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1 Introduction

We will discuss power and sample size estimation for randomized placebo controlled studies in which the
primary inference is based on the interaction of treatment and time in a linear mixed effects model (Laird
and Ware, 1982). We will demonstrate how the sample size formulas of (Liu and Liang, 1997) for marginal
or model fit by generalized estimating equation (GEE) (Zeger and Liang, 1986) can be adapted for mixed
effects models. Finally, using mixed effects model estimates based on data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), we will give examples of sample size calculations for models with and
without baseline covariates which may help explain heterogeneity in cognitive decline and improve power.

2 Power calculations

2.1 Exchangeable correlation and random intercept models

Suppose we wish to estimate the required sample size for inference regarding the interaction of treatment
and time in a longitudinal, placebo controlled study. Such calculations are relatively straightforward when
the inference is based on a GEE model in which the correlation structure is assumed to be “exchangeable.”
An exchangeable correlation structure specifies that all observations from within the same cluster, or re-
peated measures on the same subject, are equally correlated. This is exactly equivalent to a random effects
model which includes a random intercept for each cluster of correlated observations. Sample sizes for study
designs using these models can be calculated using a simple formula such as that in (Diggle et al., 1994), page
29. The formula requires the number visits, the interval between visits, the estimated model variance (σ2),
the within subject correlation (ρ), and of course the usual sample size calculation inputs (power, significance
level, and effect size).

To translate the formula of Diggle et al. (1994) to the random effects setting, let us first consider the details
of the assumed error structure of the GEE framework. The GEE model assumes that the response for subject
i at time tij, denoted Yij, is the group mean, dependent on time and treatment, plus an error term εij. Or,
borrowing notation from Diggle et al. (1994), for group A:

Yij = β0A + β1Atij + εij, i = 1, . . . , m; j = 1, . . . , n.

and similarly for Group B. The null hypothesis is H0 : d = β1A − β1B = 0. Under an exchangeable corre-
lation structure var(Yij) = var(εij) = σ2 and corr(Yij, Yik) = corr(εij, εik) = ρ, for all subjects, i, and time
points j, k.

In the mixed effects framework we can assume a random intercept model which is equivalent to the GEE
model with exchangeable correlation structure. In this case we believe εij = αi + ε∗ij, where αi is the random
intercept term shared by all observations and ε∗ij are independent and identically distributed (iid) error
terms. We see that var(Yij) = var(εij) = var(αi) + var(ε∗ij) and corr(Yij, Yik) = E[(αi + ε∗ij)(αi + ε∗ik)]/σ2 =
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var(αi)/σ2. The variance of the random intercept, var(αi), and the residual variance, var(εij), are easily
obtainable from the output of mixed effects fitting software so that one might fit a random effects model
to pilot data to educate a power calculation using the GEE formula of Diggle et al. (1994). Assuming equal
numbers in the placebo and active groups, a common visit schedule for all subjects (tij = tkj for all i, j, k),
and a random intercept model; the number of subjects per group is:

m =
2(zα + zQ)

2(var(αi) + var(ε∗ij))
2(1− var(αi)/σ2)

ns2
xd2

where zp is the pth standard normal quantile, Q is 1− P, P is the specified power, and s2
x = n−1 ∑j(tj − x̄)2.

2.2 General correlation and random slope models

The random intercept model is not equipped to handle variations in the rate of change from subject to
subject. In many diseases, such as Alzheimer’s disease, the rate of improvement or decline will vary greatly
within the treatment group, regardless of treatment. This variation can be modeled with a random slope
term. That is, we assume:

Yij = β0A + β1Atij + α0i + α1itij + ε∗ij,

where we use ε∗ij again to denote iid error and reserve εij for possibly correlated error. If we derive the
correlation structure of εij = α0i + α1itij + ε∗ij, which is necessary in order to use GEE-based sample size for-
mulas, we find that we no longer have an exchangeable correlation structure. In fact var(Yij) = var(εij) =

var(α0i)+ t2
ijvar(α1i)+ 2tijcov(α0i, α1i)+var(ε∗ij) and cov(Yij, Yik) = cov(εij, εik) = var(α0i)+ tijtikvar(α1i)+

(tij + tik)cov(α0i, α1i). For the common visit schedule case, the covariance matrix for the vector of correlated
errors, εi = (εi1, . . . , εin)

′, is of the form:

Σ = [(var(α0) + tjtkvar(α1) + (tj + tk)cov(α0, α1))]jk + diag(var(ε∗j ))

With this specification of the covariance matrix, one can use the sample size formula of Liu and Liang (1997)
for linear GEE models (page 941). (Warning: The formula given on the bottom page 29 of Diggle et al. (1994)
for general correlation matrices, R, is wrong).

