = "Sepal.Length", whichOrder = "all")

Figure 5: Partial dependencies for Sepal Width and Sepal Length

Sepal.Width and Sepal.Length are less discriminant variables and receive, then, less im-
portance. The main difference between the two is that, as we write it above, Sepal.Width
has more interactions with the others variables.

26

One may want to take decision about what variables (for example if there are many
ones) are needed for each class to achieve enough explanation. We simply let partial
importance give the information.

for the setosa and virginica species

pImp.setosa = partialImportance(X, imp.ruf, whichClass = "setosa")

pImp.virginica = partialImportance(X, imp.ruf, whichClass = "virginica")

Figure 6: Partial importance for classes setosa and virginica

Partial importance states that Petal.Length is enough to know class setosa while for class
virginica we need first Petal.Width and, less, Petal.Length.

One may want to compare how a single decision tree looks like. One of the main func-
tionnality of this latter is to provide rules that one can easily understand. Since the
trees in Random Uniform Forests are strongly randomized (unlike CART, where they are
deterministic), visualizing one tree is not suitable for interpretation and no tree is better
than another.

get a tree

tree_100 = getTree.randomUniformForest(ruf,100)

plot a tree in the forest

plotTree(tree_100, xlim = c(1,18), ylim = c(1,11))

27

Figure 7: Two trees in the forest. Classes {1,2,3} are {setosa, versicolor, virginica}

One can see that rules are different and trees can be deep and large. Hence in Random
Uniform Forests one interest is the bayesian framework. Data are fixed and parameters
are random. We build almost all parameters (since convergence happens quickly) using
randomness and let the data lie in the space in many different structures. In case of vari-
able importance, the strong randomness ensure that effects we are getting are probably
not random otherwise no specific shape would be expected.

5.1.2 Vehicle data

The next dataset we are assessing is also available on the UCI repository or using the
mlbench R package. Following its description, given by the authors, The purpose is to
classify a given silhouette as one of four types of vehicle, using a set of features extracted
from the silhouette. The vehicle may be viewed from one of many different angles.

The dataset has 946 observations, 18 attributes and 4 classes.
Here, we simply assess prediction error of Random Uniform Forests, comparing to Ran-
dom Forests, Extra-Trees and Gradient Boosting Machines.

1- At the first step, we use one train and test sets then see how the model works.

data(Vehicle, package = ’mlbench’)

XY = Vehicle

column of the classes

classColumn = 19

separate data from labels

Y = extractYFromData(XY, whichColForY = classColumn)$Y

X = extractYFromData(XY, whichColForY = classColumn)$X

reproducible code and train sample (50%)

set.seed(2014)

train_test = init_values(X, Y, sample.size = 1/2)

28

training sample

X1 = train_test$xtrain

Y1 = train_test$ytrain

test sample

X2 = train_test$xtest

Y2 = train_test$ytest

run model: default options, but setting number of tres to 500

ruf.vehicle = randomUniformForest(X1, as.factor(Y1),

xtest = X2, ytest = as.factor(Y2), ntree = 500)

call

ruf.vehicle

displays

...

Out-of-bag (OOB) evaluation

OOB estimate of error rate: 24.35%

OOB error rate bound (with 1% deviation): 27.53%

OOB confusion matrix:

Reference

Prediction bus opel saab van class.error

bus 93 3 4 1 0.0792

opel 0 51 30 0 0.3704

saab 1 41 67 4 0.4071

van 1 10 8 109 0.1484

OOB geometric mean: 0.7271

OOB geometric mean of the precision: 0.7356

Breiman’s bounds

Prediction error (expected to be lower than): 21.97%

Upper bound of prediction error: 35%

Average correlation between trees: 0.0782

Strength (margin): 0.5124

Standard deviation of strength: 0.3031

#...

29

#...

Test set

Error rate: 26%

Confusion matrix:

Reference

Prediction bus opel saab van class.error

bus 119 2 4 0 0.0480

opel 0 41 29 0 0.4143

saab 0 61 68 0 0.4729

van 4 3 7 85 0.1414

Geometric mean: 0.6951

Geometric mean of the precision: 0.7088

We can see here that overfitting is very close to happen. We can see it using the Breiman’s
bound (21.97%), as it must be an upper bound of the OOB error. But the relation just
works in one direction. OOB error can be lower than Breiman’s bound and not prevent-
ing from overfitting.

Let’s look how Random Forests do, getting their OOB error.

library(randomForest)

rf = randomForest(X1, as.factor(Y1), xtest = X2, ytest = as.factor(Y2))

rf

Call:

randomForest(x = X1, y = as.factor(Y1), xtest = X2, ytest = as.factor(Y2))

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 4

OOB estimate of error rate: 24.11%

Confusion matrix:

bus opel saab van class.error

bus 91 1 1 2 0.04210526

opel 3 54 38 10 0.48571429

saab 5 31 64 9 0.41284404

van 0 1 1 112 0.01754386

Test set error rate: 26.48%

Confusion matrix:

bus opel saab van class.error

bus 119 0 0 4 0.03252033

opel 2 44 57 4 0.58878505

saab 4 31 63 10 0.41666667

van 0 0 0 85 0.00000000

30

Overfitting is also happening. Due to many redundancy in data, bootstrap does not work
great and is, probably, one of the cause of overfitting.

