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1 Introduction

pavo is an R package developed with the goal of establishing a flexible and integrated work-
flow for working with spectral color data. It includes functions that take advantage of new
data classes to work seamlessly from importing raw data to visualization and analysis.

Although pavo deals largely, in its examples, with spectral reflectance data from bird feath-
ers, it is meant to be applicable to a range of taxa. It provides flexible ways to input spectral
data from a variety of equipment manufacturers, process these data, extract variables, and
produce publication-quality figures.

pavo was written with the following workflow in mind:

1. Organize spectral data by inputting files and processing spectra (e.g., to remove
noise, negative values, smooth curves, etc...).

2. Analyze the resulting files, either using typical colorimetric variables (hue, saturation,
brightness) or using visual models based on perceptual data from the taxon of interest.

3. Visualize the output, with multiple options provided for exploratory analyses.

Below we will show the main functions in the package in an example workflow. The devel-
opment version of pavo can be found on github.

2 Dataset Description

The data used in this example are available from github by clicking here1. You can download
and extract it to follow the vignette.

The data consist of reflectance spectra, obtained using Avantes equipment and software,
from seven bird species: Northern Cardinal (Cardinalis cardinalis), Wattled Jacana (Ja-
cana jacana), Baltimore Oriole (Icterus galbula), Peach-fronted Parakeet (Aratinga aurea),
American Robin (Turdus migratorius), and Sayaca Tanager (Thraupis sayaca). Several in-
dividuals were measured (sample size varies by species), and 3 spectra were collected from
each individual. However, the number of individuals measured per species is uneven and
the data have additional peculiarities that should emphasize the flexibility pavo offers, as
we’ll see below.

In addition, pavo includes two datasets that can be called with the data function. data(teal)
and data(sicalis) will both be used in this vignette. See help for more information
help(package="pavo").

1in case you printed this out and thus can’t click the link:
https://github.com/rmaia/pavo/blob/master/vignette_data/vignette_data.zip
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3 Organizing and Processing Spectral Data

3.1 Importing Data

The first thing we need to do is import the spectral data into R using the function getspec().
Since the spectra were obtained using Avantes software, we will need to specify that the files
have the “.ttt” extension. Further, the data is organized in subdirectories for each species.
getspec does recursive sampling, and may include the names of the subdirectories in the
spectra name if desired. A final issue with the data is that it was collected using a computer
with international numbering input, which means it uses commas instead of periods as a
decimal separator. We can specify that in the function call.

The files were downloaded and placed in a directory called“/github/pavo/vignette_data”.
By default, getspec will search for files in the current folder, but a different one can be
specified:

> specs <- getspec("~/github/pavo/vignette_data/", ext="ttt", decimal=",",

+ subdir=T, subdir.names=F)

> # 213 files found; importing spectra

> # ============================================================

> specs[1:10,1:4]

wl cardinal.0001 cardinal.0002 cardinal.0003

1 300 5.7453 8.0612 8.0723

2 301 6.0181 8.3926 8.8669

3 302 5.9820 8.8280 9.0680

4 303 6.2916 8.7621 8.7877

5 304 6.6277 8.6819 9.3450

6 305 6.3347 9.6016 9.4834

7 306 6.3189 9.5712 9.3533

8 307 6.7951 9.4650 9.9492

9 308 7.0758 9.4677 9.8587

10 309 7.2126 10.6172 10.5396

> dim(specs) # the data set has 213 spectra, from 300 to 700 nm, plus a 'wl' column

[1] 401 214

When pavo imports spectra, it creates an object of class rspec, which inherits attributes
from the data.frame class:

> is.rspec(specs)

[1] TRUE

If you already have multiple spectra in a single data frame that you’d like to use with
pavo functions, you can use the command as.rspec to convert it to an rspec object. The

3



function will attempt to identify the wavelength variable or you can specify the column
containing wavelengths with the whichwl argument. The default way that as.rspec handles
reflectance data is to interpolate the data in 1-nm bins, as is commonly done for spectral
analyses. However, this can be turned off by using: interp = FALSE. As an example, we
will create some fake reflectance data, name the column containing wavelengths (in 0.5-nm
bins) “wavelength” rather than “wl” (required for pavo functions to work) and also put the
column containing wavelengths third rather than first.

> # Create some fake reflectance data with wavelength column arbitrarily titled

> # and notfirst in the data frame:

>

> fakedat <- data.frame(refl1 = rnorm(n = 801),

+ refl2 = rnorm(n = 801),

+ wavelength = seq(300, 700, by = .5))

> head(fakedat)

refl1 refl2 wavelength

1 0.4247861 0.72680541 300.0

2 -0.1876394 -0.35319316 300.5

3 -2.6522532 -1.30704507 301.0

4 -0.2108026 0.02053395 301.5

5 0.6239221 -1.23242455 302.0

6 1.3154839 -0.42875210 302.5

> is.rspec(fakedat)

[1] FALSE

> fakedat.new <- as.rspec(fakedat)

wavelengths found in column 3

> is.rspec(fakedat.new)

[1] TRUE

> head(fakedat.new)

wl refl1 refl2

1 300 0.4247861 0.726805406

2 301 -2.6522532 -1.307045068

3 302 0.6239221 -1.232424551

4 303 0.9378805 0.001178002

5 304 0.4872145 1.291907809

6 305 1.4001796 0.370431022

As can be seen, as.rspec renames the column containing wavelengths, sets it as the first
column, interpolates the data in 1-nm bins and converts the data to an rspec object. Note
that the same output is returned with specifying whichwl = 3:
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> head(as.rspec(fakedat, whichwl = 3))

wl refl1 refl2

1 300 0.4247861 0.726805406

2 301 -2.6522532 -1.307045068

3 302 0.6239221 -1.232424551

4 303 0.9378805 0.001178002

5 304 0.4872145 1.291907809

6 305 1.4001796 0.370431022

Finally, the lim argument allows you to specify the range of wavelengths contained in the
input dataset. This is useful either in the case that the dataset doesn’t contain this infor-
mation (and hence you cannot specify the column with whichwl or automatically find the
column with as.rspec). Additionally, it may be useful to focus on a subset of wavelength.
In our example, the wavelengths ranged from 300 to 700 nm, however you could also specify
a restricted range of wavelengths with lim:

> fakedat.new2 <- as.rspec(fakedat, lim = c(300, 500))

> plot(fakedat.new2[, 2]~fakedat.new2[, 1], type = 'l')

We want to stress that it is important to check the actual wavelengths contained in the data
before setting this argument (as.rspec will warn you when wavelengths in the data are not
present in the range specified with lim), otherwise as.rspec will assume that wavelengths
exist when in fact they may not. For example, if we set lim = c(300, 1000) and plot the
results, the reflectance values between 700 and 1000 nm are set to be equal since there is no
information at these wavelengths in the original dataset:

> fakedat.new2 <- as.rspec(fakedat, lim = c(300, 1000))

> plot(fakedat.new2[, 2]~fakedat.new2[, 1], type = 'l')

3.2 Subsetting and Merging Data

Once an rspec object has been created, either by importing raw spectral data or converting
a dataset with the as.rspec function, you can subset the spectra based on their names
using a modified version of R’s built-in subset function. For example, the following code
illustrates how to create an rspec object containing only tanagers:

> specs.tanager1 <- subset(specs, "tanager")

> head(specs.tanager1)[1:5]

wl tanager.0001 tanager.0002 tanager.0003 tanager.0004

1 300 10.0618 10.6744 10.1499 13.7473

2 301 11.1472 10.8054 9.8003 14.3102

3 302 10.7819 10.6134 9.5607 14.4463

4 303 11.0210 11.2037 10.4107 15.5533

5 304 10.2177 11.2120 9.9452 14.3841

6 305 11.5664 11.6135 10.8659 15.6445
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The subset function here is using partial matching to find all spectra with the string “tan-
ager”in their name. To fully benefit from this flexible subsetting functionality, it is important
that you follow a consistent file naming scheme. For example,“tanager.14423.belly.001.ttt”
would indicate the species (tanager), individual ID (14423), body patch (belly) and measure-
ment number (001). Additionally, we suggest that labels used should have the same number
of characters, which simplifies character string manipulation and subsetting based on partial
matching. Please see Andersson & Prager [1] for a useful discussion and suggestions on file
naming.

