
Ve
ry
dr
af
t

The markovchain Package: A Package for Easily

Handling Discrete Markov Chains in R

Giorgio Alfredo Spedicato, Ph.D C.Stat ACASMirko Signorelli, M.D. Statistics and economics

Abstract

markovchain aims to fill a gap within R packages providing S4 classes and methods to
easily handling discrete markov chains. The S4 class structure will be presented as well
implemented classes and methods. Applied examples will follow

Keywords: markov chain, transition probabilities.

1. Introduction

Markov chains represent a class of stochastic processes of great interest for the wide spectrum
of practical applications. In particular, discrete markov chains permit to model the transition
probabilities between possible discrete states by the aid of matrices. Various R packages deals
with Markov chains processes and their applications: msm (?) works with Multi-State Models
for Panel Data, mcmcR (?) is only one of the many package that implements Monte Carlo
Markov Chain approach for estimating models’ parameters, hmm fits hidden markov models
taking into account covariates. R statistical environments seems to lack a simple R package
that coherently defines S4 classes for discrete Markov chains and that allows the statistical
analyst to perform probabilistic analysis and statistical infrence. markovchain (?) aims to
offer greater flexibility in handling discrete time Markov chains. The paper is structured as
it follows: Section 2 briefly revies mathematic and definitions on discrete Markov chains,
Section 4 shows applied example of discrete Markov chains in various fields.

2. Markov chains mathematic revies

Definitions

A discrete-time Markow chain is a sequence of random variables X1,X2, X3, ... with the prop-
erty of memorylessness (or Markov property), so that the next state of Xn+1 depends on the
current state of Xn only and doesn’t depend from the events that preceded it:

Pr (Xn+1 = xn+1 |X1 = x1, X2 = x2,..., Xn = xn) = Pr (Xn+1 = xn+1 |Xn = xn) .

The set S = {s1, s2, ..., sr} of possible states of Xj is called state space of the chain. In
discrete-time Markov chain, S is finite or countable.

A Markow chain is stationary (or time-homogeneous) if Pr (Xn+1 = x |Xn = y) = Pr (Xn = x |Xn−1 = y),
in other words, if the underlying transition probabilities do not change as time moves on.

Ve
ry
dr
af
t

2 The markovchain package

The chain moves successively from one state to another (this change is called transition or
step) and the probability pij to move from state si to state sj is called transition probability:

pij = Pr (X1 = sj |X0 = si) .

The probability of going from state i to j in n steps is p
(n)
ij = Pr (Xn = sj |X0 = si).

If the Markov chain is stationary pij = Pr (Xk+1 = sj |Xk = si) and p
(n)
ij = Pr (Xn+k = sj |Xk = si),

where k > 0.

The probability distributions of transitions from one state to another can be represented
into a transition matrix P , in which the element of position (i, j) is the probability pij ; for
instance, if r = 3 the transition matrix P is

P =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 .

The distribution over the states can be written as a stocastic row vector x: if the current
state of x is s2, x = (0 1 0). As a consequence, the relation between x(n+1) and x(n) is
x(n+1) = x(n)P and, recursively, x(n+2) = x(n)P 2, x(n+k) = x(n)P k, k > 0.

Example

Consider the following numerical example. Suppose we have a Markov chain with a set of 3
possible states s1, s2 and s3. Let the transition matrix be

P =

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 .

p11 = 0.5 means that the probability that Xn+1 = s1 given that we observed Xn = s1 is 0.5,
and so on. If in the current state we have Xn = s2, then

x(n+1) = (0 1 0)

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 = (0.15 0.45 0.4) ,

x(n+2) = x(n+1)P = (0.15 0.45 0.4)

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 = (0.2425 0.3725 0.385)

and so on. The last result means that Pr (Xn+2 = s1 |Xn = s2) = 0.2425, Pr (Xn+2 = s2 |Xn = s2) =
0.3725 and Pr (Xn+2 = s3 |Xn = s2) = 0.385.

Properties

A state sj is said to be accessible from a state si (written si → sj) if a system started in state
si has a positive probability of transitioning into state sj at a certain point. If both si → sj
and sj → si the states si and sj are said to communicate.

Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 3

A state si has a period k if any return to state si must occur in multiplies of k steps, that is
k = gcd {n : Pr (Xn = si |X0 = si) > 0} ,where ’gcd’ is the greatest common divisor. If k = 1
the state is said to be aperiodic, if k > 1 the state is periodic with period k.

