An Introduction to Estimating Monte Carlo
Standard Errors with R Package mcmcse

Dootika Vats

March 5, 2016

Contents

1 Introduction

2 An MCMC Example

3 Estimating Monte Carlo Standard Error
4 Confidence Regions

5 Effective Sample Size

6 Graphical Diagnostics

10

1 Introduction

The R package mcmese provides estimates of Monte Carlo standard errors
for Markov chain Monte Carlo (MCMC) algorithms. This package is useful
when estimating means and quantiles of functions of the MCMC output.
In addition to MCMC output, the package can be used for time series and
other correlated processes.

The package is predominantly useful after MCMC output has been obtained
by the user. In addition to estimating the Monte Carlo standard errors, the
package also provides basic graphical diagnostics and calculation of effective
sample size. Various features in the package can be implemented using both
multivariate and univariate methods.

2 An MCMC Example

To illustrate the use of our package, we present the following simple multi-
variate AR(1) process. The process is defined for ¢ = 1,2,3,... is defined
as,

Yy =w+ Ayp1 + €,

where w is a constant vector in RP, 13 € RP, A is a p X p matrix and
et ~ Np(0,C). In our example, we let A and C be diagonal matrices. The
invariant distrbution for this process is £ = N, (0, V') where V is a function
of A and C.

The function mAr.sim in package mAr draws samples from the above model.
We let p = 3.

library(mAr)

p <-3

A <- diag(c(.1, .5, .8))
C <- diag(rep(2, 3))

set.seed(100)
chain <- mAr.sim(w = rep(2,p), A = A, C =C, N = 10000)

For using the mcmcse package the rows of the MCMC output should store
each iteration of the algorithm. Thus the output should have n rows and p
@ 2 (3))

columns. We will denote each row 4 of the output as (y,, 4, ,y;

This vignette will discuss estimating two sets of features of interest of F'.

e the expectation of y, EFry

e the expectation of sum of the second moments of all components of ,
EF(y(1)2 + y(2)2 + y(3)2)

Suppose first we are interested in estimating y = Ery. Then the estimator
for that is just the sample mean

1 n
Hn = ntzz;yt‘

ln is obtained using the usual colMeans function.

colMeans(chain)

X1 X2 X3
2.213455 3.989894 9.990273

Due to a central limit theorem argument,

Viln — 1) % Ny(0,5). (1)

Alternatively, we could also be interested in estimating say the sum of the
second moments of each component of y. In this case, we define the function
g:R® = Ras g((z1,72,73)) = 22 + 23 + 23. This is defined in R by creating
a function that takes a vector argument.

g <- function(x)

{
}

return(sum(x~2))

The Monte Carlo estimate for g is

1 n
Hom =~ D 9(w),
t=1

and a CLT of the following form may be available

Vit(pign — 1) % Np(0,2,). 2)

Finding the estimate and the Monte Carlo standard errors for Epg are
explained in the following section.

3 Estimating Monte Carlo Standard Error

Using the mcmese package we can estimate ¥ in (1) with the mcse.multi
function.

library(mcmcse)
mcerror_bm <- mcse.multi(x = chain, method = "bm",

size = "sqroot", g = NULL, level = .95, large = FALSE)
mcerror_bart <- mcse.multi(x = chain, method = "bartlett",

size = "cuberoot", g = NULL, level = .95, large = FALSE)
mcerror_tuk <- mcse.multi(x = chain, method = "tukey",

size = "sqroot", g = NULL, level = .95, large = FALSE)

x takes the n x p MCMC data. x can take only numeric entries in the
form of a matrix or data frame. The rows of x are the iterations of
the MCMC.

e method = ‘‘bm’’, ‘‘bartlett’’, ‘‘tukey’’ calculatesthe estimate
using the batch means method and spectral variance methods with the
modified-Bartlett and Tukey-Hanning windows.

e size is the batch size for the bm method and the truncation point for
tukey and bartlett methods. size = ‘sqroot’’ sets the size as
|\/n] and size = ‘cuberoot’’ sets it at [n!/?]. An integer value
of size less than n is also valid.