If you prefer not to use partial matching, subset will also work if you provide a logical
condition, similar to the default subset behavior in R. For example:

> # extract first component of filenames containing species names

> spp <- do.call(rbind, strsplit(names(specs), "\\."))[,1]

> # subset

> specs.tanager2 <- subset(specs, subset = spp=="tanager")

> # compare subsetting methods

> all.equal(specs.tanager1, specs.tanager2)

[1] TRUE

Note that subset will also work with visual model (class vismodel) and tetracolorspace
(class tcs) objects, as described below.

Another useful function is merge. Let’s say that you have subsetted spectra for tanagers
and parakeets, and you would like to re-combine them for an analysis. The following lines
of code show how to do this:

> specs.tanager <- subset(specs, "tanager")

> specs.parakeet <- subset(specs, "parakeet")

> specs.new <- merge(specs.tanager, specs.parakeet)

Note that this re-combined file (specs.new) has only a single ‘wl’ column with the merged
spectra as columns. Keep in mind that the order of objects in merge will determine the
order of columns in the final merged object (i.e. tanagers will be before parakeets).

3.3 Processing Data

3.3.1 Averaging Spectra

As previously described, our data (contained in the specs object) constitutes of multiple
individuals, and each was measured three times, as is common to avoid measurement bias.
A good way to visualize the repeatability of our measurements is to plot the spectra of
each individual separately. The function explorespec provides an easy way of doing so.
You may specify the number of spectra to be plotted in the same panel using the argument
specreps, and the function will adjust the number of panels per page accordingly. We will
exemplify this function using only the 12 cardinal individuals measured:

> explorespec(specs[,1:37], by=3, lwd=2)

> # 36 spectra plus the first (wl) column
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Figure 1: Result from explorespec, showing the three measurements for each individual
cardinal in separate panels

So our first step would be to take the average of each of these three measurements to obtain
average individual spectra to be used in further analyses. This is easily accomplished using
the aggspec function. The by argument can be either a number (specifying how many specs
should be averaged for each new sample) or a vector specifying the identities of the spectra
to be combined (see below):

> mspecs <- aggspec(specs, by = 3, FUN = mean)

> mspecs[1:5, 1:4]

wl cardinal cardinal.1 cardinal.2

1 300 7.292933 5.676700 6.387233

2 301 7.759200 5.806700 6.698200

3 302 7.959333 5.858467 6.910500

4 303 7.947133 6.130267 7.357567

5 304 8.218200 6.127933 7.195267

> dim(mspecs) #data now has 71 spectra, one for each individual, and the 'wl' column

[1] 401 72

Now we’ll use the aggspec function again, but this time to take the average spectrum for
each species. However, each species has a different number of samples, so we can’t use the
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by argument as before. Instead we will use regular expressions to create a species name
vector by removing the numbers that identify individual spectra:

> # create a vector with species identity names

> spp <- gsub('\\.[0-9].*$','',names(mspecs))[-1]

> table(spp)

spp

cardinal jacana oriole parakeet robin tanager

12 9 9 13 10 18

Instead, we are going to use the spp vector we created to tell the aggspec function how to
average the spectra in mspec:

> sppspec <- aggspec(mspecs, by=spp, FUN=mean)

> round(sppspec[1:5, ],2)

wl cardinal jacana oriole parakeet robin tanager

1 300 7.05 7.33 3.89 7.63 3.98 9.02

2 301 7.25 7.35 3.91 7.75 3.91 9.53

3 302 7.44 7.45 4.13 7.89 4.19 9.41

4 303 7.82 8.09 4.39 8.49 4.51 10.20

5 304 7.84 7.71 4.18 8.66 4.07 9.68

> explorespec(sppspec, by=6, lwd=3)
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Figure 2: Result from explorespec for species means

3.3.2 Normalizing and Smoothing Spectra

Data obtained from spectrometers often requires further processing before analysis and/or
publication. For example, electrical noise can produce unwanted “spikes” in reflectance
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curves. The pavo function procspec can handle a variety of processing techniques. For
example, the reflectance curve from the parakeet is noisy in the short (300-400 nm) and
long (650-700 nm) wavelength ranges (see Figure 4, black line). To eliminate this noise,
we will use local regression smoothing implemented by the loess.smooth function in R,
wrapped in the opt="smooth" argument of procspec.

But first, let’s use the plotsmooth function to determine a suitable smoothing parameter
(span). This function allows you to set a minimum and maximum smoothing parameter
to try and plots the resulting curves against the unsmoothed (raw) data in a convenient
multipanel figure.

> plotsmooth(sppspec, minsmooth = 0.05, maxsmooth = 0.5, curves = 4, ask = F)
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Figure 3: Diagnostic plots produced with plotsmooth to determine optimal smoothing
parameter. Each panel shows raw spectral data (lower curve) and smoothed curves with
sequentially higher smoothing parameters.

From the resulting plot, we can see that span = 0.2 is the minimum amount of smoothing
to remove spectral noise while preserving the original spectral shape (Figure 3). Based on
this value, we will now use the opt argument in procspec to smooth data for further plotting
and analysis (see Figure 4, red line).
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> spec.sm <- procspec(sppspec, opt='smooth', span = 0.2)

> plot(sppspec[, 5]~sppspec[, 1], type='l', lwd=10, col='grey',

+ xlab="Wavelength (nm)", ylab="Reflectance (%)")

> lines(spec.sm[, 5]~sppspec[, 1], col='red', lwd=2)
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Figure 4: Result for raw (grey line) and smoothed (red line) reflectance data for the parakeet.

We can also try different normalizations. Options include subtracting the minimum re-
flectance of a spectrum at all wavelengths (effectively making the minimum reflectance
equal to zero, opt="min", Figure 5 left panel) and making the reflectance at all wavelength
proportional to the maximum reflectance (i.e. setting maximum reflectance to 1; opt="max",
Figure 5 center panel). Note that the user can specify multiple processing options that will
be applied sequentially to the spectral data by procspec (Figure 5 right panel).

> # Run some different normalizations

> specs.max <- procspec(sppspec, opt='max')

> specs.min <- procspec(sppspec, opt='min')

> specs.str <- procspec(sppspec, opt=c('min', 'max')) # multiple options

> # plot results

> par(mfrow=c(1,3), mar=c(2,2,2,2), oma=c(3,3,0,0))

> plot(specs.min[,5]~c(300:700), xlab="", ylab="", type='l')

> abline(h=0, lty=2)

> plot(specs.max[, 5]~c(300:700), ylim=c(0,1), xlab="", ylab="", type='l')

> abline(h=c(0,1), lty=2)

> plot(specs.str[,5]~c(300:700), type='l', xlab="", ylab="")

> abline(h=c(0,1), lty=2)

> mtext("Wavelength (nm)", side=1, outer=T, line=1)

> mtext("Reflectance (%)", side=2, outer=T, line=1)
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Figure 5: Results for max (left), min (center), and both normalizations (right).

3.3.3 Binning and PCA Analysis of Spectral Shape

Another intended usage of procspec is preparation of spectral data for variable reduction
(for example, using Principal Component Analysis, or PCA). Following Cuthill et al. [2], we
can use opt = ‘center’ to center spectra to have a mean reflectance of zero (thus removing
brightness as a dominant variable in the PCA) and then bin the spectra into user -defined
bins (using the opt = ‘bin’ argument) to obtain a dataframe suitable for the PCA.

