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The poweRlaw package provides an easy to use interface for fitting
and visualising heavy tailed distributions, including power-laws. This
vignette provides examples of the fitting procedure.

1 Discrete data: Moby Dick

The Moby Dick dataset contains the frequency of unique words in
the novel Moby Dick by Herman Melville. This data set can be
downloaded from

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

or loaded directly

library("poweRlaw")

data("moby")

To fit a discrete power-law to this data1, we use the displ constructor 1 The object moby is a simple R vector.

m_pl = displ$new(moby)

The resulting object, m_pl, is a displ2 object. It also inherits the 2 displ: discrete power-law.

discrete_distribution class. After creating the displ object, a typi-
cal first step would be to infer model parameters.3 We can estimate 3 When the displ object is first created,

the default parameter values are NULL

and xmin is set to the minimum x-value.
the lower threshold, via

est = estimate_xmin(m_pl)

m_pl$setXmin(est)

For a given value xmin, the scaling parameter is estimated by numeri-
cally optimising the log-likelihood. The optimiser is initialised using
the analytical MLE

α̂ ' 1 + n

[
n

∑
i=1

log
(

xi
xmin − 0.5

)]−1

.

This yields a threshold estimate of xmin = 7 and scaling parameter
α = 1.95, which matches results found in Clauset et~al. [2009].

Alternatively, we could perform a parameter scan for each value of
xmin

estimate_xmin(m_pl, pars=seq(1.5, 2.5, 0.1))

The parameter scan will typically be slower than using the optimiser.
To fit a discrete log-normal distribution, we follow a similar proce-

dure, except we begin by creating a dislnorm.4 4 dislnorm: discrete log normal object

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm
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m_ln = dislnorm$new(moby)

est = estimate_xmin(m_ln)

which yields a lower threshold of xmin = 3 and parameters (−17.9,
4.87). A similar procedure is applied to fit the Poisson distribution;
we create a distribution object using dispois, then fit as before.

The data CDF and lines of best fit can be easily plotted

plot(m_pl)

lines(m_pl, col=2)

lines(m_ln, col=3)

lines(m_pois, col=4)
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Figure 1: Data CDF of the Moby Dick
data set. The fitted power-law (green
line), log-normal (red line) and poisson
(blue) distributions are also given.

to obtain figure 1. It clear that the Poisson distribution is not ap-
propriate for this data set. However, the log-normal and power-law
distribution both provide reasonable fits to the data.

1.1 Parameter uncertainty

To get a handle on the uncertainty in the parameter estimates, we
use a bootstrapping procedure, via the bootstrap function. This
procedure can be applied to any distribution object.5 Furthermore, 5 For example, bootstrap(m_ln).

the bootstrap procedure can utilize multiple CPU cores to speed up
inference.6 6 The output of this bootstrapping

procedure can be obtained via
data(bootstrap_moby).## 5000 bootstraps using two cores

bs = bootstrap(m_pl, no_of_sims=5000, threads=2)

By default, the bootstrap function will use the maximum likelihood
estimate to estimate the parameter and check all values of xmin. When
possible xmin values are large, then it is recommend that the search
space is reduced. For example, this function call

bootstrap(m_pl, xmins = seq(2, 20, 2))

will only calculate the Kolmogorov-Smirnoff statistics at values of
xmin equal to

2, 4, 6, . . . , 20 .

A similar argument exists for the parameters.7 7 For single parameter models, pars

should be a vector. For the log-normal
distribution, pars should be a matrix of
values.

The bootstrap function, returns bs_xmin object that has three com-
ponents:

1. The goodness of fit statistic obtained from the Kolmogorov-Smirnoff
test. This value should correspond to the value obtained from the
estimate_xmin function.

2. A data frame containing the results for the bootstrap procedure.

3. The average simulation time, in seconds, for a single bootstrap.

The boostrap results can be explored in a variety way. First we can
estimate the standard deviation of the parameter uncertainty, i.e.
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Figure 2: Results from the standard
bootstrap procedure (for the power-law
model) using the Moby Dick data set:
bootstrap(m_pl). The top row shows
the mean estimate of parameters xmin
and α. The bottom row shows the es-
timate of standard deviation for each
parameter. The dashed-lines give ap-
proximate 95% confidence intervals.

