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Abstract

We describe a representation of linear mixed-effects models using
positive semidefinite, symmetric, compressed, column-oriented, sparse
matrices. This representation provides for efficient evaluation of the
profiled log-likelihood or profiled restricted log-likelihood of the model,
given the relative precision parameters of the random effects. The
evaluation is based upon the LDLT form of the Cholesky decomposi-
tion of the augmented sparse representation. Additionally, we can use
information from this representation to evaluate ECME updates and
the gradient of the criterion being optimized.

The sparse matrix methods that we employ have both a symbolic
phase, in which the number and positions of the off-diagonal elements
are determined, and a numeric phase, in which the actual numeric
values are determined. The symbolic phase need only be done once
and it can be accomplished knowing only the grouping factors with
which the random effects are associated. An important part of the
symbolic phase is determination of a fill-minimizing permutation of
the rows and columns of a sparse semi-definite matrix. This matrix
have a special structure in the linear mixed-effects problem and we
provide a new fill-minimizing algorithm tuned to this structure.
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1 Introduction

Mixed-effects models, also called multilevel models, panel data models, and
frailty models, are widely used in many areas of statistical applications (Pin-
heiro and Bates, 2000). The basic form of the model, the linear mixed model,
also serves as an approximation in iterative estimation of the parameters in
more general forms such as the generalized linear mixed model (GLMM) and
the nonlinear mixed model (NMM).

In §2 we define a general form of a linear mixed model using grouping
factors and model matrices that are associated with the grouping factors.
This form, which can be used for multiple levels of random effects in either
nested or crossed configurations, can be represented and manipulated using
a sparse, symmetric, semidefinite matrix and several dense matrices. We
show that a profiled log-likelihood can be evaluated from that solution of a
penalized least squares problem and that this solution can be obtained from
the Cholesky decomposition of an augmented form of the sparse, symmetric
matrix.

Many implementations of the Cholesky decomposition of sparse, symmet-
ric, semidefinite matrices have both a symbolic phase, in which the number
and positions of the off-diagonal elements are determined, and a numeric
phase, in which the actual numeric values are determined. In §3 we show that
the symbolic analysis for the matrices we consider need only be done once
and can be accomplished knowing only the grouping factors. An important
part of the symbolic phase is determination of a fill-reducing permutation of
the rows and columns of the symmetric matrix. We show that by suitably
ordering the grouping factors and by restricting ourselves to permutations
that correspond to reorderings of the levels within the grouping factors we
can determine effective fill-reducing orderings.

Finally, in §?? we show how these methods can be used to implement
general penalized least squares approaches to models such as the GLMM
and the NMM and then to implement more accurate approximations to the
marginal likelihood using Laplacian integration or adaptive Gauss-Hermite
integration.
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2 Linear mixed models

We describe the form of the linear mixed-effects model that we consider and
restate some of the formulas from Bates and DebRoy (2004) using the LDL
form of the Cholesky decomposition of a sparse, semi-definite matrix.

2.1 Form of the model

We consider linear mixed-effects models that can be written as

y = Xβ + Zb + ε ε ∼ N (0, σ2I), b ∼ N (0, σ2Ω−1), ε ⊥ b (1)

where y is the n-dimensional response vector, X is an n × p model matrix
for the p-dimensional fixed-effects vector β, Z is the n× q model matrix for
the q-dimensional random-effects vector b that has a Gaussian distribution
with mean 0 and relative precision matrix Ω (i.e., Ω is the precision of b
relative to the precision of ε), and ε is the random noise assumed to have
a spherical Gaussian distribution. The symbol ⊥ indicates independence of
random variables. We assume that X has full column rank and that Ω, which
is a function of an (unconstrained) parameter vector θ, is positive definite.

2.1.1 Grouping factors for the random effects

Although q, the dimension of the vector b (and, correspondingly, the number
of columns in Z and the number of rows and columns in ZTZ and Ω) can
be very large, these vectors and matrices can be divided into components
associated with grouping factors fi, i = 1, . . . , k in the data. Each grouping
factor is of length n, the same as the length of y. The number of distinct
values in fi, also called the number of levels of fi, is mi, i = 1, . . . , k. In
the general form of the model, a model matrix Zi of size n× qi is associated
with grouping factor fi, i = 1, . . . , k. Typically the qi are very small. In
fact, in one common form of the model, called a variance components model,
q1 = q2 = · · · = qk = 1 and each of the Zi, i = 1, . . . , k consist of a single
column of 1’s.

