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Abstract

Units sampled from finite populations typically come with different inclusion proba-
bilities. Together with additional preprocessing steps of the raw data, this yields unequal
sampling weights of the observations. Whenever indicators are estimated from such com-
plex samples, the corresponding sampling weights have to be taken into account. In
addition, many indicators suffer from a strong influence of outliers, which are a common
problem in real-world data. The R package laeken is an object-oriented toolkit for the
estimation of indicators from complex survey samples via standard or robust methods. In
particular the most widely used social exclusion and poverty indicators are implemented
in the package. A general calibrated bootstrap method to estimate the variance of indi-
cators for common survey designs is included as well. Furthermore, the package contains
synthetically generated close-to-reality data for the European Union Statistics on Income
and Living Conditions (EU-SILC) and the Structure of Earnings Survey (SES), which
are used in the code examples throughout the paper. Even though the paper is focused
on showing the functionality of package laeken, it also provides a brief mathematical
description of the implemented indicator methodology.

Keywords:"indicators, robust estimation, sample weights, survey methodology, R.

1. Introduction

Estimation of indicators is one of the main tasks in survey statistics. They are usually esti-
mated from complex surveys with many thousands of observations, conducted in a harmonized
manner over many countries.

Indicators are designed to reflect major developments in society, for example with respect
to poverty, social cohesion or gender inequality, in order to quantify and monitor progress
towards policy objectives. Moreover, by implementing a monitoring system across countries
via a harmonized set of indicators, different policies can be compared based on quantitative
information regarding their impact on society. Thus statistical indicators are an important
source of information on which policy makers can base their decisions.

Nevertheless, for policy decisions to be effective, the underlying quantitative information from
the indicators needs to be reliable. Not only should the variability of the indicators be kept
in mind, but also the impact of data collection and preprocessing needs to be considered.
Indicators are typically based on complex surveys, in which units are drawn from finite popu-
lations, most often with unequal inclusion probabilities. Hence the observations in the sample
represent different numbers of units in the population, giving them unequal sample weights.
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In addition, those initial weights are often modified by preprocessing steps such as calibra-
tion for nonresponse. Therefore, sample weights always need to be taken into account in the
estimation of indicators from survey samples, otherwise the estimates may be biased.

The focus of this paper is on socioeconomic indicators on poverty, social cohesion and gender
differences. In economic data, extreme outliers are a common problem. Such outliers can
have a disproportionally large influence on the estimates of indicators and may completely
distort them. If indicators are corrupted by outliers, wrong decisions could be drawn by
policy makers. Robust estimators that give reliable estimates even in the presence of extreme
outliers are therefore necessary.

We introduce the add-on package laeken (Alfons, Holzer, and Templ 2012) for the open source
statistical computing environment R (R Development Core Team 2012). It provides function-
ality for standard and robust estimation of indicators on social exclusion and poverty from
complex survey samples. The aim of the paper is to present the most important functionality
of the package. A more complete overview of the available functionality is given in three
additional package vignettes on specialized topics:

laeken-standard: standard estimation of the indicators
laeken-pareto: robust estimation of the indicators via Pareto tail modeling

laeken-variance: variance estimation for the indicators
These vignettes can be viewed from within R with the following commands:

R> vignette("laeken-standard")
R> vignette("laeken-pareto")
R> vignette("laeken-variance")

Even though official statistical agencies usually rely on commercial software, R has gained
some traction in the survey statistics community over the years. Many add-on packages
for survey methodology are now available. For instance, an extensive collection of methods
for the analysis of survey samples is implemented in package survey (Lumley 2004, 2012).
The accompanying book by Lumley (2010) also serves as an excellent introduction to survey
statistics with R. Other examples for more specialized functionality are package sampling
(Tillé and Matei 2012) for finite population sampling, and package EVER (Zardetto 2012) for
variance estimation based on efficient resampling. For the common problem of nonresponse,
package VIM (Templ, Alfons, Kowarik, and Prantner 2012b) allows to explore the structure
of missing data via visualization techniques (see Templ, Alfons, and Filzmoser 2012a), and
to impute the missing values via advanced imputation methods (e.g., Templ, Kowarik, and
Filzmoser 2011). Even a general framework for simulation studies in survey statistics is
available through package simFrame (Alfons, Templ, and Filzmoser 2010; Alfons 2012).

The rest of the paper is organized as follows. Section™2 introduces the data sets that are
used in the examples throughout the paper. In Section™3, the most widely used indicators
on social exclusion and poverty are briefly described. The basic design of the package and its
core functionality are then presented in Section™4. More advanced topics such as robust esti-
mation and variance estimation via bootstrap techniques are discussed in Sections™5 and™6,
respectively. The final Section™7 concludes.
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2. Data sets

Package laeken contains example data sets for two well-known surveys: the European Union
Statistics on Income and Living Conditions (EU-SILC) and the Structure of Earnings Survey
(SES). Since original data from those surveys are confidential, the example data sets are
simulated using the methodology described in Alfons, Kraft, Templ, and Filzmoser (2011)
and implemented in the R package simPopulation (Alfons and Kraft 2012). In any case, these
data sets are used in the code examples throughout the paper.

2.1. European Union Statistics on Income and Living Conditions (EU-SILC)

EU-SILC is an annual household survey conducted in EU member states and other European
countries. Samples consist of about 450 variables containing information on demographics,
income and living conditions (see Eurostat 2004b). Most notably, EU-SILC serves as data
basis for measuring risk-of-poverty and social cohesion in Europe. A subset of the indicators
computed from EU-SILC is presented in Section™3.2.

The EU-SILC example data set in laeken is called eusilc and contains 14 827 observations
from 6000 households and 28 variables. Thus only the most important variables from the
survey are available. The data are synthetically generated from Austrian EU-SILC survey
data from 2006. Most of the variable names are rather cryptic codes, but these are the
standardized names used by the statistical agencies. A description of all the variables is given
in the R help page of the data set. To give an overview of what the data look like, the first
three observations of eusilc are printed below.