A state si is said to be transient if, given that we start in state si, there is a positive probability
that we will never return to si; otherwise, si is recurrent (or persistent or absorbing). A
Markov chain is absorbing if there is at least one recurrent state; otherwise, the chain is said
to be ergodic (or irreducible) if it is possible to get to any state from any state.

A Markov chain is said to be regular if some power of the transition matrix has positive
elements only; note that regular chains form a subset of ergodic chains.

An interesting property of regular Markov chains is that, if P is the k × k transition matrix
and z = (z1, ..., zk) is the eigenvector of P having

∑k
i=1 zi = 1,

lim
n→∞

Pn = Z,

where Z is the matrix having all rows equal to z.

3. The structure of the package

3.1. Creating markovchain objects

The package markovchain contains classes and methods that handle markov chain in a con-
venient manner.

The package is loaded within the R command line as follows:

R> #library("markovchain") #quando viene pubblicato

R> #per ora fare il source

R> #workDirGiorgio='D:/Universita/Ricerca/markovchain/'

R> workDirGiorgio2='F:\\giorgio lavoro\\universita\\markovChain'

R> setwd(workDirGiorgio2)

R> #workDirMirko='C:/Users/Mirko/Desktop/markovchain/'

R> #workDirGiorgioDropBox='D:\\Dropbox\\Dropbox\\markovchain'

R> #setwd(workDirMirko)

R>

R> library(expm)

R> library(igraph)

R> library(matlab)

R> source('./R Code/classesAndMethods.R')

R> source('./R Code/functions4Fitting.R')

The markovchain and markovchainList S4 classes (?)chambers) is defined within the markovchain
package as displayed:

Class "markovchain" [in ".GlobalEnv"]

Ve
ry
dr
af
t

4 The markovchain package

Slots:

Name: states byrow transitionMatrix

Class: character logical matrix

Name: name

Class: character

Class "markovchainList" [in ".GlobalEnv"]

Slots:

Name: markovchains name

Class: list character

Any element of markovchain class is comprised by following slots:

1. states: a character vector, listing the states for which transition probabilities are
defined.

2. byrow: a logical element, indicating whether transition probabilities are shown by row
or by column.

3. transitionMatrix: the probabilities of transition matrix.

4. name: optional character element to name the Markov chain

markovchain objects can be created either in a long way, as the following code shows,

R> weatherStates<-c("sunny", "cloudy", "rain")

R> byRow<-TRUE

R> weatherMatrix<-matrix(data=c(0.70, 0.2,0.1,

+ 0.3,0.4, 0.3,

+ 0.2,0.45,0.35),byrow=byRow, nrow=3,

+ dimnames=list(weatherStates, weatherStates))

R> mcWeather<-new("markovchain",states=weatherStates, byrow=byRow,

+ transitionMatrix=weatherMatrix, name="Weather")

or in a shorter way, displayed below.

R> mcWeather<-new("markovchain", states=c("sunny", "cloudy", "rain"), transitionMatrix=matrix(data=c(0.70, 0.2,0.1,

+ 0.3,0.4, 0.3,

+ 0.2,0.45,0.35),byrow=byRow, nrow=3), name="Weather")

R>

When new("markovchain") is called alone a defaut Markov chain is created.

R> defaultMc<-new("markovchain")

Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 5

The quicker form of object creation is made possible thanks to the implemented initialize

S4 method that assures:

� the transitionMatrix to be a transition matrix, i.e., all entries to be probabilities and
either all rows or all columns to sum up to one, according to the value of byrow slot.

� the columns and rows nams of transitionMatrix to be defined and to coincide with
states vector slot.

markovchain objects can be collected in a list within markovchainList S4 objects as following
example shows.

R> mcList<-new("markovchainList",markovchains=list(mcWeather, defaultMc), name="A list of Markov chains")

3.2. Handling markovchain objects

markovchain contains two classes, markovchain and markovchainList. markovchain ob-
jects handle discrete Markov chains, whilst markovchainList objects consists in list of
markovchain that can be useful to model non - homogeneous Markov chain processess.