In the general form, the random effects vector b, of length q =
∑k

i=1 miqi,
is partitioned into k “outer blocks” where the i’th outer block is of size
miqi, i = 1, . . . , k. The columns of Z and the rows and columns of ZTZ
and Ω are similarly partitioned. Each of the outer blocks is further sub-
divided into mi inner blocks of size qi. The grouping factors determine the
outer blocks and the levels of each grouping factor determine the inner blocks.
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In the models that we will consider, the random effects associated with
different grouping factors are independent. That is, Ω is block-diagonal in
k blocks of sizes miqi ×miqi, i = 1, . . . , k. Furthermore, the random effects
associated with the levels of a given blocking factor are independent and
identically distributed. Thus the i’th diagonal block in Ω is itself block
diagonal and these diagonal blocks are mi repetitions of a qi × qi matrix Ωi,
i = 1, . . . , k, providing

|Ω| =
k∑

i=1

mi|Ωi| (2)

For a variance components model the matrices Ωi, i = 1, . . . , k are 1× 1
positive definite matrices which we can consider to be positive scalars ωi, i =
1, . . . , k. The matrix Ω is block-diagonal of size

∑k
i=1 mi and the diagonal

blocks are ωiImi
where Imi

is the mi × mi identity matrix. Thus |Ω| =∑k
i=1 miωi. The k-dimensional vector θ where θi = log ωi, i = 1, . . . , k can

be used as the unconstrained parameter vector.
The columns of the matrix Z are similarly divided into blocks. For the

variance components model the ith block is the set of indicator columns for
the mi levels of fi, i = 1, . . . , k. Because each block is a set of indicators,
the diagonal blocks of ZTZ are themselves diagonal. However, unlike the
corresponding blocks in Ω, these blocks are not necessarily a multiple of
the identity. The diagonal elements of the ith diagonal block are the mi

frequencies of occurence of each the levels of the ith grouping factor in the
data. (Because all the elements of Z are zero or one, the diagonals of ZTZ
are simply the counts of the number of ones in the corresponding column of
Z.)

The off-diagonal blocks of ZTZ in a variance components model are the
pairwise cross-tabulations of the corresponding grouping factors.

2.2 The Scottish secondary school example

An example may help to clarify these descriptions.
Data on achievement scores of Scottish secondary school students are

described in Paterson (1991) and are analyzed in Rasbash et al. (2002, ch. 18)
and other references. In the Matrix package for R these data are available
as the data set ScotsSec containing the achievement scores (attain), some
demographic data (sex and social class), a verbal reasoning score based on
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tests taken at entry to secondary school, and the primary and secondary
(second) schools attended by 3435 students.

The grouping factors for the random effects are primary (148 distinct
schools) and second (19 distinct schools). the locations of the non-zeros in
the 167×167 matrix ZTZ are shown in Figure 1. for a variance components
model with these grouping factors. In the figure darker greys indicate larger
magnitudes.

2.3 General structure of the sparse matrix

For the variance components model bZTZ is based on the pairwise cross-
tabulation of the grouping factors. In the more general model where some
of the Zi can have multiple columns, the structure of ZTZ can be derived
from the structure of the pairwise cross-tabulation matrix. Both ZTZ and
the pairwise cross-tabulation can be divided into a k× k grid of blocks. The
pattern of non-zeros in the (i, j) block of ZTZ is obtained by replacing each
non-zero in the (i, j) block of the cross-tabulation by a qi× qj matrix. Notice
that we can determine the patterns of non-zeros in ZTZ knowing only the
qi, i = 1, . . . , k and the cross-tabulation of the grouping factors.

2.4 Crossed and nested grouping factors

In the Scottish secondary school example if all the students from a given
primary school attended the same secondary school we would say that pri-
mary is nested within second. That is not the case. We can see in Figure 1
that there is a moderate amount of crossing of these two grouping factors. If
there was at least one student in the study from each combination of primary
school and secondary school we would describe the grouping factors primary
and second as being fully crossed. Again, that is not the case for the Scottish
secondary data. Grouping factors like these, which are neither nested nor
fully crossed, are said to be partially crossed.

2.5 Estimation criteria and related quantities

For ease of reference we restate some of the results from Bates and DebRoy
(2004) in the form in which they will be calculated.