R> data("eusilc")
R> head(eusilc, 3)

db030 hsize db040 rb030 age rb090 pl030 pb220a  py010n py050n

1 1 3 Tyrol 101 34 female 2 AT 9756.25 0

2 1 3 Tyrol 102 39  male 1 Other 12471.60 0

3 1 3 Tyrol 103 2 male <NA> <NA> NA NA
py090n pyl00n pyl1i0n pyl120n pyl30n py140n hy040n hyO050n hyO070n

1 0 0 0 0 0 0 4273.9 2428.11 0

2 0 0 0 0 0 0 4273.9 2428.11 0

3 NA NA NA NA NA NA 4273.9 2428.11 0
hy080n hy090n hyl110n hy130n hy145n eqSS eqlncome db090 rb050

1 0 33.39 0 0 0 1.8 16090.69 504.5696 504.5696

2 0 33.39 0 0 0 1.8 16090.69 504.5696 504.5696

3 0 33.39 0 0 0 1.8 16090.69 504.5696 504.5696

For this paper, the variable eqIncome (equivalized disposable income) is of main interest.
Other variables are in some cases used to break down the data into different demographics in
order to estimate the indicators on those subsets.

2.2. Structure of Earnings Survey (SES)
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The Structure of Earnings Survey (SES) (Eurostat 2006) is an enterprise survey that aims at
providing harmonized data on earnings for almost all European countries. SES data not only
contain information on the enterprise level, but also on the individual employment level from
a large sample of employees. Similar surveys are conducted all over the world. In general such
linked employer-employee data are used to identify the determinants/differentials of earnings,
but also some indicators are directly derived from the hourly earnings data included in the
survey. The most important indicator on the basis of SES data is the gender pay gap, which
is described in Section”3.3.

The SES example data set in laeken is called ses and contains information on 27 variables and

15691 employees from 500 places of work. It is a subset of synthetic data that are simulated
from real Austrian SES 2006 data. The first three observations are shown below.

R> data("ses")
R> head(ses, 3)

location NACEl size economicFinanc payAgreement IDunit sex
112 AT3 C-Mining E1000 B B 81461 male
111 AT3 C-Mining E1000 B B 81461 male
114 AT3 C-Mining E1000 B B 81461 male
age education occupation contract fullPart
112 (39,49] ISCED 3 and 4 34 indefinite duration FT
111 (39,49] ISCED 3 and 4 34 indefinite duration FT
114 (29,39] ISCED 3 and 4 31 indefinite duration FT
lengthService weeks hoursPaid overtimeHours shareNormalHours
112 (19,29] 52.14 160.2820 0.000000 100
111 (19,29] 52.14 144.5616 0.000000 100
114 (19,29] 52.14 174.4551 8.940864 100
holiday notPaid earningsOvertime paymentsShiftWork earningsMonth
112 21.89396 9688.986 1181.125474 0 3913.502
111 28.20815 10390.651 919.354409 0 5151.819
114 30.26150 21916.674 1.656994 0 4915.543
earnings earningsHour weightsEmployers weightsEmployees weights
112 81431.45 31.16641 1 1 1
111 131128.02 17.20338 1 1 1
114 143250.38 33.01964 1 1 1

In this paper, the SES data is used to illustrate the estimation of the gender pay gap. Hence
the most important variables for our purposes are earningsHour, sex and education. For a
description of all the variables in the data set, the reader is referred to its R help page.

3. Indicators

This section gives a brief description of the most widely used indicators to measure poverty,
social cohesion and gender differences. Unless otherwise stated, the presented definitions
strictly follow Eurostat (2004a, 2009), where more details can be found. In addition to the
mathematical definitions of the indicators, quick examples for computing them with package
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laeken are provided. A detailed discussion on the respective functions is given later on in
Section™ 4.

3.1. Weighted median and quantile estimation

Nearly all of the indicators considered in the paper require the estimation of the median
income or other quantiles of the income distribution. Note that in the analysis of income
distributions, the median income is of higher interest than the arithmetic mean, since income
distributions typically are strongly right-skewed.

In mathematical terms, quantiles are defined as ¢, := F ~L(p), where F is the distribution
function on the population level and 0 < p < 1. The median as an important special case
is given by p = 0.5. For the following definitions, let n be the number of observations
in the sample, let & := (x1,...,2,) denote the income with z; < ... <uz,, and let w :=
(wi, ..., wy)" be the corresponding sample weights. Weighted quantiles for the estimation of
the population values are then given by

iy = (@, w) = s@jt i), Xl wi=p i w, 0
S Tjt1, it 3 wi < p Xy wi < YU wi

3.2. Indicators on social exclusion and poverty

The indicators described in this subsection are estimated from EU-SILC data based on house-
hold income rather than personal income. For each person, this equivalized disposable income
is defined as the total household disposable income divided by the equivalized household size.
It follows that each person in the same household receives the same equivalized disposable
income. The total disposable income of a household is thereby calculated by adding together
the personal income received by all of the household members plus the income received at the
household level. The equivalized household size is defined according to the modified OECD
scale, which gives a weight of 1.0 to the first adult, 0.5 to other household members aged 14
or over, and 0.3 to household members aged less than 14.

For the definitions of the following indicators, let @ := (z1,...,2,)" be the equivalized dis-
posable income with 27 < ... < x, and let w := (w;, ..., w,) be the corresponding sample
weights, where n denotes the number of observations. Furthermore, define the following index
sets for a certain threshold t:

Iy ={ie{l,...,n}:x; <t} (2)
Icp ={ie{l,....,n}:a; <t}, (3)
I, :={ie{l,...,n}:x; > t}. (4)

At-risk-at-poverty rate

In order to define the at-risk-of-poverty rate (ARPR), the at-risk-of-poverty threshold (ARPT)
needs to be introduced first, which is set at 60% of the national median equivalized disposable
income. Then the at-risk-at-poverty rate is defined as the proportion of persons with an
equivalized disposable income below the at-risk-at-poverty threshold. In a more mathematical
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notation, the at-risk-at-poverty rate is defined as
ARPR := P(x < 0.6 - qo5) - 100, (5)

where qo 5 := F~1(0.5) denotes the population median (50% quantile) and F is the distribution
function of the equivalized income on the population level.

For the estimation of the at-risk-at-poverty rate from a sample, first the at-risk-at-poverty
threshold is estimated by -
ARPT = 0.6 - §o5, (6)

where §p 5 is the weighted median as defined in Equation™(1). Then the at-risk-at-poverty

rate can be estimated by

2l Vi 1

—n . — - 100, (7)
D i Wi

where [ < ATPT 18 an index set of persons with an equivalized disposable income below the

estimated at-risk-of-poverty threshold as defined in Equation™(2).