The formula for linear models provided by Liu and Liang (1997) is useful for testing H0 : ψ = 0 for any
linear model of the form:

Yij = x′ijψ + z′ijλ + εij

where εi ∼ N(0, σ2R) and the covariates for individual i, xi = (x′i1, . . . , x′i1)
′
n×p and zi = (z′i1, . . . , z′i1)

′
n×q,

arise from a known discrete distribution. For our placebo controlled longitudinal study, the fully specified
model is of the form:

Yij = β0 + β1{Groupi = A}+ β2tij + β3tij{Groupi = A}.

That is, the parameter of interest for the interaction of treatment and time is ψ = β3 and nuisance parameter
is λ = (β0, β1, β2)

′. The covariates are distributed as xi = t = (t1, . . . , tn)′ and zj = [1 1 t]n×3 with probability
1/2 (Group A); and xi = 0 and zj = [1 0 t]n×3 with probability 1/2 (Group B).

The Liu and Liang’s formula for linear models can be coded In R as:

library(longpower)

liu.liang.linear.power

function (N = NULL, delta = NULL, u = NULL, v = NULL, sigma2 = 1,
R = NULL, R.list = NULL, sig.level = 0.05, power = NULL,
Pi = rep(1/length(u), length(u)), alternative = c("two.sided",

"one.sided"), tol = .Machine$double.eps^2)
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{
if (sum(sapply(list(N, delta, sigma2, power, sig.level),

is.null)) != 1)
stop("exactly one of 'N', 'sigma2', 'delta', 'power', and 'sig.level' must be NULL")

if (!is.null(sig.level) && !is.numeric(sig.level) || any(0 >
sig.level | sig.level > 1))
stop("'sig.level' must be numeric in [0, 1]")

alternative <- match.arg(alternative)
if (sum(c(!is.null(R), !is.null(R.list))) != 1)

stop("Exactly one of R or R.list must be specified.")
if (sum(Pi) != 1)

stop("Pi must sum to 1.")
if (!is.null(R)) {

R.list <- lapply(1:length(u), function(i) R)
}
Rinv <- lapply(1:length(R.list), function(i) {

R <- R.list[[i]]
if (is.null(dim(R)) & length(R) == 1 & length(u[[i]]) >

1) {
R <- matrix(R, length(u[[i]]), length(u[[i]])) +

diag(1 - R, length(u[[i]]))
}
else if (is.null(dim(R)) & length(R) == 1 & length(u[[i]]) ==

1) {
R <- matrix(R, length(u[[i]]), length(u[[i]]))

}
return(solve(R))

})
n.body <- quote({

Ipl <- 0
for (i in 1:length(u)) Ipl <- Ipl + Pi[i] * t(u[[i]]) %*%

Rinv[[i]] %*% v[[i]]
Ipl <- Ipl/sigma2
Ill <- 0
for (i in 1:length(u)) Ill <- Ill + Pi[i] * t(v[[i]]) %*%

Rinv[[i]] %*% v[[i]]
Illinv <- solve(Ill/sigma2)
Sigma1 <- 0
for (i in 1:length(u)) Sigma1 <- Sigma1 + Pi[i] * (t(u[[i]]) -

Ipl %*% Illinv %*% t(v[[i]])) %*% Rinv[[i]] %*% (u[[i]] -
v[[i]] %*% Illinv %*% t(Ipl))

Sigma1 <- Sigma1/sigma2
(qnorm(1 - ifelse(alternative == "two.sided", sig.level/2,

sig.level)) + qnorm(power))^2/(delta %*% Sigma1 %*%
delta)[1, 1]

})
if (is.null(N))

