
Parallel np: Using the npRmpi Package

Jeffrey S. Racine
McMaster University

Abstract

The npRmpi package is a parallel implementation of the R (R Development Core Team
(2010)) package np (Hayfield and Racine (2008)). The underlying C code uses the message
passing interface (‘MPI’) and is MPI2 compliant.

Keywords: nonparametric, semiparametric, kernel smoothing, categorical data.

1. Overview

A common and understandable complaint often voiced about applied nonparametric kernel
methods is the amount of computation time required for data-driven bandwidth selection when
one has a large data set. There is a certain irony at play here since nonparametric methods
are ideally suited to situations involving large data sets yet, computationally speaking, their
analysis may lie beyond the reach of many users. Some background may be in order. My
co-authors and I favor data-driven methods of bandwidth selection such as cross-validation,
among others. These methods possess a number of very desirable properties but have run
times that are proportional to the square of the number of observations hence doubling the
number of observations will increase run time by a factor of four. For large data sets run time
many simply not be feasible in a serial (i.e. single processor) environment.

The solution adopted in the npRmpi package is to run the code in a parallel computing en-
vironment and exploit the presence of multiple processors when available. The underlying
C code for np is MPI-aware (MPI denotes the ‘message passing interface’, a popular par-
allel programming library that is an international standard), and we merge the R np and
Rmpi packages to form the npRmpi package (this requires minor modification of some of the
underlying Rmpi code which is why we cannot simply load the Rmpi package itself).1

All of the functions in np can exploit the presence of multiple processors. Run time is inversely
proportional to the number of processors hence doubling the number of processors will cut
run time in half.2 Given the availability of commodity cluster computers and the presence of
multiple cores in desktop and laptop machines, leveraging the npRmpi package for large data
sets may present a feasible solution to the often lengthy computation times associated with
nonparametric kernel methods.

1The npRmpi package incorporates the Rmpi package (Hao Yu <hyu@stats.uwo.ca>) with minor modifi-
cations and we are extremely grateful to Hao Yu for his contributions to the R community.

2There is minor overhead involved with message passing, and for small samples the overhead can be sub-
stantial when the ratio of message passing to computing the kernel estimator increases - this will be negligible
for sufficiently large samples.

2 Parallel np: Using the npRmpi Package

The code has been tested in the Mac OS X and Linux environments which allow the user to
compile R packages on the fly (presuming of course that a C compiler exists on your system).
Users running MS Windows will have to consult local tech support personnel and may also
wish to consult the resources available for the Rmpi package and associated web site for
further assistance. I cannot assist with installation issues beyond what is provided in this
document and trust the reader will forgive me for this.

2. Differences Between np and npRmpi

There are only a few visible differences between running code in serial versus parallel environ-
ments. Typically you run your parallel code in batch mode so the first step would be to get
your code running in batch mode using the np package (obviously on a subset of your data
for large data sets). Once you have properly functioning code, you will next add some ‘hooks’
necessary for MPI to run (see Section 2.3 below for a detailed example), and finally you will
run the job using either mpirun or, indirectly, via a batch scheduler on your cluster such as
sqsub (kindly consult your local support personnel for assistance on using batch queueing
systems on your local cluster).

Note that, since the data has to be broadcast to the slave notes, it is a good idea to put it in
a dataframe first and it is always a good idea at this stage to cast your variables according
to type.

Installation

Installation will depend on your hardware and software configuration and will vary widely
across platforms. If you are not familiar with parallel computing you are strongly advised to
seek local advice.

That being said, if you have current versions of R and Open MPI properly installed on your
system, installation of the npRmpi package can be done in the standard manner from within
R via

> install.packages("npRmpi")

or, alternatively, you can download the npRmpi tarball from CRAN and, from a command
shell, run

R CMD INSTALL npRmpi_foo.tar.gz

where foo is the version number.

For clusters you may additionally need to provide locations of libraries (kindly see your local
sysadmin as there are far too many variations for me to assist). On a local Linux cluster I
use the following by way of illustration (for this illustration we use the Intel compiler suite
and need to set MPI library paths and MPI root directories):

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/sharcnet/openmpi/current/intel/lib

export MPI_ROOT=/opt/sharcnet/openmpi/current/intel

where again foo is the version number.

Jeffrey S. Racine 3

Please seek local help for further assistance on installing and running parallel programs.