ARPR :=

In package laeken, the function arpr () is implemented to estimate the at-risk-at-poverty rate.

R> arpr("eqlIncome", weights = "rb050", data = eusilc)

Value:
[1] 14.44422

Threshold:
[1] 10859.24

Note that the at-risk-of-poverty threshold is computed internally by arpr (). If necessary, it
can also be computed by the user through function arpt ().

In addition, a highly related indicator is the dispersion around the at-risk-of-poverty threshold,
which is defined as the proportion of persons with an equivalized disposable income below
40%, 50% and 70% of the national weighted median equivalized disposable income. For the
estimation of this indicator with function arpr (), the proportion of the median equivalized
income to be used can easily be adjusted via the argument p.

R> arpr("eqlncome", weights = "rb050", p = 0.4, data = eusilc)

Value:
[1] 4.766885

Threshold:
[1] 7239.491

R> arpr("eqIncome", weights = "rb050", p = 0.5, data = eusilc)

Value:
[1] 7.988134

Threshold:
[1] 9049.363
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R> arpr("eqlIncome", weights = "rb050", p = 0.7, data = eusilc)

Value:
[1] 21.85638

Threshold:
[1] 12669.11

Quintile share ratio

The income quintile share ratio (QSR) is defined as the ratio of the sum of the equivalized dis-
posable income received by the 20% of the population with the highest equivalized disposable
income to that received by the 20% of the population with the lowest equivalized disposable
income.

For a given sample, let §g.o and §o.g denote the weighted 20% and 80% quantiles, respectively,
as defined in Equation™(1). Using index sets I<g,, and Is4 . as defined in Equations™(3)
and”(4), respectively, the quintile share ratio is estimated by

Zi61><io.8 Wit

QSR := (8)

Zi@smz Wit
To estimate the quintile share ratio, the function qsr() is available.

R> gsr("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 3.971415

Relative median at-risk-of-poverty gap

The relative median at-risk-of-poverty gap (RMPG) is given by the difference between the
median equivalized disposable income of persons below the at-risk-of-poverty threshold and
the at-risk of poverty threshold itself, expressed as a percentage of the at-risk-of-poverty
threshold.

For the estimation of the relative median at-risk-of-poverty gap from a sample, let ARPT
be the estimated at-risk-of-poverty threshold according to Equation™(6), and let I < ARPT be
an index set of persons with an equivalized disposable income below the estimated at-risk-
of-poverty threshold as defined in Equation™(2). Using this index set, define x
(xi)i€I<A’R?T and W_ mmr = (wi)iGQAEFT' Furthermore, let Qo,5(m<@T,w<AﬁT) be the
corresponding weighted median according to the definition in Equation™(1). Then the relative

median at-risk-of-poverty gap is estimated by

<ARPT "~

ARG = T = 05 smpr W arpr) 4, 9)
ARPT

The relative median at-risk-of-poverty gap is implemented in the function rmpg().
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R> rmpg("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 18.9286

Threshold:
[1] 10859.24

Gine coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the population
arranged according to the level of equivalized disposable income, to the cumulative share of
the equivalized total disposable income received by them.

Mathematically speaking, the Gini coefficient is estimated from a sample by

2370 (wil"i Z;‘:l wj) — >y wim

Gini := 100 _ -
(Doiey wi) Doy (wiz;)

—1|. (10)

For estimating the Gini coefficient, the function gini() can be used.

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 26.48962

3.3. The Gender Pay Gap

Probably the most important indicator derived from the SES data is the gender pay gap
(GPG). The calculation of the gender pay gap is based on each person’s hourly earnings,
which are given by the gross monthly earnings from employment divided by the number of
hours usually worked per week in employment during 4.33 weeks. The gender pay gap in
unadjusted form is then defined as the difference between average gross earnings of male
paid employees and of female paid employees divided by the earnings of male paid employees
(Eurostat 2004a). Further discussion on the gender pay gap in Europe can be found in, e.g.,
Beblot, Beniger, Heinze, and Laisney (2003).

For the following definitions, let @ := (x1,...,x,)" be the hourly earnings with z1 < ... < x,,
where n is the number of observations. As in the previous subsections, w := (w;,...,wy,)’
denotes the corresponding sample weights. Then define the index set

Ing :={i € {1,...,n} : worked as least 1 hour per week A
(16 < age < 65) A person is male},

and define Ir analogously as the index set which differs from I,; in the fact that it includes
females instead of males. With these index sets, the gender pay gap in unadjusted form is

estimated by
- W;T; Wi x W; T
GPG(mean) = <ZZ€IM v ZEIl” ! Z) / ZlGIM v (11)

Zieljw Wi lelpwz ZEI]M wj
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The function gpg() is implemented in laeken to estimate the gender pay gap.

R> gpg("earningsHour", gender = "sex", weigths = "weights",
+ data = ses)
Value:

[1] 0.2517759

While Eurostat (2004a) proposes the weighted mean as a measure for the average in the
definition of the gender pay gap, the U.S. Census Bureau uses the weighted median as a
robust alternative (see, e.g., Weinberg 2007). In this case, the estimate of the gender pay gap
in unadjusted form changes to

_ Gos(xr,,) — dos(xr,)
GPG (meq) = dos@1) , (12)

where x1,, = (2;)icr,, and xr, = (x;)icrp-
It should be noted that even though Eurostat proposes to estimate the gender pay gap via

weighted means, Statistics Austria for example uses the variant based on weighted medians
as well.

In function gpg(), using the weighted median rather than the weighted mean can be specified
via the method argument.

R> gpg("earningsHour", gender = "sex", weigths = "weights",
+ data = ses, method = "median")
Value:

[1] 0.229818

4. Basic design and core functionality

This section discusses the basic design of package laeken and its core functions for the estima-
tion of indicators. First, Section™4.1 describes the functions for estimating the indicators and
the class structure of the returned objects. Sections™4.2 and™4.3 then show how to estimate
indicators for different subdomains and extract subsets of the information from the resulting
objects.

