
nCal - Some Examples

Youyi Fong
Fred Hutchinson Cancer Research Center

July 12, 2013

1 A basic example

The function ncal carries out nonlinear calibration, which entails fitting concentration-response
curves to sets of samples of known concentrations, also known as standard samples, and using the
fitted curves to obtain point estimates and confidence intervals for the analyte concentrations in
the samples of interest, also known as the unknown samples. Take Luminex (Defawe et al., 2012)
as an example. The assay is conducted on 96-well or 384-well plates. Each plate usually has a set
of wells containing standard samples and a set of wells containing unknown samples. Within each
well, multiple analytes can be assayed simultaneously. In the following, we will use plate and assay
exchangeably.

ncal has 2 required arguments, formula and data, and 24 optional arguments. data is a data
frame object, where each row is a sample, either standard or unknown. The formula object specifies
the names of the response and concentration columns. Besides these two columns, data is also
expected to have two columns that help identify standard curves: analyte and assay id. If data
contains both standard and unknown samples, two more columns are also required: well role and
sample id. data may also have additional columns. For example, it is sometimes convenient to
include dilution factor for unknown samples. We now simulate a dataset with one assay, one
analyte and four unknown samples with varying dilutions.

set.seed(1)

log.conc <- log(10000) - log(3) * 9:0

n.replicate <- 2

fi <- simulate1curve(p.eotaxin[1,], rep(log.conc, each = n.replicate),

sd.e = 0.2)

dat.std <- data.frame(fi, expected_conc = exp(rep(log.conc, each = n.replicate)),

analyte = "Test", assay_id = "Run 1", sample_id = NA, well_role = "Standard",

dilution = rep(3^(9:0), each = n.replicate))

add unknown

dat.unk <- rbind(data.frame(fi = exp(6.75), expected_conc = NA,

analyte = "Test", assay_id = "Run 1", sample_id = 1, well_role = "Unknown",

dilution = 1), data.frame(fi = exp(6.7), expected_conc = NA,

analyte = "Test", assay_id = "Run 1", sample_id = 2, well_role = "Unknown",

dilution = 1), data.frame(fi = exp(3), expected_conc = NA,

analyte = "Test", assay_id = "Run 1", sample_id = 3, well_role = "Unknown",

1

dilution = 1), data.frame(fi = exp(4.4), expected_conc = NA,

analyte = "Test", assay_id = "Run 1", sample_id = 4, well_role = "Unknown",

dilution = 10))

dat <- rbind(dat.std, dat.unk)

ncal provides access to two curve-fitting engines, drm and bcrm. To use drm to fit curves
separately for each assay, simply call ncal with mostly default parameters.

res.drm <- ncal(log(fi) ~ expected_conc, dat, return.fits = TRUE)

ncal returns a data frame, each row of which corresponds to one unknown sample.

res.drm

fi expected_conc analyte assay_id sample_id well_role dilution est.log.conc se

1 854.06 NA Test Run 1 1 Unknown 1 3.940 0.1623

2 812.41 NA Test Run 1 2 Unknown 1 3.902 0.1628

3 20.09 NA Test Run 1 3 Unknown 1 -1.370 Inf

4 81.45 NA Test Run 1 4 Unknown 10 1.815 9.7521

est.conc lb.conc ub.conc

1 51.419 3.639e+01 7.266e+01

2 49.494 3.498e+01 7.002e+01

3 0.254 0.000e+00 Inf

4 6.142 5.767e-09 6.541e+09

The curve fit object is not returned by default, but can be returned as an attribute of the return
data frame when return.fits is set to TRUE.

fit.drm <- attr(res.drm, "fits")[[1]]

ncal also creates a four-panel plot (Figure 1) for each assay by default. The upper left panel
shows the standard samples data and the fitted curve. The upper right panel is similar to the upper
left panel, but adds a set of points representing the samples of interest. The lower left panel shows
the estimated variance of the estimated concentrations as functions of the estimated concentration
(Fong et al., 2013). The lower right panel shows the coefficient of variation (CV) as a function
of the estimated concentration. The limits of quantification (LOQ) are defined as the estimated
concentrations at which the percent CV equals 20.

To use bcrm to fit a robust Bayesian hierarchical model (Fong et al., 2013), simply pass
bcrm.fit=TRUE to ncal. (Proper installation of JAGS and the R package rjags are required.)

res.bcrm <- ncal(log(fi) ~ expected_conc, dat, bcrm.fit = T,

return.fits = TRUE, bcrm.model = "norm", control.jags = list(n.iter = 5000))

Loading required package: rjags

Loading required package: coda

Linked to JAGS 3.3.0

Loaded modules: basemod,bugs

2

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

Run 1, Test

expected_conc

lo
g(

fi
)

1 10 100 1000 10000

5

6

7

8

9

10

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

Run 1, Test

expected_conc

lo
g(

fi
)

1 10 100 1000 10000

5

6

7

8

9

10

**

*

*

LOQ

1 10 100 1000 10000

0
1

2
3

4

estimate

va
ri

an
ce

 (1
 r

ep
lic

at
e)

total
if curve is perfectly known
if y is perfectly known

1 10 100 1000 10000

0
20

40
60

80
10

0

estimate

%
 C

V
 (1

 r
ep

lic
at

e)

LOQ

Figure 1: ncal graphical output, drm fit.