e g is a function that is applied to each row of x and represents the
features of interest of the process. Since here we are interested in only
means, g is NULL. g will be explained in later examples.

e level is the confidence level of the resulting confidence region. This
is required to calculate the volume of the confidence region.

e large is a logical argument. If large is TRUE the volume of the con-
fidence region is the large sample volume obtained using x? critical
values. By default, volume is calculated using F' distribution critical
values.

mcse.multi returns a list with multiple components. cov stores the estimate
of ¥ obtained using the method chosen, vol returns the volume to the pth
root of the resulting confidence region, est stores the estimate of g applied
on the Markov chain and nsim, critical and size store the arguments
used to calculate 3.

mcerror_bm$cov

[,1] [,2] [,3]
[1,] 2.1818978 -0.2932679 0.8416831
[2,] -0.2932679 7.1329697 1.9953946
[3,] 0.8416831 1.9953946 44.2180584

mcerror_bart$cov

[,1] [,2] [,3]
[1,] 2.4769750 0.1504705 0.3108498
[2,] 0.1504705 7.5311309 -0.2104305
[3,] 0.3108498 -0.2104305 36.2779449

mcerror_tuk$cov

[,1] [,2] [,3]
[1,] 2.5605087 0.1785598 1.291766
[2,] 0.1785598 7.1818559 1.107386
[3,] 1.2917665 1.1073863 46.506845

rbind(mcerror_bm$est, mcerror_bart$est, mcerror_tuk$est)

X1 X2 X3
[1,] 2.213455 3.989894 9.990273
[2,] 2.213455 3.989894 9.990273
[3,] 2.213455 3.989894 9.990273

c(mcerror_bm$vol, mcerror_bart$vol, mcerror_tuk$vol)

[1] 0.1370514 0.1335043 0.1384341
Note: The estimates are not affected by the choice of the method.

Note: The batch means estimators are significantly faster to calculate than
the spectral variance estimators. The user is advised to use the default
method = ‘‘bm’’ for large input matrices.

Note: cov returns an estimate of ¥ and not X/n.

If the diagonals of ¥ are 02, the function mcse and mcse . mat returns oy; /v/n.
mcse does it for one component and mcse.mat does it for all diagonals.

mcse(x = chain[,1], method = "bm", g = NULL)
$est

[1] 2.213455

##

$se

[1] 0.01477125
mcse.mat(x = chain, method = "bm", g = NULL)

est se
X1 2.213455 0.01477125
X2 3.989894 0.02670762
X3 9.990273 0.06649666

In order to estimate i, 4 and X4 as in (2), we use the R function g we had
defined before. Recall that g should be a funcation that takes vector inputs.

g

function(x)

{

return(sum(x~2))
}

mcerror_g_bm <- mcse.multi(x = chain, g = g)
mcerror_g_bm$cov

#it [,1]
[1,] 18247.05

mcerror_g_bm$est

[1] 130.4437

4 Confidence Regions

Using the function confRegion in the package, the user can create joint
confidence regions for two parameters. The input for this function is the

output list from the mcse.multi function. The function uses the attributes
critical, est and nsim from the mcse.multi output list.

plot(confRegion(mcerror_bm, which = c(1,2), level = .90), type = 'l', asp = 1)
lines(confRegion(mcerror_bart, which = c(1,2), level = .90), col = "red")

394
|

2.16 2.18 2.20 2.22 2.24 2.26 2.28

e which should be a vector of size 2 that indicates the two components
for which the confidence ellipse is to be constructed.

e level is the confidence level of the confidence region. The default is
.95

NOTE: The argument confRegion calls on the function ellipse in package
ellipse to draw the ellipse.

NOTE: Since the confidence region is created for two parameters only, the
size of the ellipse is determined by setting p = 2 irrespective of the original
dimension of the problem.