> # pca analysis

> spec.bin <- procspec(sppspec, opt=c('bin', 'center'))

> head(spec.bin)

> spec.bin <- t(spec.bin) # transpose so wavelength are variables for the PCA

> colnames(spec.bin) <- spec.bin[1,] # names variables as wavelength bins

> spec.bin <- spec.bin[-1, ] # remove 'wl' column

> pca1 <- prcomp(spec.bin, scale=T)

> summary(pca1)

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 3.5846 2.0307 1.5612 0.67444 0.36661

Proportion of Variance 0.6425 0.2062 0.1219 0.02274 0.00672

Cumulative Proportion 0.6425 0.8487 0.9705 0.99328 1.00000

PC6

Standard deviation 4.782e-16

Proportion of Variance 0.000e+00

Cumulative Proportion 1.000e+00

As can be seen by the summary, PC1 explains approximately 64% of the variation in spectral
shape and describes the relative amount of long wavelengths reflected (see Figure 6, left).
The flexibility of R and pavo’s plotting capabilities allows you to sort spectra by another
variable (e.g., PC1 loading) and then plot in a stacked format using the plot function.
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> # generate colors from spectra

> colr <- spec2rgb(sppspec)

> wls <- as.numeric(colnames(spec.bin))

> # rank specs by PC1

> sel <- rank(pca1$x[,1])

> sel <- match(names(sort(sel)), names(sppspec))

> # plot results

> par(mfrow=c(1,2), mar=c(2,4,2,2), oma=c(2,0,0,0))

> plot(pca1$r[,1]~wls, type='l', ylab="PC1 loading")

> abline(h=0, lty=2)

> plot(sppspec, select=sel, type='s', col=spec2rgb(sppspec))

> mtext("Wavelength (nm)", side=1, outer=T, line=1)
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Figure 6: Plot of PC1 loading versus wavelength (left) and species mean spectra sorted
vertically from lowest to highest PC1 value (right; values on right hand axis are column
identities).

3.3.4 Dealing With Negative Values in Spectra

Negative values in spectra are unwanted, as they are uninterpretable (how can there be
less than zero light reflected by a surface?) and can affect estimates of color variables.
Nonetheless, certain spectrometer manufacturers allow negative values to be saved. To
handle negative values, the procspec function has an argument called fixneg. The two
options available are (1) adding the absolute value of the most negative value to the whole
spectrum (addmin) and (2) changing all negative values to zero (zero).

> # Create a duplicate spectrum and add some negative values

> refl <- sppspec[, 7] - 20

> testspecs <- as.rspec(cbind(c(300:700), refl))

> # Apply two different processing options

> testspecs.fix1 <- procspec(testspecs, fixneg='addmin')

> testspecs.fix2 <- procspec(testspecs, fixneg='zero')
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> par(mar=c(2,2,2,2), oma=c(3,3,0,0))

> layout(cbind(c(1,1),c(2,3)), widths=c(2,1,1))

> plot(testspecs, select = 2, ylim=c(-10,30))

> abline(h=0, lty=3)

> plot(testspecs.fix1, select = 2, ylim=c(-10,30))

> abline(h=0, lty=3)

> plot(testspecs.fix2, select = 2, ylim=c(-10,30))

> abline(h=0, lty=3)

> mtext("Wavelength (nm)", side=1, outer=T, line=1)

> mtext("Reflectance (%)", side=2, outer=T, line=1)
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Figure 7: Plots showing original reflectance curve including negative values (left) and two
processed curves using fixneg=addmin (top right) and fixneg=zero (bottom right).

These manipultions may have different effects on the final spectra, as can be seen in Figure
7, which the user should keep in mind and use according to the final goal of the analysis.
For example, by adding the minimum reflectance to all other wavelength, the shape of the
curve is preserved, but the maximum reflectance is much higher (Figure 7, top). On the
other hand, substituting negative values with zero preserves absolute reflectance values, but
may cause the spectral shape to be lost (Figure 7, bottom). The “best” transformation will
depend on the severity of the problem of negative values and the goal of the analysis (e.g.
will reflectance intensity be used? What is more important, to preserve reflectance values
or the total shape of the curve?). Which correction to use would also depend on the source
of the negative values. If they are thought to originate from improper calibration of the
spectrophotometer, fixneg = addmin would be appropriate. However, if they are thought
to originate from electric noise, fixneg = zero would be more appropriate.
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4 Visualizing Spectral Data

pavo offers three main plotting functions. The main one is plot, which combines several
different options in a flexible framework for most commonly used purposes. The explore-

spec function aims at providing initial exploratory analysis, as demonstrated in Section 1,
Figures 1 and 2. Finally aggplot provides a simple framework for publication-quality plots
of aggregated spectral data.

4.1 The plot Function Options

Since pavo uses the class rspec to identify spectral data, the function plot.rspec can be
called simply by calling plot(data). If the object is not of class rspec the multivariate
visualization methods will not work as expected, so it might be useful to check the data
using is.rspec and convert with as.rspec if necessary.

We have implemented three methods of visualizing spectral data using plot:

• Overlay - all spectra plotted with same x- and y-axis

• Stack - spectra plotted with same x-axis but arranged vertically along y-axis

• Heatmap - false color map to illustrate three dimensional data

These options are in addition to the exploratory plotting offered by explorespec, as seen in
Figures 1 and 2. To showcase the capabilities of plot.rspec, we will use the teal dataset
included in pavo. This dataset consists of reflectance spectra from the iridescent wing patch
of a green-winged teal (Anas carolinensis). Reflectance measurements were taken between
300 and 700 nm at different incident angles, ranging from 15◦ to 70◦ (in 5◦ increments)
(Eliason & Shawkey, 2012).

4.1.1 The overlay Option

We can start out by visualizing these spectra with the overlay option in plot. Another
neat option pavo offers is to convert reflectance spectra to their approximate perceived
color, by using the function spec2rgb. This can make for some very interesting plots and
even exploratory data analysis, as shown in Figure 8.

> par(mar=c(4,4,2,2))

> data(teal)

> plot(teal, type='o', col=spec2rgb(teal))
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Figure 8: Overlay plot of the teal angle-dependent reflectance with colors of each curve
being an approximation of the perceived color.

4.1.2 The stack Option

Another option is the stack plot (again, with human vision approximations of the color
produced by the spectra using spec2rgb).

> teal.norm <- procspec(teal, opt=c('min', 'max'))

> par(mfrow=c(1,2), mar=c(2,2,2,2), oma=c(2,2,0,0))

> plot(teal, type='s', col=spec2rgb(teal))

> plot(teal.norm, type='s', col=spec2rgb(teal))

> mtext("Wavelength (nm)", side=1, outer=T, line=1)

> mtext("Cumulative reflectance (A.U.)", side=2, outer=T, line=1)

Note that in Figure 9, the y axis to the right includes the index of each spectrum. This
makes it easier to identify and subset specific spectra or groups of spectra using the select
argument in plot.rspec. Note also that the first index is actually 2, preserving the se-
quence in the original dataset (since the first column is wavelength). Though this may seem
confusing at first (“why is my first spec number 2?”) this preserves subsetting hierarchy:
using plot(teal, select=2) will show the same spectra that would be selected if you use
teal[ ,2].

4.1.3 The heatmap Option

Since this dataset is three-dimensional (containing wavelengths, reflectance values and in-
cident angles) we can also use the heatmap function. First, it will be necessary to define a
vector for the incident angles each spectrum was measured at:

> angles <- seq(15, 70, by = 5)
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Figure 9: Stack plot of the raw (left) and normalized (right) teal angle-dependent reflectance

Next, we will smooth the data with procspec and plot as a false color map (heatmap):

> teal.sm <- procspec(teal, opt=c('smooth'))

processing options applied:

smoothing spectra with a span of 0.25

> plot(teal.sm, type = 'h', varying = angles,

+ ylab = expression(paste("Incident angle (", degree, ")")),

+ las = 1, useRaster = TRUE)
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Figure 10: Heatmap plot for angle-resolved reflectance measurements of the green-winged
teal.

