melody: Statistical Methods for the Quantitative
Analysis of Song Spectrograms
(Version 0.4.7)

Dave Schruth
melody@hominine.net

March 8, 2013

1 Licensing

This package is licensed under the Artistic License v2.0: it is therefore free
to use and redistribute, however, we, the copyright holders, wish to maintain
primary artistic control over any further development. Please be sure to cite us
if you use this package in work leading to publication.

2 Installation

Building the melody package from source requires that you have the proper
dependency packages, caroline, network, and sna, installed from CRAN. This
can typically be accomplished via the following commands from within the R
command line environment:

install.packages(c('caroline', 'network', 'sna'))

After a successful installation the melody package can be loaded in the nor-
mal way: by starting R and invoking the following library command:

> library(melody)

3 Introduction

The melody package is a suite of computer vision tools for processing vo-
cal spectrograms. In addition to temporal partitioning, unit filtering, harmonic
splitting, and background noise removal functionality, the package provides a
collection of methods for assessing the higher order melodic content of vocal-
ization spectrograms. Both unit level (tone and interval) as well as inter-unit
measures (syllabic variation and repetition clustering) are also currently avail-
able.

4 Data Input

The basic unit of analysis in the melody package is the spectogram: an image
representing the variation in spectral density of a (sound) signal over time. This
can be represented as a two dimensional matrix of signal intensity values with
rows corresponding to different frequency ranges and columns corresponding to
different slices of time. One easy way to import a spectrographic image a matrix
in R is to first convert the image into Portable Greymap [PGM] format, where
each spectrographic intensity is coded as a greyscale value typically between 0
and 255 (the minimum and maximum values for each pixel). For an example:
we read in an image in the PGM format below:

> pgm <- readPGM(system.file('extdata', 'calls', 'Tarsius-spectrum-Duet.female-Nietsch1998-2b:
> dim(pgm)

[1] 81 1106

>

5 The Spectrogram Object

The spectrogram object is essentially just a list composed of at least one
element: our spectrogram matrix we just read in via readPGM. Additionally, after
processing, this list also stores a list of matrices of the partitioned spectrogram
units, vectors of various statistics on each of these units, and eventually, after
clustering, a similarity matrix between different units. The object is instantiated
using the sg function and requires only a single matrix as input. For an example,
instantiate a spectrogram object and demonstrate the object structure and basic
plotting functionality.

> s <- spectrogram.object <- sg(pgm)
> str(spectrogram.object)

Formal class 'sg' [package "melody"] with 1 slots
..Q@ .Data:List of 3
..$: num [1:81, 1:1106] 255 255 255 255 255 255 255 255 255 255 ...
..$: int 1106
..$: int 81

>

> plot(spectrogram.object)

Frequency

Time

Figure 1: A spectrogram of the female component of a Tarsius spectrum duet
(via the ’plot’ S3 method)

5.1 Background vs Foreground Threshold Determination

The first somewhat trivial (but important) order of business when creating a
spectrogram object is determining an absolute background/foreground threshold
greyscale value. This is accomplished using the threshold function. In this
example we use a 89 percent of the highest greyscale value as our threshold.

> s <- threshold(s, pct.max = 0.89)
> names (s)

[11 "x" "width" "height"
[4] "gray.dev" "gray.mean" "gray.max"
[7] "bg.threshold"

> s$bg.threshold

[1] 226.95

5.2 Partitioning

The first substantial step in processing a spectogram is actually breaking
it up into separate units for downstream analysis and clustering. This is ac-
complished by looking for relatively quiet breakpoints in the spectrogram along

Frequency

Time

Figure 2: A partitioned spectrogram (black bands represent quiet breaks)

the time axis. Two variables (in addition to the threshold value) are used to
guide this relativistic splitting process: the first is the average row value and
the other is the variance in row values. The logic is that background noise will
often appear as a light horizontal band punctuated by actual (higher amplitude)
signal. A lambda weighting factor can additionally be used to determine how
far down-biased (into the lower frequencies) this additional splitting equation
carries.

> s <- partition(s, lambda=5)
> s$n

[1] 31
> length(s$units)
[1] 31

> plot(s)

5.3 Unit Statistics

The next important step in processing a spectrogram is calculating the simple
statistics on the dimensions of each partitioned unit. By default the following

statistics are collected: height (frequency difference), width (time difference),
mean y-value (weighted mean frequency), mid x-value (median time value), mid
y-value (median frequency).

> s <- unitstats(s, harmonics=TRUE)
> unit.param.names <- grep('"u.*["sl1]$', names(s), value=TRUE)
> sapply(unit.param.names, function(x) s[[x]])

