Introduction to package nngeo
Michael Dorman

2018-09-30

Contents

Introduction
Package purpose L e e

Installation L e e

O = =

Sample data L e e e

Usage examples
The st_nn function e e
The st_connect function
Dense matrix representation oL
k-Nearest neighbors where k>0 L
Distance matrix e e e
Search radius e e e e e e

Spatial join L e e

ENEEEEN BTN e NN e NI <1 BTSN

Another example L e

Polygons 8

Introduction

Package purpose
This document introduces the nngeo package. The nngeo package includes functions for spatial join of laters

based on k-nearest neighbor relation between features. The functions work with spatial layer object defined
in package sf, namely classes sfc and sf.

Installation
GitHub version -

install.packages("devtools")
devtools: :install_github("michaeldorman/nngeo")

Sample data

The nngeo package comes with three sample datasets -

e cities
e towns
e water

The cities layer is a point layer representing the location of the three largest cities in Israel.

cities
#> Simple feature collection with 3 features and 1 field
#> geometry type: POINT

#> dimension: XY

#> bbox: Tmin: 34.78177 ymin: 31.76832 xzmaxz: 35.21371 ymax: 32.79405
#> epsg (SRID): 4326

#> proj4string: +proj=longlat +datum=WGS84 +no_defs

#> name geometry

#> 1 Jerusalem POINT (35.21371 31.76832)
#> 2 Tel-Aviv POINT (34.78177 32.0853)
#> 3 Haifa POINT (34.98957 32.79405)

The towns layer is another point layer, with the location of all towns in Israel whose name begins with the
letter A.

towns
#> Simple feature collection with 93 features and 1 field
#> geometry type: POINT

#> dimension: XY

#> bbox: zmin: 34.3309 ymin: 30.96493 xzmaxz: 35.83863 ymazx: 33.17806
#> epsg (SRID): 4326

#> proj4string: +proj=longlat +datum=WGS84 +no_defs
#> First 10 features:

#> geometry name
#> 1 POINT (35.54639 32.70683) ALUMMOT
#> 2 POINT (35.12573 31.65512) ALLON SHEVUT
#> 3 POINT (35.18041 33.04801) AVDON
#> 4 POINT (35.48441 32.81265) ARBEL
#> b POINT (35.5824 32.66228) ASHDOT YA'AQOV(ME'UHAD)
#> 6 POINT (35.33804 32.85159) ARRABE
#> 7 POINT (35.25207 32.866) ATSMON SEGEV
#> 8 POINT (35.22568 33.08865) ARAMSHA
#> 9 POINT (35.4369 31.67897) AVENAT
#> 10 POINT (34.90936 31.89039) AZARYA

The water layer is an example of a polygonal layer. This layer contains four polygons of water bodies in
Israel.

water

#> Simple feature collection with 4 features and 1 field

#> geometry type: POLYGON

#> dimenstion: XY

#> bbox: Tmin: 34.1388 ymin: 29.45338 zmax: 35.64979 ymax: 33.1164

Figure 1: Visualization of the water, towns and cities layers

#> epsg (SRID): 4326

#> proj4string: +proj=longlat +datum=WGS84 +no_defs
#> name geometry

#> 1 Red Sea POLYGON ((34.96428 29.54775. . .

#> 2 Mediterranean Sea POLYGON ((35.10533 33.07661. ..

#> 3 Dead Sea POLYGON ((35.54743 31.37881...

#> 4 Sea of Galilee POLYGON ((35.6014 32.89248, ...

Figure 1 shows the spatial configuration of the cities, towns and water layers.

plot(st_geometry(towns), col = NA)

plot(st_geometry(water), col = "lightblue", add = TRUE)
plot(st_geometry(towns), col = "grey", pch = 1, add = TRUE)
plot(st_geometry(cities), col = "red", pch = 1, add = TRUE)

Usage examples

The st_nn function

The main function in the nngeo package is st_nn.

The st_nn function accepts two layers, x and y, and returns a list with the same number of elements as x
features. Each list element i is an integer vector with all indices j for which x[i] and y[j] are nearest
neighbors.

For example, the following expression finds which feature in towns[1:5,] is the nearest neighbor to each
feature in cities.

nn = st_nn(cities, towns[1:5,], progress = FALSE)
nn

#> [[1]]

#> [1] 2

#>

#> [[2]]

#> [1] 2

#>

#> [[3]]

#> [1] 3

This output tells us that towns[2,] is the nearest among the five features of towns[1:5,] to cities[1,
1, etc.

The st_connect function

The resulting nearest neighbor matches can be visualized using the st_connect function. This function
builds a line layer connecting features from two layers x and y based on the relations defined in a list such
the one returned by st_nn -

1 = st_connect(cities, towns[1:5,], ids = nn, progress = FALSE)
1

#> Geometry set for 3 features

#> geometry type: LINESTRING

#> dimension: XY

#> bbozx: xzmin: 34.78177 ymin: 31.65512 zmaxz: 35.21371 ymazxz: 33.04801
#> epsg (SRID): 4326

#> proj4string: +proj=longlat +datum=WGS84 +no_defs

#> LINESTRING (35.21371 31.76832, 35.12573 31.65512)
#> LINESTRING (34.78177 32.0853, 35.12573 31.65512)
#> LINESTRING (34.98957 32.79405, 35.18041 33.04801)

Plotting the line layer 1 gives a visual demonstration of the nearest neighbors match, as shown in Figure 2.

plot(st_geometry(towns[1:5, 1), col = "darkgrey")
plot(st_geometry(l), add = TRUE)
plot(st_geometry(cities), col = "red", add = TRUE)
text (
st_coordinates(cities) [, 1],
st_coordinates(cities) [, 2],

