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This vignette illustrates the use of so-called group kernels, investigated in [Roustant et al., 2018§],

with kergp. They are suitable for categorical inputs when levels are gathered in predefined
groups.

1 Group kernels

Let G be the number of groups, and nq,...,ng their sizes. Let L = nj + - -- + ng be the total
number of levels. Then a group kernel is a valid block covariance matrix T of size L, composed
of constant off-diagonal blocks T, 4/, (¢ # ¢'). Up to a condition on diagonal blocks, such block
matrices can be generated with

e one ‘between-{ group means}’ covariance matrix B* of size GG, corresponding to the covari-
ance matrix of the group centers,

e and G ‘within’ centered covariance matrices W7, ..., W{, of size nq,...,ng.

The link between T, B*, W corresponds to a probabilistic nested model (see [Roustant et al., 2018]

for details) and is given by the following equations:

Tyg = B)yIngm, + W (1)
Tg,g’ = B;:g/ Jng,n g 7é g/ (2)

where Jj s is the k& x k" matrix of ones. More precisely, the within covariance matrices are
parameterized with full rank matrices My,..., Mg of size ny — 1,...,ng — 1 by

g/

W; = AMyA/] (3)

where A, ..., Ag are fixed contrast ng x (ng — 1) matrices, whose columns form an orthonor-
mal basis of centered vectors of R™¢.

In kergp, the between and within covariance matrices can be chosen among three parame-
terizated classes:

e "Diag": Diagonal matrices,
e "compSymm": Coumpound symmetry (or exchangeable) matrices,
e "Symm": General symmetric matrices.

Furthermore, two other parameters can be used to refine parameterization settings:



e covBet. A character string indicating the kind of covariance matrix for B*: correla-
tion ("corr"), homoscedastic ("homo") or heteroscedastic ("hete"). Partial matching is
allowed.

e covWith. A vector of size G (recycled if smaller) whose component ¢ indicates the kind
of covariance matrix for group g : correlation ("corr"), homoscedastic ("homo") or het-
eroscedastic ("hete"). Partial matching is allowed.

Mind that, even when B* and M are chosen to be correlation matrices (covBet = "corr",
covWith = "corr"), then T will not be a correlation matrix in general (see Eq . Finally,
notice that the model choice (within = "Diag", covWith = "homo") implies that the corre-

sponding diagonal block is a compound symmetry matrix.

2 Illustration on a toy example

We consider a real-valued output y = f(x,u) depending on one continuous input x € [0, 1] and
one categorical input v with L = 8 levels. As visible in Figure |1} the levels can be split in 2
groups: a group of linear functions (levels 1-4), and a group of damped sinusoidal functions
(levels 5-8).

library (kergp)
nl <- 4
n2 <- 6

L <- nl + n2

cut <- c(0, n1, n1 + n2 / 2, L)

f <- function(x, w{
(x +0.01 *x (x-1/2) = 2) *u/ 10 * ((u >= cut[1] + 1) & (u <= cut[2])) +
0.9 % cos(2 * pi * (x + (u - cut[2]) / 20 )) * exp(-x) * ((u >= cut[2] + 1) & (u <= cut[3])) -
0.7 * cos(2 * pi * (x + (u - cutl[3]) / 20 )) * exp(-x) * ((u >= cut[3] + 1) & (u <= cut[4]))

}

N <- 100

t <- seq(0, 1, length.out = N)
x <- rep(t, L)

u <- rep(1:L, each = N)

col <- 1ty <- c(rep("blue", nl), rep("red", n2))

m <- 3

set.seed(0)

x1 <- seq(0, 1, length.out = m * L)
ul <- rep(sample(L), m)

Y <- f(x1, ul)

matplot(t, matrix(f(x, u), ncol = L), type = "1", xlab = "x", ylab = "f(x,u)", col = 1:L)
points(xl, Y, pch = 19, col = ul)

We now aim at predicting these functions from a limited number of evaluations. We have
chosen here a stratified design extracted from a sequence of regularly spaced points, with m
points per level. They correspond to the black points in Figure[I} Alternatively, a sliced Latin

hypercube design could have been used [Ba, 2015].

First we define a group kernel. Here, we choose the simplest structure for the first group
(linear functions), but the most complex one for the second one (damped sinusoidal functions)



f(x,u)

Figure 1: A toy function for group kernels.

in order to capture the negative correlations within that group. Notice that the model choice
for the first group (covBet = "Diag", covWith = "homo") implies that the diagonal block
corresponding to the first group is a compound symmetry matrix. In general, these settings are
typically motivated by a tradeoff between complexity and parsimony.

group2 <- c(rep(1, nl), rep(2, n2))
levels <- 1:L

kcat2 <- covQualNested(input = "ul",
group = group2, nestedlLevels = levels,
between = "Symm", within = c("Diag", "Symm"),
covBet = "homo", covWith = c("homo", "hete"))

Now, a kernel for the mixed input w = (z,u) is obtained by multiplying the kernel for the
categorical input w defined by T with a 1-dimensional kernel for the continuous input:

k(w,w') = keont (@, ") keat (u, u').