2- The second step involves 10-fold cross validation. We report the results below. All
algorithms run in their default parameters except GBM (ntree = 500, interaction.depth
= 24, n.minobsinnode = 1, shrinkage = 0.05)

Random Forests ExtRa-Trees GBM (optimized) Random Uniform Forests
Test error 0.2518 (0.0535) 0.2506 (0.0514) 0.2234 (0.0422) 0.2412 (0.0461)

Table 1: Classification (Vehicle Silhouette). n = 946, p = 18. Cross-validation (10 folds).
No tuning except GBM.

GBM works well but have to be optimized. Note that in the test set above, test error
is 0.2443. Random Uniform Forests seem to have, for this dataset, well defined default
parameters using more the dimension than Random Forests or Extra-Trees. We report
standard deviation in parenthesis.

5.1.3 German credit data (cost sensitive learning)

German credit is another well known dataset. As the authors say, this dataset classifies
people described by a set of attributes as good or bad credit risks. Comes in two formats
(one all numeric). Also comes with a cost matrix. We use the numeric format of the data
which has 1000 observations, 20 attributes and 2 classes (1: Good, 2: Bad).

In the german credit data, test error is not suitable since there is a cost matrix (5 if
the classifier predicts Good when it is actually Bad and 1 if the classifier predicts Bad
when it is Good). Therefore we have to minimize the cost. To achieve that, we have to
optimize AUC (area under ROC curve) and AUPR (area under precision-recall curve).
As in the definition of Fawcett (2006), AUC is the probability that the classifier ranks a
randomly positive instance (’Bad’ class) higher than a negative one. AUPR is an equiv-
alent of the probability of matching a positive case if it is really one. Hence for credit
scoring both measures need to be high.
- AUC gives the level of confidence in matching positive cases.
- AUPR gives the limit in the capacity to match positive cases.

Since a cost matrix is provided, cost sensitive accuracy is closer to a real life case. It is
given relative to the confusion matrix and the costs associated and for the german credit
dataset we have

cost sensitive accuracy = 1−
n2,1 + 5n1,2

n.,1 + 5n.,2

,

n2,1 are the cases classified as ’Bad’ (class 2) while they are actually ’Good’ (class 1),
n1,2 are the cases classified as ’Good’ while they are actually ’Bad’,
n.,1 is the total number of ’Good’ cases,
n.,2 is the total number of ’Bad’ cases.

31

Note that we omit n1,1 and n2,2 since their costs are zero. We also used the average
cost defined by

average cost =
n2,1 + 5n1,2

n
.

Classes are also imbalanced and without a class reweighting method or an algorithm
insensitive to imbalanced distribution, one will hardly minimize cost. Random Uni-
form Forests explicitly implement class reweighting using, with slight modifications, the
methodology of Chen et Al. (2004). Since we only find SVM as a method that uses class
reweighting in a simple manner (one weight for each class), we keep it for comparison
(Random Forests have a class weight option, but it seems to not be enabled).

Here are the parameters we use:
- The classwt option in Random Uniform Forests use weights, for each class, that reflects
the cost matrix. We do not optimize it and set it according to the class distribution. If
’Y’ is the R vector of labels in the sample we have, using the e1071 R package help :

for SVM

weights_svm = 100/table(Y)

Random Uniform Forests

distribution = 100/table(Y)

weights_ruf = round(distribution/min(distribution), 4)

Others parameters are for SVM :
kernel = "sigmoid"
cost = 0.5.

For Random Uniform Forests, we use some sampling techniques :
- the option for the number of features to try for each node, namely mtry = 3,
- we remove the bootstrap and use sub-sampling with its default value,
subsamplerate = 0.7 and replace = FALSE,
- we perturb randomly a small part (5%) of the class distribution (before reweighting),
setting outputperturbationsampling = TRUE and oversampling = 0.05,
- we set ntree = 500, the number of trees, and nodesize = 10, the minimal number of
observations per terminal node, to stabilize the forest.
Others options are let to their default values. One can find how parameters are used in
the OOB evaluation below.

We load first the data and simply run the cross-validation script (with some modifications
to capture measures). For reproducibility, one just have to use the same seed.

germanCredit = read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/

statlog/german/german.data-numeric")

XY = germanCredit

set.seed(2014)

separate Y and X and call a cross-validation procedure

...

32

The results are given below :

SVM Random Uniform Forests
Cost sensitive accuracy 0.7492 (0.0553) 0.7651 (0.0425)

Average cost 0.551 (0.1297) 0.517 (0.1)
AUC 0.7333 (0.0550) 0.6979 (0.0459)

AUPR 0.6372 (0.0716) 0.6451 (0.0661)
Test error 0.283 (0.0605) 0.385 (0.0479)

Table 2: Classification (German credit). n = 1000, p = 24, Cross-validation (10 folds).
Optimized to maximize cost sensitive accuracy.