These plots can be very useful to observe changes over time, for example, or any other type
of continuous variation.

4.2 The aggplot Function

aggplot has a very similar interface to aggspec, allowing for quick plotting of aggregated
spectra combined by a factor, such as species, sex, experimental treatment, and so on. Its
main output is a plot with lines of group mean spectra outlined by a shaded area indicating
some measure of variability, such as the standard deviation of the group. Note that functions
that aren’t already implemented in R must be passed like they would be to functions such
as apply (e.g., function(x)sd(x)/sqrt(length(x)) in the example below).

> par(mfrow=c(1,2), mar=c(4,4,2,2), oma=c(2,0,0,0))

> #plot using median and standard deviation, default colors

> aggplot(mspecs, spp, FUN.center=median, lwd=2, alpha=0.3)

> #plot using mean and standard error, in greyscale

> aggplot(mspecs, spp, FUN.error=function(x)sd(x)/sqrt(length(x)),

+ lwd=2, lty=1:7, lcol=1, shadecol='grey', alpha=0.7)
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Figure 11: Example plots created using aggplot. Left: using median, standard deviation,
and colored lines. Right: using mean, standard error, and greyscale

5 Analyzing Spectral Data

5.1 Overview

pavo offers two main approaches for spectral data analysis. First, color variables can be
calculated based on the shape of the reflectance spectra. By using special R classes for
spectra data frame objects, this can easily be done using the summary function with an
rspec object (see below). The function peakshape also returns descriptors for individual
peaks in spectral curves, as outlined below.

Second, reflectance spectra can be analyzed by accounting for the visual system receiving
the color signal, therefore representing reflectance spectra as perceived colors. We have
implemented Endler’s [3] segment classification method, which approximates visual models
but does not directly use sensory information; the model of Vorobyev & Osorio [12], which
provides a flexible framework for visual modeling; and the tetrahedral color space [4, 3, 10]
which has been extensively developed to represent colors in the avian vision color space.

5.2 Spectral Shape Analysis

5.2.1 Colorimetric Variables

Obtaining colorimetric variables (peratining to hue, saturation and brightness/value) is
pretty straightforward in pavo. Since reflectance spectra is stored in an object of class
rspec, the summary function recognizes the object as such and extracts 23 variables, as
outlined in Montgomerie [8]. Though outlined in a book chapter on bird coloration, these
variables are broadly applicable to any reflectance data, particularly if the taxon of interest
has color vision within the UV-human visible range.

The description and formulas for these variables can be found in Table 1.
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> summary(spec.sm)

B1 B2 B3 S1.UV S1.violet S1.blue

cardinal 8984.27 22.40 52.70 0.17 0.19 0.12

jacana 9668.50 24.11 53.79 0.10 0.11 0.19

oriole 9108.47 22.71 54.16 0.07 0.08 0.06

parakeet 6020.73 15.01 29.87 0.17 0.19 0.14

robin 5741.39 14.32 37.86 0.09 0.10 0.14

tanager 8515.25 21.24 30.48 0.20 0.24 0.26

S1.green S1.yellow S1.red S2 S3 S4 S5

cardinal 0.19 0.25 0.53 7.61 0.30 0.20 0.45

jacana 0.31 0.25 0.41 7.10 0.25 0.05 0.34

oriole 0.33 0.36 0.55 14.51 0.30 0.09 0.57

parakeet 0.42 0.34 0.27 5.11 0.45 0.27 0.31

robin 0.27 0.27 0.51 9.13 0.30 NA 0.44

tanager 0.32 0.24 0.22 3.23 0.33 0.17 0.13

S6 S7 S8 S9 S10 H1 H2 H3 H4 H5

cardinal 45.77 -0.45 2.04 -0.84 10.07 700 419 500 1.55 581

jacana 46.21 -0.48 1.92 -0.73 36.06 700 593 500 0.86 468

oriole 50.42 -0.75 2.22 -0.92 25.43 700 382 500 1.16 544

parakeet 24.02 -0.16 1.60 -0.59 5.84 572 618 516 0.59 506

robin 33.71 -0.58 2.35 -0.81 NA 700 NA 500 1.15 631

tanager 21.03 -0.08 0.99 0.05 5.90 557 594 428 0.04 518

summary also takes an additional argument subset which if changed from the default FALSE
to TRUE will return only the most commonly used colorimetrics [1]. summary can also take
a vector of color variable names, which can be used to filter the results

> summary(spec.sm, subset = TRUE)

B2 S8 H1

cardinal 22.40 2.04 700

jacana 24.11 1.92 700

oriole 22.71 2.22 700

parakeet 15.01 1.60 572

robin 14.32 2.35 700

tanager 21.24 0.99 557

> # Extract only brightness variables

> summary(spec.sm, subset = c('B1', 'B2', 'B3'))

B1 B2 B3

cardinal 8984.27 22.40 52.70

jacana 9668.50 24.11 53.79

oriole 9108.47 22.71 54.16

parakeet 6020.73 15.01 29.87

robin 5741.39 14.32 37.86

tanager 8515.25 21.24 30.48
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5.2.2 Peak Shape Descriptors

Particularly in cases of reflectance spectra that have multiple discrete peaks (in which case
the summary function will only return variables based on the tallest peak in the curve), it
might be useful to obtain variables that describe individual peak’s properties. The peak-

shape function identifies the peak location (H1), returns the reflectance at that point (B3),
and identifies the wavelengths at which the reflectance is half that at the peak, calculating
the wavelength bandwith of that interval (the Full Width at Half Maximum, or FWHM). The
function also returns the half widths, which are useful when the peaks are located near the
edge of the measurement limit and half maximum reflectance can only be reliably estimated
from one of its sides.

If this all sounds too esoteric, fear not: peakshape has the option of returning plots indi-
cating what it’s calculating. The vertical continuous red line indicates the peak location,
the horizontal continuous red line indicates the half-maximum reflectance, and the distance
between the dashed lines (HWHM.l and HWHM.r) is the FWHM:
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> par(mfrow=c(2,3),mar = c(5, 4, 0.5, 0.5) + 0.1)

> peakshape(spec.sm, plot=T)

id B3 H1 FWHM HWHM.l HWHM.r incl.min

1 cardinal 52.70167 700 NA 113 NA Yes

2 jacana 53.78744 700 NA 171 NA Yes

3 oriole 54.15508 700 NA 149 NA Yes

4 parakeet 29.86504 572 125 62 63 Yes

5 robin 37.85542 700 NA 107 NA Yes

6 tanager 30.48108 557 281 195 86 Yes
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Figure 12: Plots from peakshape

As it can be seen, the variable FWHM is meaningless if the curve doesn’t have a clear peak.
Sometimes, such as in the case of the Cardinal (Figure 12, first panel), there might be a
peak which is not the point of maximum reflectance of the entire spectral curve. The half-
width can also be erroneously calculated when there are two peaks, as can be seen in the
case of the Tanager (Figure 12, last panel). In this case, it’s useful to set wavelength limits
when calculating the FWHM by using the lim argument. peakshape also offers a select

argument to facilitate subsetting the spectra data frame to, for example, focus on a single
reflectance peak:

> peakshape(spec.sm, select=2, lim=c(300,500), plot=T)

id B3 H1 FWHM HWHM.l HWHM.r incl.min

1 cardinal 17.84381 369 99 45 54 Yes
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Figure 13: Plot from peakshape, setting the wavelength limits to 300 and 500nm

5.3 Visual System Models

5.3.1 Segment Classification Analysis

The segment classification analysis [3] does not assume any particular visual system, but
instead tries to classify colors in a manner that captures common properties of many ver-
tebrate (and some invertebrate) visual systems. In essence, it breaks down the reflectance
spectrum region of interest into four equally-spaced regions, measuring the relative sig-
nal along those regions. This approximates a trichromatic opponency system with short,
medium, and long-wavelength sensitive photoreceptors.