Following methods have been implemented within the package for markovchain and markovchainLists

respectively:

Function: * (package base)

e1="markovchain", e2="markovchain"

e1="markovchain", e2="matrix"

e1="markovchain", e2="numeric"

e1="matrix", e2="markovchain"

e1="numeric", e2="markovchain"

Function: [(package base)

x="markovchain", i="ANY", j="ANY", drop="ANY"

Function: ^ (package base)

e1="markovchain", e2="numeric"

Function: == (package base)

e1="markovchain", e2="markovchain"

Function: absorbingStates (package .GlobalEnv)

object="markovchain"

Function: coerce (package methods)

from="data.frame", to="markovchain"

from="markovchain", to="data.frame"

Ve
ry
dr
af
t

6 The markovchain package

Function: dim (package base)

x="markovchain"

Function: initialize (package methods)

.Object="markovchain"

Function: length (package base)

Function: plotMc (package .GlobalEnv)

object="markovchain"

Function: print (package base)

x="markovchain"

Function: show (package methods)

object="markovchain"

Function: states (package .GlobalEnv)

object="markovchain"

Function: steadyStates (package .GlobalEnv)

object="markovchain"

Function: t (package base)

x="markovchain"

Function: transitionProbability (package .GlobalEnv)

object="markovchain"

Function: [[(package base)

x="markovchainList"

Function: dim (package base)

x="markovchainList"

Function: initialize (package methods)

.Object="markovchainList"

(inherited from: .Object="ANY")

Function: length (package base)

Function: print (package base)

x="markovchainList"

Function: show (package methods)

object="markovchainList"

Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 7

Table 1 lists which of implemented methods handle and manipulate markovchain objects.

Method Purpose

* Algebraic operators on the transition matrix.
[Direct access to transition matrix elements.
== Equality operator on the transition matrix.
dim Dimenion of the transition matrix.
states Defined transition states.
t Transposition operator (it switches byrow slot value and modifies the transition matrix coherently).
as Operator con switch from markovchain objects to data.frame objects and vice - versa.

Table 1: markovchain methods: matrix handling.

Operations on the markovchains objects can be easily performed. Using the previously defined
matrix we can find what is the probability distribution of expected weather states two and
seven days after, given actual state to be cloudy.

R> initialState<-c(0,1,0)

R> after2Days<-initialState*(mcWeather*mcWeather)

R> after7Days<-initialState*(mcWeather^7)

R> after2Days

sunny cloudy rain

[1,] 0.39 0.355 0.255

R> after7Days

sunny cloudy rain

[1,] 0.4622776 0.3188612 0.2188612

A similar answer could have been obtained if the probabilities were defined by column. A col-
umn - defined probability matrix could be set up either creating a new matrix or transposing
an existing markovchain object thanks to the t vector.

R> initialState<-c(0,1,0)

R> mcWeatherTransposed<-t(mcWeather)

R> after2Days<-(mcWeatherTransposed*mcWeatherTransposed)*initialState

R> after7Days<-(mcWeather^7)*initialState

R> after2Days

[,1]

sunny 0.390

cloudy 0.355

rain 0.255

R> after7Days

Ve
ry
dr
af
t

8 The markovchain package

[,1]

sunny 0.3172005

cloudy 0.3188612

rain 0.3192764

Basing informational methods have been defined for markovchain objects to quickly get states
and dimension.

R> states(mcWeather)

[1] "sunny" "cloudy" "rain"

R> dim(mcWeather)

[1] 3

A direct access to transition probabilities is provided both by transitionProbability method
and ”[” method.

R> transitionProbability(mcWeather, "cloudy","rain")

[1] 0.3

R> mcWeather[2,3]

[1] 0.3

A transition matrix can be displayed using print, show methods (the latter being less laconic).
Similarly, the underlying transition probability diagram can be plot by the use of plotMc

method that was based on igraph package (?) as Figure 1 displays.

R> print(mcWeather)

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

R> show(mcWeather)

Weather

A 3 - dimensional discrete Markov Chain with following states

sunny cloudy rain

The transition matrix (by rows) is defined as follows

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 9

0.7
0.4

0.35

0.3

0.2

0.2

0.45

0.1 0.3

● ●

●

sunny cloudy

rain

Figure 1: Weather example Markov chain plot

Ve
ry
dr
af
t

10 The markovchain package

The igraph package (?) is used for plotting. ... additional parameters are passed to
graph.adjacency function to control the graph layout.

Exporting to data.frame is possible and similarly it is possible to import.