Both methods achieve good scores using the class weight option, which is the main
argument to get both good cost sensitive accuracy and AUC. While SVM relies more
of the latter pushing it in a high level, Random Uniform Forests are more focused on
the AUPR (area under precision-recall curve) letting, even, test error increase to get the
point. To reach good scores, optimization is needed for both methods. One special issue
with the dataset is redundancy in data since many are categorical (with 2 unique val-
ues). Thus, Random Uniform Forests do not benefit from dimension and others random
techniques are needed to balance accuracy. Typically output perturbation sampling is the
argument that push cost sensitive accuracy beyond the 0.74 limit (and reduce the average
cost under 0.56). In both methods, better scores can be probably achieved.

OOB evaluation and the OOB classifier

We, then, present, the OOB evaluation and some tools we may use to assess the dataset

model and the OOB classifier

ruf.germanCredit = randomUniformForest(X, as.factor(Y), nodesize = 10,

mtry = 3, outputperturbationsampling = TRUE, oversampling = 0.05,

subsamplerate = 0.7, replace = FALSE, classwt = weights_ruf, ntree = 500)

ruf.germanCredit

displays the OOB evaluation

#...

Out-of-bag (OOB) evaluation

OOB estimate of error rate: 37%

OOB error rate bound (with 1% deviation): 40.14%

OOB confusion matrix:

Reference

Prediction 1 2 class.error

1 370 40 0.0976

2 330 260 0.5593

OOB estimate of AUC: 0.6976

OOB estimate of AUPR: 0.6385

33

OOB estimate of F1-score: 0.5843

OOB geometric mean: 0.6768

#...

OOB cost sensitive accuracy is 0.7590 and OOB average cost is 0.53. OOB evaluation
is more pessimistic than cross-validation, since it evaluates all the data at once when
cross-validate divides the data to have a full evaluation. Hence, OOB analysis is closer to
the training (and test) set, since the model will be a generalization of the OOB classifier
if a test set is provided. In cross-validation, and for Random (Uniform) Forests, it will not.

In the OOB evaluation above, one can see how it is needed to let the test error in-
crease in order to reduce the average cost. In the german credit dataset the hard task
is to reach an high AUPR, while not reducing AUC, that controls both sensitivity and
precision the key ingredients of a low cost.

To see why the task is not easy one can call visualization of some metrics :

get the ROC curve

roc.curve(ruf.germanCredit, Y, unique(Y))

get the Precision-Recall curve

roc.curve(ruf.germanCredit, Y, unique(Y), falseDiscoveryRate = TRUE)

Figure 8: ROC and Precision-Recall curves for the German credit dataset (OOB evalua-
tion).

We can see both plots look like each other (but they are not identical) and the main
point is in the beginning of each graph : we observe that for, apparently, some cases (up
to 20% of all) it is hard to distinguish if they are from class ’Bad’ or not and for the
precision-recall it is even more clear; the precision decreases so quickly that weights do
not suffice to maintain a discriminant good rule without help of other techniques. The

34

good sensitivity (recall) compensates but test error can suffer. In fact, even if randomized
models can reach good results for this dataset, it appears that it leads to some instability.
One can look how the test error is decreasing with the number of trees:

plot(ruf.germanCredit, ylim = c(0.25, 0.4))

Figure 9: OOB error with the number of trees for the German credit dataset.

The error rate does not decrease (or a little) with the number of trees and is highly
unstable (red and green lines indicate where OOB could lie, while the black line estimates
its actual value). As a consequence, a single (or a few) tree(s) seem to get results closer
to the forest ones. In fact, that holds only for the test error. The forest classifier brings
more than stabilization (which is not clear above). It provides more adaptation to the
problem. Comparing to a forest of 5 or 10 trees, the ensemble with 500 trees increases
AUC by more than 10% and AUPR by more than 30%, while test error is reducing only
by 5%.

5.1.4 Breast cancer data (more on Breiman’s bound)

We conclude the evaluation for classification by some words about the Breiman’s bound.
One can note that for the others data sets, it does not work as expected. In fact, it
works but, to be clear, Breiman’s bound is not designed to get optimal classifier but to
get a robust one. For example, in the german credit data, set mtry = 1 (getting a purely
random forest) leads to push OOB error under the Breiman’s bound. We do not get the
optimal classifier, but probably the more robust. In other words, Breiman’s bound can,
in most of the cases, be the upper bound but one has to make choice between optimality
and robustness. Three elements are needed :
- have enough data,
- balanced classes, but real life problems usually have imbalanced classes,
- low correlation between covariates.

The first condition is necessary, since one of the metrics, the correlation, requires to
find pairwise cases between trees. Then, even one has 500 observations, pairwise OOB

35

cases will not be so numerous and increase the number of trees will not change a lot
the situation. Random Uniform Forests are not insensitive to imbalanced classes, then
majority class can have influence on the strength (the second parameter needed).
Correlated covariates tend to increase the risk of overfitting, then keeping an upper bound
is less easy. Hence, changing default parameters of the model is usually necessary to get
the Breiman’s bound as it should be. We show how it can happen in the lines below.