Other operations are possible, such as the sum. Below, we have chosen a Matérn kernel with
v =5/2. In order to avoid overparameterization, the variance term of the continuous kernel is
fixed to 1 (by choosing cov = "corr"): thus the kernel variance is entirely parameterized by
the categorical one.

kcont <- covRadial(k1Funl = klFuniMatern5_2, d = 1, cov = "corr"
inputNames (kcont) <- "x1"
coef (kcont) <- c(0.5)

kmix2 <- covComp(formula = ~ kcont() * kcat2())

Next, the Gaussian process model is estimated from the data. The usage of multistart is
recommended in order to cope with possible local maxima of the log-likelihood function.

myData <- data.frame(ul = ul, x1 = x1, Y =Y)

library(doFuture)

registerDoFuture ()

plan(multisession, workers = max(detectCores()-1, 1))
multistart <- 10
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Figure 2: Color plot of the estimated covariance matrix T (left) and corresponding correlation
matrix (right) for the categorical kernel.

res2 <- gp(formula =Y ~ 1, cov = kmix2,
data = myData, inputs = c("ul", "xi"),
multistart = multistart, noise = FALSE)

Then, we plot the estimated covariance matrix of the categorical part, obtained by choosing
a vector of zeros for the continuous input. We also report the resulting correlation matrix in
Figure[2l We can see that the model recovers the likely sign of correlations, as well as the group
heteroskedascity with a smaller variance for the group of linear curves.

library(corrplot)
T <- covMat(res2$covariance, X = data.frame(ul = 1:L, x1 = rep(0, L)))
corrplot(T, method = "ellipse", is.corr=FALSE)

C <- cov2cor(T)
dimnames (C) <- dimnames(T)
corrplot(C, method = "ellipse")

Next we try a second model obtained by considering the two subgroups of damped sinusoidal
curves as two different groups. Since the groups are now homogeneous, we choose the simplest

covariance homoscedastic within-structure (within = "Diag", covWith = "homo") for each
group, corresponding to a compound symmetry matrix. On the other hand, for flexibility, we
choose the most complex between structure (between = "Symm", covBet = "hete"), resulting

in different correlation values for each pair of groups.

group3 <- c(rep(l, nl), rep(2, n2/2), rep(3, n2/2))
kcat3 <- covQualNested(input = "ul",
group = group3, nestedlLevels = levels,

between = "Symm", within = "Diag",
covBet = "hete", covWith = "homo")
kmix3 <- covComp(formula = ~ kcont() * kcat3())

Then, we estimate this new GP model and draw the estimated covariance / correlation plot.
We obtain a similar picture.

res3 <- gp(formula =Y ~ 1, cov = kmix3,
data = myData, inputs = c("ul", "x1"),
multistart = multistart, noise = FALSE)
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Figure 3: Color plot of the estimated covariance matrix T (left) and corresponding correlation
matrix (right) for the categorical kernel.

T <- covMat(res3$covariance, X = data.frame(ul = 1:L, x1 = rep(0, L)))
corrplot(T, method = "ellipse", is.corr = FALSE)

C <- cov2cor(T)
dimnames (C) <- dimnames(T)
corrplot(C, method = "ellipse")

Let us now look at the performance in prediction for the two models. We sample uniformly
N = 1000 new data, and compute predictions at these points. The result is plotted on Figure [4]
The Q? of each model is also indicated, which compares the predicted values to the mean. We
also give the Q? corresponding to each level.

N <- 1000
newdata <- data.frame(xl = runif(N), ul = sample(L, N, replace = TRUE))
Q2 <- function(obs, pred){

1 - sum( (pred - obs) =~ 2 ) / sum( (mean(obs) - obs) ~ 2 )

}
byLevelQ2 <- function(obs, pred, newdata){
val <- c()
for (i in 1:L){
index <- newdata$ul == i
val <- c(val, Q2(obs = obs[index], pred = pred[index]))
}
val
}

p2 <- predict(res2, newdata, type = "UK")

matplot(t, matrix(f(x, u), ncol = L), type = "1", xlab = "x", ylab = "f(x,u)", col
points(xl, Y, pch = 19, cex = 1, col = ul)

points(newdata$xl, p2$mean, pch = newdata$ul, col = newdata$ul, cex = 0.3)

1:L)

p3 <- predict(res3, newdata, type = "UK")

matplot(t, matrix(f(x, u), ncol = L), type = "1", xlab = "x", ylab = "f(x,u)", col = 1:L)
points(xl, Y, pch = 19, cex = 1, col = ul)

points(newdata$xl, p3$mean, pch = newdata$ul, col = newdata$ul, cex = 0.3)
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Figure 4: Prediction for the two models (left: with two groups; right: with three groups). The
original data are represented by big bullets.

Ynew <- f(x = newdata$xl, u = newdata$ul)
cat("Q2 for the model with 2 groups:\n", round(Q2(obs

Ynew, pred = p2$mean), 2))

## Q2 for the model with 2 groups:
## 0.74

cat("Q2 for the model with 3 groups:\n", round(Q2(obs = Ynew, pred = p3$mean), 2))

## Q2 for the model with 3 groups:
## 0.86

cat("by-level Q2 for the model with 2 groups:\n",
round (byLevelQ2(obs = Ynew, pred = p2$mean, newdata), 2))

## by-level Q2 for the model with 2 groups:
# 0.99 1 0.97 0.99 0.93 0.87 0.24 0.79 0.71 0.62

cat("by-level Q2 for the model with 3 groups:\n",
round (byLevelQ2(obs = Ynew, pred = p3$mean, newdata), 2))

## by-level Q2 for the model with 3 groups:
# 0.71 0.98 0.97 0.99 0.8 0.91 0.7 0.95 0.79 0.97

Finally, we provide the leave-one-out diagonostic plots, in order to have a first insight of the
validity of the two GP models.

plot(res2)

plot(res3)
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Figure 5: Leave-one-out plots for the GP models with 2 groups.
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Leave-one-out plots for the GP models with 3 groups.
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