Given the observed responses y and the model matrices X and Z, we wish
to determine either the maximum likelihood (ML) or the restricted maximum
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Figure 1: Location of non-zero elements in ZTZ for model fm1 fit to
the ScotsSec data. Darker squares indicate larger magnitudes. Rows and
columns are numbered from zero.
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likelihood (REML) estimates of the parameters θ, β, and σ2. Because the
conditional estimates of β and σ2, given a value of θ, for either criterion can
be determined from the solution to penalized least squares problem, we can
reduce the optimization problem to one involving θ only. This reduction of
the dimension of the optimization problem is called profiling the objective.

The conditional, penalized least squares problem can be solved using the
Cholesky decompositionZTZ + Ω ZTX ZTy

XTZ XTX XTy
yTZ yTX yTy

 = RTR where R =

RZZ RZX rZy

0 RXX rXy

0 0 ryy

 .

(3)
where the matrices RZZ and RXX are upper triangular of dimension q×q and
p× p respectively. The corresponding vectors, rZy and rXy , are of dimension
q and p, and ryy is a scalar. The conditions that Ω be positive definite and
X have full column rank ensure that RZZ and RXX are nonsingular.

In our implementation we do not form the upper triangular Cholesky
factor RZZ . Instead we use Tim Davis’s LDL package (Davis, 2004) to factor

ZTZ + Ω = LDLT (4)

where L is a sparse, unit, lower triangular matrix and D is diagonal with pos-
itive diagonal elements. Because the diagonal elements of the unit triangular
matrix L are, by definition, unity, they are not explicitly stored.

In general the matrices ZTX and XTX are dense. We use functions
from the LDL package to solve for RZX in

D1/2LTRZX = ZTX (5)

Having solved for RZX we can downdate XTX and determine the dense
Cholesky factor RXX in

XTX −RT
ZXRZX = RT

XXRXX (6)

Similar relationships are used to determine rZy , rXy , and ryy . In fact, in our
implementation we append y to X when forming ZTX and XTX so that
(??) provides both RZX and rZy and (6) provides RXX , rXy , and ryy .

The conditional estimates of β satisfy

RXX β̂(θ) = rXy (7)
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and the conditional modes of the random effects satisfy

D1/2LTb̂(θ) = rZy −RZX β̂. (8)

The conditional ML estimate of σ2 is σ̂2(θ) = r2
yy/n and the conditional

REML estimate is σ̂2
R(θ) = r2

yy/(n− p).
The profiled optimization problem, expressed in terms of the deviance, is

θ̂ = arg min
θ
−2˜̀(θ)

= arg min
θ

{
log

(
|D|
|Ω|

)
+ n

[
1 + log

(
2πr2

yy

n

)]} (9)

‘

θ̂R = arg min
θ
−2 ˜̀

R(θ)

= arg min
θ

{
log

(
|D| |RXX |2

|Ω|

)
+ (n− p)

[
1 + log

(
2πr2

yy

n− p

)]} (10)

for ML and REML estimation, respectively. The gradients of these criteria
are

∇(−2˜̀) = tr

[
DΩ

(
(ZTZ + Ω)−1 −Ω−1 +

b̂

σ̂

b̂

σ̂

T)]
(11)

∇(−2˜̀
R) = tr

[
DΩ

(
Vb −Ω−1 +

b̂

σ̂R

b̂

σ̂R

T)]
(12)

where
Vb = L−TD−1/2

(
I + RZXR−1

XXR−T
XXRT

ZX

)
D−1/2L−1 (13)

and D denotes the Frechet derivative.
If good starting estimates of θ are not available, the initial Newton itera-

tions for (9) or (10) can be unstable. We can refine our initial estimates with
a moderate number of ECME steps for which θi+1 satisfies

tr

[
DΩ

(
b̂(θi)

σ̂(θi)

b̂(θi)
T

σ̂(θi)
+
(
ZTZ + Ω(θi)

)−1 −Ω(θi+1)
−1

)]
= 0 (14)

for ML estimates or

tr

[
DΩ

(
b̂(θi)

σ̂R(θi)

b̂(θi)
T

σ̂R(θi)
+ Vb(θi)−Ω(θi+1)

−1

)]
= 0 (15)

8



for REML.
At this point it is easy to formulate a general method of obtaining ML or

REML estimates for a linear mixed model:

1. Given the data y and the model matrices X and Z, formulate initial
estimates θ0. Some heuristics for doing so are given in Pinheiro and
Bates (2000, ch. 3).