Breast cancer dataset is available on the UCI repository. Description can be found in the
following link :
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

The dataset has 569 observations, 32 attributes and 2 classes, but the formatted data
really have 11 attributes.

load the data

breastCancer = read.table("http://archive.ics.uci.edu/ml/

machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",

sep = ",")

XY = breastCancer

remove the first attribute which is a unique ID

XY = XY[,-1]

get observations and labels (the 10th column)

Y = extractYFromData(XY, whichColForY = 10)$Y

X = extractYFromData(XY, whichColForY = 10)$X

Here, we use default parameters for all models and report the 10-fold cross-validation
error. Note that some algorithms may need a R matrix, while others need a data frame
and test error may be affected, depending on how one is converting data frame to a
matrix.

RF ET SVM Random Uniform Forests
Test error 0.314 (0.0161) 0.03 (0.0124) 0.0371 (0.0153) 0.0314 (0.0175)

Table 3: Classification (Breast Cancer). n = 569, p = 9. Cross-validation (10 folds). No
tuning.

Random Uniform Forests stay close to others and achieving a high accuracy is com-
mon for many algorithms with this dataset.

Let us look the Breiman’s bound. There is no chance we match it using default pa-
rameters, due to high correlation in covariates and imbalanced classes. Then, To get
the point, we use the output perturbation sampling option (changing 20% of the labels
with oversampling option) which will increase correlation between trees and decrease the
strength. Then we increase mtry to 64, having more competition between nodes, and set
the number of trees to 500 in order to stabilize the forest. All parameters are set only

36

with the first training sample (50% of the data, with the seed we use since the beginning).
Then we generate 5 random training and test samples and look for OOB error, Breiman’s
bound and test error.

OOB error Breiman’s bound Test error
set 1 0.0315 0.0395 0.0315
set 2 0.0287 0.0303 0.0257
set 3 0.0401 0.0335 0.0257
set 4 0.0372 0.0355 0.0286
set 5 0.0287 0.0339 0.04

Table 4: Classification (Breast Cancer). n = 569, p = 9. Training sample (50%) randomly
generated for each set.

Breiman’s bound is now much closer to the OOB error, leading to more insights on cor-
relation and strength. The OOB evaluation on the whole data leads to an OOB error of
0.0372 and the Breiman’s bound to be 0.0404. One can even control more the Breiman’s
bound and let it be a strict upper bound. In real life cases, it is the way that Ran-
dom Uniform Forests are designed to proceed in order to not be so optimistic about the
generalization error.

5.2 Regression

In regression, we use Random Uniform Forests with their default parameters (except mtry
for the first dataset) adding only for some cases the output perturbation sampling option
to show that convergence still happens. We also use post processing.

5.2.1 AutoMPG data

The first dataset we use, autoMPG, can be found on the UCI repository. This it its
description : this dataset is a slightly modified version of the dataset provided in the
StatLib library. In line with the use by Ross Quinlan (1993) in predicting the attribute
"mpg", 8 of the original instances were removed because they had unknown values for the
"mpg" attribute. The original dataset is available in the file "auto-mpg.data-original".
The data have 398 observations and 8 attributes We, first, get the modified data and run
a 10-fold cross validation.

load the data,

autoMPG = read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/

auto-mpg/auto-mpg.data")

XY = autoMPG

remove the last column (car models) and get the mpg attribute (the first one)

XY = XY[,-9]

Y = extractYFromData(XY, whichColForY = 1)$Y

X = extractYFromData(XY, whichColForY = 1)$X

set.seed(2014)

37

We override categorical variables, using data as an R matrix, otherwise Random Forests
(RF) algorithm do not want to run due to some misunderstanding with the data imported
(data frame) and how the algorithm recognizes categorical variables. One can note that
one variable is truly categorical (the last one, ’origin’) while the first one (’cylinders’) is
discrete and can be ordered.
We also use the tuneRF() function to find the best mtry for Random Forests. The opti-
mal value is 4, and we use it for Extra Trees (ET).
SVM uses a cost of 2.5 and the radial kernel (assessed with the tune.svm() function).
GBM (Gradient Boosting machines) use the parameters we define for others data sets.
rUF stands for Random Uniform Forests and mtry is set to 14.

RF ET SVM GBM rUF rUF
(post processing)

MSE 7.46 (2.73) 7.1 (2.71) 7.31 (2.49) 7.48 (2.69) 7.15 (2.75) 7.12 (2.76)

Table 5: Regression (AutoMPG). n = 398, p = 7. Cross-validation (10 folds). All
algorithms optimized.

Extremely Randomized Trees (ET) work well for regression, so we wonder why increasing
the mtry parameter in Random Uniform Forests do not lead to better results (ET use
only mtry = 4). Increasing the number of trees from 100 to 200 in Random Uniform
Forests do not improve the results. But ET use more observations (the whole sample)
while Random Uniform Forests use sub-sampling (with default level 0.7). Using exactly
the same parameters than ET lead to not change the MSE (around 7.13). In this dataset,
sub-sampling or working more on dimension seem to have no influence.

We assess now the whole dataset (with the OOB evaluation) to see how look like the
errors and how we can explain the miles per gallon (mpg) variable with others predictors.

run Random Uniform Forests

ruf.autompg = randomUniformForest(X,Y)

ruf.autompg

displays

#...

