
lgcp Package Vignette: Spatiotemporal Prediction in

Log-Gaussian Cox Processes

B. Taylor, T. Davies, B. Rowlingson, P.Diggle

December 9, 2011

Contents

1 Introduction 2

2 Walk-through Example, Wales 2

3 Reading In and Converting Data 4

3.1 Simulation of Data . 4

3.1.1 Simulation of Data with District-level spatialAtRisk 4

3.1.2 Simulation of Data with spatialAtRisk described by a Kernel Density Es-

timate of Population . 5

3.1.3 More Complex Temporal-At-Risk Models 7

3.2 Analysis of a Dataset . 7

3.3 Estimating the Spatial/Temporal Component . 8

3.4 Estimating the Parameters . 9

3.5 Performing Predictive Inference . 11

3.6 Post-processing . 12

3.6.1 Extracting Information . 13

3.6.2 Plotting . 13

3.6.3 MCMC diagnostics . 13

3.6.4 NetCDF . 14

1

3.6.5 Plotting Exceedance Probabilities . 16

4 Advanced use of lgcp 18

4.1 Writing Adaptive MCMC schemes . 18

4.1.1 A ‘Simple’ Example: constanth . 18

4.1.2 A More Complex Example: andrieuthomsh 19

A Spatio-temporal Log Gaussian Cox Processes 21

B Inference 22

B.1 Discretising and the Fast-Fourier Transform . 23

B.2 The Metropolis-Adjusted Langevin Algorithm . 23

C Adaptive MCMC 24

D Monte Carlo Averaging and Exceedance Probabilities 25

E Rotation 26

F Gradient Truncation 27

1 Introduction

This vignette provides an introduction to lgcp by means of a walk-through example; the theory

necessary to understand the model is covered in the appendices and [17].

The lgcp package makes extensive use of spatstat functions and data structures [3]. Other

important dependencies are: the sp library, which also supplies some data structures and functions

[4]; the suite of covariance functions provided by the RandomFields package [16]; the rpanel

package to facilitate minimum-contrast parameter estimation routines [5]; and the ncdf package

for rapid access to massive datasets for post-processing [11].

2 Walk-through Example, Wales

Boundary files for Wales can be obtained from the Great Britain data files from the GADM

(http://www.gadm.org/country) website. The following script will download the level 1 (England,

2

Scotland, Wales, Northern Ireland) and level 2 (counties and regions) data in .RData format, and

put them in a temporary directory:

td = tempdir()

mapdata = c("GBR_adm1.RData","GBR_adm2.RData")

src = "http://www.gadm.org/data/rda/%s"

for(mapfile in mapdata){

download.file(sprintf(src,mapfile),

destfile=file.path(td,mapfile))

}

The first polygon needed is the observation window, which is the boundary of Cymru (in English,

“Wales”), so it is extracted and converted with the following:

load as object 'gadm'

load(file.path(td,"GBR_adm1.RData"))

extract the Wales polygons

cymru_border <- gadm[gadm$NAME_1=="Wales",]

convert to OS Grid reference

cymru_border <- spTransform(cymru_border,CRS("+init=epsg:27700"))

supress some warnings

spatstat.options(checkpolygons = FALSE)

convert to owin, and simplify

W <- as(cymru_border,"owin")

W <- simplify.owin(W,dmin=2000)

spatstat.options(checkpolygons = TRUE)

The transformation to OS Grid units is done so that the resulting locations have valid Euclidean

distances, which is not the case with latitude-longitude coordinates.

Note that the simplify.owin step is fairly crucial in this example. Without simplifying the

observation window, some of the later internal routines can run for a LONG time.

Next, the county-level data are loaded, Wales extracted, and population counts attached to the

county polygons:

data(wpopdata) # obtained from ONS, population in thousands

load(file.path(td,"GBR_adm2.RData"))

cymru <- gadm[gadm$NAME_1=="Wales",]

cymru <- spTransform(cymru,CRS("+init=epsg:27700"))

idx <- match(wpopdata$ID,cymru$ID_2)

cymru$atrisk <- wpopdata$Mid.2010[idx]

3

3 Reading In and Converting Data

In the following example x, y and t are vector R objects giving the location and time of events,

tlim is the time window, and win is a spatstat object of class owin specifying the polygonal

observation window, in this case, a 10× 10 square.

> data <- cbind(x,y,t)

> tlim <- c(0,100)

> win <- owin(poly=list(x=c(0,10,10,0),y=c(0,0,10,10)))

> win

window: polygonal boundary

enclosing rectangle: [0, 10] x [0, 10] units

For the purposes of parameter estimation and spatio-temporal prediction, the first task for the user

is to convert this into a space-time planar point pattern object ie. one of class stppp, provided by

lgcp. An object of class stppp is easily created:

> xyt <- stppp(list(data=data,tlim=tlim,window=win))

> xyt

Space-time point pattern

planar point pattern: 1000 points

window: polygonal boundary

enclosing rectangle: [0, 10] x [0, 10] units

Time Window : [0 , 100]

In the next section, it is discussed how to simulate data on the Wales observation window.

3.1 Simulation of Data

In this section it is demonstrated how to simulate data based on two different assumptions about

the population at risk - first by using county-level populations and then by a kernel-density estimate

from the town population counts.

In both cases, it will be assumed that the temporal trend µ(t) (see appendix for details) is constant

in time, with the expected number of cases per day being 100.

3.1.1 Simulation of Data with District-level spatialAtRisk

To run the simulation a time-range (tlim) and parameter values (sigma, phi and theta) are re-

quired. Also, the simulation routine needs to know the quantities λ(s) and µ(t) (see the appendices

for further details of the parameters and these two functions).

4

In this example the spatialAtRisk object sar1 (specifying λ(s)) describes the case where inho-

mogeneity in the at-risk population is aggregated to district level.