4.1. Indicators and class structure

Small examples for computing the social exclusion and poverty indicators with package laeken
were already shown in Section™3. These functions are now discussed in detail. As a reminder,
the following indicators are implemented in the package:

arpr () for the at-risk-of-poverty rate, as well as the dispersion around the at-risk-of-poverty
threshold

gsr() for the quintile share ratio
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rmpg () for the relative median at-risk-of-poverty gap
gini() for the gini coefficient
gpg () for the gender pay gap

All these functions have a very similar interface and allow to compute point and variance es-
timates with a single command, even for different subdomains of the data. Most importantly,
the user can supply character strings specifying the household income via the first argument
and the sample weights via the weights argument. The data are then taken from the data
frame passed as the data argument.

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 26.48962

Alternatively, the user can supply the data directly as vectors:

R> gini(eusilc$eqIncome, weights = eusilc$rb050)

Value:
[1] 26.48962

For a full list of arguments, the reader is referred to the R help page of the corresponding
function.

At this point, it is important to note that the implementation of package laeken follows an
object-oriented design using S3 classes (Chambers and Hastie 1992). Thus each of the above
functions returns an object of a certain class for the respective indicator. All those classes
thereby inherit from the class "indicator".

Among other information, the basic class "indicator" contains the following components:

value: the point estimate
valueByStratum: a data frame containing the point estimates for each domain
var: the variance estimate
varByStratum: a data frame containing the variance estimates for each domain
ci: the confidence interval

ciByStratum: a data frame containing the confidence intervals for each domain

All indicators inherit the components of class "indicator", as well as the methods that are
defined for this basic class, which has the advantage that code can be shared among the set
of indicators. However, each indicator also has its own class such that methods unique to the
indicator can be defined. Following a common convention for S3 classes, the classes for the
indicators have the same names as the functions for computing them. Hence the following
classes are implemented in package laeken:
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e Class "arpr" with the following additional components:

p: the percentage of the weighted median used for the at-risk-of-poverty threshold
threshold: the at-risk-of-poverty threshold

e Class "gsr" with no additional components

e Class "rmpg" with the following additional components:
threshold: the at-risk-of-poverty threshold

e Class "gini" with no additional components

e Class "gpg" with no additional components

Furthermore, functions to test whether an object is a member of the basic class or one
of the subclasses are available. The function to test for the basic class is called is called
is.indicator(). Similarly, the functions to test for the subclasses are called is.foo(),
where foo is the name of the corresponding class (e.g., is.arpr()).

R> a <- arpr("eqlncome", weights = "rb050", data = eusilc)
R> is.arpr(a)

[1] TRUE

R> is.indicator(a)
[1]1 TRUE

R> class(a)

[1] "arpr" "indicator"

4.2. Estimating the indicators in subdomains

One of the most important features of laeken is that indicators can easily be evaluated for
different subdomains. These can be regions, but also any other breakdown given by a cate-
gorical variable, for instance age categories or gender. All the user needs to do is to specify
such a categorical variable via the breakdown argument. Note that for the at-risk-of-poverty
rate and relative median at-risk-of-poverty gap, the same overall at-risk-of-poverty threshold
is used for all subdomains (see Eurostat 2004a, 2009).

In a first example, the overall estimate for the at-risk-of-poverty rate is computed together
with more regional estimates.

R> arpr("eqIncome", weights = "rb050", breakdown = "db040",
+ data = eusilc)

11
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Value:
[1] 14.44422

Value by domain:
stratum

©O© 00 NO Ok WN -

Threshold:
[1] 10859.24

Burgenland 19.
Carinthia 13.
Lower Austria 13.
Salzburg 13.
Styria 14.

Tyrol 15.

Upper Austria 10.
Vienna 17.
Vorarlberg 16.

laeken: Estimation of Social Exclusion Indicators

value
53984
08627
84362
78734
37464
30819
88977
23468
53731

With the following lines of code, a breakdown variable with all possible combinations of age
categories and gender is defined and added to the data set, before it is used to compute
estimates in the corresponding domains.

R> ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right = FALSE)

R> eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep = ":")
R> arpr("eqlncome", weights = "rb050", breakdown = "breakdown",
+ data = eusilc)

Value:

[1] 14.44422

Value by domain:
stratum
[-1,16) :female
[-1,16) :male
[16,25) : female
[16,25) :male
[25,50) : female
[25,50) :male
[50,65) : female
[50,65) :male
[65,Inf) :female
10 [65,Inf) :male

© 00 NO O WN -

Threshold:
[1] 10859.24

18.
17.
16.
16.
15.
.638359
12.
.221154
21.
12.

Clearly, the latter results

into regions.

value
948125
973597
703016
156673
220300

941125

252184
046903

are even more heterogeneous than the former with the breakdown
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Now we compute the gender pay gap with breakdown according to education. First, we use
the weighted mean as an estimate for the average hourly earnings.

R> gpg("earningsHour", gender = "sex", weigths = "weights",
+ breakdown = "education", data = ses)
Value:

[1] 0.2517759

Value by domain:

stratum value
1 ISCED O and 1 0.02347578
2 ISCED 2 0.21265286
3 ISCED 3 and 4 0.22974069
4 ISCED 5A 0.23323499
5 ISCED 5B 0.18445275

Note that the weighted mean is heavily influenced by skewness and outliers. In order to more
accurately reflect the average in such skewed distributions, the weighted median should be
used instead (even though that is not the standard definition according to Eurostat 2004a).

R> gpg("earningsHour", gender = "sex", weigths = "weights",
+ breakdown = "education", data = ses, method = "median")
Value:

[1] 0.229818

Value by domain:

stratum value
1 ISCED O and 1 0.08695672
2 ISCED 2 0.18361501
3 ISCED 3 and 4 0.20080888
4 ISCED 5A 0.25119196
5 ISCED 5B 0.19350093

The differences in the both the overall estimates and the estimates for different education
levels indicate that the results based on the arithmetic means are possibly distorted due
to skewness and outliers. To further investigate the significance of those differences, the
respective variances and confidence intervals should be estimated with the methods presented
in Section”6.

4.3. Extracting information using the subset() method

If estimates of an indicator have been computed for several subdomains, it may sometimes be
desired to extract the results for some domains of particular interest. For this purpose, let us
revisit the first example from the previous subsection, where we compute the at-risk-of-poverty
rate for regional subdomains.
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R> a <- arpr("eqlncome", weights = "rb050", breakdown = "db040",
+ data = eusilc)

In package laeken, extracting a subset from such an indicator can be done with the corre-
sponding subset () method. For example, the following command extracts the estimates of
the at-risk-of-poverty rate for the regions Lower Austria and Vienna from the object computed
above.

