
How lfe works

Simen Gaure

Abstract. Here is a proof for the demeaning method used in lfe, and a de-

scription of the methods used for solving the residual equations. As well as a
toy-example.

1. Introduction

We assume we have an OLS model in matrix form

(1) Y = Xβ +Dα+ ε

where X is a (n×k)-matrix, and D is a (n×g)-matrix. D is a set of dummies for e
category variables. I.e. D is a block matrix, D =

[
D1 D2 · · · De

]
. That is, the

entries of each Di consists of 0 and 1, with only one non-zero entry per row. These
are the dummies from a single factor, one column per level. Hence, the columns of
each Di are pairwise orthogonal. Though, in general, Di is not orthogonal to Dj

for i 6= j.
That is, in R the model will be

> Y ~ X1 + X2 + ... + Xk + D1 + D2 + ... + De

where D1, D2, ..., De are arbitrary factors. I.e. an entirely ordinary model
which may easily be estimated by lm, or with sparse-versions of the same.

g is the sum of the number of levels in the factors. Now, suppose g ≈ 106,
indeed, assume that all the factors have many levels, so that an unmanagable
number of dummies will be created when we try to estimate, even if we sweep out
the largest with a within transformation.

Then, we must do the math. Let’s write the model in a slightly different block
matrix form, to get hold of some facts of the Frisch-Waugh-Lovell theorem:

Y =
[
X D

] [β
α

]
+ ε

We get the normal equations[
X D

]′ [
X D

] [β̂
α̂

]
=

[
X D

]′
Y

which, when multiplied out, become[
X ′X X ′D
D′X D′D

] [
β̂
α̂

]
=

[
X ′

D′

]
Y

We then write them as two rows
1

2 SIMEN GAURE

X ′Xβ̂ +X ′Dα̂ = X ′Y(2)

D′Xβ̂ +D′Dα̂ = D′Y,(3)

and assume, for a moment, that we have removed sufficient reference levels from D,
so that D′D is invertible. Now, multiply through equation (3) with X ′D(D′D)−1

and subtract equation (2) from (3). This removes the α̂-term from (3). We then
name P = I −D(D′D)−1D′ to get

X ′PXβ̂ = X ′PY.

Now, note that P is a projection, i.e. P = P ′ = P 2, hence we have X ′PX =
X ′P ′PX = (PX)′PX and X ′PY = X ′P ′PY = (PX)′PY which yields

(4) (PX)′PXβ̂ = (PX)′PY

which is the normal equation of the system

(5) PY = PXβ + Pε.

That is, β̂ may be estimated from system (5), with the dummies removed,
taking into account the adjusted degrees of freedom when computing the covariance
matrix.

Moreover, by multiplying through equation (3) with D(D′D)−1 and noting that
D(D′D)−1D′ = I − P , we get

(6) (I − P)Xβ̂ +Dα̂ = (I − P)Y

which may be reordered as

Y − (Xβ̂ +Dα̂) = PY − PXβ̂
showing that the residuals of the projected system (5) equals the residuals of the
original system (1).

All this is well-known as the Frisch-Waugh-Lovell theorem, and is not the main
point here, that’s why we’re still in the “Introduction”-section.

2. What lfe does about this

The problem is to compute the projection P , so that we may estimate β̂ from
(5). Whenever e = 1, i.e. a single factor, applying P amounts to subtracting the
group-means. This is known as the within-groups transformation, or centering on
the means, or demeaning. But, what does it look like when we have more factors?

Here’s the idea behind lfe, from [3]:
For each of the factors, we have a demeaning projection Pi = I−Di(D

′
iDi)

−1D′i.
This is the projection onto the orthogonal complement of the range (column space)
of Di, called R(Di)

⊥. These are easy to compute, it’s just to subtract the means
of each level. Similarly, P is the projection on R(D)⊥. This one is not yet obvious
how to compute.

There is a relation between all these range-spaces:

R(D)⊥ = R(D1)⊥ ∩R(D2)⊥ ∩ · · · ∩R(De)
⊥.

To see this, consider a vector v ∈ R(D)⊥. By definition, it’s orthogonal to every
column in D, hence to every column in every Di, thus v is in the intersection on
the right hand side. Conversely, take a v which is in all the spaces R(Di)

⊥. It’s

HOW LFE WORKS 3

orthogonal to every column of every Di, hence it’s orthogonal to every column in
D, so it’s in R(D)⊥.