The grid size used for simulation is printed, this is the size on which the simulated data was

generated; the fast Fourier transform (FFT, used in computation – see appendices) takes place

on a grid four times the area of the printed grid. A progress bar is displayed during simulation

and a warning message issued. The warning message is issued because the user-defined mut is not

‘scaled’, thus the literal interpretation of µ(t) is the expected number of cases in the unit time

interval containing t. The warning can be disabled, see ?constantInTime for example.

tlim <- c(1,100)

sigma <- 4

phi <- 7000 # distance in metres

theta <- 0.3

sar1 <- spatialAtRisk(cymru)

mut <- constantInTime(100,tlim=c(1,100))

xyt1 <- lgcpSim(owin=W,

tlim=tlim,

spatial.intensity=sar1,

temporal.intensity=mut, # constant in time

cellwidth = 3000, # gives a 128x128 simulation grid

model.parameters=lgcppars(sigma=sigma,phi=phi,theta=theta),

plot=FALSE)

To plot the spatialAtRisk object, use the following:

spplot(sar1,"atrisk")

This produces Figure 1 (note that the colour scheme on this plot can be user-defined via the

sp.theme command). A corresponding plot of the data can be produced with

plot(xyt1,axes=TRUE,main="xyt1")

3.1.2 Simulation of Data with spatialAtRisk described by a Kernel Density Estimate

of Population

In this second example, a continuous λ(s) specifies the at-risk population. This is estimated from

a kernel density estimate of population data. To load the town population data, type:

data(wtowns) # details of 199 welsh towns

data(wtowncoords) # coordinates of the 199 welsh towns

5

Figure 1: . Plot of sar1 – population density Funiform over districts.

To get the kernel density estimate of the population, convert to a ppp object and then use the

density function with the population as weights:

cymruppp <- ppp(wtowncoords[,1],wtowncoords[,2],

marks=as.data.frame(wtowns[,2:3]),window=W)

den <- density(cymruppp,sigma=10000,weights=cymruppp$marks$Population.2001.)

The object den can now be converted into a spatialAtRisk object, and the simulation can be run:

sar2 <- spatialAtRisk(den)

xyt2 <- lgcpSim(owin=W,

tlim=tlim,

spatial.intensity=sar2,

temporal.intensity=mut, # constant in time

cellwidth = 3000, # gives a 128x128 simulation grid

model.parameters=lgcppars(sigma=sigma,phi=phi,theta=theta),

plot=FALSE)

To plot the spatialAtRisk object, use the following:

image.plot(sar2$X,sar2$Y,sar2$Zm,xlab="Eastings (m)",

ylab="Northings (m)",axes=TRUE)

This produces Figure 2.

6

Figure 2: . Plot of sar2 – population density described by a kernel density estimate.

3.1.3 More Complex Temporal-At-Risk Models

In the previous simulations the temporal trend was set to a constant 100 cases per day. In [7] a

more complex model is used which incorporates a linear increasing trend, a seasonal pattern, and

a day-of-the-week effect. This can be replicated here by passing an appropriate function to the

temporalAtRisk function:

mutfun <- function(t){

dotw <- c(1.76,1.82,1.76,1.78,2.12,2.24,1.92) # day of the week effect

names(dotw) <- c("Tue","Wed","Thur","Fri","Sat","Sun","Mon")

alpha1 <- -0.120

alpha2 <- -0.013

beta1 <- -0.083

beta2 <- 0.054

omega <- 2*pi/365

gamma <- 0.00074

return(exp(dotw[t%%7+1]+alpha1*cos(omega*t)+beta1*sin(omega*t)+

alpha2*cos(2*omega*t)+beta2*sin(2*omega*t)+gamma*t))

}

mut <- temporalAtRisk(mutfun,tlim=c(1,365*2))

where the various constants come from fitting a GLM to the calibration data.

3.2 Analysis of a Dataset

In this section a walk-through analysis of the simulated data xyt2 is given. The outline procedure

is:

1. estimate the fixed spatial and temporal components (λ(s) and µ(t));

7

2. estimate the pair correlation function (or equivalent);

3. using 2, compute estimates of the spatial parameters (σ and φ);

4. using 3, compute an estimate of the temporal parameter, θ;

5. produce predictions using lgcpPredict.

For the analysis of the data, the units of distance were converted to km instead of metres:

xyt2 <- rescale(xyt2,1000)

This is just to improve the look of axis-division labels.

3.3 Estimating the Spatial/Temporal Component

To estimate λ(s) from the data, use for example,

lambdaest <- lambdaEst(xyt2)

This brings up an rpanel interface like the one shown in Figure 3. When the function is first

called, an appropriate bandwidth is selected using the default method for density.ppp. Should

the user wish to have this selected in a statistically principled manner, then simply clicking the

’OK’ button will save the resulting density estimate. Now convert this kernel density estimate to

a spatialAtRisk object:

sarest <- spatialAtRisk(lambdaest)

Alternatively, if the user is not happy with the density estimate selected with the default methods,

then the bandwidth may be adjusted by eye. Since image plots of these kernel density estimates

may not have appropriate colour scales, the ability to adjust this is given with the slider ‘colour

adjustment’. With colour adjustment set to 1, the default image.plot for the equivalent pixel

image object is shown and for values less than 1, the colour scheme is more spread out, allowing

the user to get a better feel for the density that is being fitted. NOTE: colour adjustment does

not affect the returned density and the user should be aware that the returned density will ‘look

like’ that displayed when colour adjustment is set equal to 1.

In fitting this model, a ‘constant-in-time’ µ(t) will be used, that is µ(t) = k for some k. To calibrate

this k to the dataset at hand, use:

mutest <- constantInTime(xyt2)

An alternative, for a more complex µ(t) might be:

8

Figure 3: Choosing a kernel density estimate of λ(s)

temporalAtRisk(mutfun,xyt=xyt2,tlim=xyt2$tlim)

which would return the GLM fitted values function presented in Section 3.1.

3.4 Estimating the Parameters

Parameter estimation by the lgcp minimum contrast methods must be done in a certain order, as

outlined at the start of the section.