R> subset(a, strata = c("Lower Austria'", "Vienna'"))

Value:
[1] 14.44422

Value by domain:

stratum value
3 Lower Austria 13.84362
8 Vienna 17.23468

Threshold:
[1] 10859.24

It is thereby worth pointing out that not every indicator needs its own subset () method due
to inheritance from the basic class "indicator".

5. Robust estimation

From a robustness point of view, the standard estimators for many of the social exclusion
indicators are problematic when outliers are present in the data. In particular the income
inequality indicators quintile share ratio (QSR) and Gini coefficient suffer from a lack of
robustness. Point estimates can be highly influenced and variance estimates can be inflated,
as demonstrated in a practical application by Alfons, Templ, and Filzmoser (2013).

In economic data, the distributions of variables such as income typically have heavy tails, as
well as even more extreme outliers deviating from the rest of the tail. Following Chambers
(1986), the observations in the heavy tails can be seen as representative and the extreme values
as nonrepresentative outliers. As the term suggests, representative outliers carry relevant
information regarding the population distribution and need to be included in the estimation of
quantities of interest. Nonrepresentative outliers, on the other hand, have to be excluded from
estimation or downweighted, since they are either incorrectly recorded or can be considered
unique in the population in some sense. Note that in the latter case, nonrepresentative outliers
very well belong to the true population distribution. Cowell and Flachaire (2007) hence coined
the term high-leverage observations for such data points.

As a remedy to this problem, heavy tails can be modeled by a Pareto distribution (e.g.
Kleiber and Kotz 2003), which combined with robust parameter estimation allows to identify
extreme outliers. The idea behind Pareto tail modeling in the context of survey samples is
that the upper tail of the population values follow a Pareto distribution. Even though the
Pareto distribution is well studied in the literature, sample weights from finite population
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sampling are typically not considered in the estimation of its parameters. Therefore, Alfons
et "al. (2013) recently adapted promising methods to incorporate sample weights into the
estimation process. These methods are reviewed in the remainder of this section and their
computation with package laeken is demonstrated.

5.1. Pareto distribution
The Pareto distribution is defined in terms of its cumulative distribution function

X

-0

Fy(x)=1— <> , T > xg, (13)
o

where g > 0 is the scale parameter and 6 > 0 is the shape parameter (Kleiber and Kotz

2003). Furthermore, its density function is given by

0
f@(x) = W, xr > xQ. (14)

Clearly, the Pareto distribution is a highly right-skewed distribution with a heavy tail.

In Pareto tail modeling, the cumulative distribution function on the whole range of z is then

modeled as
Flz) = G(x), if x <z,
| G(mo) + (1 — G(x0))Fp(z),  if x> xp,

where G is an unknown distribution function (Dupuis and Victoria-Feser 2006). For a given
survey sample, let & = (x1,...,x,)" be the observed values of the variable of interest with
x1 <...<x, and w := (w;,...,w,) the corresponding sample weights, where n denotes the
total number of observations. In addition, let & denote the number of observations to be used
for tail modeling. Note that the estimation of g and k directly correspond with each other.
If k is fixed, the threshold is estimated by g = x,,_;. If in turn an estimate z( is obtained,
k is given by the number of observations that are larger than Zg.

(15)

In this section, we focus on the EU-SILC example data, where the equivalized disposable
income is the main variable of interest. To illustrate the robustness of the presented methods,
we replace the equivalized disposable income of the household with the highest income with
a large outlier. Note that the resulting income vector is stored in a new variable.

R> hID <- eusilc$db030[which.max(eusilc$eqIncome)]
R> eqIncomeOut <- eusilc$eqIncome
R> eqIncomeOut [eusilc$db030 == hID] <- 10000000

Moreover, since the equivalized disposable income is a form of household income, the Pareto
distribution needs to be modeled on the household level rather than the personal level. Thus
we create a data set that only contains the equivalized disposable income with the outlier and
the sample weights on the household level.

R> keep <- !duplicated(eusilc$db030)
R> eusilcH <- data.frame(eqIncome=eqIncomeOut, db090=eusilc$db090) [keep, ]

5.2. Pareto quantile plot and finding the threshold

15
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R> pareto@Plot (eusilcH$eqIncome, w = eusilcH$db090)

Pareto quantile plot
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Figure 1: Pareto quantile plot for the EU-SILC example data on the household level with the
largest observation replaced by an outlier.

The first step in any practical analysis should be to explore the data with visualization
techniques. For our purpose, the Pareto quantile plot is a powerful tool to check whether
the Pareto model is appropriate. The plot was introduced by Beirlant, Vynckier, and Teugels
(1996b) for the case without sample weights, and adapted to take sample weights into account
by Alfons et al. (2013).

The idea behind the Pareto quantile plot is that under the Pareto model, there exists a linear
relationship between the logarithms of the observed values and the quantiles of the standard
exponential distribution. For survey samples, the observed values are therefore plotted against

the quantities
-
1og<1ziflf " ) i=1,...,n. (16)

When all sample weights are equal, the correction factor n/(n + 1) ensures that (16) reduces
to the theoretical quantiles taken on the n inner gridpoints from n + 1 equally sized subsets
of the interval [0, 1] (see Alfons et “al. 2013, for details).

In package laeken, the Pareto quantile plot is implemented in the function paretoQPlot ().
Figure™1 shows the resulting plot for the EU-SILC example data on the household level. Since
the tail of the data forms almost a straight line, the Pareto tail model is suitable for the data
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at hand.

Moreover, Figure™1 illustrates the two main advantages that make the Pareto quantile plot
so powerful. First, nonrepresentative outliers (i.e., extremely large observations that deviate
from the Pareto model) are clearly visible. In our example, the outlier that we introduced
into the data set is located far away from the rest of the data in the top right corner of the
plot. Second, the leftmost point of a fitted line in the tail of the data can be used as an
estimate of the threshold zy in the Pareto model, i.e., the scale parameter of fitted Pareto
distribution. The slope of the fitted line is then in turn an estimate of 1/6, the reciprocal of
the shape parameter. A disadvantage of this graphical method to determine the parameters
of the fitted Pareto distribution is of course that it is not very exact.

