Most of the examples are an analysis of data in the Employee data set, included with lessR. First read the Employee data into the data frame d. See the Read and Write
vignette for more details.
<- Read("Employee") d
##
## >>> Suggestions
## Details about your data, Enter: details() for d, or details(name)
##
## Data Types
## ------------------------------------------------------------
## character: Non-numeric data values
## integer: Numeric data values, integers only
## double: Numeric data values with decimal digits
## ------------------------------------------------------------
##
## Variable Missing Unique
## Name Type Values Values Values First and last values
## ------------------------------------------------------------------------------------------
## 1 Years integer 36 1 16 7 NA 7 ... 1 2 10
## 2 Gender character 37 0 2 M M W ... W W M
## 3 Dept character 36 1 5 ADMN SALE FINC ... MKTG SALE FINC
## 4 Salary double 37 0 37 53788.26 94494.58 ... 56508.32 57562.36
## 5 JobSat character 35 2 3 med low high ... high low high
## 6 Plan integer 37 0 3 1 1 2 ... 2 2 1
## 7 Pre integer 37 0 27 82 62 90 ... 83 59 80
## 8 Post integer 37 0 22 92 74 86 ... 90 71 87
## ------------------------------------------------------------------------------------------
As an option, also read the table of variable labels. Create the table formatted as two columns. The first column is the variable name and the second column is the corresponding variable label. Not all variables need be entered into the table. The table can be a csv
file or an Excel file.
Currently, read the label file into the l data frame. The labels will be displayed on both the text and visualization output. Each displayed label is the variable name juxtaposed with the corresponding label.
<- rd("Employee_lbl") l
##
## >>> Suggestions
## Details about your data, Enter: details() for d, or details(name)
##
## Data Types
## ------------------------------------------------------------
## character: Non-numeric data values
## ------------------------------------------------------------
##
## Variable Missing Unique
## Name Type Values Values Values First and last values
## ------------------------------------------------------------------------------------------
## 1 label character 8 0 8 Time of Company Employment ... Test score on legal issues after instruction
## ------------------------------------------------------------------------------------------
One of the most frequently encountered visualizations for continuous variables is the histogram, which outlines the general shape of the underlying distribution.
Histogram: Bin similar values into a group, then plot the frequency of occurrence of the data values in each bin as the height of the corresponding bar.
A call to a function to create a histogram contains the name of the continuous variable that contains the plotted values. With the Histogram()
function, that variable name is the first argument passed to the function. In this example, the only argument passed to the function is the variable name as the data frame is named d, the default value. The following illustrates the call to Histogram()
with a continuous variable named \(x\).
To illustrate, consider the continuous variable Salary in the Employee data table. Use Histogram()
to tabulate and display the number of employees in each department, here relying upon the default data frame (table) named d, so the data=
parameter is not needed.
Histogram(Salary)
Histogram of tablulated counts for the bins of Salary.
## >>> Suggestions
## bin_width: set the width of each bin
## bin_start: set the start of the first bin
## bin_end: set the end of the last bin
## Histogram(Salary, density=TRUE) # smoothed curve + histogram
## Plot(Salary) # Violin/Box/Scatterplot (VBS) plot
##
## --- Salary: Annual Salary (USD) ---
##
## n miss mean sd min mdn max
## 37 0 73795.557 21799.533 46124.970 69547.600 134419.230
##
##
## (Box plot) Outliers: 1
##
## Small Large
## ----- -----
## 134419.2
##
##
## Bin Width: 10000
## Number of Bins: 10
##
## Bin Midpnt Count Prop Cumul.c Cumul.p
## ---------------------------------------------------------
## 40000 > 50000 45000 4 0.11 4 0.11
## 50000 > 60000 55000 8 0.22 12 0.32
## 60000 > 70000 65000 8 0.22 20 0.54
## 70000 > 80000 75000 5 0.14 25 0.68
## 80000 > 90000 85000 3 0.08 28 0.76
## 90000 > 100000 95000 5 0.14 33 0.89
## 100000 > 110000 105000 1 0.03 34 0.92
## 110000 > 120000 115000 1 0.03 35 0.95
## 120000 > 130000 125000 1 0.03 36 0.97
## 130000 > 140000 135000 1 0.03 37 1.00
By default, the Histogram()
function provides a color theme according to the current, active theme. The function also provides the corresponding frequency distribution, summary statistics, the table that lists the count of each category, from which the histogram is constructed, as well as an outlier analysis based on Tukey’s rules for box plots.
The parameters bin_start
, bin_width
, and bin_end
are available to customize the histogram.
Histogram(Salary, bin_start=35000, bin_width=14000)
Customized histogram.