To estimate the spatial correlation parameters σ and φ, either the pair correlation function or the

inhomogeneous K function must first be obtained [2]. Following [6] and [7], these two functions

are averaged over time instances. For the pair correlation function, the command is:

gin <- ginhomAverage(xyt2,spatial.intensity=sarest,temporal.intensity=mutest)

(for the inhomogeneous K function, the equivalent command is KinhomAverage). The parameters

are then estimated using:

sigmaphi <- spatialparsEst(gin,sigma.range=c(0,10),phi.range=c(0,20))

sigma <- sigmaphi$sigma

phi <- sigmaphi$phi

which produces the interactive plot in Figure 4, the task is to match the orange theoretical function

with the empirical equivalent as would normally be obtained from the functions pcfinhom for

spatstat ppp objects (for example). The user can choose between the exponential, Matérn or

Whittle correlation shapes, see ?CovarianceFct from the RandomFields package; for the latter

two forms, the additional parameter ν can be also be set by the user and is returned as sigmaphi$nu

for example.

9

Figure 4: Estimating σ and φ

The temporal correlation parameter, θ, is estimated using the function thetaEst; this requires σ

and φ to have been estimated first.

theta <- thetaEst(xyt2,spatial.intensity=lambdaest,temporal.intensity=mutest,

sigma=sigma,phi=phi,theta.range=c(0,5))

this brings up the interactive plot shown in Figure 5.

Figure 5: Estimating θ

Note that the parameter estimates obtained here were not particularly close to the values used to

simulate the data: this is because the amount of data generated was relatively small and the time

interval over which observations took place was relatively short. With more data and a longer

observation window, the estimates of the parameters improve. Furthermore, minimum contrast

methods are only approximate methods, one alternative would be a principled Bayesian approach,

but this is computationally expensive.

10

3.5 Performing Predictive Inference

All of the necessary ingredients are now present in order to perform predictive inference, in this

section prediction is considered for the time interval T=50 using data from the previous 5 days

(laglength=5). A MALA run of length 50,000 with a burn-in of 10,000, retaining every 40th

iteration is requested and adaptive MCMC is used to tune the algorithm (see Appendix C). Also

requested is a dump of the MCMC run to disk (set with dump2dir) and an online computation

of ‘exceedance probabilities’ (see Appendix D) – the first line of code below sets up a function for

exactly this purpose. Note that as data has been dumped to disk, the exceedance probabilities

could have been computed after the run has finished (rather than online, which slows down the

running time).

exceedfunc <- exceedProbs(c(1.5,2,3))

lg <- lgcpPredict(xyt=xyt2,

T=50,

laglength=5,

model.parameters=lgcppars(sigma=sigma,phi=phi,theta=theta),

cellwidth=6,

spatial.intensity=lambdaest,

temporal.intensity=mutest,

mcmc.control=mcmcpars(mala.length=50000,burnin=10000,

retain=40,MCMCdiag=5,

adaptivescheme=andrieuthomsh(inith=1,alpha=0.5,C=1,

targetacceptance=0.574)),

output.control=setoutput(gridfunction=

dump2dir(dirname="C:/My_MALA_runs/"),

gridmeans=MonteCarloAverage("exceedfunc",lastonly=TRUE)))

This initially produces the following output, an explanation of which follows:

FFT Grid size: [128 , 128]

WARNING: disk space required for saving is approximately 187.61 Mb, continue?

1: yes

2: no

Selection: 1

Note: to bypass this menu, set forceSave=TRUE in dump2dir

Warning in lgcpPredict(xyt = xyt2, T = 50, laglength = 5, model.parameters = lgcppars(sigma = sigma, :

Time 45: 5 data points lost due to discretisation.

Computing gradient truncation ...

Using gradient truncation of 722369

Netcdf file: C:/My_MALA_runs/simout.nc created

11

The size of the FFT grid used is displayed (though if it is computationally advantageous to rotate

the observation window, a message is displayed, giving the user the option to set autorotate=TRUE

in lgcpPredict, see Appendix E for further details on rotation). The FFT grid size of 128× 128

gives an output grid size of 64 × 64. As a dump to disk of (a subset of) grids of this size was

requested, the user is prompted in case the dump is too large, the option to bypass the message is

also possible. A warning message is issued to inform the user that 5 observations from one of the

time points have been dropped, this is due to the choice of spatial discretisation used: the coarser

the grid the more likely it is for points near the edges to be excluded from the analysis. The user

is then informed that the gradient truncation parameter has been computed (see Appendix F) and

also a netCDF file for dumping the data.

Whilst the MCMC algorithm is running, a progress bar is displayed.

3.6 Post-processing

Having run the MALA, the stored output lg is an object of class lgcpPredict. Typing lg into

the console prints out information about the run:

> lg

lgcpPredict object.

General Information

FFT Gridsize: [128 , 128]

Data:

Time | 45 46 47 48 49 50

Counts | 57 15 23 56 37 87

Parameters: sigma=2.6, phi=2.7, theta=0.68

Dump Directory: C:/My_MALA_runs/

Grid Averages:

Function Output Class

exceedfunc array

Time taken: 3.959 hours

MCMC Information

Number Iterations: 50000

Burn-in: 10000

12

Thinning: 40

Mean Acceptance: 0.587

Adaptive Scheme: andrieuthomsh

Last h: 1.67430730310916e-05

Information returned includes the FFT grid size used in computation; the count data for each day;

the parameters used; the directory the simulation was dumped to, if this was specified; a list of

MonteCarloAverage functions together with the R class of their returned values; the time taken

to do the simulation; and finally, information on the MCMC run.

3.6.1 Extracting Information

The cell-wise mean and variance of Y computed via Monte Carlo can always be extracted using

meanfield(lg) and varfield(lg), respectively. The calls rr(lg), serr(lg) and intens(lg)

return respectively the Monte Carlo mean relative risk (the mean of exp{Y }), the standard error of

the relative risk and the estimated cell-wise mean Poisson intensity. The x and y coordinates for the

grid output are obtained via xvals(lg) and yvals(lg). If invoked, the commands gridfun(lg)

and gridav(lg) return respectively the gridfunction and gridmeans options of the setoutput

argument of the lgcpPredict function, whilst window(lg) returns the observation window.