Nevertheless, the function paretoQPlot () allows the user to select the threshold in the Pareto
model interactively by clicking on a data point. Information on the selected threshold is
thereby printed on the R console. This process can be repeated until the user terminates
the interactive session, typically by a secondary mouse click. Then the selected threshold is
returned as an object of class "paretoScale", which consists of the component x0 for the
threshold (scale parameter) and the component k for the number of observations in the tail
(i.e., larger than the threshold).

Van Kerm’s rule of thumb

For EU-SILC data, Van"Kerm (2007) developed a formula for the threshold zg in the Pareto
model that has more of a rule-of-thumb nature. It is given by

Zo := min(max(2.5Z, §o.98), 40.97), (17)

where T is the weighted mean, and §y9s and gy 97 are weighted quantiles as defined in Equa-
tion™(1). It is important to note that this formula is designed specifically for the equivalized
disposable income in EU-SILC data and can withstand a small number of nonrepresentative
outliers.

In laeken, the function paretoScale () provides functionality for estimating the threshold via
Van~Kerm’s formula. Its argument w can be used to supply sample weights.

R> ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090)
R> ts

Threshold: 48459.43
Number of observations in the tail: 119

The estimated threshold is again returned as an object of class "paretoScale".

Other methods for finding the threshold

Many procedures for finding the threshold in the Pareto model have been introduced in the
literature. For instance, Beirlant, Vynckier, and Teugels (1996a,b) developed an analytical
procedure for finding the optimal number of observations in the tail for the maximum like-
lihood estimator of the shape parameter by minimizing the asymptotic mean squared error
(AMSE). This procedure is available in laeken through function minAMSE(), but is not further

17
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discussed here since it is not robust. Dupuis and Victoria-Feser (2006), on the other hand,
proposed a robust prediction error criterion for choosing the optimal number of observations
in the tail and the shape parameter simultaneously. Nevertheless, our implementation of this
robust criterion is unstable and is therefore not included in laeken.

5.3. Estimation of the shape parameter

Once the threshold for the Pareto model is determined, the shape parameter § can be es-
timated via the points over threshold method, i.e., by fitting the distribution to the k data
points that are larger than the threshold. Since our aim is to identify extreme outliers that
deviate from the Pareto model, the shape parameter needs to be estimated in a robust way.
Two promising estimators are discussed in the following. Both were adjusted for sample
weights by Alfons et “al. (2013).

Integrated squared error estimator

The integrated squared error (ISE) criterion was first introduced by Terrell (1990) as a more
robust alternative to maximum likelihood estimation. Vandewalle, Beirlant, Christmann, and
Hubert (2007) proposed to use this criterion in the context of Pareto tail modeling, but they
do not consider sample weights. However, the Pareto distribution is modeled in terms of the
relative excesses

yi = DnohH (18)
Tn—k

Now the density function of the Pareto distribution for the relative excesses is approximated
by
Joly) = by~ 40, (19)

With this model density, the integrated squared error criterion can be written as

b= arggn | [ 20y - 260007 (20

see Vandewalle et al. (2007). For survey samples, Alfons et al. (2013) propose to use the
weighted mean as an estimator of E(fy(Y')) to obtain the weighted integrated squared error
(WISE) estimator:

. P k
Owisg = argmin [/ f3(y)dy — SR an—k—i-ife(yi)] : (21)

i=1 Wn—k+i j=1
The wISE estimator can be computed using the function thetaISE(). The arguments k and
x0 are available to supply either the number of observations in the tail or the threshold, and

sample weights can be supplied via the argument w.

R> thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)
[1] 3.993801

R> thetalISE(eusilcH$eqIlncome, x0 = ts$x0, w = eusilcH$db090)
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[1] 3.993801

Partial density component estimator

Following the observation by Scott (2004) that fy in the ISE criterion does not need to be
a real density, Vandewalle et “al. (2007) proposed to minimize the ISE criterion based on an
incomplete density mixture model u fy instead. Alfons et “al. (2013) generalized their estimator
to take sample weights into account, yielding the weighted partial density component (wPDC)
estimator

2u an k+ifo yz)] (22)

9wPDc—argmln [U /fo dy——
Z =1 Wn—k+i ;—1

with

1
ﬁ=m§ Wn—ktif; yz//f2 (23)
n v =1

Based on extensive simulation studies, Alfons et “al. (2013) conclude that the wPDC estimator
is favorable over the wISE estimator due to better robustness properties.

The function thetaPDC() is implemented in package laeken to compute the wPDC estimator.
As before, it is necessary to supply either the number of observations in the tail via the
argument k, or the threshold via the argument x0. Sample weights can be supplied using the
argument w.

R> thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)
[1] 4.132596
R> thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 4.132596

Other estimators for the shape parameter

Many other estimators for the shape parameter are implemented in package laeken, e.g., the
maximum likelihood estimator (Hill 1975) or the more robust weighted maximum likelihood
estimator (Dupuis and Morgenthaler 2002). However, those estimators are either not robust
or have not (yet) been adapted for sample weights and are therefore not further discussed in
this paper.

5.4. Robust estimation of the indicators via Pareto tail modeling

The basic idea for robust estimation of the indicators is to first detect nonrepresentative
outliers based on the Pareto model. Afterwards their influence on the indicators is reduced
by either downweighting the outliers and recalibrating the remaining observations, or by
replacing the outlying values with values from the fitted distribution. The main advantage of
this general approach is that it can be applied to any indicator.
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With the fitted Pareto distribution Fj, nonrepresentative outliers can now be detected as
observations being larger than a certain F 95 1(1 — «) quantile. From extensive simulation
studies (Hulliger et al. 2011; Alfons et “al. 2013), o = 0.005 or & = 0.01 are seem suitable
choices for this tuning parameter. Then the following approaches are implemented in laeken
to reduce the influence of the outliers:

Calibration of nonrepresentative outliers (CN) As nonrepresentative outliers are con-
sidered to be somewhat unique to the population data, the sample weights of the cor-
responding observations are set to 1. The weights of the remaining observations are
adjusted accordingly by calibration (see, e.g., Deville, Sdrndal, and Sautory 1993).