N <- eval(n.body)
else if (is.null(sig.level))

sig.level <- uniroot(function(sig.level) eval(n.body) -
N, c(1e-10, 1 - 1e-10), tol = tol, extendInt = "yes")$root

else if (is.null(power))
power <- uniroot(function(power) eval(n.body) - N, c(0.001,
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1 - 1e-10), tol = tol, extendInt = "yes")$root
else if (is.null(delta))

delta <- uniroot(function(delta) eval(n.body) - N, sqrt(sigma2) *
c(1e-07, 1e+07), tol = tol, extendInt = "downX")$root

else if (is.null(sigma2))
sigma2 <- uniroot(function(sigma2) eval(n.body) - N,

delta * c(1e-07, 1e+07), tol = tol, extendInt = "yes")$root
else stop("internal error", domain = NA)
METHOD <- "Longitudinal linear model power calculation (Liu & Liang, 1997)"
structure(list(N = N, n = N * Pi, delta = delta, sigma2 = sigma2,

sig.level = sig.level, power = power, alternative = alternative,
R = R, note = "N is total sample size and n is sample size in each group.",
method = METHOD), class = "power.longtest")

}
<environment: namespace:longpower>

The parameters include d, the effect size (possibly vector); u, the list of covariate vectors or matrices
associated with the parameter of interest; v, the respective list of covariate vectors or matrices associated
with the nuisance parameter; sigma2, the error variance; R, the correlation structure; and Pi the proportion
of covariates of each type (u, v, and Pi are expected to be the same length and sorted with respect to each
other).

For example, we can reproduce the table exchangeable correlations on page 29 of Diggle et al. (1994)
for the case of t = (0, 2, 5)′, α = 0.05, power=0.80, and d = 0.5 as follows via the diggle.linear.power
function:

n = 3
t = c(0,2,5)
rho = c(0.2, 0.5, 0.8)
sigma2 = c(100, 200, 300)
tab.diggle = outer(rho, sigma2,

Vectorize(function(rho, sigma2){
ceiling(diggle.linear.power(

d=0.5,
t=t,
sigma2=sigma2,
R=rho,
alternative="one.sided",
power=0.80)$n)}))

colnames(tab.diggle) = paste("sigma2 =", sigma2)
rownames(tab.diggle) = paste("rho =", rho)
tab.diggle

sigma2 = 100 sigma2 = 200 sigma2 = 300
rho = 0.2 313 625 938
rho = 0.5 196 391 586
rho = 0.8 79 157 235

or via the liu.liang.linear.power function:

u = list(u1 = t, u2 = rep(0,n))
v = list(v1 = cbind(1,1,t),

v2 = cbind(1,0,t))
tab.ll = outer(rho, sigma2,

Vectorize(function(rho, sigma2){
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ceiling(liu.liang.linear.power(
delta=0.5, u=u, v=v,
sigma2=sigma2,
R=rho, alternative="one.sided",
power=0.80)$N/2)}))

colnames(tab.ll) = paste("sigma2 =", sigma2)
rownames(tab.ll) = paste("rho =", rho)
tab.ll

sigma2 = 100 sigma2 = 200 sigma2 = 300
rho = 0.2 313 625 938
rho = 0.5 196 391 586
rho = 0.8 79 157 235

As a second example, consider an Alzheimer’s disease trial in which assessments are taken every three
months for 18 months (7 visits). We assume an smallest detectable effect size of 1.5 points on the cognitive
portion of the Alzheimer’s Disease Assessment Scale (ADAS-Cog). This is a 70 point scale with great vari-
ability among sick individuals. We assume the random intercept to have a variance of 55, the random slope
to have a variance of 24, and a residual variance of 10. The correlation between random slope term and
random intercept term is 0.8. We can estimate the necessary sample size by first generating the correlation
structure. Since ε = var(Yij) is not constant over time in this model, we fix sigma2=1 and set R equal to the
covariance matrix for εi:

# var of random intercept
sig2.i = 55
# var of random slope
sig2.s = 24
# residual var
sig2.e = 10
# covariance of slope and intercep
cov.s.i <- 0.8*sqrt(sig2.i)*sqrt(sig2.s)

cov.t <- function(t1, t2, sig2.i, sig2.s, cov.s.i){
sig2.i + t1*t2*sig2.s + (t1+t2)*cov.s.i

}

t = seq(0,1.5,0.25)
n = length(t)
R = outer(t, t, function(x,y){cov.t(x,y, sig2.i, sig2.s, cov.s.i)})
R = R + diag(sig2.e, n, n)
u = list(u1 = t, u2 = rep(0,n))
v = list(v1 = cbind(1,1,t),

v2 = cbind(1,0,t))

liu.liang.linear.power(d=1.5, u=u, v=v, R=R, sig.level=0.05, power=0.80)

Longitudinal linear model power calculation (Liu & Liang, 1997)

N = 414.6202
n = 207.3101, 207.3101

delta = 1.5
sigma2 = 1

sig.level = 0.05
power = 0.8
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alternative = two.sided

NOTE: N is total sample size and n is sample size in each group.