Out-of-bag (OOB) evaluation

Mean of squared residuals: 7.1946

Mean squared error bound (experimental): 8.268037

Variance explained: 88.22%

OOB residuals:

Min 1Q Median Mean 3Q Max

-17.42000 -1.16500 0.27250 0.04214 1.43100 11.60000

Mean of absolute residuals: 1.84719

38

Breiman’s bounds

Theorical prediction error: 6.930812

Upper bound of prediction error: 7.023337

Mean prediction error of a tree: 15.13134

Average correlation between trees residuals: 0.4642

Expected squared bias (experimental): 0.000442

OOB evaluation is close to cross-validation. We can see that the percentage of variance
explained is high and lead to have confidence in the modeling. Random Uniform Forests
display many others informations that one can use to understand the purpose.

Suppose that we want to know which are the variables that increase the consumption
(hence reducing the miles per gallon). We call importance() function then partialImpor-
tance().

importance

imp.ruf.autompg = importance(ruf.autompg, Xtest = X, maxInteractions = 7)

which variables leads to consumption more than average

pImp.ruf.autompg = partialImportance(X, imp.ruf.autompg,

threshold = round(mean(Y),4), thresholdDirection = "low")

We get variables ’V5’(the weight of the car) and ’V4’ (the horsepower) to be the most
important in the increase of consumption. Let us look how ’mpg’ is evolving with these
two variables.

Dependence between V5 and V4 and influence on the ’miles per gallon’

pDependence.V5V4 = partialDependenceBetweenPredictors(X, imp.ruf.autompg,

c(’V5’, ’V4’), whichOrder = "all")

We get plots (and the level of the variables interaction) that give some insights :

39

Figure 10: Partial dependencies between ’V5’ (weight) and ’V4’ (horsepower) and effect
on the ’miles per gallon’ .

We can see that high values of ’mpg’ depends on a low weight and a high horsepower
and when a threshold (in the weight) is crossed, mpg decreases no matter what the
horsepower is. Dependence between weight and horsepower seems non linear; weight
increases while horsepower decreases until a minimum, after then weight increases while
horsepower increases too. The interesting point is we know, for the whole relation, what
is happening to the miles per gallon.

5.2.2 Abalone, Concrete compressive strength, Boston housing data

We conclude regression by an evaluation with three data sets (also available on UCI).
For sake of brevity, we do not use R code here and simply report the results of a 10-fold
cross-validation procedure. Random Uniform Forests run with their default parameters.

RF ET SVM GBM rUF rUF∗

Abalone 4.59 (0.55) - 4.52 (0.54) 4.88 (0.7) 4.64 (0.54) 4.74 (0.61)
Concrete 23.05 (5.3) 21.67 (5.38) 34.55 (5.3) 14.94 (3.95) 21.64 (5.28) 22.33 (5.82)
Housing 10.19 (3.87) 9.43 (3.69) 11.23 (6.17) 8.87 (5.73) 9.32 (3.12) 9.57 (4.57)

Table 6: Regression (Abalone, Concrete compressive strength and Boston housing data
sets). Reporting mean squared error and standard deviation of the 10-fold cross-
validation. All algorithms optimized except Random Uniform Forests.
∗ : output perturbation sampling (all training responses replaced by random gaussian
values), and post processing enabled.

The most surprisingly fact is linked with the prediction error, for the concrete dataset,
of GBM, far below all others. To be sure we ran again the model and change to 2-fold
cross-validation. For some data sets GBM is hard to beat. Using the whole sample in
Random Uniform Forests reduce the gap, with a MSE of 19.65.

40

But the point is, when completely changing the values of training responses by random
gaussian ones then doing post-processing, Random uniform Forests are close to their
standard case. Moreover, perturbation of the outputs do not lead to worst results than
Random Forests. We see that, in regression, it seems more effective to not choose the op-
timal cut-points, as both prediction errors in Extremely Randomized Trees and Random
Uniform Forests tend to be lower or similar to the ones in Breiman’s Random Forests.

5.3 Incremental learning, big data and/or streaming data

Nowadays, it is difficult to not talk about big data and how machine learning use it to
make better predictions.
For our point view, big data are all the data that can not be treated on a single worksta-
tion, in a reasonable time.
Big data come with two main tasks : produce descriptive statistics and produce predic-
tive models. Machine learning is involved in the second one.

When building predictive models with big data, the main problem is how to take ac-
count all the information without loosing (too much) accuracy, knowing one will never
be able to treat all the data at once. The usual solution is to break data in blocks and
to give models the ability to update themselves with incoming data, knowing that each
chunk of data will be able to reside in (random access) memory.

Machine learning applied to big data are faced to, at least, two problems which can
lead to some severe complications :
- shifting distributions, for which statistical learning has, currently, no established theory,
- model parsimony, which asks the question of the necessity of infinite learning. In other
words, since big data do not have end, does a model need to learn continuously the data
as they come ?

In fact, in statistical learning, the problem is not really the size but whether or not
the i.i.d. assumption will hold as one is building blocks. If it holds then, no matter
what the size is, one will see the limit in prediction error. If it does not hold, then the
prediction error will probably have oscillations and one has to make it decrease with the
number of blocks, without knowing where the limit will be.