Note that the structure produced by gav <- gridav(lg) is a list of length 2. The first el-

ement of gav, retrieved with gav$names, is a list of the function names given in the call to

MonteCarloAverage. The second element, gav$output, is a list of the function outputs; the ith el-

ement in the list being the output from the function corresponding to the ith element of gav$names.

To return the output for a specific function, use the syntax gridav(lg,fun="exceed"), which in

this case returns the exceedance probabilities, for example.

3.6.2 Plotting

A plot of the Monte Carlo mean relative risk (exp{Y }) can be obtained with the command

plot(lg,xlab="Eastings (km)",ylab="Northings (km)")

this produces a series of plots corresponding to each time step under consideration; the plot shown

in Figure 6 is from the last time step, time 50. The cases for each time step are also plotted by

default.

3.6.3 MCMC diagnostics

MCMC diagnostics for the chain can either be based on a small sample of cells, specified by the

MCMCdiag argument of the mcmcpars function, or via the full output from data dumped to disk;

13

Figure 6: Plot of the relative risk.

the latter is dealt with in Section 3.6.4. The hvals command returns the value of h used at each

iteration in the algorithm, the left hand plot in Figure 7 shows the values of h for the non-burnin

period of the chain, note that the adaptive algorithm was started with h = 1, it very quickly

converged to around 0.000015.

> plot(hvals(lg)[10000:50000],type="l",xlab="Iteration",ylab="h")

> tr <- mcmctrace(lg)

> plot(tr,idx=1:5)

Trace plots (the right hand plot of Figure 7) are also available using the function mcmctrace.lgcpPredict

as in the above code; note that this function returns the trace for Γ. To plot the autocorrelation

function, the standard R function can be used eg acf(tr$trace[,1]) gives the acf of the first

saved chain.

3.6.4 NetCDF

lgcp provides functions for accessing and performing computations on MCMC runs dumped to

disk. Due to the possibility of the resulting dataset being very large, lgcp uses the cross-platform

NetCDF file format for storage and rapid data access provided by the package ncdf [11]. Access

to subsets of data is via a file indexing system, which removes the need to load the complete data

into memory.

Subsets of data dumped to disk can be accessed with the extract function:

> subsamp <- extract(lg,x=c(4,10),y=c(32,35),t=6,s=-1)

which returns an array of dimension 7 × 4 × 1 × 1000. The arguments x and y refer to the range

14

Figure 7: MCMC diagnostic plots. Left: plot of values of h taken by the adaptive algorithm.
Right: trace plots of the 5 saved chains.

of x and y indices of the grid of interest, t are the time points of interest (times 45 through 50

were used for prediction, so in this case t=6 refers to the sixth time point ie. time 50) and s=-1

stipulates that all simulations are to be returned. Arguments are given as a range or set equal

to −1, in which case all of the data in that dimension is returned. This function can also extract

MCMC traces from individual cells using extract(lg,x=37,y=12,t=6), for example.

Should the user wish to extract data from a polygonal subregion of the observation window, then

this can be achieved with the command

> subsamp2 <- extract(lg,inWindow=win2,t=6)

where win2 is a polygonal observation window. Here, win2 had been selected using the following

commands:

> plot(window(lg))

> win2 <- loc2poly()

the first command plots the observation window and the second command is a wrapper function

for the R function locator. When invoked, loc2poly() allows the user to select areas of the

observation window manually from the graphics device opened by the first command: the user

simply makes a series of left clicks, traversing the required window in a single direction (ie.clockwise

or anticlockwise) finishing the polygon with a right click: the resulting selection is converted into a

spatstat polygonal owin object. Obviously, the user could specify the extract argument inWindow

in a formal manner too.

It is also possible to compute expectations over the target using the stored data (cf. Section D):

thus if the user decides that some other summary is of interest than those specified by the option

gridmeans, then this can easily be computed. The syntax is slightly different, in this case, one

would call:

15

> ex <- expectation(obj=lg,fun=exceed)

to compute the same exceedances in Section D.

Alternatively, cell-wise quantiles of functions of the stored data can also be retrieved and plotted:

qt <- quantile(lg,c(0.5,0.75,0.9),fun=exp)

plot(qt,xlab="X coords",ylab="y coords")

qt2 <- quantile(lg,c(0.5,0.75,0.9),fun=exp,inWindow=win2)

plot(qt2,xlab="Longitude",ylab="Latitude")

As for the extract function above, quantiles may also be computed for smaller observation windows.

The indices of any cells of interest in these plots can be retrieved by typing identify(lg); cells

are then selected via left mouse clicks in the graphics device, selection being terminated on a right

click.

Figure 8: Plot showing the median (0.5 quantile) of relative risk (obtained using fun=exp as in the
text) computed from the simulation. Left: Quantiles computed for whole window. Right: Zooming
in on the upper left area of the map, representing the areas of Anglesey and the Llŷn Peninsula.
Greater detail is available by initially performing the simulation on a finer grid.

Lastly, Linux users can benefit from the software Ncview, available from http://meteora.ucsd.

edu/~pierce/ncview_home_page.html, which provides fast visualisation of NetCDF files. Figure

9 shows a screenshot, with the control panel (left), an image of one of the sampled grids (middle)

and several MCMC chains (right), which are obtained by clicking on the sampled grids; up to 5

chains can be displayed at once. There are equivalent tools for Windows users.

3.6.5 Plotting Exceedance Probabilities

Recall the object exceed defined above, this was a function with an attribute giving a vector of

thresholds to compute cell-wise probabilities that the relative risk is greater than each of those

16

Figure 9: Viewing a MALA run with software netview.

thresholds. A figure can be produced either directly from the lgcpPredict object,

> plotExceed(lg, fun = "exceed")

or equivalently, from the output of an expectation on an object dumped to disk:

> plotExceed(ex[[6]], fun = "exceed",lgcppredict=lg)

Recall that the option lastonly=TRUE was selected for MonteCarloAverage, so ex[[6]] in the

second example above corresponds to the same set of plots as for the first example. The advantage

of expectations computed from data dumped to disk is flexibility: if the user now wanted to plot

the exceedances for day 6, then this is simply achieved by replacing ex[[6]] with ex[[5]] and

furthermore, exceedances for a completely new set of thresholds can also be computed simply by

creating exceed2 <- exceedProbs(c(2.3,4)) for instance. An example of the output is given in

Figure 10.