3

Running jags

fit.bcrm <- attr(res.bcrm, "fits")

The behavior of ncal is the same as when drm is used as the curve-fitting engine. For this
example, the two curve fitting methods produce similar results. This can seen by comparing the
two graphical outputs in Figure 1 and Figure 2, or by comparing the estimate concentrations and
the associated uncertainty of the unknown samples,

res.bcrm

fi expected_conc analyte assay_id sample_id well_role dilution est.log.conc se

1 854.06 NA Test Run 1 1 Unknown 1 3.935 0.1634

2 812.41 NA Test Run 1 2 Unknown 1 3.896 0.1642

3 20.09 NA Test Run 1 3 Unknown 1 -1.370 Inf

4 81.45 NA Test Run 1 4 Unknown 10 2.223 NaN

est.conc lb.conc ub.conc

1 51.137 36.10 72.44

2 49.213 34.68 69.84

3 0.254 0.00 Inf

4 9.232 NaN NaN

or by comparing the estimated parameters of the five-parameter logistic curves and the associated
uncertainty.

rbind(cla2gh(coef(fit.drm)), coef(fit.bcrm))

c d g h f

[1,] 4.386 10.51 4.146 1.322 2.547

[2,] 4.345 10.50 4.176 1.305 2.045

rbind(sqrt(diag(vcov(fit.drm))), sqrt(diag(vcov(fit.bcrm, type = "classical"))))

b c d e f

[1,] 0.1368 0.1261 0.1882 33.02 2.707

[2,] 0.1314 0.1582 0.1446 39.00 2.767

Given a fitted curve, the analyte concentrations of new unknown samples can be estimated via
getConc by passing it the fit object and the observed responses.

getConc(fit.bcrm, c(5.7, 6.3))

log.conc s.e. concentration lower.bound upper.bound s1 s2 se.x

[1,] 3.052 0.2046 21.15 17.11 25.58 0.03194 0.009911 4.327

[2,] 3.579 0.1741 35.83 30.14 42.41 0.02284 0.007479 6.240

4

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

1 10 100 1000 10000

5
6

7
8

9
10

Run 1, Test

expected_conc

lo
g(

fi
)

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

1 10 100 1000 10000
5

6
7

8
9

10

Run 1, Test

expected_conc

lo
g(

fi
)

**

*

*

LOQ

1 10 100 1000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

estimate

va
ri

an
ce

 (1
 r

ep
lic

at
e)

total
if curve is perfectly known
if y is perfectly known

1 10 100 1000 10000

0
20

40
60

80
10

0

estimate

%
 C

V
 (1

 r
ep

lic
at

e)

LOQ

Figure 2: ncal graphical output, bcrm fit.

5

2 Borrowing information across multiple assays

In a real application, multiple plates often need to be run in a stretch of days or weeks because all
unknown samples can not fit in a single assay. In some cases, it is worth borrowing information
across standard curves for the same analyte. We now use a real dataset to illustrate this. The
dataset, hier.model.ex.2, is part of the ncal package. In Fong et al. (2013), the first four assays
are used as illustration due to space limit. To be consistent, we use four assays here as well. We
first fit a Bayesian robust random effects model (Fong et al., 2012) for the four assays. We choose
the error.model to be gh t4, which means the g-h parameterization is used (Richards, 1959; Fong
et al., 2012) and the Student’s t distribution with 4 degrees of freedom is assumed as the error
distribution. Ideally we would like to collect 105 posterior samples, but to reduce the time it takes
to compile this vignette, we only run 104 iterations. The printed message about residuals hints at
an outliers problem.

dat <- subset(hier.model.ex.2, assay_id %in% paste("Run", 1:4))

fit.bcrm <- bcrm(log(fi) ~ expected_conc, dat, error.model = "gh_t4",

informative.prior = T, n.iter = 10000)

[1] drm.fit: residuals larger than ususal in Run 2, MCP-1

Running jags

We will extract the curve fit for each assay from fit.bcrm using get.single.fit and plot it together
with the robust drm fit. In addition, we will plot curves fitted using one of the popular commercial
softwares, Graphpad Prism, with robust option.