Replacement of nonrepresentative outliers (RN) The outliers are replaced by values
drawn from the fitted distribution Fj, thereby preserving the order of the original values.

Shrinkage of nonrepresentative outliers (SN) The outliers are shrunken to the theo-
retical quantile Fé_l(l — «) used for outlier detection.

A more mathematical formulation and further details on the CN and RN approaches can be
found in Alfons et "al. (2013), who advocate the CN approach in combination with the wPDC
estimator for fitting the Pareto distribution.

For a practical analysis with package laeken, let us first revisit the estimation of the shape
parameter. Rather than applying a function such as thetaPDC() directly as in the previous
subsection, the function paretoTail() should be used to fit the Pareto distribution to the
upper tail of the data. It returns an object of class "paretoTail", which contains all necessary
information for further analysis with one of the approaches described above.

R> fit <- paretoTail(eqIncomeOut, k = ts$k, w = eusilc$db090,
+ groups = eusilc$db030)

Note that the household IDs are supplied via the argument groups such that the Pareto
distribution is fitted on the household level rather than the individual level. By default, the
wPDC is used to estimate the shape parameter, but other estimators can be specified via the
method argument. In addition, the tuning parameter « for outlier detection can be supplied
as argument alpha.

Moreover, the plot () method for "paretoTail" objects produces a Pareto quantile plot (see
Section™5.2) with additional diagnostic information. Figure™2 contains the resulting plot for
the object computed above. The lower horizontal dotted line corresponds to the estimated
threshold Z(, whereas the slope of the solid grey line is given by the reciprocal of the estimated
shape parameter 6. Furthermore, the upper horizontal dotted line represents the theoretical
quantile used for outlier detection. In this example, the threshold seems somewhat too high.
Nevertheless, the estimate of the shape parameter is accurate and the cutoff point for outlier
detection is appropriate, resulting in correct identification of the outlier that we added to the
data set.

For downweighting nonrepresentative outliers, the function reweightOut () is available. It
returns a vector of the recalibrated weights. In the command below, we use regional infor-
mation as auxiliary variables for calibration. The function calibVars() thereby transforms
a factor into a matrix of binary variables. The returned recalibrated weights are then simply
used to estimate the Gini coefficient with function gini().
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R> plot(fit)

Pareto quantile plot
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Figure 2: Pareto quantile plot for the EU-SILC example data with additional diagnostic
information on the fitted distribution and any detected outliers.

R> w <- reweightOut (fit, calibVars(eusilc$db040))
R> gini(eqIncomeQOut, w)

Value:
[1] 26.45973

To replace the nonrepresentative outliers with values drawn from the fitted distribution, the
function replaceOut() is implemented. For reproducible results, the seed of the random
number generator is set beforehand. The returned income vector is then supplied to gini ()
to estimate the Gini coefficient.

R> set.seed(123)
R> eqIncomeRN <- replaceOut (fit)
R> gini(eqIncomeRN, weights = eusilc$rb050)

Value:
[1] 26.4645

Similarly, the function shrinkOut() can be used to shrink the nonrepresentative outliers to
the theoretical quantile used for outlier detection.

21
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R> eqIncomeSN <- shrinkQOut (fit)
R> gini(eqIncomeSN, weights = eusilc$rb050)

Value:
[1] 26.48831

All three robust estimates are very close to the original value before the outlying household
had been introduced (see Section™3.2). For comparison, we compute the standard estimate
of Gini coefficient with the income vector including the outlying household.

R> gini(eqIncomeOut, weights = eusilc$rb050)

Value:
[1] 29.24333

Clearly, the standard estimate shows an unreasonably large influence of only one outlying
household, illustrating the need for the robust methods.

6. Variance estimation

When computing point estimates of indicators from samples, variance estimates and confi-
dence intervals should be computed as well in order to account for variability due to sampling.
Additional variability coming from, e.g., editing or imputation may need to be considered as
well, but this is not further discussed in this paper.

The most common indicators for measuring poverty, social cohesion and gender inequality are
nonlinear, nonsmooth estimators. Measuring the accuracy of such estimators via standard
errors and confidence intervals requires to apply appropriate variance estimation methods
such as linearization or resampling. Resampling methods can thereby be applied in a more
general manner since their computation is the same for any estimator. Linearization formulas,
on the other hand, need to be derived for each estimator individually.

Concerning resampling methods, it is well known that bootstrap methods in general provide
better estimates for nonsmooth estimators than other other techniques such as jackknifing or
balanced repeated replication (e.g., Bruch, Miinnich, and Zins 2011). Nevertheless, the boot-
strap may result in biased estimates when the sample weights are not properly considered.
Keep in mind that resampling methods should mimic the true sampling design in each repli-
cation. Strictly speaking, the bootstrap is therefore suitable for stratified cluster sampling
designs, which are commonly used in EU-SILC and many other surveys. From a practical
point of view, however, the naive bootstrap is quite fast to compute and provides reasonable
estimates whenever there is not much variation in the sample weights, which is for example
typically the case for EU-SILC data. If there is larger variation among the sample weights, a
calibrated bootstrap should be applied.

Naive and calibrated bootstrap methods are implemented in package laeken and are described
in Sections™6.1 and~6.2, respectively. As discussed above, it should be noted that very complex
sampling designs may require more complex variance estimation procedures. In R, further
variance estimation techniques for complex survey samples are available in other packages.
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For instance, package EVER (Zardetto 2012) provides functionality for the delete-a-group
jackknife. Other methods such as balanced repeated replication are implemented in package
survey (Lumley 2004, 2012). The incorporation of those packages for additional variance
estimation procedures is therefore considered for future work.

6.1. Naive bootstrap

Let 7 denote a certain indicator of interest and let X := (x1,...,X,)" be a survey sample
with n observations. Then the naive bootstrap algorithm for estimating the variance and
confidence interval of an estimate 7(X) of the indicator can be summarized as follows:

1. Draw R independent bootstrap samples X7,..., X} from X. For stratified sampling
designs, resampling is performed within each stratum independently.

2. Compute the bootstrap replicate estimates 7,7 := 7(X) for each bootstrap sample X7,
r = 1,..., R, taking the sample weights from the respective bootstrap samples into
account.