Figure 10: Plot of exceedance probabilities.

17

4 Advanced use of lgcp

4.1 Writing Adaptive MCMC schemes

There are two generic functions to consider when writing adaptive MCMC routines: initialiseAMCMC

and updateAMCMC, these respectively define the initialisation and the updating procedures for the

adaptive scheme of interest. The task of the user is therefore to tell lgcpPredict what value of

h to use at iteration 1, and how to update it. lgcp has two schemes built in: constanth and

andrieuthomsh detailed below.

4.1.1 A ‘Simple’ Example: constanth

This example shows how the scheme constanth was implemented. This is not really an adaptive

MCMC scheme and just returns the (fixed) value of h set by the user. In lgcpPredict, this ‘adap-

tive’ scheme would be specified using adaptivescheme=constanth(0.01) in the mcmc.control

argument and would have the effect of returning h = 0.01 at each iteration of the MCMC.

The user is required to write three functions: constanth, and for compatibility with the S3 imple-

mentation of this framework, initialiseAMCMC.constanth and updateAMCMC.constanth; these

functions are detailed below.

constanth <- function(h){

obj <- h

class(obj) <- c("constanth","adaptivemcmc")

return(obj)

}

initialiseAMCMC.constanth <- function(obj,...){

return(obj)

}

updateAMCMC.constanth <- function(obj,...){

return(obj)

}

When called, the first of these functions creates an object of super-class constanth, this is just

a numeric with a class attribute attached. The other two functions simply return the value of h

specified by the user at appropriate positions in the code MALAlgcp.

18

4.1.2 A More Complex Example: andrieuthomsh

The second example shows how to implement a rather neat method of [1]. A Robbins-Munro

stochastic approximation update is used to adapt the tuning parameter of the proposal kernel [12].

The idea is to update the tuning parameter at each iteration of the sampler:

h(i+1) = h(i) + η(i+1)(α(i) − αopt),

where h(i) and α(i) are the tuning parameter and acceptance probability at iteration i and αopt

is a target acceptance probability. For Gaussian targets, and in the limit as the dimension of the

problem tends to infinity, an appropriate target acceptance probability for MALA algorithms is

0.574 [13]. The sequence {η(i)} is chosen so that
∑∞
i=0 η

(i) is infinite whilst
∑∞
i=0

(
η(i)
)1+ε

is finite

for ε > 0. These two conditions ensure that any value of h can be reached, but in a way that

maintains the ergodic behaviour of the chain. One class of sequences with this property is,

η(i) =
C

iα
,

where α ∈ (0, 1] and C > 0 [1].

An adaptivescheme implementing this algorithm must therefore know what value of h to start

with, the values of the parameters α and C and the target acceptance probability, hence the choice

of arguments for the function andrieuthomsh in the code below:

andrieuthomsh <- function(inith,alpha,C,targetacceptance=0.574){

if (alpha<=0 | alpha>1){

stop("parameter alpha must be in (0,1]")

}

if (C<=0){

stop("parameter C must be positive")

}

obj <- list()

obj$inith <- inith

obj$alpha <- alpha

obj$C <- C

obj$targetacceptance <- targetacceptance

itno <- 0 # iteration number, gets reset after burnin

incrit <- function(){

itno <<- itno + 1

}

restit <- function(){

itno <<- 0

}

obj$incritno <- incrit

19

obj$restartit <- restit

curh <- inith # at iteration 1, the current

value of h is just the initial value

hupdate <- function(){

curh <<- exp(log(curh) + (C/(itno^alpha))*

(get("ac",envir=parent.frame(2))-targetacceptance))

}

reth <- function(){

return(curh)

}

obj$updateh <- hupdate

obj$returncurh <- reth

class(obj) <- c("andrieuthomsh","adaptivemcmc")

return(obj)

}

This function returns an object of super-class andrieuthomsh, which is a list object consisting of

the parameters specified by the user and additionally some internal functions that are responsible

for the updating. Note that in updateAMCMC.andrieuthomsh, the internal functions are simply

called, and therefore it is these internal functions that actually define the adaptive scheme. The

internal functions, incrit, restit, hupdate and reth perform respectively the following tasks:

increase the internal iteration counter, restart the internal iteration counter, do the actual updating

of h and lastly return the current value of h.

Note that from a developmental point of view, the piece of code,

get("ac",envir=parent.frame(2))

gets the current acceptance probability, which in MALAlgcp is stored as an object called ac.

To initialise the scheme, the method for initialiseAMCMC simply returns the initial value of h set

by the user:

initialiseAMCMC.andrieuthomsh <- function(obj,...){

return(obj$inith)

}

In the update step, the internal functions created by the andrieuthomsh function are invoked. The

procedure is as follows (1) information about the mcmc loop is retrieved using get("mcmcloop",envirparent.frame())=,

then if the algorithm has just come out of the burn in period, the adaptation of h is restarted1,

1This just give h some extra freedom to explore the parameter space as compared to an algorithm that did not
restart. Doing this does not affect the convergence of the algorithm

20

next the internal iteration counter is incremented, and lastly the value of h is updated and returned

(the procedures for these internal functions are printed above in the code for andrieuthomsh).

updateAMCMC.andrieuthomsh <- function(obj,...){

mLoop <- get("mcmcloop",envir=parent.frame())

if(iteration(mLoop)==(mLoop$burnin)+1){

obj$restartit() # adaptation of h restarted after burnin

}

obj$incritno() # this line must appear below the above four lines

obj$updateh()

return(obj$returncurh())

}

A Spatio-temporal Log Gaussian Cox Processes

Let W ⊂ R2 be an observation window in space and T ⊂ R≥0 be an interval of time of interest.