parameters from Prism fits

prism.1 <- c(c = 1.596, d = 10.28, f = 0.7202, b = -0.8815, e = 10^((1.597 +

1/0.8815 * log10(2^(1/0.7202) - 1))))

prism.2 <- c(c = 1.35, d = 11.32, f = 8.64e+10, b = -0.3452,

e = 10^((1.485 + 1/0.3452 * log10(2^(1/8.64e+10) - 1))))

prism.3 <- c(c = 1.333, d = 10.23, f = 0.7366, b = -0.8502, e = 10^((1.526 +

1/0.8502 * log10(2^(1/0.7366) - 1))))

prism.4 <- c(c = 1.58, d = 10.37, f = 1.694, b = -0.6639, e = 10^((1.53 +

1/0.6639 * log10(2^(1/1.694) - 1))))

prism <- rbind(prism.1, prism.2, prism.3, prism.4)

start plotting

par(mfrow = c(2, 2))

for (i in 1:4) {
assay.id <- paste("Run", i)

fit drm model

fit.drm <- drm.fit(log(fi) ~ expected_conc, data = dat[dat$assay_id ==

assay.id,], robust = "median")

plot(fit.drm, type = "all", col = "black", main = assay.id,

lty = 2)

plot(get.single.fit(fit.bcrm, assay.id), add = T, log = "x",

col = 1)

plot Prism fit

6

xx <- exp(seq(log(0.51), log(10000), length = 100))

lines(xx, FivePL.x(xx, prism[i,]), type = "l", lty = 1,

col = "darkgray")

legend(x = "bottomright", legend = c("Prism, robust", "drm, median",

"bcrm, t4"), lty = c(1, 2, 1), col = c("darkgray", 1,

1), bty = "n")

}

[1] drm.fit: residuals larger than ususal in Run 2, MCP-1

[1] drm.fit: residuals larger than ususal in Run 3, MCP-1

Figure 3 shows that in Run 2, which has multiple outliers, bcrm produces a different fit from drm
and Prism. This suggests by borrowing information judiciously we can overcome the challenging
issue of masking in the outliers problem.

3 Robust Bayesian hierarchical model priors

The priors of the robust Bayesian hierarchical model used in bcrm are specified as follows. Denote
θ = {c, d, g, log (h) , log (f)} (g-h parameterization Richards, 1959; Fong et al., 2012). Let θ̄ be the
average of the least square fit 5PL parameters across assay runs.

θ0 ∼ N
(
θ̄, precision=diag (0.40, 6.09, 1.75, 16.96, 1.08)

)
Ω ∼Wishart5 (r = 8, S = diag (1.83, 9.37, 23, 172, 2.01))

For εik ∼ t4
(
0, σ2

)
, we assume prior σ−2 ∼ Gamma (shape=2, rate=0.02). For εik ∼ N

(
0, σ2

)
, we

assume prior σ−2 ∼ Gamma (shape=2, rate=0.06).

References

Defawe, O., Fong, Y., Vasilyeva, E., Pickett, M., Carter, D., Gabriel, E., Rerks-Ngarm, S., Ni-
tayaphan, S., Frahm, N., McElrath, M., et al. (2012). Optimization and qualification of a mul-
tiplex bead array to assess cytokine and chemokine production by vaccine-specific cells. Journal
of Immunological Methods, 382(1):117–128.

Fong, Y., Sebestyen, K., Yu, X., Gilbert, P., and Self, S. (2013). ncal: a r package for nonlinear
calibration. Bioinformatics, submitted.

Fong, Y., Wakefield, J., De Rosa, S., and Frahm, N. (2012). A Robust Bayesian Random Effects
Model for Nonlinear Calibration Problems. Biometrics, 68(4):1103–1112.

Richards, F. (1959). A flexible growth function for empirical use. Journal of Experimental Botany,
10(2):290–300.

7

●●

●
●

●●

●●

●
●

●●

●●

●●
●● ●●

Run 1

expected_conc

lo
g(

fi
)

1 10 100 1000 10000

2

4

6

8

10

Prism, robust
drm, median
bcrm, t4

●

●

●

●

●

●

●
●

●
●

●●

●●

●●
●● ●●

Run 2

expected_conc

lo
g(

fi
)

1 10 100 1000 10000

2

4

6

8

10

Prism, robust
drm, median
bcrm, t4

●●

●●

●●

●
●

●●

●
●

●●

●●
●● ●●

Run 3

expected_conc

lo
g(

fi
)

1 10 100 1000 10000

2

4

6

8

10

Prism, robust
drm, median
bcrm, t4

●
● ●●

●●

●●

●
●

●●

●●

●●
●● ●●

Run 4

expected_conc

lo
g(

fi
)

1 10 100 1000 10000

2

4

6

8

10

Prism, robust
drm, median
bcrm, t4

Figure 3: Comparing bcrm fit with drm and Prism fits.

8

	A basic example
	Borrowing information across multiple assays
	Robust Bayesian hierarchical model priors