u.width u.xavg u.ymin u.ymax u.ymid u.ylen u.ymean

31 13 24.5 21 59 40.0 38 42.56846
65 14 58.0 22 56 39.0 34 43.16582
107 14 100.0 19 49 34.0 30 39.50602
140 13 133.5 22 43 32.5 21 36.07063
167 13 160.5 22 38 30.0 16 34.16168
191 13 184.5 23 36 29.5 13 32.13547
217 14 210.0 23 34 28.5 11 29.23475
243 18 234.0 25 34 29.5 9 30.47070
264 19 254.5 31 34 32.5 3 32.23043
307 29 292.5 30 34 32.0 4 32.06903
339 25 326.5 31 35 33.0 4 33.50951
460 15 452.5 28 62 45.0 34 51.01239
493 12 487.0 27 61 44.0 34 51.18855
525 13 518.5 29 57 43.0 28 48.87490
568 13 561.5 29 47 38.0 18 43.28964
592 12 586.0 29 48 38.5 19 43.66228
615 11 609.5 31 43 37.0 12 38.44107
637 15 629.5 31 40 35.5 9 36.45987
665 22 654.0 35 40 37.5 5 36.84981
693 24 681.0 38 43 40.5 5 39.60416
717 17 708.5 39 41 40.0 2 39.81058
804 15 796.5 26 67 46.5 41 50.86948
833 14 826.0 29 56 42.5 27 49.12722
865 15 857.5 29 51 40.0 22 46.12646
904 13 897.5 31 50 40.5 19 44.04279
927 14 920.0 35 42 38.5 7 39.29629
931 3 929.5 35 38 36.5 3 35.96113
954 18 945.0 35 40 37.5 5 37.99889
973 16 965.0 38 43 40.5 5 40.60740
1008 31 992.5 41 51 46.0 10 42.74411
u.intensity
31 27711
65 23975
107 20514
140 16488
167 15823
191 10111

217 11370

243 14155
264 12353
307 21776
339 13371
460 23870
493 20535
525 21134
568 14079
592 13338
615 9530
637 10172
665 13548
693 15022
717 11337
804 26988
833 20902
865 14305
904 15245
927 10334
931 2205
954 11027
973 10170
1008 18524
>

5.4 Spectrogram Cleaning via Unit Filtering

Next we demonstrate how the clean function removes units depending on
if it is too long or too brief temporally, too high or low frequency, or too small
of a frequency difference (each unit must be at least 3 pixels high), or if it is
too weak (each unit must be at least 1% of the total amplitude of the entire
spectrogram).

> s <= clean(s)

6 Unit Level Scoring

Next we perform unit level melodic scoring for tone and interval. Tone is
currently best calculated using the percentage of pixels below the background
threshold ['pctbg’] or how ’white’ the unit is: the whiter the unit the less noisy
and the more tonal. Interval currently uses the ratio of the absolute change
in per column mean-frequency over the difference between the max and min
above-threshold frequencies ['ymRpuH’] (thus thick bands will not score higher
interval scores than thin bands with the same slope). Each of these scores are

averaged over the whole spectrogram and unit-level scores can optionally be
weighted by unit-intensity.

> s <- tone(s)
> s$tone

[1] 0.9307188

> s <- interval(s)
> s$interval

[1] 0.7133672

7 Unit Clustering

The final processing step is to use all of our new unit level statistics to
cluster the units into a mathematical graph where each unit is a node and
a match between nodes is an edge. There are currently two ways to match
nodes and both involve creating a list of distance matrices for the differences in
each statistic between each of the units. The first method averages all of these
difference matrices and has a single cut-off value to convert the single valued
matrix into a binary adjacency matrix. The second method performs the binary
(TRUE/FALSE value) determination first, using an array of limits (one limit per
statistic), and then collapsing these binary matrices, using boolean logic, into
a single binary adjacency matrix. The resulting matrix, from either method,
forms the final clustering graph. Currently syllable count is merely a count of
the different clusters (isolates are also syllables) and repetition is the average
degree per cluster (isolates get a score of zero repetition).

> s <- cluster(s, method='limits', intensity.weighted=FALSE)
> s$syllable_ct

[1] 10
> s$repetition
[1] 0.8571429

> ## weighted by intensity
> s <- cluster(s, method='limits', intensity.weighted=TRUE)
> s$syllable_ct

[1] 6.077394
> s$repetition

[1] 0.8815676

8 Plotting and Graphing Units

The melody package also has two convenience functions to plot and graph
the processed spectrogram and clustering graph (respectively). The plot func-
tion simply plots the spectrogram and adds annotations appropriately as the
spectrogram object is modified. The graph function plots a mathematical graph
showing the clustering patterns of the units and grouping different syllable types.
Colored unit labels along the bottom of the spectrogram correspond to the col-
ored labels in the clustering/repetition graph.

> par(mfrow=c(2,1))
> plot(s)
> graph(s)

References

Nietsch A, Niemitz A (1987) The Vocal-Acoustical Repertoire of Free-Ranging
Tarsius-Spectrum. International Journal of Primatology 8, p 483.

Butts, Carter T. (2008). “network: a Package for Managing Relational Data in
R.” Journal of Statistical Software, 24(2).

Carter T. Butts (2010). sna: Tools for Social Network Analysis. R package
version 2.2-0. http://CRAN.R-project.org/package=sna

Frequency

I 1
e e

e]
|
|
L=
=
=

1
|

1 2 3 9 20 21 22 23 24252627 28

Time

Figure 3: spectrogram and graph

	Licensing
	Installation
	Introduction
	Data Input
	The Spectrogram Object
	Background vs Foreground Threshold Determination
	Partitioning
	Unit Statistics
	Spectrogram Cleaning via Unit Filtering

	Unit Level Scoring
	Unit Clustering
	Plotting and Graphing Units