2.1. Parallel Batch Execution

To run a parallel np job having successfully installed the npRmpi program, copy the Rprofile
file in npRmpi/inst to the current directory and name it .Rprofile (or copy it to your
home directory and again name it .Rprofile).3 Then to run the batch code in the file
npudensml_npRmpi.R using two processors on an Open MPI system you will enter something
like

mpirun -np 2 R CMD BATCH npudensml_npRmpi.R

You can compare run times and any other differences by examining the files npudensml_serial.Rout
and npudensml_npRmpi.Rout (see Section A below for some illustrative examples). Clearly
you could do this with a subset of your data for large problems to judge the extent to which
the parallel code reduces run time.

If you have a batch scheduler installed on your cluster you might instead enter something like

sqsub -q mpi -n 2 R CMD BATCH npudensml_npRmpi.R

Again, kindly consult local tech support personnel for issues concerning the use of batch
queueing systems and using compute clusters.

2.2. Parallel Execution in an Interactive R Session

You might instead wish to run your code interactively in an R terminal/console rather than
in batch mode. Doing so requires the essential elements in Section 2.3 below with two minor
differences. For this we do not require that the initialization file .Rprofile reside in the
root or current directory (if it does it will be benign). To start a session, (i) you will load
the npRmpi package in the normal manner via library("npRmpi"), then (ii) generate the
slave nodes using the command mpi.spawn.Rslaves(nslaves=foo). For example, on a dual
core desktop set foo=1 so that mpi.spawn.Rslaves(nslaves=1) will spawn one slave node in
addition to the master node on which R is running for a total of two compute nodes. See the
file interactive_Rterm.R in the demo directory for an illustration, but here is some sample
code illustrating the additional elements required for an interactive session.

Note also that in an interactive session the messages displayed during execution might be
informative so there is no need for the option option(np.messages=FALSE) and you likely
would want to comment this statement out in the demo files if you are running them interac-
tively.

This code can be run interactively inside the R terminal/console

It does not require that you have the .Rprofile file from

npRmpi/inst/ in your current directory or home directory as we can

load the npRmpi package in the standard manner.

3You will need to download the npRmpi source code and unpack it in order to get Rprofile from the
npRmpi/inst directory.

4 Parallel np: Using the npRmpi Package

library(npRmpi)

Now we can spawn our slaves from within the R terminal/console manually.

On a two core desktop we need an additional slave on top of the master

node to allow both cores to run simultaneously.

mpi.spawn.Rslaves(nslaves=1)

Then the rest of your program would follow along the lines of that

in, say, Section \ref{sec example}...

A number of illustrative examples are readily available in the interactive session via example()

e.g. example(npreg) and so forth.

2.3. Essential Program Elements

Here is a simple illustrative example of a serial batch program that you would typically run
using the np package.

This is the serial version of npudensml_npRmpi.R for comparison

purposes (bandwidth ought to be identical, timing may

differ). Study the differences between this file and its MPI

counterpart for insight about your own problems.

library(np)

options(np.messages=FALSE)

Generate some data

n <- 2500

set.seed(42)

x <- rnorm(n)

A simple example with likelihood cross-validation

t <- system.time(bw <- npudensbw(~x,

bwmethod="cv.ml"))

summary(bw)

cat("Elapsed time =", t[3], "\n")

Below is the same code modified to run in parallel using the npRmpi package. The salient
differences are as follows:

Jeffrey S. Racine 5

1. You must copy the Rprofile file from the npRmpi/inst directory of the tarball/zip file
into either your root directory or current working directory and rename it .Rprofile.

2. You will notice that there are some mpi.foo commands where foo is, for example,
bcast.cmd. These are the Rmpi commands for telling the slave nodes what to run.

The first thing we do is initialize the master and slave nodes using the np.mpi.initialize()
command.

3. Next we broadcast our data to the slave nodes using the mpi.bcast.Robj2slave()

command which sends an R object to the slaves.

4. After this, we might compute the data-driven bandwidths. Note we have wrapped the np
command npudensbw() in the mpi.bcast.cmd() with the option caller.execute=TRUE

which indicates it is to execute on the master and slave nodes simultaneously.

5. Finally, we clean up gracefully by broadcasting the mpi.quit() command.

6. There are a number of example files (including that above and below) in the npRmpi/demo
directory that you may wish to examine. Each of these runs and has been deployed in
a range of environments (Mac OS X, Linux).

Make sure you have the .Rprofile file from npRmpi/inst/ in your

current directory or home directory. It is necessary.

To run this on systems with OPENMPI installed and working, try

mpirun -np 2 R CMD BATCH npudensml_npRmpi. Check the time in the

output file foo.Rout (the name of this file with extension .Rout),

then try with, say, 4 processors and compare run time.

