pimeta
packageThe pimeta
package is easy. Load your data and then pass it the pima
function!
require("pimeta")
data(sbp, package = "pimeta")
# a parametric bootstrap prediction interval
set.seed(20161102)
pima(y = sbp$y, # effect size estimates
se = sbp$sigmak, # within studies standard errors
B = 50000 # some options (e.g., number of bootstrap samples)
)
> # a parametric bootstrap prediction interval
> set.seed(20161102)
> pima(y = sbp$y, # effect size estimates
+ se = sbp$sigmak, # within studies standard errors
+ B = 50000 # some options (e.g., number of bootstrap samples)
+ )
Prediction Interval for Random-Effects Meta-Analysis
A parametric bootstrap prediction interval
Heterogeneity variance: DerSimonian-Laird
SE for average treatment effect: Hartung
Average treatment effect [95%PI]:
-0.3341 [-0.8769, 0.2248]
Average treatment effect [95%CI]:
-0.3341 [-0.5660, -0.0976]
Heterogeneity variance (tau^2):
0.0282
Several type of methods are supported.
# Higgins-Thompson-Spiegelhalter prediction interval
pima(sbp$y, sbp$sigmak, method = "HTS")
# Partlett-Riley prediction interval (Hartung and Knapp's SE)
pima(sbp$y, sbp$sigmak, method = "HK")
# Partlett-Riley prediction interval (Sidik and Jonkman's SE)
pima(sbp$y, sbp$sigmak, method = "SJ")
> # Higgins-Thompson-Spiegelhalter prediction interval
> pima(sbp$y, sbp$sigmak, method = "HTS")
Prediction Interval for Random-Effects Meta-Analysis
Higgins-Thompson-Spiegelhalter prediction interval
Heterogeneity variance: DerSimonian-Laird
SE for average treatment effect: standard
Average treatment effect [95%PI]:
-0.3341 [-0.7598, 0.0917]
Average treatment effect [95%CI]:
-0.3341 [-0.5068, -0.1613]
Heterogeneity variance (tau^2):
0.0282
>
> # Partlett-Riley prediction interval (Hartung and Knapp's SE)
> pima(sbp$y, sbp$sigmak, method = "HK")
Prediction Interval for Random-Effects Meta-Analysis
Partlett-Riley prediction interval
Heterogeneity variance: REML
SE for average treatment effect: Hartung-Knapp
Average treatment effect [95%PI]:
-0.3287 [-0.9887, 0.3312]
Average treatment effect [95%CI]:
-0.3287 [-0.5761, -0.0814]
Heterogeneity variance (tau^2):
0.0700
>
> # Partlett-Riley prediction interval (Sidik and Jonkman's SE)
> pima(sbp$y, sbp$sigmak, method = "SJ")
Prediction Interval for Random-Effects Meta-Analysis
Partlett-Riley prediction interval
Heterogeneity variance: REML
SE for average treatment effect: Sidik-Jonkman
Average treatment effect [95%PI]:
-0.3287 [-0.9835, 0.3261]
Average treatment effect [95%CI]:
-0.3287 [-0.5625, -0.0950]
Heterogeneity variance (tau^2):
0.0700