This relation may be written in terms of projections:

P = P1 ∧ P2 ∧ · · · ∧ Pe.

Now, there’s a theorem about projections [4, Theorem 1] stating that for every
vector v, we have

(7) Pv = lim
n→∞

(P1P2 · · ·Pe)
nv.

So, there’s how to compute Pv for an arbitrary vector v, just demean it with
each projection in succession, over and over, until it gives up. We do this for every

column of X and Y to find PY and PX, and then we may solve β̂ from (4). This
procedure has been wrapped up with a threaded C-routine in the function felm.
Thus, the X1,X2,...,Xk can be estimated efficiently by

> felm(Y ~ X1 + X2 + ... + Xk + G(D1) + G(D2) + ... + G(De))

If there is only one factor (i.e. e = 1), this reduces to the within-groups model.

3. The dummies?

To find α̂, the coefficents of all the dummies, we may write (6) as

Dα̂ = (Y −Xβ̂)− (PY − PXβ̂)

where the right hand side is readily computed when we have completed the steps
above. There will be no more than e non-zeros in each row of D. This type of
sparse system lends itself to solving by the Kaczmarz method ([5]).

The Kaczmarz method may be viewed as a variant of (7), specifically for solving
linear equations. (Though, historically, the Kaczmarz-method predates Halperin’s
more general Banach-space theorem by 25 years.) The idea is that in a matrix
equation like

Dx = b

we may view each row of the system 〈di, x〉 = bi as an equation defining a hyperplane
Qi (where di is the i’th row of D). The solution set of the system is the intersection
of all the hyperplanes Q = Q1 ∩Q2 ∩ · · · ∩Qn. Thus, again, if the projection onto
each Qi is easy to compute (it is x 7→ x+ (bi−〈di, x〉)di/‖di‖2), we may essentially
use (7) on these projections to find a vector in the intersection, starting from the
zero-vector.

In our case, each row di of the matrix D has exactly e non-zero entries, which
are all equal to unity. This makes the computation of the projection on each Qi

easy and fast. We don’t have to care about rank-deficiency (you do, if you’re going
to interpret the results); but we do remove consecutive duplicate rows, as these are
just repeated applications of the same projection, and thus contribute nothing to
the result (because projections by defintion are idempotent.)

Anyway, the Kaczmarz method converges to a solution α̂. Since we use 0 as
our starting point, we compute the projection of the zero-vector onto the solution
space, this is, by a defining property of projections, the solution with minimal
norm. We must then apply some estimable function to get interpretable coefficients,
the package supplies a couple to choose from. Moreover, it’s easy to get different
solutions by using different vectors as starting points. Estimable functions should

4 SIMEN GAURE

evaluate to the same value for any two such solutions, this is utilized to test user-
supplied functions for estimability in the function is.estimable.

From the Kaczmarz method we don’t get any indication of the rank-deficiency.
Though for e = 2, this can be inferred from the component-structure returned by
getfe. The method requires little memory, and it’s way faster then most other
methods.

A drawback is that the Kaczmarz method is not immediately parallelizable
(though there’s a variant by Cimmino which is, each iteration projects the point
onto each hyperplane, then the next approximation is the centroid of these projec-
tions), and it does not yield any covariance matrix or standard errors. However, it
is fast, so it’s possible to bootstrap the standard errors if that’s desired.

A benchmark real dataset used during development contained 15 covariates,
approx 20,000,000 observations, with 2,300,000 levels in one of the factors, and
270,000 in the other. Centering the covariates takes approx 2 hours (on 8 CPUs),
and then computing the fixed effects by the Kaczmarz-method takes about 4 min-
utes (on 1 CPU). Bootstrapping the standard errors (112 times) takes about 14
hours. (It is not necessary to centre the covariates over again when bootstrapping,
only the resampled residuals. These are generally faster to centre than arbitrary
covariates.) This is the default method used by getfe.

Alternatively, one may choose a sparse Cholesky solver. That is, we have from
(3) that

D′Dα̂ = D′(Y −Xβ̂).

In the case e = 1, we have that D′D is diagonal, this is the within-groups case,

and α̂ is just the group-means of the residuals Y − Xβ̂. In the general case, we
have a large, but sparse, linear system. This may be solved with the methods in
package Matrix. This procedure has been packaged in the function getfe.