Initialize master and slaves.

mpi.bcast.cmd(np.mpi.initialize(),

caller.execute=TRUE)

Turn off progress i/o as this clutters the output file (if you want

to see search progress you can comment out this command)

mpi.bcast.cmd(options(np.messages=FALSE),

caller.execute=TRUE)

Generate some data and broadcast it to all slaves (it will be known

to the master node)

n <- 2500

mpi.bcast.cmd(set.seed(42),

caller.execute=TRUE)

6 Parallel np: Using the npRmpi Package

x <- rnorm(n)

mpi.bcast.Robj2slave(x)

A simple example with likelihood cross-validation

t <- system.time(mpi.bcast.cmd(bw <- npudensbw(~x,

bwmethod="cv.ml"),

caller.execute=TRUE))

summary(bw)

cat("Elapsed time =", t[3], "\n")

Clean up properly then quit()

mpi.bcast.cmd(mpi.quit(),

caller.execute=TRUE)

For more examples including regression, conditional density estimation, and semiparametric
models, see the files in the npRmpi/demo directory. Kindly study these files and the comments
in each in order to extend the parallel examples to your specific problem.

Note that the output from the serial and parallel runs ought to be identical save for execution
time. If they are not there is a problem with the underlying code and I would ask you to
kindly report such things to me immediately along with the offending code.

3. Summary

The npRmpi package is a parallel implementation of the np package that can exploit the
presence of multiple processors and the MPI interface for parallel computing to reduce the
computational run time associated with kernel methods. Run time is inversely proportional
to the number of available processors, so two processors will complete a job in roughly one half
the time of one processor, ten in one tenth and so forth.4 Though installation of a working
MPI implementation requires some familiarity with computer systems, local expertise exists
for many and help is to be found there. That being said, the Mac OS X operating system
comes stock with a fully functioning version of Open MPI so there is zero additional effort
required for the user in order to get up and running in this environment. Finally, any feedback
for improvements for this document, reporting of errors and bugs and so forth is always
encouraged and much appreciated.

References

4There is minor overhead involved with message passing, and for small samples the overhead can be sub-
stantial as the ratio of message passing to computing the kernel estimator increases - this will be negligible for
sufficiently large samples.

Jeffrey S. Racine 7

Hayfield T, Racine JS (2008). “Nonparametric Econometrics: The np Package.” Journal of
Statistical Software, 27(5). URL http://www.jstatsoft.org/v27/i05/.

R Development Core Team (2010). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

A. Illustrative Timed Runs

The run times reported in Table 1 were generated using R 2.11-0 and Open MPI 1.2.8 on a
MacBook laptop running Snow Leopard 10.6.3 on a 2.4 GHz Intel Core 2 Duo (a completely
stock installation). The ratios reported in Table 2 were run on the SHARCNET cluster ‘saw’
(www.sharcnet.ca) using R 2.11-0 and Open MPI 1.4.2.5 Each example was first run in
serial mode using the np package version 0.40-0 then in parallel mode with 2 processors (on
the MacBook) through 8 processors (on the Infiniband Cluster) using the npRmpi package
version 0.40-0. Elapsed time for the np functions is provided in Table 1 (seconds) as is the
ratio of the elapsed time for each parallel run to the serial run.

Table 1: Illustrative timed runs (seconds) with 1 processor (serial, np package) and 2 proces-
sors (parallel, npRmpi package) on a 2.4 GHz Intel Core 2 Duo running Mac OS X 10.6.3.

Function Secs(1) Secs(2) Ratio

npcdens (ls) 126.3 112.3 0.89
npcdens (ml) 50.1 25.5 0.51
npcmstest 73.9 51.9 0.70
npconmode 90.8 37.2 0.41
npdeneqtest 43.2 23.9 0.55
npdeptest 69.0 37.9 0.55
npindex (Ichimura) 36.7 19.9 0.54
npindex (Klein/Spady) 50.2 27.7 0.55
npqreg 95.9 51.7 0.54
npreg (lc, aic) 77.8 57.3 0.74
npreg (lc, ls) 81.8 49.7 0.61
npreg (ll, aic) 86.0 43.7 0.51
npreg (ll, ls) 89.3 46.0 0.52
npscoef 38.1 31.8 0.84
npsdeptest 79.4 58.6 0.74
npsigtest 143.2 87.3 0.61
npsymtest 43.2 30.5 0.71
npudens (ls) 60.9 30.6 0.50
npudens (ml) 25.3 14.5 0.57
npunitest 41.6 28.1 0.67