Though somewhat simplistic, this model captures many of the properties of other, more
complex visual models, but without many of the additional assumptions these make. It also
provides results in a fairly intuitive color space, in which the angle corresponds to hue and
the distance from the center corresponds to chroma (Figure 14; in fact, variables S5 and H4

from summary.rspec are calculated from these relative segments, see Table 1). Note that,
while a segment analysis ranging from 300 or 400nm to 700nm corresponds quite closely to
the human visual system color wheel, any wavelength range can be analyzed in this way,
returning a 360◦ hue space delimited by the range used (segclass (see below) accepts the
argument range for user-specified limits that don’t match the data range).

The segment differences or “opponents” are calculated as:

LM =
Rλ

P

λ=Q4 Rλ −P

λ=Q2 Rλ
Pmax

λ=min Rλ

(1a)

MS =
Rλ

P

λ=Q3 Rλ −P

λ=Q1 Rλ
Pmax

λ=min Rλ

(1b)
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Where Qi represent the interquantile distances (e.g. for the human visible range, Q1 = blue,
Q2 = green, Q3 = yellow and Q4 = red)

In pavo, the segment classification model is obtained through the function segclass:

> segclass(spec.sm)

LM MS

cardinal 0.445507351 0.009493445

jacana 0.258775610 0.224773280

oriole 0.525901497 0.231306047

parakeet 0.175658932 0.260971501

robin 0.402673281 0.180016614

tanager 0.005732469 0.129813448

where LM and MS are the segment differences or “opponents” (Eqn 1).

The example below uses idealized reflectance spectra to illustrate how the avian color space
defined from the segment classification maps to the human color wheel:

> # creating idealized specs with varying hue

> fakedata1 <- sapply(seq(100,500,by=20),

+ function(x) rowSums(cbind(dnorm(300:700,x,30),

+ dnorm(300:700,x+400,30))))

> # creating idealized specs with varying saturation

> fakedata2 <- sapply(c(500, 300, 150, 105, 75, 55, 40, 30),

+ function(x) dnorm(300:700,550,x))

> # combining and converting to rspec

> fakedata.c <- data.frame(wl=300:700, fakedata1, fakedata2)

> fakedata.c <- as.rspec(fakedata.c)

> fakedata.c <- procspec(fakedata.c, "max")

> fakedata1 <- as.rspec(data.frame(wl=300:700,fakedata1))

> fakedata1 <- procspec(fakedata1, "max")

> fakedata2 <- as.rspec(data.frame(wl=300:700,fakedata2))

> fakedata2 <- procspec(fakedata2, "max")

> # segment classification analysis

> seg.fdc <- segclass(fakedata.c)

> # plot results

> layout(cbind(1,2,3), widths=c(1,1,3))

> par(mar=c(5,4,2,0.5))

> plot(fakedata1, type='stack', col=spec2rgb(fakedata1))

> par(mar=c(5,2.5,2,1.5))

> plot(fakedata2, type='stack', col=spec2rgb(fakedata2))

> par(mar=c(5,4,2,0.5))

> plot(seg.fdc, pch=20, cex=3, col=spec2rgb(fakedata.c))
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Figure 14: Idealized reflectance spectra and their projection on the axes of segment classi-
fication

5.3.2 Photon Catch & Receptor Noise Model

Several models have been developed to understand how colors are perceived and discrimi-
nated by an individual’s or species’ receptor visual system (Described in detail in [3, 12]).
In essence, these models take into account the receptor sensitivity of the different cones that
make the visual system in question and quantify how a given color would stimulate those
cones individually and the combined effect on the perception of color. These models also
have an important component of assuming and interpreting the chromatic component of
color (hue and saturation) to be processed independently of the achromatic (brightness, or
luminance) component. It provides a flexible framework allowing for a tiered model construc-
tion, in which information on aspects such as different illumination sources, backgrounds,
and visual systems can be considered and compared.

To apply these models, first we need to quantify cone excitation and then consider how
the signal is being processed, considering the relative density of different cones and the
noise-to-signal ratio.

Photon Catch. To quantify the stimulation of cones by the emitted color, we will use the
pavo function vismodel. This function takes an rspec dataframe as a minimal input, and
the user can either select from the available options or input its own data for the additional
arguments in the function:

• visual: the visual system to be used. Available options are the avian average UV &
average V visual systems, blue tit, starling and peafowl. Alternatively, the user may
include its own dataframe, with the first column being the wavelength range and the
following columns being the absorbance at each wavelength for each cone type (see
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below for an example).

• achromatic: Either a cone’s sensitivity data (avaiable options are blue tit and chicken
double cones), which can also be user-defined as above; or the sum of the two longest-
wavelength cones can be used (with the ml option). Alternatively, none can be specified
for no achromatic stimulation calculation.

• illum: The illuminant being considered. By default, it considers an ideal white ilu-
minant, but implemented options are a blue sky, standard daylight, and forest shade
illuminants. A vector of same length as the wavelength range being considered can
also be used as the input.

• bkg: The background being considered. By default, it considers an idealized back-
ground (i.e. wavelength-independent influence of the background on color). A vector
of same length as the wavelength range being considered can also be used as the input.

(For more information, see ?vismodel)

The vismodel function also takes additional arguments that can be used to customize the
visual model being implemented:

• qcatch: This argument determines what photon catch data should be returned.

– Qi: The receptor quantum catches, calculated for receptor i as:

Qi =

Z

λ

Ri(λ)S(λ)I(λ)dλ, (2)

Where λ denotes the wavelength, Ri(λ) the spectral sensitivity of receptor i, S(λ)
the reflectance spectrum of the color, and I(λ) the illuminant spectrum.

– fi: The receptor quantum catches transformed according to Fechner’s law, in
which the signal of the receptor is proportional to the logarithm of the quantum
catch –i.e. fi = ln(Qi)

• relative: If TRUE, it will make the cone stimulations relative to their sum. This is
appropriate for colorspace models such as the avian tetrahedral colorspace [4, 10] For
the photon catch and neural noise model, it is important to set relative=FALSE.

• vonkries: a logical argument which determines if the von Kries transformation (which
normalizes receptor quantum catches to the background, thus accounting for receptor
adaptation) is to be applied (defaults to FALSE). If TRUE, Qi is multiplied by a constant
k, which describes the von Kries transformation:

ki =
1

R

λ
Ri(λ)Sb(λ)I(λ)dλ,

(3)

Where Sb denotes the reflectance spectra of the background.

• scale: This argument defines how the illuminant should be scaled. The scale of the
illuminant is critical of receptor noise models in which the signal intensity influences
the noise (see Receptor noise section, below).Illuminant curves should be in units of
µmol.s−1.m−2 in order to yield physiologically meaningful results. 2 Therefore, if the

2some software return illuminant information values in µWatt.cm−2, and must be converted to
µmol.s−1.m−2. This can be done by using the irrad2flux and flux2irrad functions. For more infor-
mation, see [5].
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user-specified illuminant curves are not in these units (i.e. are measured proportional
to a white standard, for example), the scale parameter can be used as a multiplier
to yield curves that are at least a reasonable approximation of the illuminant value.
Commonly used values are 500 for dim conditions and 10,000 for bright conditions.