3. Estimate the variance V(7) by the variance of the R bootstrap replicate estimates:

- &L 1 &LY
V(7) =5 > <T:—RZ > (24)

r=1

4. Estimate the confidence interval at confidence level 1—«a by one of the following methods
(for details, see Davison and Hinkley 1997):

*

Percentile method: [%(*(RH)%)’ %((R+1)(1—%))]’ as suggested by Efron and Tibshirani
(1993)

Normal approximation: 7+ z;_sg - V(f-)l/2 with zy_a = 11 - 3)

Basic bootstrap method: [2? — %(*(R+1)(1—%))7 27 — A*(R+1)%)}

*

) denote the order

For the percentile and the basic bootstrap method, %(*1) <...<rt
statistics of the bootstrap replicate estimates.

With package laeken, variance estimates and confidence intervals can easily be included in
the estimation of an indicator, it is only necessary to specify a few more arguments in the call
to the function computing the indicator. The argument var is available to specify the type
of variance estimation, although only the bootstrap is currently implemented. Furthermore,
the significance level « for the confidence intervals can be supplied via the argument alpha
(the default is to use alpha=0.05 for 95% confidence intervals). Additional arguments are
then passed to the underlying function for variance estimation.

R> arpr("eqIncome", weights = "rb050", design = "db040", data = eusilc,
+ var = "bootstrap", bootType = "naive", seed = 123)

Value:
[1] 14.44422

23
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Variance:
[1] 0.0920564

Confidence interval:
lower upper
13.87663 15.19417

Threshold:
[1] 10859.24

For the bootstrap, the function bootVar() is called internally for variance and confidence
interval estimation. Important arguments are design for specifying the strata in the sam-
pling design, R for supplying the number of bootstrap replicates, bootType for specifying the
type of bootstrap estimator, and ciType for specifying the type of confidence interval. For
reproducibility, the seed of the random number generator can be set via the argument seed.

An important feature of package laeken is that indicators can be estimated for different
subdomains with a single command, which still holds for variance and confidence interval
estimation. Using the breakdown argument, the example below produces estimates for each

gender in addition to the overall values.

R> arpr("eqlncome", weights = "rb050",

+ design = "db040", data = eusilc,
+ bootType = "naive", seed = 123)
Value:

[1] 14.44422

Variance:
[1] 0.0920564

Confidence interval:
lower upper
13.87663 15.19417

Value by domain:
stratum value

1 male 12.02660

2 female 16.73351

Variance by domain:

stratum var
1 male 0.1359585
2 female 0.1837318

Confidence interval by domain:
stratum lower upper

breakdown = "rb090",

"bootstrap",



Andreas Alfons, Matthias Templ

1 male 11.298568 12.75120
2 female 16.00919 17.72657

Threshold:
[1] 10859.24

6.2. Calibrated bootstrap

In the practice of survey sampling, the initial sample weights from the sampling design are
often adjusted by calibration, for instance to account for non-response or to ensure that
certain known population totals can be precisely estimated from the survey sample. To give
a simplified example, if the population sizes for different age groups are known, the sample
weights may be calibrated such that the sums of the sample weights for all observations within
the respective age groups equal the known true values. However, drawing a bootstrap sample
then has the effect that the sample weights in the bootstrap sample no longer sum up to
the correct values. As a remedy, the sample weights of each bootstrap sample should be
recalibrated. Detailed information on calibration methods can be found in, e.g., Deville and
Sérndal (1992); Deville et “al. (1993).

The naive bootstrap does not include the recalibration of bootstrap samples and therefore
is, strictly speaking, not suitable for many practical applications. Nevertheless, the naive
bootstrap still works well in many situations even though a bias may be introduced. Hence
it is frequently used in practice due to its faster computation compared with the calibrated
version.

For better accuracy at a higher computational cost, the calibrated bootstrap algorithm is
obtained by adding the following step between Steps™1 and ™2 of the naive bootstrap algorithm
from the previous section:

1b. Calibrate the sample weights for each bootstrap sample X, r=1,..., R.

Using laeken, the function call for including variance and confidence intervals via the cali-
brated bootstrap is very similar to its counterpart for the naive bootstrap. A matrix of auxil-
iary calibration variables needs to be supplied via the argument X. The function calibVars ()
can thereby by used to transform a factor into a matrix of binary variables. In the examples
below, information on region and gender is used for calibration. Furthermore, the argument
totals can be used to supply the corresponding population totals. If the totals argument
is omitted, the population totals are computed from the sample weights of the original sam-
ple. This follows the assumption that those weights are already calibrated on the supplied
auxiliary variables.

R> aux <- cbind(calibVars(eusilc$db040), calibVars(eusilc$rb090))
"rb050", design = "db040", data = eusilc,
aux, seed = 123)

R> arpr("eqlncome", weights
+ var = "bootstrap", X

Value:
[1] 14.44422
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Variance:
[1] 0.09077282

Confidence interval:
lower upper

13.87605 15.17314

Threshold:
[1] 10859.24

R> arpr("eqIncome", weights = "rb050", breakdown = "rb090",

+ design = "db040", data = eusilc, var = "bootstrap',
+ X = aux, seed = 123)
Value:

[1] 14.44422

Variance:
[1] 0.09077282

Confidence interval:
lower upper
13.87605 15.17314

Value by domain:
stratum value

1 male 12.02660

2 female 16.73351

Variance by domain:

stratum var
1 male 0.1345168
2 female 0.1810947

Confidence interval by domain:
stratum lower upper

1 male 11.32096 12.73850

2 female 16.01951 17.73165

Threshold:
[1] 10859.24

7. Conclusions

In this paper, we demonstrate the use of the R package laeken for computing point and
variance estimates of indicators from complex surveys. Various commonly used indicators on
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social exclusion and poverty are thereby implemented. Their estimation is made easy with
the package, as the corresponding functions allow to compute point and variance estimates
with a single command, even for different subdomains of the data.

In addition, we illustrate with a simple example that some of the indicators are highly influ-
enced by extreme outliers in the data (cf. Hulliger and Schoch 2009; Alfons et “al. 2013). As a
remedy, a general procedure for robust estimation of the indicators is implemented in laeken.
The procedure is based on fitting a Pareto distribution to the upper tail of the data and has
the advantage that it can be applied to any indicator. A diagnostic plot thereby allows to
check whether the Pareto tail model is appropriate for the data at hand.
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