Figure 2: Nearest neighbor match between cities (in red) and towns[1:5, 1 (in grey)

1:3, col = "red", pos = 4

)

text (
st_coordinates(towns[1:5, 1) [, 11,
st_coordinates(towns[1:5, 1) [, 2],
1:5, pos = 4

)

Dense matrix representation

The st_nn can also return the complete logical matrix indicating whether each feature in x is a neighbor of
y. To get the dense matrix, instead of a list, use sparse=FALSE.

nn = st_nn(cities, towns[1:5,], sparse = FALSE, progress = FALSE)
nn

#> [,1] [,2] [,3] [,41 [,5]

#> [1,] FALSE TRUE FALSE FALSE FALSE

#> [2,] FALSE TRUE FALSE FALSE FALSE
#> [3,] FALSE FALSE TRUE FALSE FALSE

k-Nearest neighbors where k>0

It is also possible to return any k-nearest neighbors, rather than just one. For example, setting k=2 returns
the two nearest neighbors -

nn
nn
#>
#>
#>
#>
#>
#>
#>
#>

nn
nn
#>
#>
#>
#.

\

= st_nn(cities, towns[1:5,], k = 2, progress = FALSE)

[[1]]
[1] 2 5

[[2]]
[1] 2 5

[[3]]
[1] 3 4

= st_nn(cities, towns[1:5,], sparse = FALSE, k = 2, progress = FALSE)

[,1] [,2] [,3] [,4]1 [,5]
[1,] FALSE TRUE FALSE FALSE TRUE
[2,] FALSE TRUE FALSE FALSE TRUE
[3,] FALSE FALSE TRUE TRUE FALSE

Distance matrix

Using returnDist=TRUE the distances matrix is also returned, in addition the the neighbor matches, with
both componenets now comprising a list -

nn

= st_nn(

cities, towns[1:5,], sparse = FALSE, k = 2, returnDist = TRUE,
progress = FALSE

)

nn
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

$nn

[,17 [,2] [,3] [,4]1 [,5]
[1,] FALSE TRUE FALSE FALSE TRUE
[2,] FALSE TRUE FALSE FALSE TRUE
[3,] FALSE FALSE TRUE TRUE FALSE

$dist

[,1] [,2]
[1,] 15069.49 105048.39
[2,] 57746.32 98846.89
[3,] 33345.18 46392.06

Search radius

Finally, the search for nearest neighbors can be limited to a search radius using maxdist. In the following
example, the search radius is set to 50,000 meters (50 kilometers). Note that no neighbors are found within
the search radius for cities[2,].

nn = st_nn(
cities, towns[1:5,], sparse = FALSE, k = 2, returnDist = TRUE, maxdist = 50000,
progress = FALSE

)

nn

#> $nn

#> [,1] [,2] [,3] [,41 [,5]

#> [1,] FALSE TRUE FALSE FALSE FALSE

#> [2,] FALSE FALSE FALSE FALSE FALSE

#> [3,] FALSE FALSE TRUE TRUE FALSE

#>
#> $dist

#> [,1] [,2]
#> [1,] 15069.49 NA
#> [2,] NA NA

#> [3,] 33345.18 46392.06

Spatial join

The st_nn function can also be used as a geometry predicate function when performing spatial join with
sf::st_join.

For example, the following expression spatially joins the two nearest towns[1:5,] features to each cities
features, using a search radius of 50 km.

citiesl = st_join(cities, towns[1:5,], join = st_nn, k = 2, maxdist = 50000)

Here is the resulting layer -

citiesl
#> Simple feature collection with 4 features and 2 fields
#> geometry type: POINT

#> dimenston: XY

#> bbozx: xzmin: 34.78177 ymin: 31.76832 zmax: 35.21371 ymaz: 32.79405
#> epsg (SRID): 4326

#> proj4string: +proj=longlat +datum=WGS84 +no_defs

#> name.xT name.y geometry

#> 1 Jerusalem ALLON SHEVUT POINT (35.21371 31.76832)

#> 2 Tel-Aviv <NA> POINT (34.78177 32.0853)

#> 3 Haifa AVDON POINT (34.98957 32.79405)

#> 3.1 Haifa ARBEL POINT (34.98957 32.79405)

Another example

Here is another example, finding the 10-nearest neighbor towns features for each cities feature.

Figure 3: Nearest 10 towns features from each cities feature

o]
I

st_nn(cities, towns, k = 10)
st_connect(cities, towns, ids = x)

=
I

The result is visualized in Figure 3.
plot(st_geometry(towns), col = "darkgrey")

plot(st_geometry(l), add = TRUE)
plot(st_geometry(cities), col = "red", add = TRUE)

Polygons

Nearest neighbor search also works for non-point layers. The following code section finds the 20-nearest
towns features for each water body in water[-1,].

nn = st_nn(water[-1,], towns, k = 20, progress = FALSE)

Again, we can calculate the respective lines for the above result using st_connect. Since one of the inputs
is line/polygon, we need to specify a sampling distance dist, which sets the resolution of connecting points
on the shape exterior boundary.

1 = st_connect(water[-1,], towns, ids = nn, progress = FALSE, dist = 100)

The result is visualized on Figure 4.

plot(st_geometry(water[-1, 1), col = "lightblue", border = "grey")
plot(st_geometry(towns), col = "darkgrey", add = TRUE)
plot(st_geometry(l), col = "red", add = TRUE)

Figure 4: Nearest 20 towns features from each water polygon

10

	Introduction
	Package purpose
	Installation
	Sample data

	Usage examples
	The st_nn function
	The st_connect function
	Dense matrix representation
	k-Nearest neighbors where k>0
	Distance matrix
	Search radius
	Spatial join
	Another example

	Polygons