For this example, we will use the average reflectance of the different species to calculate their
stimulation of retinal cones, considering the avian average UV visual system, a standard
daylight illumination, and an idealized background.3 Following Vorobyev 1998[12], spectra
are converted to proportions (instead of percent reflectance) automatically by the function
prior to calculations:

> vismod1 <- vismodel(sppspec, visual = "avg.uv", illum='D65', relative=FALSE)

> vismod1

u s m l lum

cardinal 0.0341 0.0649 0.1297 0.4187 0.1939

jacana 0.0199 0.1484 0.2923 0.3313 0.2709

oriole 0.0139 0.0375 0.2649 0.4807 0.2755

parakeet 0.0186 0.0611 0.2542 0.2171 0.2042

robin 0.0109 0.0622 0.1413 0.2420 0.1501

tanager 0.0418 0.1572 0.2747 0.2284 0.2346

Since there are multiple parameters that can be used to customize the output of vismodel,
for convenience these can be returned by using summary in a vismodel object:

> summary(vismod1)

visual model options:

* Quantal catch: Qi

* Visual system: avg.uv bt.dc

* Illuminant: D65, scale = 1 (von Kries color correction not applied)

* Background: ideal

* Relative: FALSE

u s m

Min. :0.01093 Min. :0.03749 Min. :0.1297

1st Qu.:0.01509 1st Qu.:0.06137 1st Qu.:0.1695

Median :0.01925 Median :0.06353 Median :0.2595

Mean :0.02321 Mean :0.08854 Mean :0.2262

3rd Qu.:0.03059 3rd Qu.:0.12753 3rd Qu.:0.2722

Max. :0.04177 Max. :0.15716 Max. :0.2923

l lum

Min. :0.2171 Min. :0.1501

1st Qu.:0.2318 1st Qu.:0.1965

Median :0.2866 Median :0.2194

Mean :0.3197 Mean :0.2215

3rd Qu.:0.3969 3rd Qu.:0.2618

Max. :0.4807 Max. :0.2755

3up to version 0.1-2, vismodel would return a list containing Qi, qi and fi. Users should note that this
has changed in newer versions. Qi is the default value returned, and fi can be chosen using the qcatch

argument. qi can be returned by using the new argument vonkries = TRUE.
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Figure 15: Plots of species mean reflectance curves with corresponding relative usml cone
stimulations (insets).

We can visualize what these models are doing by comparing the reflectance spectra to the
quantum catches they are generating:

> par(mfrow=c(2,6), oma=c(3,3,0,0))

> layout(rbind(c(2,1,4,3,6,5), c(1,1,3,3,5,5), c(8,7,10,9,12,11), c(7,7,9,9,11,11)))

> for (i in 1:6) {

+ par(mar=c(2,2,2,2))

+ plot(sppspec, select = i + 1, col = spec2rgb(sppspec)[i], lwd = 3, ylim = c(0,100))

+ par(mar=c(4.1,2.5,2.5,2))

+ barplot(as.matrix(vismod1[i,1:4]), yaxt='n', col='black')

+ }

> mtext("Wavelength (nm)", side=1, outer=T, line=1)

> mtext("Reflectance (%)", side=2, outer=T, line=1)

As described above, vismodel also accepts user-defined visual systems, background and
illuminants. We will illustrate this by showcasing the function sensmodel, which models
spectral sensitivities of retinas based on their peak cone sensitivity, as described in Govar-
dovskii et al. [6] and Hart & Vorobyev [7]. sensmodel takes several optional arguments,
but the main one is a vector containing the peak sensitivities for the cones being modeled.
Let’s model an idealized dichromat visual system, with cones peaking in sensitivity at 350
and 650 nm:
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> idealizeddichromat <- sensmodel(c(350,650))

> plot(idealizeddichromat, col=spec2rgb(idealizeddichromat), ylab='Absorbance')

> vismod.idi <- vismodel(sppspec, visual = idealizeddichromat, relative=FALSE)

> vismod.idi

lmax350 lmax650 lum

[1,] 0.1458 0.3519 0.2077

[2,] 0.0916 0.3179 0.2915

[3,] 0.0698 0.3776 0.2893

[4,] 0.1058 0.1727 0.2190

[5,] 0.0473 0.2175 0.1600

[6,] 0.1644 0.2149 0.2568
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Figure 16: Idealized dichromat photoreceptors created using sensmodel

Receptor Noise. Color distances can be calculated under this model while considering
receptor noise by using the inverse of the noise-to-signal ratio, known as the Weber fraction
(wi for each cone i). The Weber fraction can be calculated from the noise-to-signal ratio of
cone i (vi) and the relative number of receptor cells of type i within the receptor field (ni):

wi =
vi√
ni

(4)

wi is the value used for the noise when considering only neural noise mechanisms. Alterna-
tively, the model can consider that the intensity of the color signal itself contributes to the
noise (photoreceptor, or quantum, noise). In this case, the noise for a receptor i is calculated
as:

wi =

s

v2i√
ni

+
2

Qa +Qb

(5)
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where a and b refer to the two color signals being compared. Note that when the values of
Qa and Qb are very high, the second portion of the equation tends to zero, and the both
formulas should yield similar results. Hence, it is important that the quantum catch are
calculated in the appropriate illuminant scale, as described above.

Color distances are obtained by weighting the Euclidean distance of the photoreceptor quan-
tum catches by the Weber fraction of the cones (∆S). These measurements are in units of
Just Noticeable Differences (JNDs), where distances over a certain threshold (usually 1) are
considered to be discernible under the conditions considered (e.g., backgrounds, illumina-
tion). The equations used in these calculations are:

For dichromats:

∆S =

s

(∆f1 −∆f2)
2

w2
1 + w2

2

(6)

For trichromats:

∆S =

s

w2
1(∆f3 −∆f2)

2 + w2
2(∆f3 −∆f1)

2 + w2
3(∆f1 −∆f2)

2

(w1w2)2 + (w1w3)2 + (w2w3)2
(7)

For tetrachromats:

∆S =

v

u

u

u

u

u

u

u

t

h

(w1w2)
2(∆f4 −∆f3)

2 + (w1w3)
2(∆f4 −∆f2)

2 + (w1w4)
2(∆f3 −∆f2)

2+

(w2w3)
2(∆f4 −∆f1)

2 + (w2w4)
2(∆f3 −∆f1)

2 + (w3w4)
2(∆f2 −∆f1)

2
i

/
h

(w1w2w3)
2 + (w1w2w4)

2 + (w1w3w4)
2 + (w2w3w4)

2
i

(8)

For the chromatic contrast. The achromatic contrast (∆L) can be calculated based on
the double cone or the receptor (or combination of receptors) responsible for chromatic
processing by the equation [9]:

∆L =

∣

∣

∣

∣

∆f2

w2

∣

∣

∣

∣

(9)

pavo implements these calculations in the function coldist. For the achromatic contrast,
coldist uses n4 to calculate w for the achromatic contrast. Note that even if Qi is chosen,
values are still log-transformed. This option is available in case the user wants to specify a
data frame of quantum catches that was not generated by vismodel as an input. In this
case, the argument qcatch should be used to inform the function if Qi or fi values are
being used (note that if the imput to coldist is an object generated using the vismodel

function, this argument is ignored.) The type of noise to be calculated can be selected from
the coldist argument noise (which accepts either "neural" or "quantum").