R:
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 65.00000 62.26636 69.53272 76.79908 84.06544 91.3318 98.59817
[2,] 62.26636 81.03272 79.79908 88.56544 97.33180 106.0982 114.86453
[3,] 69.53272 79.79908 100.06544 100.33180 110.59817 120.8645 131.13089
[4,] 76.79908 88.56544 100.33180 122.09817 123.86453 135.6309 147.39725
[5,] 84.06544 97.33180 110.59817 123.86453 147.13089 150.3972 163.66361
[6,] 91.33180 106.09817 120.86453 135.63089 150.39725 175.1636 179.92997
[7,] 98.59817 114.86453 131.13089 147.39725 163.66361 179.9300 206.19633

So the study would require about 207 subjects per arm to achieve 80% power, with a two-tailed α = 0.05.
The simple formula provided in Diggle et al. (1994) suggests the required number of subjects can be

found by 2(zα + 2Q)ξ/d2, where

ξWRONG =
(

0 1
) ( 1 . . . 1

t1 . . . tn

)
R−1

 1 t1
...

...
1 tn

( 0
1

)
.

Executing this for our Alzheimer’s example, we get a sample size of:

x = (rbind(1,t)%*%solve(R)%*%cbind(1,t))[2,2]
x*2*(qnorm(1-0.05/2) + qnorm(0.80))^2/1.5^2

[1] 0.3592744

which is clearly wrong. In fact, there is a typo in Diggle et al. (1994). The correct formula for ξ is:

ξ =
(

0 1
) ( 1 · · · 1

t1 · · · t2

)
(σ2R)−1

 1 t1
...

...
1 tm



−1 (

0
1

)
. (1)

Applying the correct formula, we get

x = solve(rbind(1,t)%*%solve(R)%*%cbind(1,t))[2,2]
x*2*(qnorm(1-0.05/2) + qnorm(0.80))^2/1.5^2

[1] 207.3101

Similarly, using Liu and Liang (1997), we attempt to derive the correct closed form formula for this
specific linear model. The required sample size per group is given as

m = ν/(ψ′1Σ̃1ψ1)

where

Σ̃1 = σ−2
m

∑
l=1

πl(u
′
l − Iψλ I−λλ1v′l)R−1(u′l − vl I−λλ1I′ψλ),

Iψλ = σ−2
m

∑
i=1

πlu
′
l R
−1vl ,

and

Iλλ = σ−2
m

∑
i=1

πlv
′
l R
−1vl .
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Again, in our case the probability of each of the two covariate values is π1 = π2 = 1/2; and u1 =
(t1, . . . , tn)′, v1 = [1 0 xi]n×3, u2 = 0, and v2 = [1 0 xi]n×3. We have

Iψλ = σ−2/2u′1R−1v1

Iλλ = σ−2/2[v′1R−1v1 + v′2R−1v2] = 1/2X]

Iψλ I−1
λλ = u′1R−1v1X−1

I−1
λλ I′ψλ = X−1v′1R−1u1

Σ̃1 = σ−2/2[(u1 − u′1R−1v1X−1v′1)R−1(u1 − v1X−1v′1R−1u1)

+u′1R−1v1X−1v′2R−1v2X−1v1R−1u1

= σ−2/2[u1R−1u− u′1R−1v1X−1v′1R−1u1]

Applying this to our working example:

X = t(v[[1]])%*%solve(R)%*%v[[1]] +
t(v[[2]])%*%solve(R)%*%v[[2]]

Sigma1 = ((t(u[[1]])%*%solve(R)%*%t -
t(u[[1]])%*%solve(R)%*%v[[1]]%*%solve(X)%*%t(v[[1]])%*%solve(R)%*%t)/2)

(qnorm(1-0.05/2) + qnorm(0.80))^2/(Sigma1*(1.5)^2)/2

[,1]
[1,] 207.3101
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