Cases occur at spatio-temporal positions (x, t) ∈ W × T according to an inhomogeneous spatio-

temporal Cox process, i.e. a Poisson process with a stochastic intensity R(x, t), The number of

cases, XS,[t1,t2], arising in any S ⊆ W during the interval [t1, t2] ⊆ T is then Poisson distributed

conditional on R(·),

XS,[t1,t2] ∼ Poisson

{∫
S

∫ t2

t1

R(s, t)dsdt

}
. (1)

Following [7], the intensity is decomposed multiplicatively as

R(s, t) = λ(s)µ(t) exp{Y(s, t)}. (2)

In (2),the fixed spatial component, λ : R2 7→ R≥0, is a known function, proportional to the popu-

lation at risk at each point in space and scaled so that∫
W

λ(s)ds = 1, (3)

whilst the fixed temporal component, µ : R≥0 7→ R≥0, is also a known function with,

µ(t) = lim
δt→0

{
E[XW,δt]

|δt|

}
. (4)

The function Y is a Gaussian process, continuous in both space and time. In the nomenclature of

epidemiology, the components λ and µ determine the endemic spatial and temporal component of

the population at risk; whereas Y captures the residual variation, or the epidemic component.

The Gaussian process, Y, is second order stationary with minimally-parametrised covariance func-

tion,

cov[Y(s1, t1),Y(s2, t2)] = σ2r(||s2 − s1||;φ) exp{−β(t2 − t1)},

21

where || · || is a suitable norm on R2, for instance the Euclidean norm, and σ, φ, β > 0 are known

parameters. In the lgcp package, the isotropic spatial correlation function, r, may take one of

several forms and possibly require additional parameters. The parameter σ scales the log-intensity,

whilst the parameters φ and β govern the rates at which the correlation function decreases in

space and in time, respectively. The mean of the process Y is set equal to −σ2/2 so as to give

E[exp{Y }] = 1, hence the endemic/epidemic analogy above.

B Inference

As in [10], [6] and [7], this article considers a discretised version of the above model defined on

a regular grid over space and time. Observations, X are therefore treated as cell counts on this

grid, instead of point-instances. The discrete version of Y on this grid will be denoted Y ; since

Y is a finite collection of random variables, the properties of Y imply that Y has a multivariate

Gaussian density with covariance matrix Σ = σ2r(|| · ||;φ) exp{−β∆t}. The correlation function r

is evaluated on the centroids of the grid cells and ∆t denotes the time over which the observation

occurred.

Let Xt denote an observation over the spatial grid at time t and Xt1:t2 denote the observations

at times t1, t1 + 1, . . . , t2. Ideally, inference would concern the ‘current’ latent field, Yt, given the

observations to date, X1:t, but unfortunately, due to a high-dimensional integral, the density of

π(Yt|X1:t) is not available analytically. It is however possible to infer the joint density of a collec-

tion, Y1:t given X1:t for instance. Since simulation from π(Y1:t|X1:t) is generally computationally

very intensive, if interest is in the state of the system at time t2, an alternative is to sample from

Yt1:t2 given Xt1:t2 for some suitable t1 > 1 and fairly close to t2. This approach is justified in [6],

the argument being that observations from a certain distance in the past do not affect inference

for the present. The aim in this article is therefore infer the state of the underlying field given the

observations of interest,

π(Yt1:t2 |Xt1:t2) ∝ π(Xt1:t2 |Yt1:t2)π(Yt1:t2). (5)

In order to evaluate π(Yt1:t2) in the above, the parameters of the process Y must either be known

or estimated from the data. Estimation of σ, φ and θ may be achieved either in a full Bayesian

framework, or by approximate methods. The methods implemeted in current version of the lgcp

package fall into the latter category and a detailed description of these is given in [6] and [7].

Briefly, approximate estimation of the spatial parameters σ and φ involves matching empirical and

theoretical estimates of the inhomogeneous K-function, or g function, as in [2]. For the parameter

θ, the idea is to match the theoretical and empirical autocovariance function of the total case-

counts per time interval. Having estimated the parameters of the process Y , the investigator can

now proceed to plug-in-prediction.

22

B.1 Discretising and the Fast-Fourier Transform

The first barrier to inference is computation of the covariance matrix, Σ, which even for relatively

coarse grids is very large. Fortunately, for regular spatial grids of size 2m × 2n, there exist fast

methods for computing this based on the discrete fast Fourier transform (FFT), see [18]. The

general idea is to embed Σ in a symmetric circulant matrix, C = QΛQ∗, where Λ is a diagonal

matrix of eigenvalues of C and Q is a unitary matrix (∗ denotes the Hermitian transpose). The

entries of Q are given by the discrete Fourier transform. Computation of C1/2, which is useful for

both simulation and evaluation of the density of Y , is then straightforward for the properties of Q

imply,

C1/2 = QΛ1/2Q∗.

In fact, Monte Carlo simulation from π(Yt1:t2 |Xt1:t2), which is to be discussed in the next section is

greatly improved by working with a linear transformation of Y , partially determined by the matrix

C. lgcp returns results on a grid of size M × N ≡ 2m × 2n for some positive integers m and n;

this is extended to a grid of size 2M × 2N for computation.

B.2 The Metropolis-Adjusted Langevin Algorithm

Writing Γt = Λ−1/2Q(Yt − µ), the target of interest is given by,

π(Γt1:t2 |Xt1:t2) ∝

[
t2∏
t=t1

π(Xt|Yt)

][
π(Γt1)

t2∏
t=t1+1

π(Γt|Γt−1)

]
, (6)

where the first term on the right hand side of (6) corresponds to the first bracketed term on the

right hand side of (5) and the second bracketed term is the joint density, log{π(Γt1:t2)}. Being an

Ornstein-Uhlenbeck process in time, the transition density of π(Γt|Γt−1) admits an exact solution

and is just a normal density, see [6].