> coldist(vismod1, vis='tetra', noise='neural', n1=1, n2=2, n3=2, n4=4, v=0.1)

patch1 patch2 dS dL

1 cardinal jacana 16.847930 6.6899254
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2 cardinal oriole 15.811751 7.0221640

3 cardinal parakeet 15.999461 1.0354990

4 cardinal robin 11.611123 5.1212333

5 cardinal tanager 20.200622 3.8137614

6 jacana oriole 20.302506 0.3322386

7 jacana parakeet 8.463140 5.6544265

8 jacana robin 7.007538 11.8111588

9 jacana tanager 10.252532 2.8761640

10 oriole parakeet 16.271586 5.9866650

11 oriole robin 14.441011 12.1433973

12 oriole tanager 27.216506 3.2084026

13 parakeet robin 9.213693 6.1567323

14 parakeet tanager 11.939520 2.7782624

15 robin tanager 15.377415 8.9349947

> coldist(vismod.idi, vis='di', n1=1, n2=1, v=0.05)

patch1 patch2 dS dL

1 cardinal jacana 1.1498495 13.5477643

2 cardinal oriole 2.5506049 13.2422588

3 cardinal parakeet 1.2365087 2.1119271

4 cardinal robin 2.0395424 10.4463925

5 cardinal tanager 1.9399073 8.4832383

6 jacana oriole 1.4007554 0.3055055

7 jacana parakeet 2.3863582 11.4358373

8 jacana robin 0.8896929 23.9941568

9 jacana tanager 3.0897568 5.0645260

10 oriole parakeet 3.7871136 11.1303317

11 oriole robin 0.5110625 23.6886513

12 oriole tanager 4.4905123 4.7590204

13 parakeet robin 3.2760511 12.5583195

14 parakeet tanager 0.7033986 6.3713113

15 robin tanager 3.9794497 18.9296308

Where dS is the chromatic contrast (∆S) and dL is the achromatic contrast (∆L). As
expected, values are really high under the avian color vision, since the colors of these species
are quite different (see Figure 15) and because of the enhanced discriminatory ability with
four compared to two cones.

coldist also has a subset argument, which is useful if only certain comparisons are of
interest (for example, of color patches against a background, or only comparisons among a
species or body patch). subset can be a vector of length one or two. If only one subsetting
option is passed, all comparisons against the matching argument are returned (useful in the
case of comparing to a background, for example). If two values are passed, comparisons will
only be made between samples that match that rule (partial string matching and regular
expressions are accepted). For example, compare:

> coldist(vismod1, subset='cardinal')

patch1 patch2 dS dL

1 cardinal jacana 16.84793 6.689925
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2 cardinal oriole 15.81175 7.022164

3 cardinal parakeet 15.99946 1.035499

4 cardinal robin 11.61112 5.121233

5 cardinal tanager 20.20062 3.813761

to:

> coldist(vismod1, subset=c('cardinal', 'jacana'))

patch1 patch2 dS dL

1 cardinal jacana 16.84793 6.689925

5.3.3 Tetrahedral Color Space Model

Another visual model representation that has become quite popular, especially in avian
biology studies, is the color space model. In this model, photon catches are expressed in
relative values (so that the the quantum catches of all cones involved in chromatic discrim-
ination sum to 1). The maximum stimulation of each cone n is placed at the vertex of a
(n − 1)-dimensional polygon that encompasses all theoretical colors that can be perceived
by that visual system. Therefore, for the avian visual system comprised of 4 cones, all colors
can be placed somewhere in the volume of a tetrahedron, in which each of the four vertices
represents the maximum stimulation of that particular cone type (Figure 17).

Though this model does not account for receptor noise (and thus does not allow an estimate
of JNDs), it presents several advantages. First, it makes for a very intuitive representation
of color points accounting for attributes of the color vision of the signal receiver. Second,
and perhaps most importantly, it allows for the calculation of several interesting variables
that represent color. For example, hue can be estimated from the angle of the point relative
to the xy plane (blue-green- red) and the z axis (UV); saturation can be estimated as the
distance of the point from the achromatic center.

In pavo the tetrahedral color space is implemented in the function tcs, after the calculation
of relative quantum catches using vismodel with the (default) option relative=TRUE.

> vismod2 <- vismodel(sppspec)

> tcs(vismod2)

u s m l u.r s.r m.r l.r x

cardinal 0.20 0.10 0.17 0.53 -0.05 -0.15 -0.08 0.28 0.26

jacana 0.10 0.20 0.33 0.37 -0.15 -0.05 0.08 0.12 0.11

oriole 0.08 0.05 0.31 0.56 -0.17 -0.20 0.06 0.31 0.31

parakeet 0.15 0.11 0.40 0.33 -0.10 -0.14 0.15 0.08 0.14

robin 0.10 0.15 0.28 0.47 -0.15 -0.10 0.03 0.22 0.20

tanager 0.21 0.22 0.32 0.26 -0.04 -0.03 0.07 0.01 0.03

y z h.theta h.phi r.vec r.max r.achieved

cardinal -0.10 -0.05 -0.38 -0.18 0.29 0.49 0.59

jacana 0.04 -0.15 0.35 -0.92 0.19 0.31 0.59

oriole 0.01 -0.17 0.02 -0.51 0.35 0.45 0.79

parakeet 0.13 -0.10 0.76 -0.50 0.21 0.39 0.55
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robin -0.02 -0.15 -0.09 -0.66 0.25 0.41 0.62

tanager 0.06 -0.04 1.17 -0.59 0.08 0.45 0.17

tcs returns the original photon catch values; the relative cone stimulation for a given hue
(x.r; see the supplemental material of Stoddard & Prum [10] for more information); the two
angles of hue (h.theta and h.phi) and the distance from the achromatic center (r.vec);
along with the maximum distance achievable for that hue (r.max) and the proportion of
that maximum achieved by the color point (r.achieved).

Color distances. Under the color space framework, color distances can be calculated
simply as Euclidean distances of the relative cone stimulation data, either log-transformed
or not, depending on how it was defined. However, these distances cannot be interpreted in
terms of JNDs, since no receptor noise is incorporated in the model. Euclidean distances can
be computed in R using the dist function on the vismodel output (excluding the luminance
data) or the tcs output by selecting the cone stimulation data:

> dist(vismod2[,1:4])

cardinal jacana oriole parakeet robin

jacana 0.2683175

oriole 0.1958290 0.2379738

parakeet 0.3111605 0.1213197 0.2555341

robin 0.1707801 0.1267971 0.1295924 0.1934568

tanager 0.3323013 0.1542079 0.3632169 0.1653436 0.2549185

> dist(tcs(vismod2)[,c('u','s','m','l')])

cardinal jacana oriole parakeet robin

jacana 0.2683175

oriole 0.1958290 0.2379738

parakeet 0.3111605 0.1213197 0.2555341

robin 0.1707801 0.1267971 0.1295924 0.1934568

tanager 0.3323013 0.1542079 0.3632169 0.1653436 0.2549185

Summary variables for groups of points. Another advantage of the tetrahedral color
space model is that it allows for the calculation of useful summary statistics of groups of
points, such as the centroid of the points, the total volume occupied, the mean and variance
of hue span and the mean saturation. In pavo, the result of a tcs call is an object of class
tcs, and thus these summary statistics can be calculated simply by calling summary:

> summary(tcs(vismod2))

centroid.u centroid.s centroid.m centroid.l

all.points 0.1384196 0.1377561 0.3042969 0.4195274

c.vol colspan.m colspan.v mean.ra

all.points 0.001207484 0.1894142 0.004509279 0.5506191

max.ra

all.points 0.7899966
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In addition, the summary call can take a by vector of group identities, so that the variables
are calculated for each group separately. For example we could use the tetrahedral color
space model to represent the spectra of all individuals measured, and calculate the summary
statistics for these points per species:

> tcs.mspecs <- tcs(vismodel(mspecs))

> summary(tcs.mspecs, by=spp)

centroid.u centroid.s centroid.m centroid.l

cardinal 0.19722893 0.10180626 0.1674712 0.5334936

jacana 0.10238067 0.19490584 0.3353156 0.3673979

oriole 0.07974505 0.05548515 0.3137751 0.5509947

parakeet 0.14742471 0.11328081 0.4044939 0.3348005

robin 0.09552156 0.14623867 0.2838515 0.4743883

tanager 0.20704416 0.21522329 0.3200765 0.2576560

c.vol colspan.m colspan.v mean.ra

cardinal 1.067722e-05 0.05101648 0.0010281190 0.5927749

jacana 9.033126e-07 0.01900966 0.0001104442 0.5904773

oriole 3.019026e-05 0.06057124 0.0010275881 0.7804810

parakeet 1.789226e-05 0.03213056 0.0002574116 0.5468767

robin 9.846623e-07 0.02186871 0.0001634197 0.6179138

tanager 7.623205e-05 0.04086315 0.0004112454 0.1966120

max.ra

cardinal 0.6675429

jacana 0.6374283

oriole 0.8756332

parakeet 0.6091937

robin 0.6668626

tanager 0.3029061

Plotting options. There are two useful plots for the tetrahedral color space model. The
first is a three-dimensional plot of the volume, which is implemented in pavo as an interactive
plot that the user can spin around and zoom, and can be called by the function tcsplot:

> tcsplot(tcs.mspecs, col=spec2rgb(mspecs), size=0.01)

> # rgl.postscript('pavo-tcsplot.pdf',fmt='pdf')

The accessory functions tcspoints and tcsvol can be used, in addition, to plot additional
points or the convex hull determining the volume occupied by the points:

> tcsplot(tcs(vismod2), size=0)

> tcsvol(tcs(vismod2))

> # rgl.snapshot('pavo-tcsvolplot.png')
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(a) Tetrahedral color space plot (b) Tetrahedral plot with convex hull volume

Figure 17: Example plots obtained using tcsplot. Plot on the left was exported as pdf,
while the one on the right was exported as png (tcsplot uses the rgl package for interactive
3D plotting capabilities, and rgl does not currently support transparency when exporting
as pdf).