2. Use a moderate number of ECME steps, (14) or (15), to refine these
starting estimates. Each ECME step requires evaluating Ω(θ) followed
by the decomposition and solutions (3), (5), (??), (7) and (8).

3. Use a Newton method to optimize the criterion (9) or (10) with gradient
(11) or (12). Each evaluation of the criterion requires evaluating Ω(θ)
followed by the decomposition and solutions (3), (5), and (6). Gradient
evaluations require the solutions to (7) and (8).

In Bates and DebRoy (2004) we show that similar calculations can be used
to evaluate the Hessian of the profiled criteria and that the deviance forms of
the criteria are bounded below throughout the parameter space. Reasonable
starting values determined by the ECME iterations and analytic expressions
for the gradients and Hessians help to make (9) and (10) very well controlled
optimization problems. The most difficult computational step in the ECME
or Newton iterations is the sparse Cholesky decomposition (3).

3 Symbolic analysis

Although the decomposition (3) will be performed many times for different
trial values of θ, the structure of ZTZ + Ω – in particular, the number and
positions of the non-zeros in ZTZ + Ω and in L – will be the same for
each evaluation. The LDL package provides one C function that performs
the symbolic analysis to determine the number and position of the non-
zeros in L and another C function to determine the numerical values in the
decomposition.

The number and positions of the nonzeros in L depends on the positions
of the nonzeros in ZTZ. There will potentially be a nonzero in L anywhere
there is a nonzero in the lower triangle of ZTZ but other nonzeros in L can
be induced during the course of the decomposition. This is called “fill-in”.
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The extent of the fill-in can be changed by reordering the components of b
and, correspondingly, the columns of Z.

Although there are general approaches, such as approximate minimal
degree (Davis, 1996) or approaches based on partitions of the adjacency
graph (Karapis, 2003), to determining a fill-minimizing permutation, it is
more effective for us to exploit the special structure of ZTZ in searching for
a permutation.

As mentioned above, when considering the structure of ZTZ +Ω we only
need to consider the structure for the variance components model because
the structure for the general model is obtained from the structure for the
variance components model by replacing each nonzero in the (i, j) block of
the variance components model by a qi × qj nonzero matrix. Similarly we
can derive the structure of the L matrix for the general model from that
of the variance components model we restrict our attention to permutations
that do not mix levels from different grouping factors. That is, we consider
only those fill-reducing permutations that consists of a permutation of the
grouping factors and permutations of the levels within each grouping factor.

In what follows we restrict our attention to the variance components
model.

Fill-in is determined by the elimination tree (Liu, 1990) for the symmet-
ric matrix. We can determine the Cholesky decomposition, and hence the
elimination tree and the extent of the fill-in, column-wise starting with the
first column. We know that there will be “original” nonzeros in L wherever
there are nonzeros in the lower triangle of ZTZ+Ω and, possibly, some addi-
tional, “induced” nonzeros. At column j if there are nonzeros, either original
or induced, below the diagonal in rows i and k then a nonzero is induced in
the (i, k) position of L. Consider again the division of ZTZ + Ω and L into
a k × k array of blocks determined by the grouping factors. For a variance
components model, the diagonal blocks are themselves diagonal. Because the
(1, 1) block is diagonal the row numbers of any nonzeros below the diagonal
must be greater than m1. That is, there will not be any induced nonzeros in
the first m1 columns and we choose the first grouping factor to make m1 as
large as possible.

In most examples there are just one or two grouping factors. For the rare
examples with three or more grouping factors we order the factors so that
m1 ≥ m2 ≥ · · · ≥ mk.

Because the columns corresponding to the first grouping factor do not
experience any fill-in, there is no need to permute the levels of the first
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grouping factor. This can be a considerable savings in the effort required
to determine a fill-reducing permutation. For the Scottish secondary school
example we can leave the first 148 columns in their original order and consider
only permutations of the last 19 columns.

For the purposes of determining the induced nonzeros we can “project”
the first m1 columns onto the last q −m1 columns as described above.

If the grouping factors are a nested sequence of factors there will be no
fill-in. In fact, both L and its inverse will have exactly the same pattern of
nonzeros as does the lower triangle of ZTZ. We do not seek a fill-reducing
permutation if the grouping factors form a nested sequence. The case k = 1
(the random effects are determined by a single grouping factor) is, trivially,
a nested sequence.

4 Generalizations of linear mixed models

5 Further enhancements
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