Main purpose of machine learning is to produce algorithms that will be able to gen-
eralize (well) their current knowledge, calling either their memory or their learning pro-
cess. Random Uniform Forests try to build such models, meaning that they are able
to combine many different models on different data and try to get the best of all data
as if the latter could reside in memory. We note that all data could reside on hard disk
or SSD, but then access times would be too slow to allow reasonable time of computation.

Let us consider a practical case on artificial data with the following method :
1 - let us suppose that we have three data sets. The first two come one after the other
and the third, the test set, come at the end,
2 - we suppose that the two first data sets do not have necessarily the same joint distri-

41

bution of the pair (X, Y),
3 - the (joint) distribution of the third dataset depends on the distribution of the first
and the second ones and on its own one,
4 - we can not merge the first two data sets, since the hardware is limited and can only
compute model on one of the three data sets at the same time.

With the shifting distribution, the point 4 is the practical case of problem arriving with
big or streaming data. For ease of computation, we consider small data sets but the
problem does not change as long as only chunks of all the data can be computed at the
same time.

We provide the full R script for reproducibility and show how Random Uniform Forests
work on the problem.

We first generate the first dataset :

library(randomUniformForest)

set.seed(2014)

n = 1000; p = 50 # one may reduce or increase number of observations or variables

call the script that generates a ’p’-dimensional randomized gaussian vector

X = simulationData(n, p)

X = fillVariablesNames(X)

generate the rule to define labels

epsilon1 = runif(n,-1,1)

epsilon2 = runif(n,-1,1)

rule = 2*(X[,1]*X[,2] + X[,3]*X[,4]) + epsilon1*X[,5] + epsilon2*X[,6]

Y = as.factor(ifelse(rule > mean(rule), 1,0))

retain some data (30%) to generate first part of the third dataset

randomIdx = sample(n, floor(0.3*n))

X.test1 = X[randomIdx,]

then generate the first dataset

X.train1 = X[-randomIdx,]

Y.train1 = Y[-randomIdx]

Then, we generate the second dataset :

set.seed(1992)

the script is the same than above until

we retain 30% of the data to generate the second part of the third dataset

randomIdx = sample(n, floor(0.3*n))

X.test2 = X[randomIdx,]

42

and generate the second

X.train2 = X[-randomIdx,]

Y.train2 = Y[-randomIdx]

The last step is to generate the third dataset (test set) :

generate the last part of the test set

set.seed(1968)

X.test3 = simulationData(floor(n/3), p)

X.test3 = fillVariablesNames(X.test3)

then generate the entire test set

X.test = rbind(X.test1, X.test2, X.test3)

labels have their rule which depends only

on the observations of the test set

epsilon1 = runif(nrow(X.test),-1,1)

epsilon2 = runif(nrow(X.test),-1,1)

rule = 2*(X.test[,1]*X.test[,2] + X.test[,3]*X.test[,4]) +

epsilon1*X.test[,5] + epsilon2*X.test[,6]

Y.test = as.factor(ifelse(rule > mean(rule), 1, 0))

Before, proceeding to evaluation, let us recall what can be done :
- one may use one dataset or another, or merge parts of both, but the size of any dataset
must be equal or less than the size of the first dataset,
- one can optimize the model with any dataset but without using labels of the third
dataset since, in real life cases, they are not available before predictions happen.

Random Uniform Forests achieve incremental learning, that is, modeling the data as
they come, making chunks if needed, update the model and use a constant-time learning
process. Hence old data do not need to be processed again when new data arrive. The
main interest of incremental learning in Random Uniform Forests is that the learning
process becomes, after some time which can be long, a memory process, meaning that
the learning tends to be less and less necessary as the model grows.

We did not find any online or incremental learning algorithm within R packages, ex-
cept the randomForest package and the gbm one (but less straightforward). Hence we
use randomForest for comparison. Learning tasks require three core processes:
1- compute a model for each chunk,
2- combine models,
3- post-process, eventually, the combined model to adapt the voting mechanism.

All tasks are simple but may require more work and, usually, the prediction error is
the metric that gives insights on where and how efforts have to be made. We proceed
with two steps :

43

A - the first one calls the purely random forest ; it is a random forest model in which the
classifier does not depend (or very weakly depends) to the data. For each node, each
candidate variable and cut-point are chosen randomly. Random Uniform Forests, unlike
randomForest algorithm, allow purely uniformly random forest in which the randomness
is, in all parts of the algorithm, uniform. In the best case, purely uniformly random
forests will converge and the main argument, here, is to be independent to the data and
to capture (almost) all parameters of the model. Hence the latter states that if conver-
gence happen independently to the data, then the provided OOB error will be the one
we can expect, at the best, when going toward the test set. However, empirically, it is
also expected that distribution in the latter has some links with the ones in training sets
or, at least, that the structure of the relation between observations and labels does not
change for any data proceeded. In other words, the distribution may shift, but relation
between observations and labels holds, at least on our example.

We can, then, compute the purely uniformly random forest :

learning models

we use nodesize = 5 and ntree = 500 for stabilization

pURF.model1 = randomUniformForest(X.train1, Y = as.factor(Y.train1),

ntree = 500, nodesize = 5, mtry = 1)

pURF.model2 = randomUniformForest(X.train2, Y = as.factor(Y.train2),

ntree =500, nodesize = 5, mtry = 1)

combine

pURF.combineModels = rUniformForest.combine(pURF.model1, pURF.model2)

and look for OOB evaluation

pURF.combineModels

it displays

...