Another plotting option available is projplot, which projects color points in the surface of
a sphere encompassing the tetrahedron. This plot is particularly useful to see differences
in hue. As we can see in Figure 18, points are mostly concentrated in the south and west
“hemispheres”, indicating colors with low UV content and concentrated in green-red areas
of colorspace.

> projplot(tcs.mspecs, pch=20, col=spec2rgb(mspecs))
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Figure 18: Projection plot from a tetrahedral color space

Color Volume Overlap. Finally, a useful function available in pavo is voloverlap, which
calculates the overlap in tetrahedral color volume between two sets of points. This can be
useful to explore whether different species occupy similar (overlapping) or different (non-
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overlapping) “sensory niches”, or to test for mimetism, dichromatism, etc. [11]. To show
this function, we will use the sicalis dataset, which includes measurements from the crown
(C), throat (T) and breast (B) of seven stripe-tailed yellow finches (Sicalis citrina).

> data(sicalis)

> aggplot(sicalis, by=rep(c('C','T','B'), 7))

We will use this dataset to test for the overlap between the volume determined by the
measurements of those body parts from multiple individuals in the tetrahedral colorspace
(note the option plot for plotting of the volumes:

> tcs.sicalis.C <- subset(tcs(vismodel(sicalis)), 'C')

> tcs.sicalis.T <- subset(tcs(vismodel(sicalis)), 'T')

> tcs.sicalis.B <- subset(tcs(vismodel(sicalis)), 'B')

> #voloverlap(tcs.sicalis.T,tcs.sicalis.B, plot=T)

> #voloverlap(tcs.sicalis.T,tcs.sicalis.C, plot=T)

> voloverlap(tcs.sicalis.T,tcs.sicalis.B)

vol1 vol2 overlapvol vsmallest vboth

1 5.18372e-06 6.28151e-06 6.904073e-07 0.1331876 0.06407598

> voloverlap(tcs.sicalis.T,tcs.sicalis.C)

vol1 vol2 overlapvol vsmallest vboth

1 5.18372e-06 4.739151e-06 0 0 0

voverlap gives the volume (V ) of the convex hull delimited by the overlap between the two
original volumes, and two proportions are calculated from that: Vsmallest = Voverlap/Vsmallest

and Vboth = Voverlap/(VA + VB). Thus, if one of the volumes is entirely contained in the
other, vsmallest will equal 1.

So we can clearly see that there is overlap between the throat and breast colors (of about
6%), but not between the throat and the crown colors (Figure 20).
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Figure 19: aggplot of the sicalis data (blue: crown, red: throat, green: breast)
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(a) Throat and Breast Overlap (b) Throat and Crown overlap

Figure 20: Color volume overlaps. Shaded area in panel a represents the overlap between
those two sets of points.

6 Final Thoughts

We hope to have demonstrated the flexibility of pavo when it comes to importing, processing,
exploring, visualizing and analyzing spectral data. Our aim was to provide a cohesive, start-
to-finish workflow of spectral data color analysis within R, without the need for additional
software. Though our examples have focused on bird reflectance data and visual models,
pavo should be easily extended to any taxon of interest, including the possibility of modeling
sensitivity curves through the sensmodel function.

Still, users are likely going to find particular needs (or wants!) that have not been incor-
porated in the package. We encourage users to contact us with suggestions and comments
for future improvements. Finally, we would also like pavo to be, in the future, a repository
for animal visual system and reflectance data. So if you’d like to see your study system’s
visual phenotype included as an option within our visual model functions, contact us via
email (rm72@zips.uakron.edu).

7 Citation of methods implemented in pavo

Most of the methods implemented in pavo have been thoroughly described in their original
publications, to which users should refer for details and interpretation. For reflectance shape
variables (‘objective colourimetrics’) and their particular relation to signal production and
perception, see [1] and [8]. Visual models based on photon catches and receptor noise are
detailed in [12] and [? ], and photoreceptor sensitivity curve estimation in [6] and [7]. For
tetrahedral colourspace model implementations and variable calculations, see [? ] and [10],
and for colour volume overlap see [11] and [? ]. Users of the functions that apply these
methods must cite the original sources as appropriate, along with pavo.
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us develop some of pavo’s capabilities.
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Color variable Description

H1 = λRmax Hue: wavelength of peak reflectance.

H2 = λbmaxneg
Hue: wavelength at location of maximum nega-
tive slope in the spectrum.

H3 = λRmid Hue: wavelength at the midpoint ([Rmax +
Rmin]/2) in the reflectance spectrum.

H4 = atan{[(By −Bb)/B1]/[(Br −Bg)/B1]} Hue: the angle from 0◦ (red) calculated by the
segment classification method (see section 5.3.1).

H5 = λbmaxpos
Hue: wavelength at point in spectrum where
curve reaches a maximum postitive slope.

S1 =
Pλb

λa
Rλ/B1 Chroma: segment-specific chroma calculated by

dividing the sum of reflectance values over region
of interest (e.g., from λa to λb) by the total re-
flectance.

S2 = Rmax/Rmin Spectral saturation: ratio of maximum and
minimum reflectance values.

S3 =
PλRmax+50

λRmax−50 Ri/B1 Chroma: sum of reflectance values +/- 50 nm
from the wavelength of peak reflectance (hue,
λmax).

S4 = |bmaxneg| Spectral purity: maximum negative slope of
spectrum over range of wavelengths.

S5 =
p

(Br −Bg)2 + (By −Bb)2 Chroma: Euclidean distance from achromatic
origin using segment classification method (see
section 5.3.1).

S6 = Rmax −Rmin Contrast/amplitude: difference in reflectance
between high and low points in the spectrum.

S7 = (
PλRmid

λmin
Ri −

Pλmax

λRmid Ri)/B1 Spectral saturation: reflectance difference be-
tween the minimum wavelength and the half-max
reflectance and the maximum wavelength and the
half-max reflectance. Analogous to the segment
classification method (see section 5.3.1).

S8 = (Rmax −Rmin)/B2 Chroma: relative difference between max and
min reflectance taking into account the average
brightness (B2) of the spectrum.

S9 = (Rλ450 −Rλ700)/Rλ700 Carotenoid chroma: relative reflectance in the
region of greatest reflectance in carotenoid-based
colors.

S10 = [(Rmax −Rmin)/B2]× |bmaxneg| Peaky chroma: relative contrast (S8) multiplied
by the spectral purity (S4). Relatively flat curves
will give low values for this metric, and vice versa.

B1 =
Pλmax

λmin
Rλ Total reflectance: sum of reflectance values over

all wavelengths.

B2 = B1/nwl Mean brightness: average reflectance over all
wavelengths.

B3 = Rmax Intensity: Peak reflectance of the spectrum.

Table 1: The complete set ofcolorimetric variables calculated by summary in pavo (adapted
from Montgomerie 2006 [8])
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