After 5000 iterations, the standard
deviation of xmin and α is estimated to
be 2.1 and 0.03 respectively.

sd(bs$bootstraps[,2])

## [1] 1.879

sd(bs$bootstraps[,3])

## [1] 0.02447

Alternatively, we can visualise the results using the plot function:

## trim=0.1 only displays the final 90% of iterations

plot(bs, trim=0.1)

to obtain figure 2. This top row of graphics in figure 2 give a 95% con-
fidence interval for the mean estimate of the parameters. The bottom
row of graphics give a 95% confidence for the standard deviation of
the parameters. The parameter trim in the plot function controls the
percentage of samples displayed.8 When trim=0.1, we only display

8 When trim=0, all iterations are dis-
played.

the final 90% of data.
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Figure 3: Characterising uncertainty in
parameter values. (a) xmin uncertainty
(standard deviation 2) (b) α uncertainty
(std dev. 0.03)

We can also construct histograms.

hist(bs$bootstraps[,2])

hist(bs$bootstraps[,3])

to get figure 3.
A similar bootstrap analysis can be obtained for the log-normal

distribution

bs1 = bootstrap(m_ln)

in this case we would obtain uncertainty estimates for both of the
log-normal parameters.
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Figure 4: Results from the boot-
strap procedure (for the power-law
model) using the Moby Dick data set:
bootstrap_p(m_pl). The top row shows
the mean estimate of parameters xmin, α
and the p-value. The bottom row shows
the estimate of standard deviation for
each parameter. The dashed-lines give
approximate 95% confidence intervals.

1.2 Testing the power-law hypothesis

Since it is possible to fit a power-law distribution to any data set, it is
appropriate to test whether the observed data set actually follows a
power-law. Clauset et~al. [2009] suggest that this hypothesis is tested
using a goodness-of-fit test, via a bootstrapping procedure. This test
generates a p-value that can be used to quantify the plausibility of
the hypothesis. If the p-value is large, than any difference between
the empirical data and the model can be explained with statistical
fluctuations. If p ' 0, then the model does not provide a plausible fit
to the data and another distribution may be more appropriate. In this
scenario,

H0 : data is generated from a power-law distribution.

H1 : data is not generated from a power-law distribution.

To test these hypothesis, we use the bootstrap_p function

bs_p = bootstrap_p(m_pl)

The point estimate of the p-value is one of the elements of the bs_p

object9 9 Also given is the average time
in seconds of a single bootstrap:
bs_p$sim_time = 1.75.bs_p$p

## [1] 0.6778

Alternatively we can plot the results

plot(bs_p)

to obtain figure 4. The graph in the top right hand corner gives the
cumulative estimate of the p-value; the final value of the purple line
corresponds to bs_p$p. Also given are approximate 95% confidence
intervals.
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1.3 Comparing distributions
See the "Comparing distributions" vi-
gnette for other examples.A second approach to test the power law hypothesis is a direct com-

parison of two models. A standard technique is to use Vuong’s test, While the bootstrap method is useful, it
is computationally intensive.which a likelihood ratio test for model selection using the Kullback-

Leibler criteria. The test statistic, R, is the ratio of the log-likelihoods
of the data between the two competing models. The sign of R indi-
cates which model is better. Since the value of R is obviously subject
to error, we use the method proposed by Vuong, 1989.10 10 Q.H. Vuong. Likelihood ratio tests

for model selection and non-nested hy-
potheses. Econometrica: Journal of the
Econometric Society, 57:307–333, 1989

To compare two distributions, each distribution must have the
same lower threshold. So we first set the log normal distribution
object to have the same xmin as the power law object

m_ln$setXmin(m_pl$getXmin())

Next we estimate the parameters for this particular value of xmin:

est = estimate_pars(m_ln)

m_ln$setPars(est)

Then we can compare distributions

comp = compare_distributions(m_pl, m_ln)

This comparison gives a p-value of 0.6824. This p-value corresponds
to the p-value on page 29 of the Clauset paper (the paper gives 0.69).

Overall these results suggest that one model can’t be favoured over
the other.

1.4 Investigating the effect in xmin

The estimate of the scaling parameter, α, is typically highly corre-
lated with the threshold limit, xmin. This relationship can be easily
investigated with the poweRlaw package. First, we create a vector of
thresholds to scan

xmins = 1:1500
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Figure 5: Estimated parameter values
conditional on the threshold, xmin. The
horizontal line corresponds to α = 1.95.

then a vector to store the results

est_scan = 0*xmins

Next, we loop over the xmin values and estimate the parameter value
conditional on the xmin value

for(i in seq_along(xmins)){

m_pl$setXmin(xmins[i])

est_scan[i] = estimate_pars(m_pl)$pars

}

The results are plotted figure 5. For this data set, as the lower thresh-
old increases, so does the point estimate of α.
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2 Continuous data: electrical blackouts

In this example, we will investigate the numbers of customers affected
in electrical blackouts in the United States between 1984 and 2002.11 11 M.E.J. Newman. Power laws, Pareto

distributions and Zipf’s law. Contempo-
rary Physics, 46(5):323–351, 2005

The data set can be downloaded from Clauset’s website12

12 http://goo.gl/BsqnP
blackouts = read.table("blackouts.txt")