Now, it turns out that identification, hence interpretation, of the coefficients,
may be a complicated affair. The reason is that the matrix D′D may be rank-
deficient in unexpected ways. It’s sometimes not sufficient to remove a reference-
level in each factor. In the case e = 2 these difficulties are well understood and
treated in [1] and [2], as well as implemented in lfe. For larger e, this problem is
harder, lfe uses a pivoted Cholesky-method to find linear dependencies in D′D, and
removes them, but the resulting interpretation of the coefficients are in general not
well understood. (This, of course, applies to the Kaczmarz method as well).

4. Optimization potential

Profiling with the tool “perf” on linux, reveals that there is some potential for
optimizations in both the centering process and the Kaczmarz-solver. Both suffer
from memory-bandwidth limitations, leading to an “Instructions Per Cycle”-count
in some cases below 0.3 (where the theoretical maximum is 2 or 4), despite being
almost pure floating point operations. This depends heavily on the problem size,
cache architecture of the CPU, number of cores in use, memory bandwidth and
latency, and the CPU-speed. I haven’t figured out a good solution for this, though
I haven’t given it a lot of thought.

An interesting optimization would be to use a GPU for these operations. They
are quite simple, and thus quite well suited for coding in OpenCL, CUDA or sim-
ilar GPU-tools, and could possibly yield an order of magnitude speedup, though I
haven’t tried anything of the sort.

HOW LFE WORKS 5

5. An example

First we create a couple of covariates:

> set.seed(41)

> x <- rnorm(500)

> x2 <- rnorm(length(x))

> x3 <- rnorm(length(x))

Then we create some random factors, not too many levels, just for illustration,
and some effects:

> f1 <- factor(sample(7,length(x),replace=TRUE))

> f2 <- factor(sample(4,length(x),replace=TRUE))

> f3 <- factor(sample(3,length(x),replace=TRUE))

> eff1 <- rnorm(nlevels(f1))

> eff2 <- rexp(nlevels(f2))

> eff3 <- runif(nlevels(f3))

Then we create an outcome with some normal residuals:

> y <- x + 0.5*x2 + 0.25*x3 + eff1[f1] + eff2[f2] + eff3[f3] + rnorm(length(x))

Now, for illustration, create a demeaning function according to (7):

> demean <- function(v,fl) {

+ Pv <- v; oldv <- v-1

+ while(sqrt(sum((Pv-oldv)**2)) >= 1e-7) {

+ oldv <- Pv

+ for(f in fl) Pv <- Pv - ave(Pv,f)

+ }

+ Pv

+ }

and demean things

> fl <- list(f1,f2,f3)

> Py <- demean(y,fl)

> Px <- demean(x,fl)

> Px2 <- demean(x2,fl)

> Px3 <- demean(x3,fl)

And then we estimate it

> summary(lm(Py ~ Px + Px2 + Px3 - 1))

Call:

lm(formula = Py ~ Px + Px2 + Px3 - 1)

Residuals:

Min 1Q Median 3Q Max

-2.7367 -0.6249 -0.0114 0.7014 3.0506

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Px 1.06543 0.04484 23.761 < 2e-16 ***

Px2 0.50988 0.04541 11.228 < 2e-16 ***

Px3 0.22739 0.04346 5.232 2.48e-07 ***

6 SIMEN GAURE

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.991 on 497 degrees of freedom

Multiple R-squared: 0.586, Adjusted R-squared: 0.5835

F-statistic: 234.5 on 3 and 497 DF, p-value: < 2.2e-16

Note that lm believes there are too many degrees of freedom, so the standard errors
are too small.

The function felm in package lfe adjusts for the degrees of freedom, so that we
get the same standard errors as if we had included all the dummies:

> summary(est <- felm(y ~ x + x2 + x3 + G(f1)+G(f2)+G(f3)))

Call:

felm(formula = y ~ x + x2 + x3 + G(f1) + G(f2) + G(f3))

Residuals:

Min 1Q Median 3Q Max

-2.7367 -0.6249 -0.0114 0.7014 3.0506

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 1.06543 0.04539 23.472 < 2e-16 ***

x2 0.50988 0.04597 11.092 < 2e-16 ***

x3 0.22739 0.04400 5.168 3.46e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.003 on 485 degrees of freedom

Multiple R-squared: 0.8425 Adjusted R-squared: 0.8376

F-statistic: 185.3 on 14 and 485 DF, p-value: < 2.2e-16

*** Standard errors may be slightly too high due to more than 2 groups

We also illustrate how to fetch the group coefficients. We use an estimable
function similar to the one in lm. (Though, a similar function is available with
ef=’ref’ which is the default for getfe).