R> mcDf<-as(mcWeather, "data.frame")

R> mcNew<-as(mcDf, "markovchain")

Similarly it is possible to export a markovchain class toward an adjacency matrix.

Non-homogeneous markov chains can be created with the aid of markovchainList object.
The example that follows arises from Health Insurance, where the costs associated to pa-
tients in a Continuous Care Health Community (CCHC) are modelled by a non-homogeneous
Markov Chain, since the transition probabilities can change by year.

It is possible to perform direct access to markovchainList elements as well as determining
the number of underlying markovchain objects contained therin in advance.

R> mcCCRC[[1]]

state t0

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.7 0.2 0.1

I 0.1 0.6 0.3

D 0.0 0.0 1.0

R> dim(mcCCRC)

[1] 4

3.3. Statistics with markovchain objects

Probabilistic analysis

Table 2 shows methods appliable on markovchain objects to perform probabilistic analysis.

Method Purpose

absorbingStates it returns the absorbing states of the transition matrix, if any.
steadyStates it returns the vector(s) of steady state(s) in matricial form.

Table 2: markovchain methods: statistical operations.

The steady state(s), also known as stationary distribution(s), of the Markov chains are iden-
tified by the following algorithm:

Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 11

1. decompose the Markov Chain in eigenvalues and eigenvectors.

2. consider only eigenvectors corresponding to eigenvalues equal to one.

3. normalize such eigenvalues so the sum of their components to total one.

The result is returned in matricial form.

R> steadyStates(mcWeather)

sunny cloudy rain

[1,] 0.4636364 0.3181818 0.2181818

It is possible a Markov chain to have more than one stationary distribuition, as the gambler
ruin example shows.

R> gamblerRuinMarkovChain<-function(moneyMax, prob=0.5) {

+ require(matlab)

+ matr<-zeros(moneyMax+1)

+ states<-as.character(seq(from=0, to=moneyMax, by=1))

+ rownames(matr)=states; colnames(matr)=states

+ matr[1,1]=1;matr[moneyMax+1,moneyMax+1]=1

+ for(i in 2:moneyMax)

+ {

+ matr[i,i-1]=1-prob;matr[i,i+1]=prob

+ }

+ out<-new("markovchain",

+ transitionMatrix=matr,

+ name=paste("Gambler ruin",moneyMax,"dim",sep=" ")

+)

+ return(out)

+ }

R> mcGR4<-gamblerRuinMarkovChain(moneyMax=4, prob=0.5)

R> steadyStates(mcGR4)

0 1 2 3 4

[1,] 1 0 0 0 0

[2,] 0 0 0 0 1

Any absorbing state is determined by the inspection of results returned by steadyStates

method.

R> absorbingStates(mcGR4)

[1] "0" "4"

R> absorbingStates(mcWeather)

Ve
ry
dr
af
t

12 The markovchain package

character(0)

Statistical analysis

Table 3 lists functions (and their purpose) as implemented within the package that helps to
fit and simulate discrete time Markov chains.

Function Purpose

markovchainFit function to return fitten markov chain for a given sequence.
rmarkovchain function to sample from markovchain or markovchainList objects.

Table 3: markovchain statistical functions.

Simulating a random sequence from an underlying Markov chain is quite easy thanks to the
function rmarkovchain. The following code generates a ”year” of weather states according
to ? underlying markovian stochastic process.

R> weathersOfDays<-rmarkovchain(n=365,object=mcWeather,t0="sunny")

R> weathersOfDays[1:30]

[1] "sunny" "cloudy" "cloudy" "cloudy" "sunny" "cloudy" "cloudy"

[8] "cloudy" "cloudy" "cloudy" "cloudy" "cloudy" "sunny" "sunny"

[15] "sunny" "sunny" "sunny" "sunny" "cloudy" "rain" "rain"

[22] "rain" "cloudy" "cloudy" "cloudy" "rain" "cloudy" "rain"

[29] "rain" "rain"

Similarly, it is possible to simulate one o more sequence from a non-homogeneous markov
chain, as the following code (applied on CCHC example) displays.

R> patientStates<-rmarkovchain(n=5, object=mcCCRC,t0="H",include.t0=TRUE)

R> patientStates[1:10,]

iteration values

1 1 H

2 1 H

3 1 H

4 1 H

5 1 D

6 2 H

7 2 H

8 2 H

9 2 D

10 2 D

Similarly, a markovchain object can be fit from given data. The most straightforward ap-
proach is maximum likelihood.

Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 13

R> weatherFittedMLE<-markovchainFit(data=weathersOfDays, method="mle")

R> weatherFittedMLE$estimate

MLE Fit

A 3 - dimensional discrete Markov Chain with following states

cloudy rain sunny

The transition matrix (by rows) is defined as follows

cloudy rain sunny

cloudy 0.4396552 0.27586207 0.2844828

rain 0.4050633 0.41772152 0.1772152

sunny 0.2011834 0.08284024 0.7159763

Nevertheless a bootstrap version of maximum likehihood has been developed in order to assess
the variability of estimate.

R> weatherFittedBOOT<-markovchainFit(data=weathersOfDays, method="bootstrap",nboot=50)

R> weatherFittedBOOT$estimate

BootStrap Estimate

A 3 - dimensional discrete Markov Chain with following states

1 2 3

The transition matrix (by rows) is defined as follows

1 2 3

1 0.4467616 0.26769280 0.2855456

2 0.4119685 0.40353663 0.1844949

3 0.2019854 0.08065979 0.7173548

R> weatherFittedBOOT$standardError

[,1] [,2] [,3]

[1,] 0.04194215 0.04194890 0.04514097

[2,] 0.05777718 0.06246215 0.04566470

[3,] 0.03060798 0.02189225 0.03191420

4. Applied examples

4.1. Actuarial examples

Markov chains are widely applied in the fields of actuarial science. Actuaries quantify the
risk inherent in insurance contracts evaluating the premium of insurance contract to be sold
(therefore covering future risk) and evaluating the actuarial reseves of existing portfolios (the
liabilities in terms of benefits or claims payments due to policyholder arising from previously
sold contracts).
Key quantities of actuarial interest are: the expected present value of future benefits, PV FB,

Ve
ry
dr
af
t

14 The markovchain package

the (periodic) benefit premium, P , and the present value of future premium PV FP . A level
benefit premium could be set equating at the beginning of the contract PV FB = PV FP .
After the beginning of the contract the benefit reserve is the differenbe between PV FB and
PV FP . The first example shows the pricing and reserving of a (simple) health insurance
contract. The second example analyze the evolution of a MTPL portfolio characterized by
Bonus Malus experience rating feature.

Health insurance example

The example comes from ?. The interest rate is 5%, benefits are payable upon death (1000)
and disability (500). Premiums are payable at the beginning of period only if policyholder is
active. The contract term is three years

R> mcHI=new("markovchain", states=c("active", "disable", "withdrawn", "death"),

+ transitionMatrix=matrix(c(0.5,.25,.15,.1,

+ 0.4,0.4,0.0,.2,

+ 0,0,1,0,

+ 0,0,0,1), byrow=TRUE, nrow=4))

R> benefitVector=as.matrix(c(0,0,500,1000))

R>

The policyholders is active at T0. Therefore the expected states at T1, . . . T3 are calculated as
shown.

R> T0=t(as.matrix(c(1,0,0,0)))

R> T1=T0*mcHI

R> T2=T1*mcHI

R> T3=T2*mcHI

Therefore the present value of future benefit at T0 is

R> PVFB=T0%*%benefitVector*1.05^-0+T1%*%benefitVector*1.05^-1+T2%*%benefitVector*1.05^-2+T3%*%benefitVector*1.05^-3

and the yearly premium payable whether the insured is alive is

R> P=PVFB/(T0[1]*1.05^-0+T1[1]*1.05^-1+T2[1]*1.05^-2)

The reserve at the beginning of year two, in case of the insured being alive, is

R> PVFB=(T2%*%benefitVector*1.05^-1+T3%*%benefitVector*1.05^-2)

R> PVFP=P*(T1[1]*1.05^-0+T2[1]*1.05^-1)

R> V=PVFB-PVFP

R> V

[,1]

[1,] 300.2528

Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 15

5. Aknowledgments

References

Affiliation:

Mirko Signorelli
signorellimirko@hotmail.it

mailto:signorellimirko@hotmail.it

	Introduction
	Markov chains mathematic revies
	The structure of the package
	Creating markovchain objects
	Handling markovchain objects
	Statistics with markovchain objects
	Probabilistic analysis
	Statistical analysis

	Applied examples
	Actuarial examples
	Health insurance example

	Aknowledgments