Out-of-bag (OOB) evaluation

OOB estimate of error rate: 31.21%

OOB error rate bound (with 1% deviation): 33.45%

OOB confusion matrix:

0 1 class.error

0 541 259 0.3238

1 178 422 0.2967

OOB estimate of AUC: 0.6861

OOB estimate of AUPR: 0.6404

OOB estimate of F1-score: 0.6589

OOB geometric mean: 0.6828

44

Breiman’s bounds

Prediction error (expected to be lower than): 47.52%

Upper bound of prediction error: 49.07%

Average correlation between trees: 0.0079

Strength (margin): 0.128

Standard deviation of strength: 0.0892

Since distribution will probably shift, we have also interested by AUC and Breiman’s
bounds. The latter states that the only hope resides in the very low correlation of trees
while OOB estimate of AUC gives an expected value of 0.6861. In all manners, one can
not beat the i.i.d case with all data proceeded at once. Hence, if convergence happens, the
estimates we get are the best results we can expect. The problem is that guarantees of
convergence are not easy to obtain when the i.i.d. case does not hold.

B- In order to achieve a compromise, we come back to Random Uniform Forests and
build a model that will strongly stress the competition between nodes, leading to a high
value of the mtry parameter. Back to the R code we get :

learning models

rUF.model1 = randomUniformForest(X.train1, Y = as.factor(Y.train1),

ntree = 500, nodesize = 5, mtry = 500, OOB = FALSE)

rUF.model2 = randomUniformForest(X.train2, Y = as.factor(Y.train2),

ntree = 500, nodesize = 5, mtry = 500, OOB = FALSE)

combine

rUF.combineModels = rUniformForest.combine(rUF.model1, rUF.model2)

predict

predictions = predict(rUF.combineModels, X.test)

and assess

stats.predictions = model.stats(predictions, Y.test)

the function above displays

Test set

Error rate: 26.26%

Confusion matrix:

Reference

Prediction 0 1 class.error

0 483 136 0.2197

1 109 205 0.3471

Area Under ROC Curve: 0.7085

Area Under Precision-Recall Curve: 0.5484

F1-score: 0.626

Geometric mean: 0.7003

45

We get the results which were expected and, more essential, we get stable errors, i.e.,
running again the algorithm will let errors vary only a little. However, it is not sure
that the method is specific to Random Uniform Forests. We, then, assess Breiman’s
Random Forests but we can’t increase competition between nodes since cut-points are
optimized one variable after the other, looking all its observations. The best we can do is
to optimize the mtry parameter using the tuneRF() function for each training set. Here
are the results :

library(randomforest)

rf1 = randomForest(X.train1, as.factor(Y.train1), mtry = 14, norm.votes = FALSE)

note that the data in the second model

must have the same size than in the first one

rf2 = randomForest(X.train2, as.factor(Y.train2), mtry = 28, norm.votes = FALSE)

rf.combineModels = combine(rf1, rf2)

rf.predictions = predict(rf.combineModels, X.test)

rf.stats.predictions = model.stats(rf.predictions, Y.test)

displays

Test set

Error rate: 31.3%

Confusion matrix:

Reference

Prediction 0 1 class.error

0 360 60 0.1429

1 232 281 0.4522

Area Under ROC Curve: 0.7161

Area Under Precision-Recall Curve: 0.8361

F1-score: 0.6581

Geometric mean: 0.7079

We achieve a slightly higher AUC with Random Forests, but a lower test error. Two
important differences, with both algorithms, reside :
- in sensitivity (the true positive rate, i.e. all positive cases correctly predicted by the
algorithm versus all positive cases in the test set), higher in Random Forests,
- in precision (which relies on all positive cases correctly predicted by the algorithm versus
positive cases predicted by the algorithm) which is lower.
The positives cases are usually the ones belonging to the minority class. One can ask how
far are we from the i.i.d case? The OOB evaluation leads to a test error below than 6%.
Using only one of the two first datasets leads to an error close to 50%. Merging them
does not either get good results.
We just have discussed about he classification case. The regression one seems more
challenging and, in Random Uniform Forests, involves others mechanisms.

46

6 Conclusion

In this paper, we have tried to show main arguments and functions of Random Uniform
Forests. From the theoretical side, we describe the key differences with Random Forests,
which are the use of more randomness (the continuous Uniform distribution) for the
choice of cut-points at each node and the use of sampling with replacement the subset
of candidate variables at each node. The optimization criterion is also different. Hence
the choice of optimal node is no longer the same as in Breiman’s procedure, leading to
more uncorrelated trees in Random Uniform Forests (with, however, an average variance
of trees that increases). Lowering correlation is essential since it is one of the key for
convergence and for some other results. Since Random Uniform Forests inherit of all the-
oretical properties of Breiman’s Random Forests, they achieve similar results at a lower
cost.