Since the gradient of the above can also be written down, a natural and efficient method for

simulating from this density is via Metropolis-Hastings with a Langevin-type proposal,

q(Γ,Γ′) = N
[
Γ′; Γ +

1

2
∇ log{π(Γ|X)}, h2I

]
,

where N (y;m, v) is a Gaussian density evaluated at y with mean m and variance v, I is the identity

matrix and h > 0 is a scaling parameter [9, 8].

Various theoretical results exist concerning the optimal acceptance probability of the MALA

(Metropolis-Adjusted Langevin Algorithm) – see [14] and [13] for example. In practical appli-

cations, the target acceptance probability is often set to 0.574, which would be approximately

optimal for a Gaussian target as the dimension of the problem tends to infinity. An algorithm for

the automatic choice of h, so that this acceptance probability is achieved without disturbing the

ergodic property of the chain, is also straightforward to implement, see [1].

23

C Adaptive MCMC

The MALA proposal tuning parameter h in Appendix B.2 must also be chosen. The most straight-

forward way to do this is to set adaptivescheme=constanth(0.001), this gives h = 0.001 for

example. Without a lengthy tuning process, the ‘best h’ (ie. the h that leads to the best mixing of

the algorithm) is not known. One solution to the problem of having to choose a scaling parameter

via pilot runs is to use adaptive MCMC (AMCMC - see [15] and [1]). The main idea of adaptive

algorithms is to use information from the MCMC chain to help choose tuning parameters for the

proposal kernel. However, since the proposal kernel then depends on the history of the chain, the

Markov property is no longer satisfied and some care must be taken to ensure that the correct

ergodic distribution is preserved.

An elegant method, introduced by [1] uses a Robbins-Munro stochastic approximation update to

adapt the tuning parameter of the proposal kernel [12]. The idea is to update the tuning parameter

at each iteration of the sampler:

h(i+1) = h(i) + η(i+1)(α(i) − αopt),

where h(i) and α(i) are the tuning parameter and acceptance probability at iteration i and αopt

is a target acceptance probability. For Gaussian targets, and in the limit as the dimension of the

problem tends to infinity, an appropriate target acceptance probability for MALA algorithms is

0.574 [13]. The sequence {η(i)} is chosen so that
∑∞
i=0 η

(i) is infinite whilst
∑∞
i=0

(
η(i)
)1+ε

is finite

for ε > 0. These two conditions ensure that any value of h can be reached, but in a way that

maintains the ergodic behaviour of the chain. One class of sequences with this property is,

η(i) =
C

iα
,

where α ∈ (0, 1] and C > 0 [1].

The tuning constants for this algorithm are set with the function andrieuthomsh.

> args(andrieuthomsh)

function (inith, alpha, C, targetacceptance = 0.574)

In the above, inith is the initial value of h to start out from; the remaining arguments correspond

to their counterparts in the text above. It is also possible for the advanced user to write their own

adaptive scheme (see Section 4.1).

24

D Monte Carlo Averaging and Exceedance Probabilities

It is also of interest to be able to compute Monte Carlo expectations,

Eπ(Yt1:t2
|Xt1:t2

)[g(Yt1:t2)] =

∫
W

g(Yt1:t2)π(Yt1:t2 |Xt1:t2)dYt1:t2 ,

≈ 1

n

n∑
i=1

g(Y
(i)
t1:t2)

where g is a function of interest, Y
(i)
t1:t2 is the ith retained sample from the target and n is the total

number of retained iterations. For example, to compute the mean of Yt1:t2 set,

g(Yt1:t2) = Yt1:t2 ,

the output from such a Monte Carlo average would be a set of t2 − t1 grids, each cell of which

being equal to the mean over all retained iterations of the algorithm.

An example in epidemiological studies are exceedance probabilities, see [7]. These give the cell-wise

probability of the relative risk exceeding certain thresholds, for example, it may be of clinical inter-

est to know if any of the relative risk has exceeded 2 at any location in W . In mathematics, this is

P[exp(Y) > k] for some threshold k; it turns out that such quantities can also be expressed as Monte

Carlo expectations, hence the user may also compute these online using MonteCarloAverages. The

probability is written,

P[exp(Yt1:t2) > k] = Eπ(Yt1:t2
|Xt1:t2

)[I(Yt1:t2 > k)] =
1

n

n∑
i=1

I(Y (i)
t1:t2 > k),

where I is the indicator function. In the notation above, this amounts to,

g(Yt1:t2) = I(Yt1:t2 > k).

Exceedance probabilities are provided as part of lgcp in the function exceedProbs.

> exceedProbs

function(threshold){

fun <- function(Y){

EY <- exp(Y)

d <- dim(Y)

len <- length(threshold)

if(len==1){

return(matrix(as.numeric(EY>threshold),d[1],d[2]))

}

else{

A <- array(dim=c(d[1],d[2],len))

25

for(i in 1:len){

A[,,i] <- matrix(as.numeric(EY>threshold[i]),d[1],d[2])

}

return(A)

}

}

attr(fun,"threshold") <- threshold

return(fun)

}

The user must first decide on the thresholds of interest (eg 1.5, 2 and 3 say) and then create a

function to compute the required exceedances:

exceedfunc <- exceedProbs(c(1.5,2,3))

the object exceed is now a function that returns the exceedance probabilities as an array object of

dimension M×N×3, where the output grid is of size M×N (ie. on an FFT grid of size 2M×2N).

This function can be passed through to the gridmeans option via MonteCarloAverage(c("gfun","exceed"),

so that alongside the mean, the exceedance probabilities are also returned.

E Rotation

As mentioned above, the MALA algorithm works on a regular square grid placed over the obser-

vation window. In model fitting, the user will be responsible for providing a physical grid size

on which to perform estimation/prediction; the gridded observation window is then extended or

shrunk automatically to obtain a 2M × 2N grid on which the simulation happens. By default,

the orientation of this ‘extended’ grid is the same as the object win. If the observation window

is elongated and set at a diagonal, then some loss of efficiency occurs as the size of the extended

grid is larger than it would be if the polygonal window was first rotated in line with the axes, the

estimation then taking place in the rotated space.