To determine the effect of the confidence level, we draw two regions with
difference confidence levels.

plot(confRegion(mcerror_bm, which = c(1,2), level = .95), type
lines(confRegion(mcerror_bm, which = c(1,2), level = .90), col

402
|

3.96
|

394
|

2.15 2.20 2.25

5 Effective Sample Size

Before sampling the Markov chain, the user is advised to used the function
minESS to figure out how many minimum effective samples are needed for
analysis. See Vats et al. (2015) for details. Since we have two quantities, u
and 1y, we will find the minimum samples required for each analysis.

For mu
minESS(p = 3, alpha

.05, eps = .05)
[1] 8123

#For mu_g
minESS(p = 1, alpha

.05, eps = .05)

[1] 6146

e p is the dimension of the estimation problem.

e alpha is the confidence level

'1', asp = 1)
||red||)

e eps is the tolerance level. Default is .05. Reasonable levels are any-
where from .01 to .05. The smaller the tolerance, the larger the mini-
mum effective samples.

minESS is independent of the Markov chain or process, and is only a function
of the p, a, and e. The user should find minESS and then sample their process
until the required minimum samples are achieved.

multiESS and ess are two functions that calculate the effective sample size
of a correlated sample. ess calculations are based on Gong and Flegal (2016)
and is component-wise, and multiESS utilizes the multivariate nature of the
problem.

ess(chain)

X1 X2 X3
9381.1565 3670.521 1165.908

Since ess produces a different estimate for each component, conservative
practice dictates choosing the smallest of the values. multiESS returns one
estimate of the effective sample size based on the whole sample. The function
calls mcse.multi function to obtain a batch means estimate of 3. The user
can provide another estimate of 3 using the covmat argument.

multiESS(chain)
[1] 3455.318
multiESS(chain, covmat = mcerror_bart$cov)
[1] 3446.062

Since the effective sample size is less than the minimum effective samples, we
should simulate more. Looking at the ratio of the Monte Carlo samples size
of 10* and multiESS, we might need around 28,000 Monte Carlo samples.

set.seed (100)
chain <- mAr.sim(w = rep(2,p), A = A, C = C, N = 28000)
multiESS(chain)

[1] 8832.498

We see that the effective samples is now larger than the minimum effective
samples, so we know 28,000 are enough.

NOTE: Ideally, we do not want to get more samples using the last iteration
of the previous Markov chain. However, mAr.sim does not allow user spec-
ified starting values, so to demonstrate the use of minESS and multiESS,
we get a new sample altogether. When making R packages that simulate a
Markov chain, it is often very useful to allow user specific starting values for
this reason.

6 Graphical Diagnostics

The function estvssamp plots the Monte Carlo estimates versus the sample
size for a component of the MCMC output. This plot indicates whether the
Monte Carlo estimate has stabilized.

estvssamp(chain[,1])

Estimates vs Sample Size

MC Estimate
2.18 2.20 2.22
1 1 1

2.16
1

2.14
1

212
|

T T T T T T
0 5000 10000 15000 20000 25000

Sample Size

Additionally, if p is not too small, due to the central limit theorem in (1)
and an estimate of 3 using the mcse.multi function, a QQ plot of the stan-
dardized estimates gives an idea of whether asymptopia has been achieved.
We generate a new Markov chain with p = 50.

p <- 50
A <- diag(seq(.1, .9, length = p))

10

C <- diag(rep(2, p))

set.seed (100)
chain <- mAr.sim(w = rep(2,p), A = A, C = C, N = 10000)

For this new Markov chain, we find an estimate of 3 to use for the qqTest
function.

mcerror_bm <- mcse.multi(chain, method = "bm")
qqTest(x = chain, covmat = mcerror_bm$cov)

Normal Q—-Q Plot

3.0

1

25

2.0
1 1

Sample Quantiles
15
1

1

1.0

0.5
1

0.0
1

Theoretical Quantiles

Thus, we see here that the chain has not quite reached asymptopia.
References

Gong, L. and Flegal, J. M. (2016). A practical sequential stopping rule for
high-dimensional markov chain monte carlo. Journal of Computational
and Graphical Statistics, (to appear).

Vats, D., Flegal, J. M., and Jones, G. L. (2015). Multivariate output analysis
for markov chain monte carlo. arXiv preprint arXiv:1512.07713.

11