Although the blackouts data set is discrete, since the values are large
it makes sense to treat the data as continuous. Continuous power-law
objects take vectors as inputs, so

m_bl = conpl$new(blackouts$V1)

then we estimate the lower-bound via

est = estimate_xmin(m_bl)

This gives a point estimate of xmin = 50000. We can then update the
distribution object

m_bl$setXmin(est)

and plot the data with line of best fit

plot(m_bl)

lines(m_bl, col=2, lwd=2)

to get figure 6. To fit a discrete log-normal distribution we follow a
similar procedure:
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Figure 6: CDF plot of the blackout
dataset with line of best fit. Since the
minimum value of x is large, we fit a
continuous power-law as this is more it
efficient. The power-law fit is the green
line, the discrete log-normal is the red
line.

m_bl_ln = conlnorm$new(blackouts$V1)

est = estimate_xmin(m_bl_ln)

m_bl_ln$setXmin(est)

and add the line of best fit to the plot via

lines(m_bl_ln, col=3, lwd=2)

It is clear from figure 6 that the log-normal distribution provides a
better fit to this data set.

http://goo.gl/BsqnP
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3 Multiple data sets: the American-Indian war

In a recent paper, Bohorquez et~al. investigated insurgent attacks
in Afghanistan, Iraq, Colombia, and Peru.13 Each time, the data 13 J.C. Bohorquez, S.~Gourley, A.R.

Dixon, M.~Spagat, and N.F. Johnson.
Common ecology quantifies human in-
surgency. Nature, 462(7275):911–914,
2009

resembled power laws. Friedman used the power-law nature of
casualties to infer under-reporting in the American-Indian war. Briefly,
by fitting a power-law distribution to the observed process, the latent,
unobserved casualties can be inferred.14 14 J.A. Friedman. Using power laws to es-

timate conflict size. The Journal of Conflict
Resolution, 2014

The number of casualties observed in the American-Indian War
can be obtained via

data("native_american")

data("us_american")

Each data set is a data frame with two columns. The first column is
number of casualties recorded, the second the conflict date

head(native_american, 3)

## Cas Date

## 1 18 1776-07-15

## 2 26 1776-07-20

## 3 13 1776-07-20

The records span around one hundred years, 1776 – 1890. The data is
plotted in figure 7.

It is straightforward to fit a discrete power-law to this data set.
First, we create discrete power-law objects:

m_na = displ$new(native_american$Cas)

m_us = displ$new(us_american$Cas)

then we estimate xmin for each data set:
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Figure 7: Casualty record for the Indian-
American war, 1776 – 1890. Native
Americans casualties (purple circles)
and US Americans casualties (green tri-
angles). Data taken from Friedman
[2014].
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est_na = estimate_xmin(m_na, pars=seq(1.5, 2.5, 0.001))

est_us = estimate_xmin(m_us, pars=seq(1.5, 2.5, 0.001))

and update the power-law objects

m_na$setXmin(est_na)

m_us$setXmin(est_us)

The resulting fitted distributions can be plotted on the same figure

plot(m_na)

lines(m_na)

## Don't create a new plot

## Just store the output

d = plot(m_us, draw=FALSE)

points(d$x, d$y, col=2)

lines(m_us, col=2)

●
●

●
●

●

●
●

●●●
●●

●
●●

●
●●●●

●●●●●
●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●

●●●●
●
●
●

●
●

●

●

●

●

●

1 5 50 500

0.001

0.005

0.010

0.050

0.100

0.500

1.000

#Casualties

C
D

F

Figure 8: Plots of the CDFs for the Na-
tive American and US American casual-
ties. The lines of best fit are also given.

The result is given in figure 8. The tails of the distributions appear
to follow a power-law. This is consistent with the expectation that
smaller-scale engagements are less likely to be recorded. However,
for larger scale engagements, it is very likely that a record is made.
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Session Info

print(sessionInfo(), locale = FALSE)

## R version 3.1.0 (2014-04-10)

## Platform: x86_64-pc-linux-gnu (64-bit)

##

## attached base packages:

## [1] stats graphics grDevices utils

## [5] datasets methods base

##

## other attached packages:

## [1] poweRlaw_0.20.3 knitr_1.6

##

## loaded via a namespace (and not attached):

## [1] VGAM_0.9-3 codetools_0.2-8

## [3] digest_0.6.4 evaluate_0.5.5

## [5] formatR_0.10 highr_0.3

## [7] parallel_3.1.0 stats4_3.1.0

## [9] stringr_0.6.2 tools_3.1.0
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