## >>> Suggestions
## bin_end: set the end of the last bin
## Histogram(Salary, density=TRUE) # smoothed curve + histogram
## Plot(Salary) # Violin/Box/Scatterplot (VBS) plot
##
## --- Salary: Annual Salary (USD) ---
##
## n miss mean sd min mdn max
## 37 0 73795.557 21799.533 46124.970 69547.600 134419.230
##
##
## (Box plot) Outliers: 1
##
## Small Large
## ----- -----
## 134419.2
##
##
## Bin Width: 14000
## Number of Bins: 8
##
## Bin Midpnt Count Prop Cumul.c Cumul.p
## ---------------------------------------------------------
## 35000 > 49000 42000 1 0.03 1 0.03
## 49000 > 63000 56000 14 0.38 15 0.41
## 63000 > 77000 70000 9 0.24 24 0.65
## 77000 > 91000 84000 4 0.11 28 0.76
## 91000 > 105000 98000 5 0.14 33 0.89
## 105000 > 119000 112000 2 0.05 35 0.95
## 119000 > 133000 126000 1 0.03 36 0.97
## 133000 > 147000 140000 1 0.03 37 1.00
Easy to change the color, either by changing the color theme with style()
, or just change the fill color with fill
. Can refer to standard R colors, as shown with lessR function showColors()
, or implicitly invoke the lessR color palette generating function getColors()
. Each 30 degrees of the color wheel is named, such as "greens"
, "rusts"
, etc, and implements a sequential color palette.
Use the color
parameter to set the border color, here turned off.
Histogram(Salary, fill="reds", color="transparent")
Customized histogram.
## >>> Suggestions
## bin_width: set the width of each bin
## bin_start: set the start of the first bin
## bin_end: set the end of the last bin
## Histogram(Salary, density=TRUE) # smoothed curve + histogram
## Plot(Salary) # Violin/Box/Scatterplot (VBS) plot
##
## --- Salary: Annual Salary (USD) ---
##
## n miss mean sd min mdn max
## 37 0 73795.557 21799.533 46124.970 69547.600 134419.230
##
##
## (Box plot) Outliers: 1
##
## Small Large
## ----- -----
## 134419.2
##
##
## Bin Width: 10000
## Number of Bins: 10
##
## Bin Midpnt Count Prop Cumul.c Cumul.p
## ---------------------------------------------------------
## 40000 > 50000 45000 4 0.11 4 0.11
## 50000 > 60000 55000 8 0.22 12 0.32
## 60000 > 70000 65000 8 0.22 20 0.54
## 70000 > 80000 75000 5 0.14 25 0.68
## 80000 > 90000 85000 3 0.08 28 0.76
## 90000 > 100000 95000 5 0.14 33 0.89
## 100000 > 110000 105000 1 0.03 34 0.92
## 110000 > 120000 115000 1 0.03 35 0.95
## 120000 > 130000 125000 1 0.03 36 0.97
## 130000 > 140000 135000 1 0.03 37 1.00
The histogram portrays a continuous distribution with discrete bins, with more modern visualizations available that directly display the estimated underlying smooth curve.
Density plot: A smooth curve that estimates the underlying continuous distribution.
To invoke, add the density
parameter. The result is the filled density curve superimposed on the histogram.
Histogram(Salary, density=TRUE)
Histogram with density plot.
A more modern version of the density plot combines the violin plot, box plot, and scatter plot into a single visualization, here called here the VBS plot.
Plot(Salary)
## [Violin/Box/Scatterplot graphics from Deepayan Sarkar's lattice package]
## >>> Suggestions
## Plot(Salary, out_cut=2, fences=TRUE, vbs_mean=TRUE) # Label two outliers ...
## Plot(Salary, box_adj=TRUE) # Adjust boxplot whiskers for asymmetry
VBS plot.
## --- Salary ---
## Present: 37
## Missing: 0
## Total : 37
##
## Mean : 73795.557
## Stnd Dev : 21799.533
## IQR : 31012.560
## Skew : 0.190 [medcouple, -1 to 1]
##
## Minimum : 46124.970
## Lower Whisker: 46124.970
## 1st Quartile : 56772.950
## Median : 69547.600
## 3rd Quartile : 87785.510
## Upper Whisker: 122563.380
## Maximum : 134419.230
##
##
## (Box plot) Outliers: 1
##
## Small Large
## ----- -----
## Correll, Trevon 134419.23
##
## Number of duplicated values: 0
##
## Parameter values (can be manually set)
## -------------------------------------------------------
## size: 0.61 size of plotted points
## out_size: 0.82 size of plotted outlier points
## jitter_y: 0.45 random vertical movement of points
## jitter_x: 0.00 random horizontal movement of points
## bw: 9529.04 set bandwidth higher for smoother edges
An interactive visualization lets the user in real time change parameter values to change characteristics of the visualization. To create an interactive histogram that displays the corresponding parameters, run the function interact()
with "Histogram"
specified.
interact("Histogram")
The function is not run here because interactivity requires to run directly from the R console.
Use the base R help()
function to view the full manual for Histogram()
. Simply enter a question mark followed by the name of the function.
?Histogram
More on Histograms and other visualizations from lessR and other packages such as ggplot2 at:
Gerbing, D., R Visualizations: Derive Meaning from Data, CRC Press, May, 2020, ISBN 978-1138599635.