From the practical side, Random Uniform Forests can be understood as an extension
of the original method, designed to achieve a deeper assessment of variable importance,
to be natively incremental and to allow easy distributed computing. We show in this
paper many tools to assess variable importance, providing ways to see and understand
how influential variables matter. To avoid a too long paper, we did not talk about impu-
tation of missing values or extrapolation. But, we provide full working examples of cost
sensitive learning, show how comprehensive model can be built using visualization (ROC
or Precision-Recall curves) with fewer tools and a full case of incremental learning. Fol-
lowing Breiman’s ideas, Random Uniform Forest are aimed to be a highly versatile tool
for classification, regression and, even, unsupervised learning (currently in development).

47

References

Biau, G., 2012. Analysis of a Random Forests Model. The Journal of
Machine Learning Research 13, 1063-1095.

Biau, G., Devroye, L., Lugosi, G., 2008. Consistency of random
forests and other averaging classifiers. The Journal of Machine
Learning Research 9, 2015-2033.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C., 1984.
Classification and Regression Trees. New York: Chapman and Hall.

Breiman, L., 1996. Bagging predictors. Machine learning 24,
123-140.

Breiman, L., 1996. Heuristics of instability and stabilization in
model selection. The annals of statistics 24, 2350-2383

Breiman, L., 1999. Pasting Small Votes for Classification in Large
Databases and On-Line. Machine Learning 36, 85-103.

Breiman, L., 2001. Random forests. Machine learning 45, 5-32.

Breiman, L., 2001. Statistical Modeling: The Two Cultures (with
comments and a rejoinder by the author). Statistical Science 16,
199-231

Chen, C., Liaw, A., Breiman, L., 2004. Using Random Forest to
Learn Imbalanced Data, Statistics Technical Reports. Statistics De-
partment, University of California, Berkeley, University of California
at Berkeley, Berkeley, California.

Ciss, S., 2014. randomUniformForest: random Uniform Forests
for Classification and Regression. R package version 1.0.6,
http://CRAN.R-project.org/package=randomUniformForest.

Ciss, S., 2014. Forêts uniformément aléatoires et détection des
irrégularités aux cotisations scoiales (in French). PhD thesis, 2014.
Université Paris Ouest Nanterre.

Devroye, L., Györfi, L., Lugosi, G., 1996. A probabilistic theory
of pattern recognition. New York: Springer.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern
Recognition Letters 27, 861-874.

48

Friedman, J.H., 2001. Greedy function approximation: A gradi-
ent boosting machine. Annals of Statistics 29, 1189-1232.

Friedman, J.H., 2002. Stochastic gradient boosting. Computa-
tional Statistics and Data Analysis 38, 367-378.

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely random-
ized trees. Machine Learning 63, 3-42.

Grömping, U., 2009. Variable Importance Assessment in Regres-
sion: Linear Regression versus Random Forest. The American
Statistician 63, 308-319.

Hastie, T., Tibshirani, R., Friedman, J.J.H., 2001. The elements
of statistical learning. New York: Springer.

Ho, T.K., 1998. The random subspace method for constructing
decision forests.IEEE Transactions on Pattern Analysis and Machine
Intelligence 20, 832-844.

Liaw, A., Wiener, M., 2002. Classification and Regression by
randomForest. R News 2(3), 18–22.

Lin, Y., Jeon, Y., 2002. Random Forests and Adaptive Nearest
Neighbors. Journal of the American Statistical Association 101-474.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch,
F., 2014. e1071: Misc Functions of the Department of Statistics
(e1071), TU Wien. R package version 1.6-3. http://CRAN.R-
project.org/package=e1071

Oza, N.C., 2005. Online bagging and boosting, in: 2005 IEEE
International Conference on Systems, Man and Cybernetics, pp.
2340-2345 Vol. 3.

R Core Team (2014). R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing, Vienna,
Austria. URL http://www.R-project.org/.

Ridgeway, G., with contributions from others, 2013. gbm: Generalized
Boosted Regression Models. R package version 2.1. http://CRAN.R-
project.org/package=gbm

Scornet, E., Biau, G., Vert, J. P., 2014. Consistency of Random
Forests. arXiv preprint arXiv:1405.2881.

49

Shannon, C.E., 1949. The Mathematical Theory of Communica-
tion. University of Illinois Press.

Simm, J., de Abril, I.M., 2013. extraTrees: ExtraTrees method. R pack-
age version 0.4-5. http://CRAN.R-project.org/package=extraTrees

Vapnik, V.N., 1995. The nature of statistical learning theory.
Springer-Verlag New York.

50

	Introduction
	Random uniform decision trees
	Regions
	Stopping rules
	Optimization criterion
	Decision rule
	Algorithm

	 Random Uniform Forests
	Algorithm
	Key concepts
	Decision rule
	Convergence of prediction error
	The OOB classifier
	Bounds
	Decomposition of prediction error and OOB bounds
	Variable importance

	Some extensions
	Prediction and confidence intervals
	Output perturbation sampling
	Incremental learning

	Examples
	Classification
	Iris data (assessment of variable importance)
	Vehicle data
	German credit data (cost sensitive learning)
	Breast cancer data (more on Breiman's bound)

	Regression
	AutoMPG data
	Abalone, Concrete compressive strength, Boston housing data

	Incremental learning, big data and/or streaming data

	Conclusion