To illustrate this point, suppose xyt3 is an stppp object with such an elongated and diagonal

window. The function roteffgain displays whether any efficiency can be gained by rotation;

clearly this not only depends on the observation window, but also on the size of the square cells

on which the analysis will be performed. In the example below, the user wishes to perform the

analysis using a cell width of 25km (corresponding to gridsize=25000 in the code below):

> roteffgain(xyt3,gridsize=25000)

By rotating observation window, the efficiency gain would be: 200%,

see ?getRotation.stppp

NOTE: efficiency gain is measured as the percentage increase in FFT

grid cells from not rotating compared with rotating

[1] TRUE

26

The routine simply return FALSE if there is no ‘efficiency gain’. Note that the efficiency gain is

not a reflection on computational speed, but rather a measure of how many fewer cells the MALA

is required to estimate; this is illustrated in Figure 11. As a technical aside, a better measure

would be a ratio of mixing times for the MCMC chains based on un-rotated and rotated windows;

however, as the mixing time depends on how well the MALA has been tuned, it is not clear how

this can be accurately estimated in a straightforward manner.

Having ascertained whether rotation is advantageous, the optimally rotated data, observation

window and rotation matrix may be obtained using the function getRotation. For the purposes

of fitting the model using lgcpPredict, there is also an autorotate option: this allows the user

to perform MALA on a rotated grid with minimal input so long as rotation leads to a gain in

efficiency. If the model is fitted using a rotated frame, then the predictions will also be returned

in this frame: this means that in the original orientation the output will be on a grid of diamond-

shaped cells, rather than on a grid of square cells. lgcp provides methods for the generic function

affine so that stppp and spatialAtRisk objects can be rotated manually.

Figure 11: Illustrating the potential gain in efficiency by rotating the observation window. Left
plot: the selected grid without rotation. Right plot: the optimal rotated grid.

1000000 1500000 2000000 2500000

50
00

00
0

55
00

00
0

60
00

00
0

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

−2500000 −2000000 −1500000 −100000045
00

00
0

50
00

00
0

55
00

00
0

60
00

00
0

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

F Gradient Truncation

One unfortunate property of the Metropolis adjusted Langevin algorithm is that the chain is prone

to taking very long excursions from the mode of the target; this behaviour can have a detrimental

effect on the mixing of the chain and consequently on any results. The tendency to make long

excursions is caused by instability in the computation of the gradient vector, but the issue is

relatively straightforward to rectify without affecting convergence properties [10]. The key is to

truncate the gradient vector if it becomes too large. If gradtrunc=NULL, then an appropriate

truncation is automatically selected by the code.

As far as the authors are aware, there are no guidelines for selecting this truncation parameter in

the literature, but the method employed in this version of the package takes the maximum achieved

gradient over a set of 100 independent realisations of Γt1:t2 .

27

References

[1] Christophe Andrieu and Johannes Thoms. A tutorial on adaptive MCMC. Statistics and

Computing, 18(4):343–373, 2008.

[2] A.˜J. Baddeley, J.˜Møller, and R.˜Waagepetersen. Non-and semi-parametric estimation of

interaction in inhomogeneous point patterns. Statistica Neerlandica, 54:329–350, 2000.

[3] Adrian Baddeley and Rolf Turner. spatstat: An r package for analyzing spatial point patterns.

Journal of Statistical Software, 12(6):1–42, 2005.

[4] Roger˜S. Bivand, Edzer˜J. Pebesma, and Virgilio Gomez-Rubio. Applied spatial data analysis

with R. Springer, NY, 2008.

[5] Adrian Bowman, Ewan Crawford, Gavin Alexander, and Richard˜W. Bowman. rpanel: Simple

interactive controls for R functions using the tcltk package. Journal of Statistical Software,

17(9):1–18, 2007.

[6] A.˜Brix and P.˜J. Diggle. Spatiotemporal prediction for log-gaussian cox processes. Journal

of the Royal Statistical Society, Series B, 63(4):823–841, 2001.

[7] Peter Diggle, Barry Rowlingson, and Ting-li Su. Point process methodology for on-line spatio-

temporal disease surveillance. Environmetrics, 16(5):423–434, 2005.

[8] W.˜K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57(1):97–109, 1970.

[9] N.˜Metropolis, A.˜W. Rosenbluth, M.˜N. Rosenbluth, A.˜H. Teller, and E.˜Teller. Equa-

tion of state calculations by fast computing machines. The Journal of Chemical Physics,

21(6):1087–1092, 1953.

[10] Jesper Møller, Anne˜Randi Syversveen, and Rasmus˜Plenge Waagepetersen. Log Gaussian

Cox processes. Scandinavian Journal of Statistics, 25(3):451–482, 1998.

[11] David Pierce. ncdf home page: A netcdf package for r, 2011.

[12] H˜Robbins and S.˜Munro. A stochastic approximation methods. The Annals of Mathematical

Statistics, 22(3):400–407, 1951.

[13] G.˜Roberts and J.˜Rosenthal. Optimal scaling for various Metropolis-Hastings algorithms.

Statistical Science, 16(4):351–367, 2001.

[14] Gareth˜O. Roberts and Jeffrey˜S. Rosenthal. Optimal scaling of discrete approximations to

langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

60:255–268(14), 1998.

[15] Gareth˜O. Roberts and Jeffrey˜S. Rosenthal. Examples of adaptive MCMC. Journal of

Computational and Graphical Statistics, 18(2):349–367, June 2009.

[16] Martin Schlather. Simulation and analysis of random fields, 2001.

[17] B.˜Taylor, T.˜Davies, B.˜Rowlingson, and P.˜Diggle. lgcp – an R package for inference with

spatiotemporal log-Gaussian Cox processes, 2011. In Preparation.

28

[18] Andrew T.˜A. Wood and Grace Chan. Simulation of stationary gaussian processes in [0,1]d.

Journal of Computational and Graphical Statistics, 3(4):409–432, 1994.

29