> ef <- function(v,addnames) {

+ r2 <- v[[8]]

+ r3 <- v[[12]]

+ v[1:7] <- v[1:7] + r2 + r3

+ v[8:11] <- v[8:11] - r2

+ v[12:14] <- v[12:14] - r3

+ if(addnames) names(v) <- c(paste('f1',1:7,sep='.'),

+ paste('f2',1:4,sep='.'),

+ paste('f3',1:3,sep='.'))

+ v

+ }

> # verify that it's estimable

> is.estimable(ef,est$fe)

[1] TRUE

> getfe(est,ef=ef,se=TRUE)

HOW LFE WORKS 7

effect se

f1.1 3.766027355 0.1335222

f1.2 2.105723531 0.1573110

f1.3 -0.791653856 0.1509119

f1.4 3.905123998 0.1558983

f1.5 0.003445638 0.1380286

f1.6 2.633193146 0.1416863

f1.7 2.458959046 0.1567123

f2.1 0.000000000 0.0000000

f2.2 1.271989030 0.1250437

f2.3 0.170456534 0.1258014

f2.4 2.084169972 0.1207543

f3.1 0.000000000 0.0000000

f3.2 -0.157645623 0.1115610

f3.3 -0.221571764 0.1100138

Here’s the same estimation in lm, with dummies:

> summary(lm(y ~ x + x2 + x3 + f1 + f2 + f3 - 1))

Call:

lm(formula = y ~ x + x2 + x3 + f1 + f2 + f3 - 1)

Residuals:

Min 1Q Median 3Q Max

-2.7367 -0.6249 -0.0114 0.7014 3.0506

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 1.065433 0.045392 23.472 < 2e-16 ***

x2 0.509879 0.045968 11.092 < 2e-16 ***

x3 0.227387 0.043999 5.168 3.46e-07 ***

f11 3.766027 0.155905 24.156 < 2e-16 ***

f12 2.105724 0.162775 12.936 < 2e-16 ***

f13 -0.791654 0.157569 -5.024 7.12e-07 ***

f14 3.905124 0.165229 23.635 < 2e-16 ***

f15 0.003446 0.148566 0.023 0.9815

f16 2.633193 0.151044 17.433 < 2e-16 ***

f17 2.458959 0.157898 15.573 < 2e-16 ***

f22 1.271989 0.127112 10.007 < 2e-16 ***

f23 0.170457 0.127707 1.335 0.1826

f24 2.084170 0.124974 16.677 < 2e-16 ***

f32 -0.157646 0.112902 -1.396 0.1633

f33 -0.221572 0.113139 -1.958 0.0508 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.003 on 485 degrees of freedom

Multiple R-squared: 0.9271, Adjusted R-squared: 0.9249

F-statistic: 411.4 on 15 and 485 DF, p-value: < 2.2e-16

8 SIMEN GAURE

Now, there is a discrepancy between lm and felm when it comes to degrees of
freedom and R2. The lm estimation is formally done without an intercept. This
yields the same estimates as in felm, but lm is tricked into believing that there is
no intercept, and that E(y|X) = 0. Thus, it computes R2 and degrees of freedom
accordingly.

References

1. J. M. Abowd, F. Kramarz, and D. N. Margolis, High Wage Workers and High Wage Firms,

Econometrica 67 (1999), no. 2, 251–333.
2. M. Andrews, L. Gill, T. Schank, and R. Upward, High wage workers and low wage firms:

negative assortative matching or limited mobility bias?, J.R. Stat. Soc.(A) 171(3) (2008),

673–697.
3. S. Gaure, OLS with Multiple High Dimensional Category Variables, (to appear) (2012).

4. I. Halperin, The Product of Projection Operators, Acta Sci. Math. (Szeged) 23 (1962), 96–99.

5. A. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin Interna-
tional de l’Academie Polonaise des Sciences et des Lettres 35 (1937), 355–357.

Ragnar Frisch Centre for Economic Research, Oslo, Norway