Note that many of these illustrative examples use smallish sample sizes hence the run time

5‘saw’ is an HP cluster with 2,704 cores running Red Hat Enterprise Linux version 5.1 with InfiniBand
interconnects, 16 GB RAM/node, 2 sockets x 4 cores per socket outfitted with 2.83 GHz Xeon processors.

http://www.jstatsoft.org/v27/i05/
http://www.R-project.org
www.sharcnet.ca

8 Parallel np: Using the npRmpi Package

Table 2: Illustrative timed runs (ratio of execution time for the serial np package versus
the npRmpi package with cpu=processors) on an HP cluster equipped with 2.83 GHz Xeon
processors running Red Hat Enterprise Linux 5.1.

Function cpu=2 cpu=3 cpu=4 cpu=5 cpu=6 cpu=7 cpu=8

npcdens (ls) 0.51 0.35 0.29 0.28 0.24 0.22 0.24
npcdens (ml) 0.49 0.31 0.24 0.20 0.16 0.14 0.13
npcmstest 0.55 0.42 0.35 0.34 0.33 0.33 0.33
npconmode 0.54 0.28 0.25 0.21 0.17 0.14 0.12
npdeneqtest 0.53 0.37 0.29 0.25 0.22 0.20 0.18
npdeptest 0.53 0.36 0.28 0.24 0.21 0.19 0.16
npindex (Ichimura) 0.51 0.35 0.27 0.23 0.20 0.18 0.17
npindex (Klein/Spady) 0.53 0.35 0.28 0.23 0.21 0.19 0.17
npqreg 0.52 0.31 0.23 0.19 0.20 0.19 0.12
npreg (lc, aic) 0.52 0.35 0.30 0.24 0.19 0.18 0.15
npreg (lc, ls) 0.53 0.35 0.27 0.21 0.18 0.16 0.14
npreg (ll, aic) 0.68 0.48 0.38 0.40 0.24 0.28 0.20
npreg (ll, ls) 0.55 0.37 0.29 0.23 0.19 0.16 0.14
npscoef 0.65 0.58 0.56 0.57 0.58 0.59 0.60
npsdeptest 0.55 0.42 0.37 0.35 0.33 0.33 0.33
npsigtest 0.63 0.42 0.33 0.28 0.25 0.23 0.24
npsymtest 0.58 0.44 0.38 0.35 0.34 0.33 0.33
npudens (ls) 0.48 0.32 0.24 0.21 0.16 0.10 0.13
npudens (ml) 0.48 0.31 0.25 0.20 0.16 0.14 0.12
npunitest 0.52 0.40 0.33 0.30 0.28 0.28 0.28

with 2 processors will not be 1/2 that with 1 processor due to overhead. But for larger samples
(i.e. the ones you actually need parallel computing for, not these toy illustrations) you ought
to see an improvement in run time that is inversely related to the number of processors.

B. Known Issues

1. It would be wise to cast all variables when read into R (always good practice) and not
do so using the formula interface.

Casting responses (i.e. stuff to the left of the ~) works in the serial version but does not
appear to work for npcdensbw.

2. The functions npdeptest, npdeptest, npsymtest and npunitest currently run orders
of magnitude slower under MPI when using method="integration" (default). This
might be related to a limit on the number of nested function calls in R and/or the
cubature package as I have encountered this in a serial environment in the past (solutions
welcomed!).

For the time being you are advised to use the serial np package if you require this
function or select method="summation" (see ?npdeptest, ?npdeptest, ?npsymtest

Jeffrey S. Racine 9

and ?npunitest for caveats, though these functions are quite efficient computationally
speaking and can handle quite large data sets by default via the serial implementation).

3. The C code underlying regression cross-validation currently differs between np and
npRmpi. Both are correct with the latter being a tad slower (on one processor that
is - see the timings above for a comparison). Note that, due to the different numerical
implementations, each may deliver slightly different bandwidths. I hope to enlist the
assistance of my co-creator on this package in the near future so that the same code
underlies both packages throughout.

Affiliation:

Jeffrey S. Racine
Department of Economics
McMaster University
Hamilton, Ontario, Canada, L8S 4L8
E-mail: racinej@mcmaster.ca
URL: http://www.economics.mcmaster.ca/faculty/racinej

mailto:racinej@mcmaster.ca
http://www.economics.mcmaster.ca/faculty/racinej

	Overview
	Differences Between np and npRmpi
	Parallel Batch Execution
	Parallel Execution in an Interactive R Session
	Essential Program Elements

	Summary
	Illustrative Timed Runs
	Known Issues

